
6. INTERPRETABILITY

Let S and S7 be arbitrary theories. S7 is interpretable in S if, roughly speaking, the

primitive concepts and the range of the variables of S7 are definable in S in such a

way as to turn every theorem of S' into a theorem of S. If, in addition every non-

theorem of S7 is transformed into a nontheorem of S, then S7 is faithfully inter-

pretable in S.

In this chapter, we assume that PAH T. Thus, T is essentially reflexive.

§1. Interpretability. Let S and S7 be arbitrary theories. By a translation (of the lan-

guage of S' into the language of S) we understand a function t on the set of formu-

las (of S') into the set of formulas (of S) for which there are formulas TJO(X)/ %(*/y)/

η+(x,y,z), ηx(x,y,z) and a formula μt(x) such that t satisfies the following conditions

for all formulas φ, ψ, ξ(x):

(*) t(x = y) := x = y,
t(x = 0) := η0(x),

t(Sx = y) := ηs(x,y),
t(x + y = z) := η+(x,y,z),

t(x x y = z) := ηx(x,y,z),

t(- φ) := -t(φ),

t(φ Λ ψ) := t(φ) Λ t(ψ),
t(3xξ(x)):=3x(μt(x)Λt(ξ(x))).

(Here x, y, z are arbitrary variables.) We assume that V and the connectives v, ->,

<-» are defined in terms of 3, -•, Λ. Note that t, on the formulas for which it is defined

by the above conditions, is uniquely determined by its values on atomic formulas

together with the formula μt(x).

So far t(φ) is only defined provided that φ is written in a certain "normal form".

For example, t is not defined on the formula x + 0 = y. But this formula is equiva-

lent to 3z(z = 0 Λ x + z = y) and t is defined on this formula so we can set t(x + 0 =

y) := t(3z(z = 0 A x + z = y)). Similarly, for any formula φ not already on "normal

form", replace φ in some canonical way by φ* on "normal form" (logically equiva-

lent to φ) and set t(φ) := t(φ*). It follows, for example, that t(Vxξ(x)) is equivalent to

Vx(δ(x) -> t(ξ(x))). Clearly t is a primitive recursive function.

The translation t is an interpretation in S iff

(**) Sh 3xμt(x),

Sh 3x(μt(x) Λ Vy(μt(y) -> (η0(y) <-> y = x))),

Sh Vx(μt(x) -» 3y(μt(y) A Vz(μt(z) -> (ηs(x,z) <-> z = y)))),

Sh Vxy(μt(x) Λ μt(y) -> 3z(μt(z) Λ Vu(μt(u) -> (η*(x,y,u) <-> u = z)))), * = +, x.

Thus, t is an interpretation in S iff Sh t(φ) for every logically valid sentence φ.

t is an interpretation o/S7 in S, t: S7< S, iff Sh t(φ) for every φ such that S7h φ. S7
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is interpretable in S, S'< S, if there is an interpretation of S' in S. S'< S means that S'<

S^S7.
Trivially, if S'H S, then S'< S. The reader should check that < is a transitive rela-

tion. Also note that if S'< S, then every finite subtheory of S7 is interpretable in a

finite subtheory of S.

If S'< S and S is consistent, so is S'. For suppose S7 is not consistent. Let φ be any

sentence. Then S'h φ Λ -<φ. But then Sh t(φ Λ - φ). But t(φ A -<φ) := t(φ) Λ -ιt(φ),

whence Sh t(φ) Λ -«t(φ) and so S is inconsistent.

Since every translation t is a primitive recursive function, we may in (extensions

of) PA use t as a function symbol, t can always be defined such that the following

Fact holds and the argument in the preceding paragraph can be formalized in PA.

Fact 12. Suppose t: S'< S.
(a) The conditions (*) and (**) are provable in PA.

(b)PAhPr0(x)^Prs(t(x)).

This Fact has the following:

Corollary 1. Suppose t: S'< S and S' is finite. Then PAh Prs/(x) ̂  Prs(t(x)) and con-

sequently PAh Cons -> ConS'.

The assumption that S' is finite in Corollary 1 cannot be omitted: S'< S may be true

but not provable in PA (see Corollary 5 and Theorem 12, below). But we do have

the following weaker result. (Recall that a numeration of a set X numerates X in PA.)

Theorem 1. Suppose SQ < S^ and let σ1(x) be a Σ^ numeration of S^. There is then a

Σ! numeration σ0(x) of S0 such that

PAh Conσι -» ConσQ.

Proof. Suppose t: S0 < Sj. Let σ(x) be a PR binumeration of S0 and let σ0(x) := σ(x)

Λ Prσ (t(x)). Then σ0(x) is a Σl numeration of S0 and

(1) PAhPrσ()(x)->Prσι(t(x)).

To prove this, we reason (informally) in PA as follows: "Suppose φ is derivable

from formulas satsifying σ0(x). Then there are ψ0/ /ψn °f formulas satisfying σQ(x),
such that Λ{ψk: k < n} -> φ is provable in logic. But then, by Fact 12 (this chapter),

t(Λ{ψk: k < n}) -> t(φ) is provable from the set defined by σχ(x). But t(A{ψk: k < n})

:= Λ{t(ψk): k < n}). Also, by the definition of σQ(x), each t(ψk) is derivable from the

set defined by σα(x). But then so is A{t(ψk): k < n}). It follows that t(φ) is derivable

from the set defined by σ1(x).// This proves (1).

From (1) we easily get the desired conclusion.

Theorem 1 in combination with GόdeΓs second incompleteness theorem

(Theorem 2.4) yields the following strengthening of GodeΓs result. For a different
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improvement of Theorem 2.4, see Theorem 8, below.

Theorem 2. T + Conτ £ T.

Proof. Suppose T + Conτ < T. Then, by Theorem 1, there is a Σx numeration τ'(x) of

T + ConT such that T + Conτh Coiv By Theorem 2.4 it now follows that T + Conτ

is inconsistent. But then, since T + Conτ < T, T is inconsistent, contrary to
Convention 2.

Since Conτ is Πj, Theorem 2 is also a direct consequence of Theorem 2.4 and the

following:

Lemma 1. If π is a Π1 sentence and Q + π < T, then Th π.

Proof. There is a k such that Q + π < T I k. So, by Corollary 1, Th Conτ | k -* Cong+π.

It follows that Th CoriQ+π. Since -iπ is Σl7 we have, by provable Σ1-completeness,
Th -.π -> -»ConQ+π. It follows that Th π.

Note that we have actually proved that Q + Con^ ̂  T.

In Chapter 2 (Corollary 2.1) we proved that PA is essentially infinite (in fact, PA

is essentially unbounded; Corollary 4.1). This can now be improved as follows:

Theorem 3. T is not interpretable in any finite subtheory of T.

Proof. Let S be a finite subtheory of T and suppose T < S. By Theorem 1, there is

then a Σ1 numeration τ(x) of T such that PAh Cons -» Cor^. Since, by Fact 11, T is

reflexive, we have Th Cons and so Th Cor^, contradicting Theorem 2.4.

Most positive results on the existence of interpretations in the sequel are appli-

cations of the following fundamental result, the arithmetization of GδdeΓs com-

pleteness theorem.

Theorem 4. Let σ(x) be a formula numerating S in T. Then S < T + Conσ.

Proof (informal outline). A full proof of this result would be quite long and we

shall be content to give a fairly detailed sketch. The main idea is to show that (the

denumerable case of) the Henkin completeness proof for first order logic can be

formalized in PA. (The reader is assumed to be familiar with that proof.)

We begin with an outline of Henkin's proof. Let S be a (countable) set of sen-

tences (theory) assumed to be consistent. Let cn, ne N, be new individual constants.

Let L be the language obtained from Ls by adding the constants cn. Let α^x ,̂

ne N, be a primitive recursive enumeration of all formulas of L with one free vari-

able. We can then form a primitive recursive set

Z = {Ξxnαn(xn)^αn(cJn):neN}

such that
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(1) for every sentence θ of S, if S + Zh θ, then Sh θ.

It follows that S + Z is consistent.

Now let θn/ ne N, be a primitive recursive enumeration of all sentences of L. The

sentences φn are then inductively defined as follows:

(2) φn = θn if S + Zh Λ{φm: m < n} -> θn/

= -«θn otherwise.

(Here A{φm: m < 0} := 0 = 0.) φn is not in general a recursive function of n.

Let X = {φn:nGN}. Then

(3) Th(S) c X

and, since S + Z is consistent,

(4) X is Henkin complete

in the sense that X is complete and consistent and for every formula α(x) of L with

the one free variable x, if 3xα(x)e X, there is a constant ck such that α(ck)e X.

We can now define a model

M = (M, SM, +M, χM, 0M)
of X in the following way. The domain M of the model is the set {cn: neN}. (Here

we ignore the minor difficulty that X may contain sentences of the form ck = cm

with k Φ m and so the members of M cannot in general be the constants themselves

but must instead be certain "equivalence classes" of these constants or, in the pre-

sent context, members of such equivalence classes. If we disregard the trivial case

where S has only finite models, this can be avoided by defining Z in a slightly dif-

ferent way.)

0M = c i, CM = cn,

n/Cn): Ck + Cm = Cne X},

XM = {(ck,cm,cn): ck x cm = CΠG X},

where q is the (uniquely determined) constant such that 0 = q e X.

Finally, it can be shown, by induction and using the fact that X is Henkin com-

plete, that for every sentence φ of L,

(5) φ is true in M iff φe X.

This is true, by the definition of M, if φ is atomic.

Finally, Th(S) c X and so M is a model of Th(S).

We can now transform this into a proof that S < T + Conσ in the following way.

We first define in PA a primitive recursive function c(x) (= the Xth new individual

constant). By a c-formula we understand a formula obtained from a formula of LA

by replacing each free variable v by c(v). (Thus, the c-formulas are the counterparts

of the sentences of L.) Let ζ(x) be a suitably defined PR Enumeration of Z, where

Z is defined as above except that we now use the function symbol c. Then (the

reader will hopefully believe that) for every sentence φ of S,

(6) PAhPΓσvζ(φ)^Prσ(φ).

(compare (1)). It follows that

(7) PAh Conσ ->
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The inductive definition of φn can, using methods available in PA, be turned into

an explicit definition. Let χ(x,y) be a suitable formalization of this explicit defini-

tion (cf. Chapter 1, p. 9). Let ξ(x) := Ξyχ(x,y). (Thus, intuitively, ξ(x) means "x is a

member of X".) Then (compare (3))

(8) PAhPrσ(x)^ξ(x).

Let Hcmξ be the sentence saying that the set defined by ξ(x) is Henkin complete.

Thus, for all c-formulas α, β,

(9) PA + Hcmξh ξ(- α) <-> -ιξ(α).

(10) PA + Hcmξh ξ(α) Λ Pr0(α-»β) -» ξ(β).

Moreover, for every formula α(x) such that Ξxα(x) is a c-formula,

(11) PA + Hcmξh ξ(3xα(x)) -> 3uξ(α(c(ύ))).

The (inductive) proof of (4) does not use any means of proof beyond those avail-

able in PA. Thus, we get PAh Conσvς — » Hcmξ and so, by (7),

(12) PAh Conσ -» Hcmξ.

We can now define a translation t, corresponding to the model M, as follows.

Let

μt(x) := 3u(x =

t(Sx = y) := 3uv(x = c(u) A y = c(v) A ξ(Sc(ύ) = c(v))),

t(x + y = z) := 3uvw(x = c(u) Λ y = c(v) Λ z = c(w) Λ ξ(c(ύ) + c(v) = c(w))),

t(χ x y = z) := 3uvw(x = c(u) Λ y = c(v) Λ z = c(w) Λ ξ(c(ύ) x c(v) = c(vί))).

These equations uniquely determine t.

The proof corresponding to the proof of (5) now yields for every formula

P(XO/— /XH-I) of LA containing no free variables other than XQ/ /XR-I/

(13) PA + Hcmξh μt(xQ) Λ...Λ μt(xn_ι) -> (t(β(xo/.../Xn-i)) **
3u0,...,un_1(x0 = c(u0) Λ...Λ xn-1 = c(un_x) Λ ξ(β(c(ύ)0,...,c(ύ)n_1)))).

By the definition of t, this holds for atomic β(x0,...,xn_1). The inductive steps deal-

ing with -i and Λ follow easily, by (9) and (10).

Let us consider the step dealing with 3. For simplicity, let n = 1 and write x for

x0. Let α(x,y) be such that β(x) := 3yα(x,y). Then t(β(x)) := 3y(μt(y) Λ t(α(x,y)). By

the inductive hypothesis,

PA + Hcmξh μt(x) A μt(y) -> (t(α(x,y)) <->

3uv(x = c(u) A y = c(v) A ξ(α(c(ύ),c(v)))).

By (10) and (11),

PA + Hcmξh 3vξ(α(c(ύ),c(v))) *-> ξ(3yα(c(ύ),y)).

But then it is fairly easy to see that

PA + Hcmξh μt(x) -> (3y(μt(y) A t(α(x,y)) <-> 3u(x = c(u) A ξ(3yα(c(ύ),y)))),

as desired. This proves (13).

From (12) and (13), we get for every sentence φ,

(14) PA + Conσht(φ)^ξ(φ).

Finally, let φ be any sentence provable in S. Then Th Prσ(φ). Hence, by (8),

Th ξ(φ) and so, by (14), T + Conσh t(φ). It follows that t: S < T + Conσ.
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This concludes our sketch of the proof of Theorem 4.
If we don't insist on mimicking every detail of Henkin's proof, we can instead

use the simpler interpretation t' defined in the following way:

MO := x = x/
t'(x = 0) := ξ(0 = c(x)),

t'(Sx = y):=ξ(Sc(x) = c(y)),

f (x + y = z) := ξ(c(x) + c(y) = c(z)),

t ' (xxy = z):=ξ(c(x)χc(y) = c(z)),

Thus, MX) is trivial anc*can be omitted. (This is true as long as we are dealing with
theories of (elementary) arithmetic; it is not true in general.)

It is via the following lemma, the (Feferman-)Orey-Hajek Lemma (and

Theorem 6, below) that Theorem 4 becomes such a powerful tool in the theory of

interpretability (of arithmetical theories; see also Lemma 8.4).

Lemma 2. S < T iff Th Cons (k for every k.

To prove this we need the following lemma whose proof is essentially the same as

that of Theorem 2.7.

Lemma 3. Suppose Th Cong \ k for every k. Let σ(x) be any formula binumerating

S in T and let

σ*(x) := σ(x) Λ Conσ)x.

Then (i) σ*(x) binumerates S in T and (ii) PAh Conσ*.

Proof of Lemma 2. Suppose first S < T. Let k be arbitrary. There is then an m such

that SI k < T I m. By Corollary 1, PAh Conτ | m -» Cons | k. But Th Conτ (m and so

ThCon s,k.

Next suppose Th Con$ (k for every k. Let σ(x) be a PR binumeration of S and let

σ*(x) := σ(x) Λ Conσ|x. Then, by Lemma 3, σ*(x) binumerates S in T and PAh Conσ*.
Hence, by Theorem 4, S < T.

There are alternative notions of interpretability more general than the one

defined here. For example, we may "interpret" the equality symbol = of one theo-

ry S as a certain relation definable in another S' (and having, provably in S7, the

required properties) or we may "interpret" the individuals of S as finite sequences

of individuals of S' etc. It turns out, however, that if S is "interpretable" in T in

some such more general, and reasonably natural, sense, then, by Lemma 2, S < T

(and conversely). Thus, in the present context, there is no reason to consider these

more general "interpretations".

From Lemmas 2 and 3 and Theorem 4 we get the following:

Corollary 2. S < T iff there is a formula σ(x) (bi)numerating S in T such that Th
Conσ.
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From Lemma 2 we also obtain the following result known as Orey's compactness
theorem.

Theorem 5. S < T iff SI k < T for every k.

In the following we use A, B, etc. to denote (consistent, primitive recursive) exten-

sions of T. Recall that AHΓ B means that every Γ sentence provable in A is provable
inB.

Theorem 6. A < B iff AHΠlB.

Proof. Suppose first AHΠιB. Now, Ah ConA | k for every k. It follows that

Bh ConA i k for every k. But then, by Lemma 2, A < B.

Suppose next A < B. Let π be any Π1 sentence such that Ah π. By Lemma 1, Bh π,

as desired.

By Theorem 6, A + φ < A iff φ is Π1-conservative over A.

Theorem 6 has the following immediate:

Corollary 3. If A < B and σ is any Σ± sentence, then A + σ < B + σ.

Combining Theorem 6 and Theorem 4.5 we get:

Corollary 4. T + Rfnτ < PA + Con^.

In fact, this follows directly from Lemma 2 and the fact, established in the proof of
Theorem 4.5, that PA + Con^h ConTn for every n.

Theorem 6 can also be used to prove the following model-theoretic characteri-

zation of interpretability:

Theorem 7. A < B iff for every model M of B, there is a model M' of A such that M

is (isomorphic to) an initial segment of M'.

Proof (sketch). "If". Let θ be any Πj sentence such that Ah θ. We show that θ holds

in all models of B. Let M be any model of B. By hypothesis, there is a model M' of

A such that M is isomorphic to an initial segment of M'. θ holds in M'. Since θ is

Πl7 it follows that θ holds in M. Thus, θ holds in all models of B and so Bh θ. We

have shown that AHΠ B and so A < B, by Theorem 6.

"Only if". Let t: A < B. Let M be any model of B and let M' be the structure

defined by t in M. M' is a model of A. Since induction holds in M, we can in M

define a function f on M satisfying the following conditions: f(0M) = 0M', f(SM(a))

= SM (f(a)). f maps M isomorphically onto an initial segment of M'.

Given Theorem 6, we can now derive Theorems 8-12 below as corollaries to
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results from Chapter 5.
Like Theorem 2 the following result is a sharpening of GodeΓs second incom-

pleteness theorem.

Theorem 8. T + ->Conτ < T.

Proof. This follows from Theorem 5.1 and Theorem 6.

A more direct proof of Theorem 8 is as follows. We need the following:

Lemma 4. If S < S'+ φ0 and S < S'+ φα/ then S < S'+ φ0 v q>r Thus, if S + φ < S + -ιφ,

then S + φ < S.

Proof. Suppose tji S < S'+ φ^ i = 0,1. Let t be the translation which coincides with

t0 if φ0 and with tj if -i(pQ Λ φ1. Thus, for example,

μt(χ) := (ΦQ Λ MtoM)v (""ΦoA ΦiA m *̂))-
It follows that for all φ,

(1) S' + φ0ht(φ)^t0(φ),
(2) S/ + -φ0Λφ1ht(φ)<->t1(φ).

Now, suppose Sh φ. Then S' + φQh t0(φ) and so, by (1), S' + φQh t(φ). Also S' + φ1h

t^φ) and so, by (2), S' + - φ0 Λ φ1h t(φ). It follows that S'+ φ0 v q^h t(φ). Thus, t: S

< S'+ φ0 v φ1, as desired.
By Corollary 2.2, T + Conτh Conτ+_,ConT. But then, by Theorem 4, T + - Conτ <

T + Conτ and so, by Lemma 4, T + -«Conτ < T, as desired. (In this proof of Theorem

8 it is not necessary to assume that T is (essentially) reflexive.)

Theorem 9. Suppose X is r.e. and monoconsistent with T. There is then a Σ1 sen-

tence φ such that T + φ < T and φ£ X.

Proof. This follows from Theorem 5.2 and Theorem 6.

Corollary 5. Let τ(x) be a formula numerating T in T such that Tl^ -"Co .̂ There is

then a (Σ{) sentence φ such that T + φ < T and Tl^ Conτ —»Conτ+φ.

Proof. Let X = {ψ: Th Coi^ -» Con^} and use Theorem 9.

Theorem 10. Suppose X is r.e. and monoconsistent with T. There is then a sentence

φ such that T + φ < T, T + -.φ < T, φ£X, -κp£X.

Proof. By Theorem 5.3 we can take φ to be, say, a Σ2 sentence such that φ is Π2-con-

servative and ->φ is Σ2-conservative over T. Now use Theorem 6.

A sentence φ such that T + φ < T, T + -«φ < T is known as an Orey sentence for T.

Clearly, any Orey sentence for T is undecidable in T.
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The intended applications of Theorems 9 and 10 are as follows. There are con-

sistent finitely axiomatized extensions U of T in languages extending LA. In fact, U

may chosen to be a conservative extension of T in the sense that for every sentence

φ of LA, Uh φ iff Th φ. Thus, U and T are equivalent in terms of provability of sen-

tences of LA. So it is natural to ask if U and T are (ever) equivalent in terms of inter-

pretability of sentences of LA in the sense that for every sentence φ of LA/ T + φ <

T iff U + φ < U. (We assume the reader can extend the defintion of "interpretation"

and "interpretable in" to the case where the theories need not be formalized in LA.)

The answer is a resounding "no" (see also Corollary 8.8). To prove this we need the

following essentially trivial lemma whose proof is left to the reader.

Lemma 5. Let V be any r.e. theory, not necessarily in LA. Then the set {φ: U + φ <

V} is r.e.

Corollary 6. There is a ΣI sentence φ such that T + φ < T and U + φ ̂  U.

Proof. The set {φ: U + φ < U} is clearly monoconsistent with T and, by Lemma 5, it

is r.e. Now apply Theorem 9.

By a similar proof, but using Theorem 10 in place of Theorem 9, we get:

Corollary 7. There is a sentence φ such that T + φ < T, T + -«φ < T, U + φ^U, and

U + -φ i U.

As we saw in Chapter 4, speaking in terms of provability, we have to distinguish

between finite, infinite, and unbounded extensions of a given theory T. In terms of

interpretability the situation is quite different. We write S = S' to mean that S < S'<

S.

Theorem 11. (a) If AH B, then there is a sentence φ such that A + φ = B.

(b) Let X be an r.e. set of Σj sentences. Then there is a Σ^ sentence σ such that

Proof, (a) Let X = Th(B) n nx. Then, by Theorem 6, A + X = B. By Theorem 5.4 (a),

there is a sentence φ such that A + φ is a Γ^- conservative extension of A + X. By

Theorem 6, A + φ Ξ A + X and so A + φ = B. 4

(b) This follows from Theorems 5.4 (a) and 6.

Finally, we have a result which proves the claim made earlier that the fact that,

for example, A + φ < B does not imply that this is provable in PA, or in any other

preassigned consistent axiomatizable theory.

From the definition of < it is clear that the set {φ: A + φ < B} is Σ^. From Theorem

6, it follows, however, that {φ: A + φ < B} is Π .̂ That this cannot be improved fol-

lows from:
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Theorem 12. Suppose A < B. Then the set (ψE Σα: A + φ < B} is a complete Π^ set.

Proof. For A = B, this follows from Theorem 5.6 and Theorem 6; we leave the proof

of the general case to the reader.

A translation t is given by a finite amount of information which can certainly be

coded by a natural number; thus we may "identify" t with that number. Let IntA B

be the set of interpretations of A in B.

Corollary 8. If A < B, then IntA/B is n° but not Σ°.

Proof. Clearly IntA B is Π2. Suppose it is Σ2. Evidently

A + φ < B iff Ξte IntA B(Bh t(φ)).

It follows that {φ: A + φ < B} is Σ!?, contradicting Theorem 12.
π

In the next § we are going to prove that IntAB is, in fact, a complete Π2 set

(Corollary 12).

§2. Faithful interpretability. Let t: S'< S. t is a faithful interpretation of S' in S, t: S'̂

S, if for every sentence φ, if Sh t(φ), then S'h φ. S' is faithfully interpretable in S, S'̂

S, if there is a t such that t: S'̂ 3 S.

Most of the differences between < and ̂  are explained by the following lemma;

for example, it is not true in general that if SH T, then S ̂  T.

Lemma 6. If QH S ̂  T, then THΣιS.

Proof. Suppose t: S ̂  T. Let σ be any ΣI sentence such that Th σ. Clearly t: Q + -*σ

< T + - t(σ). But then, by Lemma 1, T + - t(σ)h ->σ, and so Th t(σ). Since t is faithful,

it follows that Sh σ.

Our main aim in this § is to prove the following characterizations of .̂

Theorem 13. S ̂  T iff S < T and for every φ, if Th Pr0(φ), then Sh φ.

Theorem 14. A ̂  B iff AHΠlBHΣι A.

Corollary 9. (a) S ̂  T iff for every k, Th Cons | k and for every φ, if Th Pr0(φ), then
Shφ.

(b) If T is Σ^sound, then S ̂  T iff S < T.

(c) If S < TH S, then S ̂  T.

Proof, (a) and (b) follow at once from Theorem 13 and Lemma 2. 4

(c) Suppose Th Pr0(φ). Then, since T is essentially reflexive (Fact 11), Th φ and
so, by assumption, Sh φ. Now use Theorem 13.
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By Corollary 9 (c), Theorems 8, 9,10 remain true when < is replaced by .̂

Theorem 13 will be derived from the following two lemmas:

Lemma 7. Let σ'(x) be a (Σj) formula binumerating S in T. There is then a (Σ1) for-

mula σ(x) binumerating S in T and such that

(i) h σ(x) —> σ'(x), whence h Conσ/ -> Conσ/

(ii) for every sentence φ, if Th Prσ(φ), then there is a q such that Th Prs \ q(φ).

Lemma 8. Suppose σ(x) numerates S in T and Th Conσ. There is then an interpre-
tation t: S < T such that for every φ, if Th t(φ), then Th Prσ(φ).

Proof of Lemma 7. For simplicity we assume, as we clearly may, that if p is a proof

of φ in T, then φ < p. Let σ(x) be such that

PAh σ(x) o σ'(x) Λ Vyz<x(Prfτ(Prσ(y),z) -> PrσΊz(y)).

Then (i) is trivial.

We now show that

(1) if p is a proof of Prσ(φ) in T, then Th Prσ,, p(φ).

Let p and φ be as assumed. Then, since φ < p,

Th -Prσ, i p(φ) -> (σ(x) -> σ'(x) A x < p).
It follows that

Th -πPrσ, i p(φ) -» (Prσ(φ) -> Prσ,, p(φ)).

But then, since Th Prσ(φ), we get Th Prσ, |p(φ), as desired.

Since σ'(x) binumerates S in T, it follows from (1) that (ii) holds.

To show that σ(x) binumerates S in T it suffices to show that for all φ and p,

Th Prfτ(Prσ(φ),p) -> Prσ, ,p(φ).

But this, too, follows at once from (1).

Proof of Lemma 8. The following proof is a modification of the proof of Theorem

4. The interpretation t constructed in that proof does not necessarily have the addi-

tional property that

(1) Th t(φ) implies Th Prσ(φ).

To achieve this we proceed as follows. The function c, the set Z, and the formula

ζ(x) are the same as before, but the definition of φn is different. Here we put

(2) φn := θn if S + ZhΛ{φm: m < n}->θn or
(S + ZhΛ{φm: m < n}-> - θn & ne Y),

:= -»θn otherwise,

where Y is any set of natural numbers.

As before let X = {φn: ne N}. Either θn or -«θn is put in X. We put θn in X if putting

- θn in X would make X inconsistent, and similarly for -«θn. Otherwise we put θn in

X iff nE Y. The idea is to achieve (1) by letting Y be formally represented by a suffi-

ciently independent formula η(x).

Let γ(x) := σ(x) v ζ(x). Let η(x) be as in Theorem 2.10 with δ(x) := Prγ(x). Next, as

in the proof of Theorem 4, let χ(x,y) be the formalization of the result of turning the
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inductive definition of φn into an explicit definition using η(x) to represent Y. Let

Letξ(x):=Ξyχ(x,y).
As in the proof of Theorem 4 we can now define an interpretation t of S in T

such that

(3) Tht(φ)^ξ(φ).
It remains to be shown that (1) holds.

Suppose ΊV Prσ(φ). We must then show that ΊV t(φ). We have ΊV PΓγ(φ) (see (6)

in the proof of Theorem 4). For any fe 2N, let Yf = (PΓγ(n)f(n): ne N}. Now let f(n) be

such that f(φ) = 1 and
(4) T + Yf is consistent.

Next we define ψn as follows (compare (2)).
ψn := θn if Prγ(Λ{ψm:m<n}-»θn)e Y f or

(Prγ(Λ{ψm:m<n)->-.θn)ί Yf & Pr^)* Yf),
:= -«θn otherwise,

where λ^ := A{ψm: m < n} Λ θn -> φ. Let ge 2N be such that

and set
Yf/g = Yf+{η(n)S(n):neN}.

Then, by (4) and the choice of η(x),
(5) T + Yf^g is consistent.
Recalling the definition of χ(x,y), we can now show, by induction, that for every n,

T + Y f/gh χ(ψn,n) and so
(6) T + Yf/ghξ(ψn).
Next we show, by induction, that for every n,

(7) PΓγ( Λ{ψm:m<n}-κp)£ Yf .
Note that, by (4), (ψ: Prγ(ψ)e Yf} is closed under logical deduction. Since Prγ(φ)£ Yf,

(7) holds for n = 0. Suppose (7) holds for n = k.
Case 1. ψk := θk. Then either Prγ(Λ{ψm:m<k}->θk)E Yf or PΓγ(Λ{ψm:m<k+l}

->φ)£Yf. In the latter case (7) holds for n = k+1. In the former case we have

Prγ( Λ{ψm:m<k}— >ψk)e Yf and so (7) for n = k+1 follows from the inductive assump-

tion.

Case 2. ψk := -«θk. Then
(8) PΓγ(λk)GYf.

For suppose Prγ(λk)ί£Yf. If PΓγ( A{ψm:m<k}^- θk)€ Yf, then Prγ(Λ{ψm:m<k}Λθk

— >θ)e Yf for every θ and so, in particular, Prγ(λk)e Yf, contrary to assumption. So

PΓγ(Λ{ψm:m<k}-»-»θk)£ Yf. But then ψk := θk, a contradiction. This proves (8) and
completes the proof of (7).

From (7) it follows that for some k, φ := -ιψk. Hence, by (6), T + Y f/gh ξ(- φ). But

then, by (3) and (5), Tl^φ). Thus, (1) holds and the proof is complete.

Proof of Theorem 13. "If. By Corollary 2, there is a formula σ'(x) binumerating S

in T such that Th Conσ,. But then, by Lemma 7, there is a formula σ(x) numerating

S in T and such that Th Conσ and Lemma 7 (ii) holds. Now let t be as in Lemma 8.
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Then t: S < T. Let φ be any sentence of S such that Th t(φ). Then, by Lemma 8, Th

Prσ(φ) and so there is a q such that Th Prs | q(φ). It follows that Th Pr0(AS I q-xp)

and so, by hypothesis, Sh AS I q -> φ, whence Sh φ. Thus, t is faithful.

"Only if". Suppose S < T. Then S < T. Let φ be such Th Pr0(φ). Suppose t: S < T

is faithful. Let K be the sentence saying that t is an interpretation of 0 (logic) in T.

Then, by Fact 12 (b),

PAh Pr0(φ) -> Pτ0(κ->t(φ)).

But then Th Pr0(κ-»t(φ)). Since T is essentially reflexive, it follows that Th K -> t(φ).

But Th K and so Th t(φ). But then, t being faithful, Sh φ, as desired.

Proof of Theorem 14. Suppose first AHΠιBHΣlA. Then, by Theorem 6, A < B.

Suppose Bh Pr0(φ). Then, Pr0(φ) being Σα, it follows that Ah Pr0(φ). Since A is

essentially reflexive, this implies that Ah φ. Hence, by Theorem 13, A ̂  B.

Next suppose A ̂  B. By Theorem 6, AHΠ B, and, by Lemma 6, BHΣ A.

The analogue of Theorem 11 (a) for ̂  now follows at once from Theorem 14 and

Theorem 5.4 (a) with, say, Γ = Π2. We write A - B to mean that A ̂  B ̂  A.

Corollary 10. If AH B, there is a sentence φ such that A + φ - B.

The analogue of Theorem 11 (b), on the other hand, is clearly false. (Let σ^ be Σ^

sentences such that T + {σ :̂ k < n}h σn for every n and let X = (σ^: ke N}. Let σ be

any Σ^ sentence such that T + σ ^ T + X. Then, by Lemma 6, T + σh X, whence T +

XI/ σ and so, again by Lemma 6, T + X ̂  T + σ.)

If S is finite, then {φ: S < T + φ} is r.e., but if < is replaced by ^ this is no longer

true:

Corollary 11. Suppose QH S ̂  T. Then X = {φ: S < T + φ} is a complete Π^ set.

Proof. By Theorem 13, X is 0°. Let Y be any Π^ set. By the proof of Theorem 5.6 (a),

for Γ = ΣI, there is a formula ξ(x) such that

(1) if ke Y, then ξ(k) is Σ1-<:onservative over T,

(2) if kg Y, then there is a Σl sentence σ such that T + ξ(k)h σ and Sl^ σ.

It is now sufficient to show that

(3) Y={k:ξ(k)eX}.

Suppose first ke Y. Let ψ be any sentence such that T + ξ(k)h Pr0(ψ). Then, by (1),

Th Pr0(ψ). But then, by Theorem 13, Sh ψ. Using Theorem 13 once again, we get S

Next suppose kέY Let σ be as in (2). Since σ is Σα, PA + σh PrQ(σ) and so

PA + σh Pr0(ΛQ-»σ). It follows that T + ξ(k)h Pr0(ΛQ-»σ). On the other hand

-> σ. Hence, by Theorem 13, ξ(k)eX.

Finally, we improve Corollary 8 as follows.
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Corollary 12. If A < B, then IntA B is a complete Π^ set.

Proof. Let X = {k: VmR(k,m)}, where R(k,m) is r.e., be any Π^ set. By Theorem 3.1,

there is a formula p(x,y) numerating R(k,m) in B. Let α(x) be a formula binumerat-

ing A in B. Let σ(x,y) :=

α(x) Λ Conα i x Λ Vz<xp(y,z).

Then, by Lemma 3, for every k,

(1) PAh Conσ(x/k).

By Lemma 2, for every n, Bh ConA | n. It follows that

(2) if ke X, then σ(x,k) binumerates A in B.

Also, clearly,

(3) if k£ X, there is an m such that BI/ Ξx(m < x Λ σ(x,k)).

By (1) and the proof of Lemma 8, we can for each k, effectively find a translation tk

such that

(4) tk:{φ:Bhσ(φ,k)}<B,

(5) if Bh tk(φ), then Bh Prσ(x/k)(φ).

To complete the proof it suffices to show that

(6) X={k:tkεIntA/B}.

If keX, then, by (2) and (4), tke!ntAB. Suppose kgX. Let m be as in (3). Let θ be

such that

Then, since A is essentially reflexive,

(7) Ah θ.

Since A < B, it follows, by Theorem 6, that Bh -»PrA | m(θ). By the definition of σ(x,y),

this implies that

Bh Prσ(x/k)(θ) -> Ξx(m < x Λ σ(x,k)).

But then, by (3), W Prσ(x/k)(θ) and so, by (5) and (7), tkg IntA/B. This proves (6) and

so the proof is complete.

Exercises for Chapter 6.

In the following exercises we assume that PAH T and that A, B, C are extensions of
T.

1. Show that there is a Γ^ sentence φ such that Q + φ ̂  S and Q + - φ ̂  S (compare

Theorem 8.2).

2. (a) Suppose AH B ̂  A. Show that there is a C such that AH CH B and B ̂  C ̂  A.

[Hint: There is a sentence θ such that Bh θ and {θ} ^ A. The sets {φ: {θ} < A + -«φ}

and {φ: Q + θ v φ < A} are r.e. and monconsistent with Q.]

(b) Suppose A < B. Show that there is a C such that A < C < B.
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3. The proof of Theorem 4 actually yields the following stronger result: There is a

finite subtheory PAσ of PA such that S < PAσ + (σ(φ): φe S} + Conσ. Use this to prove

the following:

(a) If τ(x) numerates T in a finite subtheory of T, then T + Cor^ ^ T (compare

Theorem 2).

(b) T is interpretable in a bounded subtheory of T (compare Corollary 4.1 (a)

and Theorem 3).

4. (a) Suppose σ0, σj are Σ± sentences such that T + σ^ < T, i = 0, 1. Show that

T + σ0 Λ σ1 < T.

(b) Show that there is a Π^ set X of Σl sentences such that T + Y < T for every

finite (and so for every r.e.) subset Y of X and T + X ^ T (compare Theorem 5).

[Hint: Let τ(x) be a PR binumeration of T. Let p(x,y) be a PR formula such that

{k: ΞmPAh p(k,m)} is not recursive. Let γ(x,y) := τ(x) Λ Vz<χ-«p(y,z). Let

X = {-Coπγ(x/k): T + -^oityxjc) < T}.]

5. Improve Corollary 3 by showing that IntA B £ IntA+σ/ B+σ.

6. (a) Use Exercise 2.15 (b) to give an alternative proof of Theorem 8.

(b) Use Exercise 2.16 and Theorem 8 to give another proof of Theorem 9.

7. Suppose PAH Sj. Prove the converse of Theorem 1: If for every ΣI numeration

σ1(x) of Sj, there is a ΣI numeration σ0(x) of S0 such that PAh Conσ — » Conσ , then

SQ ^ Sj. [Hint: Use Theorem 5 and Exercise 2.16.]

8. Show that there is a (Πl7 Σ±) sentence θ such that Th ConT -> Conτ+θ and T + θ

9. Let θ be a Hi Rosser sentence for T and let ψ :=

Vu(Prfτ(- θ,u) -> Ξz<uPrfτ(θ,z)).

Show that T + θ Ξ T + -.ψ, T + ψ = T + --θ, T + Θ<T + Conτ/ T + ψ < T + Conτ.

10. Suppose X is r.e. and monoconsistent with T. Let p(x,y) be a PR formula such

thatX={k:ΞmPAhp(k,m)}.

(a) Let φ be such that

PAh φ <-> Vz(ConT|z+φ -> -*p(φ,z)).

Show that T + φ < T and φ^ X.

(b) The sentence φ in (a) is Π2. This can be improved. Let χ be such that

PAh χ <-> Ξz(^Conτ(z+χ Λ Vu<z-.p(χ,u)).

Then χ is Σx. Show that T + χ < T and χ£ X (compare Theorem 9).
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11. (a) Let φ be such that

PAh φ <-> Vz(Conτ (z+φ -^ Conτ t z+-,φ).

Show that φ is an Orey sentence for T (compare Theorem 10).

(b) Suppose AH B. Let φ be such that

PAh φ <-» Vz(ConA | z+φ -> ConB, z).

Show that A + φ = B (compare Theorem 11 (a)).

(c) Let φ be such that
PAh φ <-> Vz(ConA, z+φ -> ConB, z+^φ).

Show that A + φ = B + -iφ.

12. (a) Show that
PAh Vx(ConS(), x -» ConSl, x) <-> (ConSl v Ξx(-ConS(), x A Vy<xConSl, y)).

Conclude that the sentences φ of Exercise 11 are Δ2 (compare Exercise 5.9 (a) and

Theorem 7.8). In particular, there is a Δ2 Orey sentence for T.

(b) Show that no Orey sentence for T is B^.

13. Let τ*(x) be as in Theorem 2.7. In Theorem 4 let σ(x) := τ*(x) and S = T. Next let

ξ(x) be as in (14) of the proof of Theorem 4. Let φ be such that PAh φ <-» -»ξ(φ). Show

that φ is an Orey sentence for T.

14. Let τ(x) be any formula binumerating T in T. Let φ be such that

PAh φ <-> - Prτ(φ).

Show that

(ii) for every n, T + φ < T + PrT | ̂ Cor^).

Let τ(x) be the formula τ*(x) mentioned in Theorem 2.7. Conclude that φ is then an

Orey sentence for T.

15. Suppose T < S. Show that there is a Σ^ formula ξ(x) such that

{k:T + ξ(k)<S}

is a complete Π^ set (compare Theorem 12). [Hint: Let R(k,m) be an r.e. relation

such that {k: VmR(k,m)} is a complete itf set. There is a Σ1 formula p(x,y) such that
if R(k,m), then Qh ρ(k,m),

if not R(k,m), then Q + p(k,m) i S

(Lemma 3.1). Let ξ(x) be such that

PAh ξ(k) <* Ξz(-Conτlz+ξ(k) Λ Vu<zp(k,u)),

compare Exercise 10 (b).]

16. (a) By Orey's compactness theorem (Theorem 5), there is a function f(k) such

that for every sentence φ, if T + φ ̂  T, then T I f (φ) + φ ̂  T. Show that f (k) cannot
be recursive.

(b) By Theorem 6, there is a function g(k) such that for every sentence φ, if
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T + φ ̂ ) T, then g(φ) is a Πx sentence such that T + φh g(φ) and ΊV- g(φ). Show that
g(k) cannot be recursive.

17. Show that there are sentences φ0, cpi such that T + φ^ < T, T + φ0 Λ cp} ^ T, T +

-iφi ̂  T, T + -iφo v -.φ! < T, i = 0,1. [Hint: Use Exercise 5.8 (b).]

18. Show that, even if T is not Σ1-sound, there is a Σj formula τ(x) binumerating T

in T such that Prτ(x) numerates Th(T) in T (by Exercise 2.22 (iv), τ(x) cannot be PR).

19. Show that if A < B, then {φe Σ^ A + φ ̂  B} is a complete Π^ set.

20. (a) Show that if S is finite and QH S ̂  T, then the set of faithful interpretations

of S in T is a complete Π^ set. [Hint: First show that there is a sentence θ such that

SI/ θ and S + θ < T.]

(b) Suppose A ^ B. Show that the set of faithful interpretations of A in B is a

complete Π^ set.

21. S is X-faithfully interpretable in S', S ̂ XS', if there is an interpretation t: S < S'
which is X-faithful in the sense that for every φe X, if S'h t(φ), then Sh φ. Show that

(i) S ^XT iff S < T and for every φe X, if there is an m such that Th Prs | m(φ),

then Sh φ,

(ii) if S < T, then S ̂ XT, where X = {φ: S

(iii) if S %T and S < T'H T, then S *3X

(iv) if S < T and SH S'< T'H T, then S'̂  T7,

(v) ^ cannot be replaced by ̂ x in (iv),

(vi) A%BiffA+(Th(B)nΣ 1)H xBHΠ lA,

(vii) A ̂  B iff A ^ΣlB iff A ^{φ)B for every (Σx) sentence φ.

22. Show that AHΠ B iff there is a t: A < B such that for every Πn sentence ψ, Bh t(ψ)

-> ψ (compare Theorem 6; note that for every t: A < B and every Hi sentence ψ, Bh

t(ψ) —> ψ, by Lemma 1). [Hint: "Only if". For every k and every Πn sentence φ, Bh

PrA i k(φ) -> φ. Use this to construct a formula α(x) binumerating A in B and such

that PAh Conα and Bh χ -> α(χ) for every 1^ sentence χ.]

Notes for Chapter 6.
The general concept (relative) interpretation due to Tarski (cf. Tarski, Mostowski,

Robinson (1953); in keeping with recent usage we omit "relative"); it is an impor-

tant tool in proofs of (relative) consistency and (un)decidability. The investigation

of interpretability for its own sake was initiated by Feferman (1960). Theorems 1,

2, 3 are due to Feferman (1960); concerning the (im)possibility of improving

Theorem 3, see Exercise 3 (b). Theorem 4 is due to Feferman (1960) building on
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work of Bernays (Hubert and Bernays (1939)) and Wang (1951); for a strengthening

of Theorem 4, see Exercise 3. Lemma 2 is implicit in Feferman (I960), all but explic-

it in Orey (1961), and fully explicit in Hajek (1971). Corollary 2 is due to Orey

(1961). Theorem 5 is due to Orey (1961) (cf. also Feferman (I960)). Theorem 6 was

first stated by Guaspari (1979) and Lindstrom (1979); for a more general result, due

to Guaspari (1979), see Exercise 22. Corollary 4 is due to Goryachev (1986).

Theorem 8 is due to Feferman (1960) (with a different proof; see Exercise 6 (a)).

Lemma 4 is due to Svejdar (1978). Theorem 9 and Corollary 6 are essentially due to

Hajek (1971) (cf. also Hajkova and Hajek (1972)) (with a different proof; see

Exercise 10 (a)); for yet another proof, see Exercise 6 (b). Theorem 10 less the refer-

ences to the set X is due to Orey (1961); the full result is proved in Lindstrom (1979),

(1984a); related results, for certain nonreflexive theories, requiring methods not

explained here, can be found in Hajek and Pudlak (1993). For more information on

Orey sentences, see Exercises 11 (a), 12 (b), 13,14. Corollary 5 has also been point-

ed out by Guaspari (1979); for a related result, see Exercise 8. The result on finite

conservative extensions mentioned just before Lemma 5 is due to Kleene (1952b)

(cf. also Kaye (1991)). Theorem 11 is due to Lindstrom (1979) (see Exercise 11 (b))

and (1984a); by Exercises 11 (b) and 12, the sentence φ in Theorem 11 (a) can be

taken to be Δ2 (cf. also Theorem 7.8). Theorem 12 is essentially due to Solovay (cf.

Hajek (1979)) (with a different proof); the present proof is from Lindstrom (1984a)

(see also Exercise 15).

The concept faithful interpretation was introduced in Feferman, Kreisel, Orey

(1960). They observed that if QH S ̂  S' and S is Σ^sound, so is S' (see Lemma 6).

Theorems 13 and 14 are due to Lindstrom (1984c); see also Exercise 21. Corollary 9

(b) is due to Feferman, Kreisel, Orey (1960). Lemma 7 is due to Lindstrom (1984c);

the present proof is an instance of a general argument described in Lindstrom

(1988). Lemma 8 is due to Lindstrom (1984c), but the main idea of the proof, to

introduce the set Y and represent Y by a sufficiently independent formula, is taken

from Feferman, Kreisel, Orey (1960). Corollaries 10, 11, 12 are due to Lindstrom

(1984c); for related results, see Exercises 19 and 20; Exercise 7.8, below, is an

improvement of Corollary 10.

An alternative notion of interpretability,/^zs/We interpretability, has been studied

by Verbrugge (1992), (1994). For any formal entity q, formula, proof, etc., let Iql be

the length of q, i.e. the number of (instances of) symbols occurring in q. S is feasibly

interpretable in T, S <f T, if there is an interpretation t: S < T which is feasible in the

sense that there is a polynomial P(n) such that for every φe S, there is a proof p of

t(φ) in T such that Ipl < P( Iφl). Clearly, {φ: S + φ <f T} is Σ°. Thus, by Theorem 12,

S < T does not imply S <f T (cf. Verbrugge (1992)).

Exercise 1 is due to Montague (1957), (1962). Exercise 2 (a) is due to Jeroslow

(1971a); Exercise 2 (b) is due to Svejdar (1978). Exercise 3 is due to Feferman (1960).

Exercise 4 (b) (with a different proof) is essentially due to Orey (1961). Exercise 9 is

due to Svejdar (1978). Exercise 10 (a) is essentially due to Hajek (1971). Exercise
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11 (a) is due to Lindstrom (1979) and Svejdar (1978). Exercise 12 was pointed out to
me by Franco Montagna (compare Theorem 7.8). Exercise 13 is due to Orey (1961).
Exercise 16 (a) is due to Jeroslow (1971b). Exercise 17 can be substantially improved
using results on the modal logic of (provability and) interpretability, due to
Berarducci (1990), Shavrukov (1988), and Strannegard (1997). Exercise 22 is due to
Guaspari (1979).




