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Abstract. We examine two ways of “bootstrapping” segments of the
fast growing hierarchy by autonomous generation. One method closes off
at eo with the provably recursive functionals of arithmetic, whereas the
other exhausts the provably recursive functions of IT{ — CAo.

1 Introduction.

Autonomously generated hierarchies are constructed according to the princi-
ple: proceed to level a if a is already coded or recognized at some earlier level.
The question addressed here is : how might this principle be applied in a sub-
recursive (rate of growth) context, and what is the effect? Clearly it will depend
upon the way in which we choose to subrecursively code or recognize countable
ordinals. Typically this could be done by means of some “natural” scale or hi-
erarchy o — f, such that the growth-rate of function f, reflects its rank a.
However this is a delicate matter since (in contrast with generalized recursion
theory, where ordinal comparison is a fundamental property) one cannot expect
to compare and compute ordinals by sub-recursive functions without reference
to some prior given notation system. Either one simply accepts this situation
and does the best one can (and we will, later, in section 4); or alternatively one
could shift the goalposts and try to reconsider the problem in a more amenable,
generalized setting. One suitable place to look is the theory of type two recur-
sive functionals where, as noted by Kleene (1958) and in stark contrast with the
recursive functions, a good notation-free hierarchy already exists - by classify-
ing total recursive functionals according to the ordinal heights of their trees of
unsecured sequences (see also Wainer (1995)). This opens the possibility of cod-
ing and comparing recursive ordinals in terms of the majorization relationship
between certain descent-recursive functionals which represent them.

* This paper presents newer material not surveyed in the author’s conference lecture
(much of which can already be found in ref.10), but expanding the same overall
theme.
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2 Ordinal Presentations and Scales.

By a presentation of a countable ordinal « > 0 is meant a nested sequence
af0] C af1] C a[2) C ... of finite subsets such that a = U, a[n]. In addition we
will require that (i) 0 € a[0], (ii) if 8+ 1 € a[n] then B € a[n], and also (iii) if
B €aln]and f+1< athen B+1€ a[n+1].

Obviously a presentation of o induces a sub-presentation of each § < a by
B[n] = a[n] N B. It also induces for each n, the n-predecessor function
P, () = maxf[n]. Thus for each non-zero g < «,

Bln] = {0, ..., PX(B), P(B), Pa(B)} -

This minimal apparatus is all that’s needed to construct “majorization hi-
erarchies”, or “scales” of increasing functions {fs : # < a}. For an alternative
general approach, see Buchholz, Cichon and Weiermann (1994).

Definition1. Given a fized presentation for ordinal o, we shall call any se-
quence of increasing functions {fs : B < a} an a-scale if it satisfies the ma-
jorization condition:

7 € B[n] = fy(n) < fo(n).

Note.

There is a crucial dependence on the chosen ordinal presentation : for given any
strictly increasing function g we can define a presentation for w by

w[n] = {0,1,2,...,g(n)—1}, so that any w-scale must satisfy f,(n) > g(n). Thus
“natural” hierarchies must depend upon “natural” choices of presentations.

Theorem 2. Let  : (N - N) = (N — N) be any operator taking increasing
functions to increasing functions, which is monotone in the sense that for all
increasing ho,hy and all k € N,

Let fo be any increasing function such that fo(n) < ®(fo)(n) for every n. Let o
be equipped with a fized presentation as above and for 0 < < a define

f5(n) = &(fp.(5)(n).
Then {fs : B < a} is an a-scale.

Proof. By induction on S.

To see that each fs is increasing note that for m > n,

P (B) € Bln + 1] = Pata(B)[n + 1] U {Prs1(B)} C Paya(B)[m] U {Pny1(8)}

so by the induction hypothesis,Ym > n(fp,s)(m) < fp,,,(s)(m)). Therefore by
the monotonicity of & we have for each n,

fo(n) = &(fp.(5))(n) < D(fp.(9))(n+ 1) <D(fp,,,(p))(n+1) = fa(n+1).
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Secondly, if ¥ € B[n] then v € P, (8)[n]U{Pn(B)}, so by the induction hypothesis
f~(n) < fp.(5)(n). If Pa(B) # 0 then P2(8) € P,(B)[n], so again by the induction
hypothesis and the monotonicity of @,

f+(n) < fp.(p)(n) = &(fpz2(p))(n) < P(fp.(5))(n) = fp(n).

If P,(B) = 0 then v = 0 and fo(n) < @(fo)(n) = fg(n) by the assumption
concerning fo.

Example : G Scales.
Choose @1(f)(n) = f(n) + 1 in 2.2, to obtain the “Slow Growing” scale of
functions {Gp : 8 < a} where

Gg(n) =0 , Gg('n) = Gpn(ﬁ)(n) + 1.

This is the minimum scale with respect to a chosen presentation, since

Gp(n) = card B[n].

Example : H Scales.
Choose ®3(f)(n) = f(n + 1) in 2.2, to obtain the “Hardy” scale {Hs : # < a}
where

Ho(n) =n, Hg(n) = Hpn(p)(n+1).
Example : F Scales.
Choose @3(f)(n) = f**!(n) in 2.2, to obtain the “Fast Growing” scale of func-
tions {Fp : § < a} where

Fo(n) =n+1, Fg(n) = FI’,‘:'(lﬂ)(n).

Recall that f* denotes the k-times iterate of f.
Remark. In addition to providing well known classifications of the provably
recursive functions of arithmetical theories, the F-hierarchy has a more general
recursion-theoretic significance in that it is the subrecursive analogue of the
classical jump hierarchy. For an obvious formulation of a subrecursive (bounded)
jump operator is f — sj(f) where

sj(f)(e,z,y) = {e}/(x) if defined in y steps
=0 otherwise

and if f has at least exponential growth then sj(f) has the same elementary-
recursive degree as f @ @3(f). Thus up to elementary degree, Fa44 is the §-th
iterate of the subrecursive jump. See Heaton and Wainer (1996) and, for a de-
tailed exposition, Heaton (1997).

The Bootstrapping Problem.

The problem addressed here is to make some sense of the following principle of
autonomous inductive generation along the F-hierarchy:

T0 =0
{Tn+1 = the ordinal “recognized” by F; .
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Thus (i) what could “recognition” mean ? (ii) is 7,41 uniquely defined ? and
(iii) what is the closure ordinal 7 = sup 7, 7 We give two solutions.

3 Recognition by Descent Functionals.

The predecessor functions P, associated with a given presentation of an ordinal
« allow a natural reformulation of Friedman’s descent functional:

f— least k: Pf(k-l)Pf(k—z) . .Pf(l)Pf(o)(a) =0

which “witnesses” the well-foundedness of a (see Friedman and Sheard (1995)).
In our present context it will be convenient to adopt the more restrictive formu-
lation where f is replaced by its successive iterates thus:

Dy (f)(n) = least k: Pfk—l(n)Pfk—Z(n) .. .Pf(n)Pn(a) =0.

Not only this, but we shall even go a stage further and use, instead of D,, the
functional

Ha(f)(n) = f*(n) where k = Da(f)(n).

Note that this is just a functional version of the H-scale defined in section 2
since it satisfies the same recursive definition:

Ho(f)(n) =n, Hp(f)(n) = Hp,(s)()(f(n))

but with the successor function replaced by an arbitrary (strictly increasing)
function f. Similarly, a functional version of the F-scale is

Fo(f)(n) = f(n),  Fs(£)(n) = Fr,s)(H)"* (n).

The reason for using H rather than D is that it connects neatly with the fast-
growing F'.

Definition3. Given presentations for o and 3, define a presentation for a + 3
by:

a+pB[n] = a[p]u{a+7y:v € p[n]}
and a presentation for w® as follows:

WPn] = {wrmy +wmy+ -+ W™t mg_ + W my :m; < n}U{0}

where B[n] = {vk, Vo1, - -, Y2, Y1} <, i.€. vi = Pi(B) foreachi=1,...,k and k
1s the least such that v; = 0.

Lemma4. Given fired presentations for a and 3, and with the induced presen-
tations for a + 3 and w® defined as above, we have for all f,

(i) Hayp(f) = Ha(f) o Hp(f)
(1) Hus(f) = Fp(f).
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Proof. By inductions on S.

Firstly, if 3 = 0 we have for alln € N,

Hoyo(f)(n) = Ha(f)(n) = Ha(f)(Ho(f)(n)),
and if # > 0 then since P,(a + 8) = a + P,(8), we have

Hoyp(f)(n) = Hatp,(p)(f)(f(n))
and so by the induction hypothesis,
Hoyp(f)(n) = Ho(f)(Hp,(5)(f)(f(n))) = Ha(f)(Hp(f)(n)).

Secondly, if 8 = 0 then P,(w”) = 0so

Hyo(f)(n) = Ho(f)(f(n)) = f(n) = Fo(f)(n).

If 3> 0let B[n) = {Vk,Yk-1,---,72,71}< Where 3; = Pi(B) foreachi =1,...  k
and k is minimal such that y; = 0. Then by definition of w”[n],

PyuwP)y=wln4+w?n+ .. 4wt n4w™n
so by the induction hypothesis and repeated applications of part (i) we have

Hw".n(f) = Fv(f)n

and hence
Hys(f)(n) = Fy (f)" o Fy(f)" 00 By, (f)" o Fy (f)" o f(n)
= F‘n(f)n°sz(f)"°"'°F7k-x(f)"°F1k(f)"+l(")
= Fy ("o Fy(f)" o -0 By (f)" o By, (f)(n)
= F.h(f)"th(f)"0--'0F7k_1(f)"+1(n)
= Fy,(f)t o Fy,(f)" o "°F'vk-z(f)n+1(")

Ey () o Fyp(£)"+ (n)
F’Yl (f)n ° F‘Yl(f)(n)
Fy, (f)"*'(n) where y1 = Py(B)

Fp(f)(n).

The next result shows how the ordering between (set-theoretic) ordinals is re-
flected by the majorization relation between descent functionals.

Lemmab. Let {a[n] : n € N} and {/[[n]] : n € N} be any two chosen pre-
sentations of ordinals a and o' where a < o'. Let g be any strictly increasing
function such that for every n,a[n] C &'[[¢g(n)]]. Then

Ho(g9) < Hpi(g)og

where Hy(g), H./(g) denote the H-scales determined by the respective presenta-

al
tions for a and o'.
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Proof. The existence of such functions g with the stated properties is immedi-
ate, provided a < o/, though of course g may not be recursive (it depends on
how “effective” the given presentations of @ and o’ are, and they needn’t even
be recursive ordinals).

We first show, by induction on +, that for all n,

7 € e[n] = Hy(g)(n) < H(g)(9(n))-

This holds trivially if ¥ = 0, and otherwise we have by the induction hypothesis,
if ¥ € a[n],

Hy(9)(n) = Hp,(+)(9)(9(n)) < Hp (,(9)(9*(n)).

But P,(y) € %[n] C 4[[g(n)]] so letting B denote the maximum element of
¥[[g(n)]] we have P,(y) < 8 and hence

Hoy(g)(n) < Hp (1(9)(9%(n)) < Hp(9)(9°(n)) = H.(9)(9(n))-

Now applying this with v = P,(a) € o'[[g(n)]] we obtain

Ho(9)(n) = Hp,(a)(9)(9(n)) < Hp,_(a)(9)(9°(n)) < Hou(9)(9(n))

as required.

Theorem 6. Let H, and H),, be the descent functionals determined by arbitrary
but fized presentations of their respective ordinals o and o’. Then if &' is a limit
we have

a<a &3g 3k Vf (g <k f— Half) o f <k Ho(f))

where g and f range over (strictly) increasing functions on N,k € N, and g <y f
means that g(n) < f(n) for alln > k.

Proof. Suppose o < o’ where o' is a limit. Choose k and g so that, with the
notation of Lemma 3.3, o + 2 € &[[k]] and for every n,a[n] C a'[[g(n)]]. Then

if g <x f we also have a[n] C &/[[f(n)]] for n > k, so by the Lemma we obtain,
for each n > k,

Ho(f)(£(n)) < Ho(£)(F2(n)) = Hoya(f)(n) < Hy(£)(n)

the final inequality coming about because of 2.2.
Conversely if o’ < a then, given any g and k we can certainly find a strictly

increasing f such that g <x f and o/[[n]] C a[f(n)] for every n. But then by
Lemma 3.3 with a, o reversed, we have

H:r’(f) S Ha(f) of‘

This completes the proof.
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Bootstrapping the Fast Growing Functionals.

Define a sequence of ordinal presentations 7, as follows by induction on =,

T0 =0
{Tn+1 = that ordinal Ssuch that for some presentation of it, F., = Hg.

By 3.2, an immediate candidate for 3 is w™ with the “standard” presentation
described earlier. Its uniqueness is ensured by 3.3. Thus 7,41 = w™.

Theorem 7. 7,4, = W with ezponential stack of height n, and hence
Sup T, = € .

The proof theory of Peano Arithmetic shows that each F;_ is a provably recursive
functional of PA in the sense that F, (f) is a provably recursive function of
PA+Vz(f(z) < f(z + 1)); and conversely every provably recursive functional
of PA is dominated by some F;, .

4 Recognition by Minimum Scales.

In this section we choose as our notion of “ordinal recognition” the following:
a fast-growing function F recognizes o if F' = G, the topmost element of the
minimum (slow growing) a-scale {Gs : 8 < a}.

As already noted, these function-hierarchies depend crucially upon the chosen
presentation of «. In contrast with the results of section 3 which concern type-
2 functionals, we cannot expect the majorization relation between functions
to preserve the ordering between set-theoretic ordinals without restricting our
attention to a fixed initial segment a with a chosen presentation, for only then

do we have
181 < ﬁ? S a & Jk (Gﬂl <k Gﬁz)'

This “intensionality” is the major stumbling block in subrecursion theory. Why
should one ordinal presentation be chosen in preference to another? - presumably
because it is in some sense more “natural”, but although we seem able to agree
about the naturalness of some presentations when we see them, no clear definition
of the concept is at hand.

All we do know, immediately from the foregoing, is that given arbitrary
ordinal presentations {a[n] : n € N} and {&'[[n]] : n € N} where a < o, there
must be a function g : N — N such that for every n, a[n] C o/[[g(n)]] and hence

V< adk (Gs <k Ghog <k Ghiog
> B = B

where G, G’ are the slow growing hierarchies determined by the respective pre-
sentations. Now experience does seem to show that “natural” presentations pos-
sess a certain subrecursive stability in the sense that the function g above will
usually turn out to be elementary or primitive recursive, so their respective hi-
erarchies will be subrecursively comparable.
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With this in mind we proceed to construct a particular ordinal presentation
which will turn out to be just large enough for our purposes. The construction is
based on generalizations of the fast growing hierarchy, operating on the higher
“tree-ordinal” classes §2g, 21,2, ... given by the following iterated inductive
definition.

Definition8. 2y = N and for k > 0, £2 is generated by the inductive clauses
(i) 0€ &,

(i1)) ifa € 2 thena+1:=aU{a} € X,

(i)  if o §2; > 2 for some i < k then o € 2.

Notation.

Henceforth, lower case greek letters denote tree ordinals, not set-theoretic ordi-
nals, although of course each tree ordinal « has a set-theoretic ordinal height,
denoted |a|. For each countable ordinal there are many different tree ordinals
o € §2; with that same height. We shall usually reserve A to denote “limit”
tree ordinals arising by clause (iii) above, and call ¢ its “type”. Furthermore, we
sometimes write, more suggestively, A = sup, A¢ where A¢ denotes the value of
the function A at argument ¢ € £2;. The sub-tree partial ordering < is defined
as the transitive closure of (i) @ < a + 1 and (ii) A¢ < A for every ¢ € £2;.

Definition9. For a € £, and n € N define a[n] as follows:
On] =0, a+1n]=aln]u{a}, An]=As[n].

Then call o structured if it satisfies the following conditions

(i) ¥n (a[n] C a[n +1])

(ii) VB < a 3In (B € an)])

(1)) VBVn (Beap]Af+1<a—pB+1€an+1]).

Thus if « is structured, {# : § < a} is well-ordered by < and a presentation of
|| is induced by |a|[n] = {|8] : B € a[n]}.

There are various ways to ensure the structuredness of a € £2,. One sufficient
condition (see e.g. Wainer (1990), Kadota (1993)) is

VA< aVn (A, € A[n+1]).

The question then is how to construct large structured tree ordinals in £2;. This
leads us into the realm of “collapsing functions” as used in proof theoretical
ordinal analysis, but there is a fairly obvious procedure to follow in our present
context. Since the fast growing F-hierarchy uses countable ordinal presentations
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as indices to name large numbers, a straight generalization of it should enable us
to name large tree ordinals in {2, using indices from §2x1. The named elements
of £2; may then be used to index large elements of £2;_;, then large elements of
£2)._o etcetera until we finish up naming large elements of §2;.

Definition 10. For each k € N define the function
O F) Dy X 2 —

by recursion over §2¢41 as follows:

e®)0,8) = B+1

N a+1,8)= ¢®(a, )+ (p)

e®I(X,B) = supg, e®) (A, B) if type N) = i<k
e®N,B) = " (Ag,B) if type (A) = k.

Note.
At level k = 0 we have, for all structured a € £, and all n € N,

O (a,n) = Fo(n)
where F, is defined with respect to the presentation induced by a.

Definition11. For each k let wi € 2¢4+1 be the identity on §2.
Define T = sup 1, € §21 where 79 = 0 and for each k > 0,

7 = oM (@3 (L p* D (R (0, wp_1), wi—2) - . ., w1), wo).

By Kadota (1993), 7 is structured.
By Wainer (1989), G-, ,, = Fr,.
This establishes our second bootstrapping principle.

Theorem 12. For each k € N,
Te41 = that B <7 such that F, = Gj.

With some careful technical modification one can carry through the ordinal
analysis of the theories 1Dy by Buchholz (1987) using, instead of his collapsing
functions D : 241 — §2;, the functions

a = oM (@ (L o®) (@,wi_1) ..., w1),wo).

His analysis computes the proof theoretic ordinal of IDy as D(e,, +1) which,
in terms of ¢, is equivalent to substituting a := *+1) (p*+2)(0,wy41),wk) in
the above expression. This gives 7x42 precisely. Thus |7| is the proof-theoretic
ordinal of ID., and, again by Buchholz’s analysis, the functions elementary-
recursive in the sequence {Fj : f < 7} are exactly those provably recursive in
the theory [T} — C Ay.
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