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This note is meant to give a brief account of some themes in the model theory
of modules as they have developed since the subject's beginning. We shall survey
the situation from the perspective that has grown in recent years out of an effort
to formulate the theory in a way that stresses the common ground shared by
the model theory of modules with other areas of mathematics, most notably
representation theory and abelian category theory. We will take this opportunity
to state the classical theorems of the theory in a context more general and
hopefully more accessible to those working in other areas. On the other hand,
this exposition hopes to illustrate how the theory of left exact functors, developed
by Gabriel [4], figures into model theory. The two standard references for this
subject are [7] and [12].

The seminal results of what lias turned out to be the model theory of mod-
ules were attained by Wanda Szmielew [10] in her work on abelian groups, that
is, modules over the ring of integers. Among other things, Szmielew charac-
terized the complete theories of abelian groups. Quite sometime later, Eklof
and Fisher [3] exploited the theory of algebraically compact (= pure-injective)
abelian groups that had developed in the meantime to present Szmielew's clas-
sification in a more conceptual framework. The following result is not the clas-
sification itself but a result that generalizes nicely.

Theorem. Every abelian goup is elementarily equivalent to a direct product of
pure-injective indecomposable abelian groups.

The pure-injective indecomposable abelian groups were classified by Kaplan-
sky [5] into four groups:

Torsion free, divisible. The group of rational numbers Q.

Torsion, divisible. The Prϋfer groups Z(p°°), p prime.
Torsion free, not divisible. The p-aclic completions Zp of the integers, p prime.
Torsion, not divisible. The cyclic groups of order a prime power Z(pn).

The theorem thus gives a complete list, of abelian groups up to elementary
equivalence. This list is however not without repetition so the problem that
emerges is to describe how the pure-injective indecomposables relate to each
other. More precisely, one must consider the following question.
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Problem. Given pure-injective indecomposable abelian groups U and
when does there exist a group A such that

for some cardinals α ? . (U \ A means that U is a direct summand of A.)

In his breakthrough paper [12] on the model theory of modules, Ziegler gener-
alized the theorem to /i-modules (where a theory of pure-injectivity also exists)
and he showed that if the answer to the problem is affirmative, we may take
oti — I for all i. But most spectacularly, he introduced into the theory a topolog-
ical space - known as t l i e Ziegler spectrum of the ring R - which has ever since
played a monolithic role in the model theory of modules. The points of the space
are the pure-injective indecomposable left .R-modules and a point U belongs to
the closure of a subset {Vj}i if and only if the problem above has an affirmative
answer. This definition of a closed subset is really an elementary analogue of the
notion of a torsion free class of inclecomposables.

Decidability.

Szmielew [10] proved that the theory T(Z) of abelian groups is decidable.
Ziegler [12] showed that if the ring R is recursive, an effective description of
the Ziegler spectrum of R yields the decidability of T(/?), the theory of left
^-modules. This has provided the main line of attack towards the following
conjecture of Prest.

Conjecture. Let A be a recursive finite dimensional algebra over an alge-
braically closed field. The theory of left /^-modules is decidable if and only if
the algebra A is tame.

Such a characterization of tameness would certainly aid to dispell the general
dissatisfaction among algebraists of present definitions of the notion. But in any
case, to provide an effective description of the Ziegler spectrum is very much in
line with present work of representation theorists a portion of which has turned
its attention to infinite dimensional representations. The Ziegler spectrum and
some variants of it have offered the best context for such an undertaking.

Purity.

The language £(R) — (+,0,r) r e/ϊ for left Λ-modules consists of the binary
function symbol +, a constant symbol 0 and for every r £ R, a unary function
symbol intended to interpret the action of r on the abelian group interpreted by
+ and 0. Clearly the set of axioms T(R) for a left Ή-module is expressible in
this language.
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Definition. A formula <£>(x) of £,(R) is positive-primitive if it is equivalent mod-
ulo T(R) to an existentially quantified system of linear equations. More precisely,
there are matrices A and B of appropriate size with entries in R such that

An inclusion M C N of left /?-modules is said to be pure if for every n and
positive-primitive formula v?(x) in n free variables,

φ(M) = MnC\φ(N).

A left .R-module U is pure-injective if for every such inclusion, there is a retraction
/ : N — »• M, / \M— IM The pure-injective modules U have a nice model-
theoretic characterization. They are the pp-saturated modules, which means
that every [/-consistent type p(x,A), A C U, of positive-primitive formulae is
realized in U.

A left .R-module K is called pure-projectiυe if every pure inclusion M C N
with M/N = K has a retraction . These modules are precisely the summands of
direct sums of finitely presented modules [11]. The model theoretic characteri-
zation of such modules K is a bit trickier. But they do belong to the class of
Mittag-Leffler modules [6], which are the pp-atomic modules. This means that
for every tuple a £ Mn, there is a positive-primitive formula <^a(χ) £ tpM(a)
such that

T(R) μ φ* -> Φ

for every positive-primitive formula φ £ tpM(a).

In this section, we shall describe the abelian category Λeq. This category
appears in different guises in several areas of mathematics. It is the free abelian
category over the ring R and it is also equivalent to the category introduced by
Auslander [1] of coherent functors on the category of finitely presented left R-
modules. While in the other areas it is treated more as a mathematical object of
interest in its own right, the model theory of modules comes closest to comprising
a "representation theory" of this category.

The category Req has as its objects the positive-primitive sorts of £(.R)eq,
that is, those of the form φ/ψ where φ and φ are positive-primitive formulae
such that T(R) \= φ — > φ. The morphisms of Req are the definable functions
between sorts that are expressible by a positive-primitive formula. The category
Req is abelian and to it we associate this positive-primitive reduct of £(R)eq.
This can be done with any small abelian category A to get a many-sorted abelian
language £(A) defined as follows. The sorts of £(A) correspond to the objects
of A and the function symbols to the morphisms. Each sort is equiped with a
language for abelian groups. The intended interpretation of a structure for this
language is that of an additive functor from the category A to the category Ab
of abelian groups. This is clearly an elementary class denoted by (A, Ab).
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Because the language £(Λeq) is a, reduct of £(Ή)eq, every left Ή-module
M |= T(R) has a unique expansion Meq to £(Req) if the sorts are interpreted
as intended. This is a f i r s t order property of Meq and we denote the theory of
such expansions by T(7?.)eq. In fact, it may be shown that this class is precisely
the obviously elementary class of exact functors.

Theorem. Mod(T(/?,)eq) = Ex(.4, Ab).

The category Req was also used in the original definition of the Ziegler spec-
trum by giving a basis of quasi-compact open subsets which have the form

θ(ψ/4>} •= {U : φ/1>(U) Φ 0}

where φ/ψ is a sort (object) of R?q.

Elimination of quantifiers.

In 1976, Baur [2] proved the following elimination of quantifiers result. It
generalizes the correponcling result of Szmielew for abelian groups.

Theorem. Let T D T( /?) be a complete theory of left β-modules. Given a for-
mula/?(x) of £(R), there is a boolean combination of positive-primitive formulae
β(x) such that

T\=p(x)**β(x).

This result may also be thought of as generalizing the full elimination of
quantifiers attained by Eklof and Sabbagh for the complete theory of an abso-
lutely pure module over a left coherent ring. Now a ring R is left coherent if
and only if the category R-Mod is a locally coherent Grothendieck category. By
Mitchell's Representation Theorem, every such category may be represented up
to equivalence as the category of left exact functors Lex(.4, Ab) on some small
abelian category A - This is clearly an elementary class of £ (^-structures whose
theory we denote by T(A) The absolutely pure objects of Lex(7?eq, Ab) are pre-
cisely the models of T(7?)eq and the complete theory of such a model admits full
elimination of quantifiers in £(/?eq) by an abelian version of Baur's result.

The functor M ι-> A/eq from Λ-Mod to Lex(Λeq, Ab) is a left adjoint to the
functor that associates to A G Lex(/?eq, Ab) the left Ή-module H(A) that lives
on the home sort of A :

Hom H (M,/f(A)) Ξ HomLex(Meq, A).

Complete theories.

Let A be a small abelian category and M : A —>• Ab an exact functor. We
may associate to M a character \M : A —>• J\f(j{oo} defined by

χM(S):=\S(M)\,
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the cardinality of the sort S ( M ) (modulo infinity). This is the Baur-Garavaglia-
Monk character of the functor Λί. It was Garavaglia who made explicit use of
the fact that two laeft exact functors M and N are elementarily equivalent if
and only if their characters are the same. For left /^-modules, this means that
Meq Ξ Neq if and only if for every pair of positive-primitive formulae ψ < ψ,
I φ(M}/ψ(M) |=| φ ( N ) / φ ( N ) I (modulo oo).

A Nullstellensatz.

Sabbagh [9] showed, and it is corollary of Baur's elimination of quantifiers,
that a monomorphism of left /?.- modules / : M -> N is elementary if and only
if it is pure and M Ξ N. That / is pure is equivalent to the condition that the
Lex(/£eq, Ab)-morphism /eq : Moq — >• 7Veq is a monomorphism, so that Sabbagh 's
result asserts that every complete extension of T(R)eq is model complete. To
state the ensuing Nullstellensat/, one needs the notion of a Serre subcategory of
Req.

Definition. A (full) subcategory $ C Req is called Serre if for every short exact
sequence of sorts

0 -4 Si -> 5 -> So -> 0

in Ήeq, 5 € S if and only if Si , S2 G S

The Serre subcategories of 7?eq play a role similar to that of the ideals of R.
For example, if M is a left Λ-module, then the "annihilator" of M in Req is the
Serre subcategory

S(M) := {S : S(M) = 0} = Ker χM.

Theorem. There is a bijective correspondence between the Serre subcategories S
of Req and the open subsets O of the Ziegler spectrum of R. The correspondence
is given by the maps

0(8),

O ̂  {S : 0(S) C 0}

which are mutually inverse.

The theorem can be used to show that every Serre subcategory of Req is
of the form S(M) for some left. /?,-module M. In this way, one may associate
to a left ^-module M the closed subset of the Ziegler spectrum which is the
complement of O(S(M)).

It is proved in [8] that the injective indecomposable left β-modules form a
closed subset of the Ziegler spectrum of R if and only if R is left coherent. In
the same paper, Prest, Rothmaler and Ziegler [8] gave an example of a ring R
that is not von Neumann regular, but whose Ziegler spectrum is indiscrete.
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Duality.

If the ring R is not commutative, then the opposite ring Rop is distinct
from R and it is possible that the category of Ήop-modules (= right Ή-modules)
drastically differs from the category of left ^-modules. But model theoretically,
due to the limitations on the power of expression of the language £(#), left and
right Λ-modules are dual in many ways. More precisely, there is the following
categorical duality.

Theorem. For very r ing Λ, (R°v)e^ Ξ (Ήeq)op.

This has a some interesting consequences for the relationship between the
model theory of left and right ^-modules. The Serre subcategories of Req are in
bijective correspondence with those of (Λop)eq and this implies that the topolo-
gies (viewed as algebras of open subsets) of the respective Ziegler spectra of R
and Rop are isomorphic. This will at times induce a homeomorphism between the
two spectra, but even when the ring is commutative this self-homeomorphism
need not be the identity. In the example of the ring of integers, the points Q
and Z(pn) remain fixed, but as in Pontryagin duality, the p-adic completions of
Z are interchanged with the Prίifer groups.

The Pontryagin duality is the functor DM :— Hom^(M, C*) where £* de-
notes the group of nonzero complex numbers under multiplication. This is an
exact functor D : 7?-Mocl — >• Mod-/? that takes on pure-injective values (because
D takes discrete modules to compact modules and every compact topological
module is algebraically compact and hence pure-injective). But moreover, the
functor D respects elementary equivalence and gives a bijective correspondence
between complete theories of left β-modules and complete theories of right R-
modules such that

XAf(S) =

where DS denotes the value that S takes on under the duality of the theorem.

References

1. Auslander, M. Coherent functors, in Proceedings of the Conference on Categorical
Algebra (La Jolla 1905), S. Eilenberg, D.K. Harrison, S. MacLane, H. Rόhrl, eds.

2. Baur, W. Elimination of quantifiers for modules, Israel Journal of Mathematics 25
(1976) 64-70.

3. Eklof, P. and Fisher, E. The elementary theory of abelian groups, Annals of Math-
ematical Logic 4(2) (1972) 115-171.

4. Gabriel, P. Des Categories Abeliennes, Bull. Soc. Math. France 90 (1962) 323-448.
5. Kaplansky, I. Infinite Abelian Groups, University of Michigan Press, Ann Arbor,

1969.
6. Rothmaler, Ph. Miϋag-Leffler modules. Habilitationschrift, 1995, Kiel.
7. Prest, M. Model Theory and Modules, London Mathematical Society Lecture Notes

Series 130, Cambridge University Press, Cambridge, 1988.



72

8. Prest, M., Rothmaler, Ph. and Ziegler, M. Absolutely pure and flat modules and
"indiscrete" rings, Journal of Algebra, 174 (1995) 349-372.

9. Sabbagh, G. Sur la purete dans les modules, C.R Acad. Sci. Paris, 271 (1970)
865-867.

10. Szmielew, W. Elementary properties of abelian groups, Fundamenta Mathematicae
41 (1955) 203-271.

11. Warfield, R. Purity and algebraic compactness for modules, Pacific Journal of
Mathematics 28 (1969) 699-719.

12. Ziegler, M. Model theory of modules, Annals of Pure and Applied Logic 26 (1984)
149-213.




