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Finite Generation of a Canonical Ring

Yujiro Kawamata

Abstract. The purpose of this note is to review an algebraic proof of
the finite generation theorem due to Birkar-Cascini-Hacon-McKernan
[5] whose method is based on the Minimal Model Program (MMP). An
analytic proof by Siu [57] will be reviewed by Mihai Paun.

1. Introduction

The finite generation of canonical rings was a problem considered by
Zariski [64], and the proof in the case of dimension 2 due to Mumford [41]
in the appendix of [64] is one of the motivations towards the minimal model
theory of higher dimensional algebraic varieties.

Let X be a smooth projective variety defined over a field k, D a divisor on
X, and OX(D) the associated invertible sheaf. Many problems in algebraic
geometry are translated into questions on the vector space of holomorphic
sections H0(X, D) = H0(X, OX(D)). The Riemann-Roch problem is to
determine this vector space. For example, the Riemann-Roch theorem tells
us that the alternating sum

∑n
p=0(−1)p dim Hp(X, OX(D)) is expressed in

terms of topological invariants.
Instead of considering a single vector space, we look at the graded ring

R(X, D) =
∞⊕

m=0

H0(X, mD)

called the section ring for the pair (X, D), where we use the additive notation
for divisors instead of multiplicative one for sheaves; we have OX(mD) =
OX(D)⊗m. There are obvious multiplication homomorphisms

H0(X, m1D) ⊗ H0(X, m2D) → H0(X, (m1 + m2)D)

and the section ring becomes a graded algebra over the base field k =
H0(X, OX). The following question arises naturally:

Question 1.1. Is the section ring R(X, D) finitely generated as a graded
algebra over k?
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If D is ample, then the answer is yes. On the other hand, if dimX = 2,
then there exists an example where R(X, D) is not finitely generated ([64]).
But the canonical divisor KX , a divisor corresponding to the sheaf of holo-
morphic n-forms Ωn

X for n = dimX, has a special status in algebraic geom-
etry, and the canonical ring R(X, KX) is finitely generated:

Theorem 1.2 (Finite Generation Theorem). Let X be a smooth projec-
tive variety defined over a field k of characteristic 0. Then the canonical ring
R(X, KX) is always finitely generated as a graded algebra over k.

The canonical divisor, or more precisely its linear equivalence class, is
special in many senses:

• It is naturally attached to any smooth variety as the determinant
bundle of the cotangent bundle.

• It is related to the Serre-Grothendieck duality.
• The canonical ring is a birational invariant, i.e., if f : X → Y is a

birational morphism between smooth projective varieties, then
the natural homomorphism f∗ : R(X, KX) → R(Y, KY ) is an
isomorphism.

There are two proofs, an algebraic one using the MMP by Birkar-Cascini-
Hacon-McKernan [5] and an analytic one using complex analysis by Siu [57].
We note that the algebraic proof yields the finite generation for varieties
which are not necessarily of general type because the proof is naturally
“logarithmic” as we shall explain later.

A geometric implication of the finite generation theorem is the existence
of the canonical model Proj R(X, KX). It is a traditional basic tool in the
investigation of algebraic surfaces of general type.

The anti-canonical ring R(X, −KX) is not necessarily finitely generated.
For example, if X is a ruled surface over a curve of genus greater than 1,
then its anti-canonical ring is not finitely generated in general ([49]). It is
not a birational invariant either.

It is well known that canonical rings of algebraic curves are generated
by elements of degree at most 3, and those of algebraic surfaces are ex-
pected to be generated by elements of degree at most 5. But examples for
varieties of dimension 3 show that there is no bound of degrees of gener-
ators for higher dimensional varieties even in fixed dimensions. A correct
generalization for the effective statement is a birationality question. Hacon-
McKernan [13] and Takayama [58] proved that there exists a number m(n)
depending only on the dimension n such that the pluricanonical system
|m(n)KX | gives a birational map for arbitrary n-dimensional variety X of
general type. Chen-Chen [6] found an explicit and more realistic bound in
the case of dimension three. See also [63] and [46] for development in this
direction.

The results of the four authors [5] include the complementary case of
negative Kodaira dimension where the canonical rings tell very little. The
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structure theorem as below, the existence of Mori fiber spaces, was another
motivation for the MMP:

Theorem 1.3. Let X be a smooth projective variety defined over a field
of characteristic 0. Assume that the canonical divisor KX is not pseudo-
effective, i.e., not numerically equivalent to a limit of effective Q-divisors.
Then there is a birational model of X which has a Mori fiber space structure.

A minimal model exists uniquely given a fixed birational class of surfaces
of non-negative Kodaira dimension. But the uniqueness of minimal models
fails in higher dimensions even if the Kodaira dimension is non-negative.
It is proved that arbitrary birationally equivalent minimal models are con-
nected by a sequence of operations called flops. Birationally equivalent Mori
fiber spaces are connected by Sarkisov links which are generalizations of
elementary transformations of ruled surfaces.

The third and more distant motivation for the MMP is a complete clas-
sification of algebraic varieties up to birational equivalence. For example, if
the Kodaira dimension is zero, then the canonical ring tells very little about
the structure of the variety. A minimal model of such a variety is still im-
portant and serves as a starting point of more detailed structure theory. We
note that the existence of minimal models in general is still an open problem.

We always assume that the charactersitic of the base field is zero in
this paper. We expect that the theorem is still true in positive charac-
teristic, but the known proofs depend heavily on characteristic zero meth-
ods. The restriction on the characteristic should be eventually removed and
the minimal model program (MMP) should work in arbitrary characteristic
situation. But this restriction is necessary for the proof presented here by
the two reasons:

• The resolution theorem of singularities by Hironaka is used exten-
sively. It would be possible to extend the resolution theorem over
arbitrary characteristic base or even mixed characteristic base.

• The Kodaira vanishing theorem holds true only in characteristic 0.
There are counterexamples in positive characteristic. The vanishing
theorem is one of our main technical tools in every corner of the
minimal model theory. In order to extend our theory to arbitrary
characteristic, totally different technique should be developed.

We shall explain the following characteristic features of the MMP
(cf. [29]):

• inductive. The basic idea is to use the induction on the dimen-
sion. Then in more finer terms, the final product of the MMP, a
minimal model or a Mori fiber space, is obtained by a step by step
constructions called divisorial contractions and flips.

• logarithmic. We consider pairs consisting of varieties and boundary
divisors instead of varieties alone.

• relativistic. The proof requires formulation in relative situation,
i.e., we consider projective morphisms over base spaces.
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We shall explain these points in the course of the algebraic proof. It is
important to note that the MMP is not yet completed because the following
conjectures are still open:

• The termination conjecture of flips. This is the conjecture which
is still missing in order to prove the existence of a minimal model
for arbitrary algebraic variety whose canonical divisor is pseudo-
effective.

• The Abundance Conjecture. We expect that some pluricanonical
systems are base point free for arbitrary minimal models which are
not necessarily of general type. More precisely, if f : (X, B) → T
is a projective morphism from a DLT pair such that KX +B is nef
over T , then KX +B should be semi-ample over T , i.e., numerically
equivalent to a pull-back of an ample R-divisor over T .

In particular, the following conjecture is still open: “an algebraic variety
with negative Kodaira dimension is uniruled”.

The organization of this paper is as follows. In order to motivate the use
of the minimal models, we review a classical proof of the finite generation
theorem in the case of dimension two in §2. We explain our point of view
towrard minimal models, the numerical geometry, in §3 and explain how
complicated problems in birational geometry are simplified to those in lin-
ear algebra. We explain how singularities of pairs appear naturally in §4, and
try to justify these cumbersome definitions. The algorithm of the Minimal
Model Program (MMP) is explained in §5. The main results are presented
in §6 that there exists a minimal model in the case where the canonical divi-
sor is pseudo-effective or a Mori fiber space otherwise under the additional
assumption that the boundary is big. The main idea of proof is to apply
the vanishing theorems for the extension problems of pluricanonical forms
(§7). The proofs of the main steps, the existence and termination of flips,
are respectively surveyed in §8 and §9. The last section §10 is concerned on
the non-uniqueness problem of the birational models.

2. Case of dimension one or two: motivation of the MMP

We start with the low dimensional cases in order to explain the idea how
to use the minimal models. We note that the proofs of the finite generation
theorem in dimensions one and two are valid in arbitrary characteristic.

Let us consider the case dim X = 1 and let g be the genus of X. There
are three cases:

Case 1: g ≥ 2. Then KX is ample, hence the canonical ring is finitely
generated.

Case 2: g = 1. Then KX = 0, hence R(X, KX) ∼= k[x].
Case 3: g = 0. Then R(X, KX) ∼= k.

Therefore the canonical ring is always finitely generated in dimension one.
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The above division into cases is generalized to higher dimensions by a
birational invariant called the Kodaira dimension of the pair (X, D)
defined by

κ(X, D) = trans.deg R(X, D) − 1

if R(X, D) �= k, and κ(X, D) = −∞ otherwise. The latter convention comes
from the estimate that dim H0(X, mD) ∼ mκ for large m. κ(X, D) can
take values among −∞, 0, 1, . . . ,dim X. In particular, we define κ(X) =
κ(X, KX). If κ(X, D) = dimX, then D is called big. X is said to be of
general type if KX is big.

We recall a proof by Mumford [41] (appendix to [64]) of the finite gen-
eration theorem when dimX = 2 and X is of general type.

Step 1 A curve C on X is said to be a (−1)-curve if C ∼= P1 and
(C2) = −1, where (C2) denotes the self intersection number. In other words,
the normal bundle NC/X has degree −1. Castelnuovo’s contraction theorem
tells us that there exists a birational morphism X → X1 to another smooth
projective surface which contracts C to a point. By using Castelnuovo’s
contraction theorem repeatedly, we obtain a birational morphism X → X ′

to a minimal model on which there is no (−1)-curve. We note that the
minimal model X ′ is still smooth. It is known that there exists unique
minimal model X ′ though the order of contractions of (−1)-curves can
be arbitrary.

Step 2 A curve C on X is said to be a (−2)-curve if C ∼= P1 and
(C2) = −2. Artin’s contraction theorem ([3]) states that all the (−2)-
curves can be contracted to points by a birational morphism X ′ → X ′′

to the canonical model. The canonical model X ′′ is a projective surface
with isolated rational singularities called Du Val singularities or canonical
singularities. Though X ′′ is singular, we have still define a canonical divisor
KX′′ as a Cartier divisor, hence the canonical ring R(X ′′, KX′′).

Step 3 The canonical ring is invariant under the contractions:

R(X, KX) ∼= R(X ′, KX′) ∼= R(X ′′, KX′′).

KX′′ is ample, hence R(X, KX) is finitely generated.

Step 1 will be generalized to the MMP, and Step 2 to the Base Point
Free Theorem.

A proof when dimX = 2 and κ = 1 uses Kodaira’s theory of elliptic
surfaces ([32]).

Step 1 is the same as above. Let X ′ be a minimal model of X. It is
unique again.

Step 2 By the Enriques classification, there is an elliptic surface struc-
ture f : X ′ → Y ; Y is a smooth projective curve and general fibers of f are
elliptic curves. There may be degenerate fibers called singular fibers.

Step 3 We define a Q-divisor, a divisor with rational coefficients,
BY =

∑
i biBi on Y which measures the degeneration of the morphism
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f . The coefficients bi belong to 1
12Z, corresponding to the fact that there

exists an automorphic form of degree 12. The values of the bi are deter-
mined by Kodaira’s classification of singular fibers ([32]). If a singular fiber
of f has finite local monodromy, then the corresponding coefficient belong
to the interval (0, 1). Otherwise, the natural coefficient can be arbitrarily
large, but we can move the divisor BY to another Q-divisor B′

Y by using
the automorphic form so that all the coefficients are less than 1. Thus we
obtain the following canonical bundle formula of Kodaira:

KX′ = f∗(KY + B′
Y ).

Therefore the canonical ring of X is isomorphic to the log canonical ring for
a lower dimensional pair (Y, B′

Y ):

R(X, KX) ∼= R(X ′, KX′) ∼= R(Y, KY + B′
Y ).

We note that the concept of the section ring is naturally extended to the
case where the coefficients are no more integers as follows:

R(X, D) =
∞⊕

m=0

H0(X, �mD�)

where �mD� denotes the round down of mD obtained by taking the round
downs of the coefficients. Since KY + B′

Y is ample, we have the finite gen-
eratedness of the canonical ring again.

This is one of the motivations of the “log” theory which will be explained
later.

The case dim X = 2 and κ = 0 is easy; we have R(X, KX) ∼= k[x].
The classification of surfaces tells us that a minimal model of such a

variety, which is unique again, is isomorphic to either an abelian surface,
a K3 surface, or their quotient. We note that the higher dimensional gen-
eralizations of this class include interesting varieties such as Calabi-Yau
manifolds and hyperKähler manifolds.

In order to explain the second motivation for the MMP, we consider the
case where κ(X) = −∞. In this case, the canonical ring is trivial and tells
very little. Instead there is an explicit structure theorem when dimX = 2
and κ(X) = −∞.

Step 1 is the same. Let X ′ be a minimal model of X.
Step 2 There are two cases according to the Enriques classification.

The first case is a ruled surface f : X ′ → Y ; Y is a smooth projective curve
and all fibers are isomorphic to P1. In the second case, we have X ′ ∼= P2.

Step 2 will be generalized to a Mori fiber space in the MMP explained
later. This is another motivation for the MMP.

A minimal model X ′ of an algebraic surface X with κ(X) ≥ 0 is uniquely
determined by the birational class of X and is independent of the contraction
process of (−1)-curves. On the other hand, there are many minimal models
in the sense that there are no (−1)-curves if κ(X) = −∞. It is known
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that birationally equivalent minimal models are connected by a sequence of
elementary transformations.

There is another approach toward the finite generation theorem using the
Zariski decomposition ([64]). In the case of a surface X, there is a birational
morphism f : X → X ′ to its minimal model. We can write KX = f∗KX +E,
where E is an effective divisor, a divisor with non-negative coefficients, whose
support coincides with the exceptional locus, the locus where f is not an
isomorphism. The point is that this decomposition can be constructed on
X without using the minimal model provided that κ(X) ≥ 0.

In general, if D is an effective divisor on a smooth projective surface
X, then there exist uniquely determined Q-divisors P and E, divisors with
coefficients in Q, which satisfy the following conditions:

(1) P is nef, i.e., the intersection numbers (P · C) are non-negative for
all curves C on X.

(2) E is effective.
(3) If {E1, . . . , Et} is the set of irreducible components of E, then

(P · Ei) = 0 for all i and the matrix [(Ei · Ej)] is negative definite.

For example, KX = f∗KX +E is the Zariski decomposition of the canon-
ical divisor which is regarded as an effective Q-divisor when mKX is effective
for a positive integer m. Therefore a minimal model is virtually obtained as
the nef part of the canonical divisor.

We obtained a minimal model of a log surface by using the Zariski
decomposition in the paper [18] as a log generalization of the minimal model
theory in dimension two. Let X be a smooth projective variety of dimension
two and B a reduced normal crossing divisor. Then the Zariski decomposi-
tion KX +B = P +E gives a minimal model of the pair (X, B); the support
of E can be contracted to points by a birational morphism f : X → X ′

to a normal surface and we have P = f∗KX′ . We note that the minimal
model X ′ may have singularities, called log terminal singularities, and that
the coefficients of P are not necessarily integers even if those of B are equal
to one. Moreover we can prove that a linear system |mP | is base point free
for a positive integer m.

There is a higher dimensional generalization of the concept of the Zariski
decomposition. The technique of the base point free theorem explained later
implies that the finite generation theorem holds if there exists a Zariski
decomposition of a (log) canonical divisor ([21, 40]). But there is a coun-
terexample for the existence of the Zariski decomposition if we consider
arbitrary effective divisors ([44]). On the other hand, the Zariski decom-
position of a log canonical divisor should exist because the log canonical
divisor of a minimal model will give the Zariski decomposition. The non-
uniqueness of minimal models and the uniqueness of the Zariski decompo-
sition are compatible, because birationally equivalent minimal models have
equivalent canonical divisors.
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We note that the Zariski decomposition can be achieved only on a
blown-up variety of the original model if it ever exists; this is a phenomenon
in dimension three or higher due to the existence of flips. The point is to
resolve simultaneously the base loci of all the pluricanonical systems on a
fixed variety. Such simultaneous resolution can be considered on the Zariski
space, the inverse limit of blowing up sequences. The b-divisors by Shokurov
[53] is a formal concept to consider such situations. The polytope decom-
position theorem explained later will solve this infinity problem and lead to
the flip theorem.

There is also a complex analytic version of the Zariski decomposition
by Tsuji ([60, 9]). It’s existence is rather easily proved though it is not as
strong as the algebraic counterpart.

3. Numerical geometry

We would like to generalize the minimal model theory to higher
dimensional varieties. The first task is to generalize contraction theorems
of Castelnuovo and Artin. It is a highly non-linear problem to identify the
locus to be contracted and to construct a contraction morphism. A lin-
earization of this problem is achieved by using the intersection numbers of
divisors with curves. The method is called numerical geometry. Please dis-
tinguish it from enumerative geometry. The idea to use cones in real vector
spaces in order for the investigation of the birational geometry goes back to
Hironaka’s thesis [16].

We consider a relative situation; let X be an algebraic variety which is
projective over a base space T . If the base space T is a point (absolute
case), then X is just a projective variety. We shall need to consider more
general base space T in order to use inductive arguments. Although the
descriptions of the relative situations are slightly longer, the same methods
of proofs work as in the absolute case.

We assume that X is normal. Let D =
∑

i diDi be an R-divisor, a formal
linear combination of prime divisors Di, reduced irreducible subvarieties of
codimension one, with coefficients di in R. It is said to be an R-Cartier
divisor if it can be expressed as a linear combination of Cartier divisors with
coefficients in R. As a counterpart, let C =

∑
i ciCi be an R-1-cycle, a

formal linear combination of curves Ci, reduced irreducible subvarieties of
dimension one, with coefficients ci in R. It is said to be relative for f if the Ci

are mapped to points of the base space. Then we can define a bilinear pairing
called the intersection number (D ·C) with values in R if D is R-Cartier and
C is relative for f . Two R-Cartier divisors or two relative R-1-cycles are
said to be numerically equivalent if they give the same intersection numbers
when paired to arbitrary counterparts. We note that we cannot define the
intersection number of an arbitrary R-divisor which is not R-Cartier with
a curve.
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We consider real vector spaces

N1(X/T ) = {R-Cartier divisor}/numerical equivalence

N1(X/T ) = {relative R-1-cycle}/numerical equivalence

which are dual to each other and known to be finite dimensional. The
dimension ρ(X/T ) = dimN1(X/T ) is called the Picard number of X over
T . It is an important numerical invariant next to the dimension dimX.

Let NE(X/T ) be the closed convex cone in N1(X/T ) generated by the
numerical classes of relative curves, and let Nef(X/T ) be the nef cone defined
as the dual closed convex cone in N1(X/T ):

Nef(X/T ) = {v ∈ N1(X/T ) | (v · C) ≥ 0 ∀C}
where the C are arbitrary curves relative for f . An R-divisor is called
relatively nef, nef over T , or f-nef, if its numerical class belongs to Nef(X/T ).
The following Kleiman’s criterion is fundamental ([30]):

Theorem 3.1. A Cartier divisor D is relatively ample over T if and
only if its numerical class belongs to the interior Amp(X/T ) of the nef cone
Nef(X/T ) called the ample cone.

An R-Cartier divisor D is said to be ample over T , or f-ample, if its
numerical class belongs to the ample cone Amp(X/T ), i.e., if it is a linear
combination of ample Cartier divisors with positive linear coefficients. We
note that an ample R-Cartier divisor does not in general become a Cartier
divisor by multiplying a positive number and it is not directly related to a
projective embedding.

An R-Cartier divisor D is said to be big over T , or f-big, if one can write
D = A + E for an f -ample R-Cartier divisor A and an effective R-divisor
E, an R-divisor with non-negative coefficients. In other words, an R-divisor
is big if it is bigger than an ample divisor. The set Big(X/T ) of numerical
classes of all the f -big R-divisors is an open cone in N1(X/T ) called the big
cone. D is said to be pseudo-effective over T if its numerical class belongs to
the the closure Psef(X/T ) of the big cone callled a pseudo-effective cone. In
other words, D is pseudo-effective if its numerical class is a limit of effective
Q-divisors. We have the following commutative diagram of inclusions:

Amp(X/S) −−−−→ Nef(X/S)⏐⏐�
⏐⏐�

Big(X/S) −−−−→ Psef(X/S)

where the cones on the left are open and on the right their closures.
Let f : X → Y be an arbitrary surjective morphism to another normal

variety which is projective over T such that all the geometric fibers of f are
connected. Then the natural homomorphism f∗ : N1(Y/T ) → N1(X/T ) is
injective, and the image of the nef cone satisfies

f∗Nef(Y/T ) = Nef(X/T ) ∩ f∗N1(Y/T ).
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If f is not an isomorphism, then F = f∗Nef(Y/T ) is a face of Nef(X/T ) in
the sense that F ⊂ ∂Nef(X/T ), because the pull-back of an ample divisor
on Y is never ample on X. There is a dual face F ∗ of NE(X/T ) defined by

F ∗ = {w ∈ NE(X/T ) | f∗w = 0}.

Indeed we have

F ∗ = {w ∈ NE(X/T ) | (D · w) = 0∀D}
where the D are arbitrary ample divisors on Y . By the Zariski main theorem,
the morphism f is uniquely determined by the face F or F ∗ as long as Y is
normal.

The converse is not true; there are faces which do not correspond to any
morphisms. The point of the MMP is that there always exists a morphism
if the face F ∗ on the cone of curves lies in the negative side for the log
canonical divisor, i.e., if the intersection numbers with the log canonical
divisor are negative for all non-zero vectors in F ∗.

In the case where X is smooth and T is a point, Mori proved in his
famous paper [38] that, if the canonical divisor KX is not nef, then there
always exists an extremal ray, a face F ∗ with dimF ∗ = 1 on which KX is
negative. Moreover he proved that there exists a corresponding contraction
morphism from X in the case dim X = 3. These results were generalized to
the cone and contraction theorems explained later.

The key point in [38] is to prove that there exists a rational curve which
generates an extremal ray F ∗. In order to prove this, he employed the defor-
mation theory over a base field of positive characteristic, a purely algebraic
method. It is remarkable that this is still the only method to prove the
existence of rational curves; there is no purely characteristic zero proof nor
complex analytic proof. The result is generalized to arbitrary pairs with log
terminal singularities in [22] using [37]; an extremal ray is always generated
by a rational curve.

In this paper we shall only deal with cones in N1(X/T ) and not consider
those in N1(X/T ). The reason will be clear in the polytope decomposition
theorem.

4. Log canonical divisors and log terminal singularities

In order to extend the concept of the minimality to higher dimensional
varieties, we have to change the point of view. We look at canonical divisors
instead of varieties themselves. Moreover, we have to deal with logarithmic
pairs instead of varieties. Singularities appear naturally in this way.

We explain how to compare canonical divisors of birationally equivalent
varieties as a way to compare different birational models. Let α : X ��� X ′

be a birational map between smooth projective varieties. Then there exists a
third smooth projective variety X ′′ with birational morphisms f : X ′′ → X
and f ′ : X ′′ → X ′ such that α = f ′ ◦f−1. If we define canonical divisors KX

and KX′ by using the same rational differential n-form, then the difference
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f∗KX −(f ′)∗KX′ is a well defined divisor which is supported above the locus
where α is not an isomorphism. Moreover, it is independent of the choice
of the rational differential n-form which was used to define KX and KX′ .
We define that an equality KX ≥ KX′ holds if and only if their pull-backs
satisfy f∗KX ≥ (f ′)∗KX′ .

Let us consider some examples before stating a formal definition of log
terminal singularities. If f : X → X ′ is a contraction morphism of a (−1)-
curve C, then KX − C = f∗KX′ . An important observation is that the
canoical divisor becomes smaller when the variety becomes smaller. There-
fore, we come to the following (temporary) defeinition: A variety X is said
to be a minimal model if KX is minimal among all birationally equivalent
varieties.

We note that, if f : X → X ′ is a contraction morphism of (−2)-curves,
then KX = f∗KX′ and X has canonical singularities.

Let us consider an example in higher dimension. Let X be a smooth
variety of dimension n and E a prime divisor which is isomorphic to Pn−1

and such that the normal bundle NE/X is isomorphic to OPn−1(−d) for a
positive integer d. Then there exists a birational morphism f : X → X ′

which contracts E to a point. If d ≥ 2, then X ′ has an isolated quotient
singularity, a typical example of a log terminal singularity. We can still
define a canonical divisor KX′ as a Q-Cartier divisor, namely dKX′ is a
Cartier divisor. We have an equation

KX +
(
1 − n

d

)
E = f∗KX′ .

Thus KX > KX′ if n > d. In this case, the singularity of X ′ is said to be
terminal. For example, if n = 3 and d = 2, then KX > KX′ . This terminal
singularity was first discovered by Mori [38].

d is the smallest positive integer for which dKX′ becomes a Cartier
divisor. Such an integer is called a Cartier index of the singularity. Therefore
there exists an isolated quotient singularity in dimension three which is
terminal and has arbitrarily large Cartier index. This is the reason why there
is no bound of degrees for the generators of canonical rings in dimension
three. Indeed let X be a projective variety having only terminal singularities
such that there is a point at which the Cartier index is d and that the
canonical divisor KX is ample. Then the canonical ring of X is not generated
by elements whose degrees are less than d.

We have to consider the log version of a canonical divisor, i.e., the log
canonical divisor KX + B of a log pair (X, B) in the MMP. There are many
reasons which lead us to consider the log version:

• The canonical divisor of a fiber space is described by using a log
canonical divisor as explained already in the case of elliptic surfaces.
The canonical divisor of a finite covering is similarly described.

• The adjunction formula for log canonical divisors is the basic tool
for the inductive argument on dimensions.
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• The natural range for the power of vanishing theorems is the
category of log varieties.

An objact of the log theory is a pair (X, B) consisting of a normal variety
X and an R-divisor B called a boundary. In many cases, we assume that
B is effective, i.e., the coefficients are non-negative. If B is not effective,
we often call B a subboundary in order to distinguish from the effective
case. The coefficients of B are not necessarily integers, but rational or even
real numbers. The rational coefficients naturally appear when we consider
positive multiples of divisors, while the real coefficients when taking the
limits. The canonical divisor KX is still defined as a Weil divisor as long
as the variety X is normal. The log canonical divisor is the sum KX +
B. For example, if X is smooth and B is a reduced divisor, i.e., all the
coefficients are equal to 1, with normal crossing support, then KX + B
is the divisor corresponding to the determinant line bundle of logarithmic
differential forms Ω1

X(log B). This is the origin of the name “log”.
We note that our log structures are different from the log structures of

Fontaine-Illusie-Kato [17]. Both concepts are derived as generalizations of
normal crossing divisors on smooth varieties. There is no log theory which
includes both at the moment.

We have to introduce singularities in higher dimensions by two resasons.
The first is that the canoical divisor can become smaller when the variety
acquires singularities in the case dimX ≥ 3 as observed in the previous
example. The other is that we have to consider pairs of varieties and divisors,
i.e., log varieties.

Now we state a formal definition:

Definition 4.1. Let X be a normal variety. It is said to be Q-factorial
if an arbitrary prime divisor on X is a Q-Cartier divisor, a Q-linear combi-
nation of Cartier divisors.

Let (X, B) be a pair of a normal variety X and an R-divisor B =∑
i biBi, and let μ : Y → X be a projective birational morphism from

another variety. The exceptional locus of μ is the smallest closed subset of Y
such that μ is an isomorphism when restricted on its complement. μ is said
to be a log resolution (in a strict sense) of the pair (X, B), if Y is smooth,
the exceptional locus is a normal crossing divisor, and moreover the union of
the exceptional locus and the strict transforms μ−1

∗ Bi of the prime divisors
Bi is a normal crossing divisor.

The pair (X, B) is said to be divisorially log terminal (DLT) or to have
only divisorially log terminal singularities if there exists a log resolution such
that the following conditions are satisfied:

(1) The coefficients bi belong to the interval (0, 1].
(2) The log canonical divisor KX + B is an R-Cartier divisor.
(3) We can write

μ∗(KX + B) = KY + μ−1
∗ B +

∑
djDj
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with dj < 1 for all j, where μ−1
∗ B =

∑
biμ

−1
∗ Bi is the strict

transform of B and the Dj are prime divisors which are contained
in the exceptional locus of μ.

If 0 < bi < 1 for all i instead of the condition 1, then the pair is called
KLT. In other words, we can write

μ∗(KX + B) = KY + BY

where the coefficients of BY belong the interval (0, 1). The pair is said to
be log canonial (LC) if all the coefficients of BY belong to the interval (0, 1]
in the above formula.

If dj ≤ 0 or dj < 0 for all j instead of the condition 3, then the pair is
called canonical or terminal, respectively. We usually assume that B = 0
for canonical or terminal singularities, but those with B �= 0 are also useful.

For example, if X is smooth and the support of B is a normal crossing
divisor, then the pair (X, B) is DLT (resp. KLT) if and only if the coefficients
are in (0, 1] (resp. (0, 1)).

The condition 2 is necessary for definig the pull-back in the condition
3. The point of the log terminality is that KX + B is strictly smaller than
KY + μ−1

∗ B +
∑

Dj . In other words, the pair is locally minimal among
all birational models in the log sense. DLT and KLT pairs are respectively
called weal log terminal and log terminal in [29].

The log canonical singularites do not behave so well as log terminal
singularities. For example, the underlying variety X may have non Cohen-
Macaulay singularities. We can compare this with the fact that the under-
lying variety of a DLT pair has always rational singularities in characteristic
zero. But we have often a situation where there exists another boundary
B′ on an LC pair (X, B) such that (X, B′) is KLT. In this case there is no
problem because we can easily extend arguments in the MMP by usnig the
perturbation to a new boundary (1 − ε)B + εB′.

To be KLT is an open condition under varying coefficients of the bound-
ary, LC is closed, and DLT is intermediate. Each of them has advantage
and disadvantage. We can use a compactness argument for the LC pairs.

The KLT condition is equivalent to the L2 condition in complex analysis.
This stronger version of the log terminality is easier to handle and more
natural in some cases. For example, KLT condition is independent of a log
resolution. Moreover, some statements are only true for KLT pairs. On the
other hand, it is necessary to consider general DLT pairs for the induction
argument on the dimension. Indeed the adjunction formula holds only along
a boundary component with coefficient one.

The pairs having Q-factorial DLT singularities can be characterized as
those which may appear in the process of the MMP if we start with pairs of
smooth varieties and reduced normal crossing divisors. This is the category
of pairs we work in the MMP.
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5. Minimal Model Program (MMP)

We explain the algorithm of the MMP in this section. There are some
standard references including [29, 33, 35, 36] and [8].

The cone and the contraction theorems are fundamental for the MMP.
As we already explained, some of the faces of the nef cone correspond to
morphisms while some are not. Mori’s discovery in [38] is that, if the dual
face of the cone of curves is contained in the half space on which the canonical
divisor is negative, then there should always exist a corresponding morphism.
In particular we define an extremal ray to be such a one dimensional face of
the cone of curves.

Now we state the cone and contraction theorems for the log pairs ([29]).
We state the theorem in the dual terminology on the cone of divisors:

Theorem 5.1 (Cone Theorem). Let f : (X, B) → T be a projective
morphism from a DLT pair, H an ample divisor for f , and ε a positive
number. Then the part of the nef cone Nef(X/T ) which is visible from the
point [KX + B + εH] ∈ N1(X.T ) is generated by finitely many points whose
coordinates are rational numbers.

If KX +B is nef, then the assertion is empty. If KX +B is not nef, then
KX + B + εH is not nef either if ε is sufficiently small. The Come Theorem
says that the boundary of the nef cone facing the point [KX+B+εH] is like a
boundary of a polyhedral cone, and consists of finitely many rational faces,
intersections of Nef(X/T ) with linear subspaces of N1(X/T ). When the
positive number ε approaches to zero, the number of visible faces increases,
so that there may be eventually infinitely many faces.

Theorem 5.2 (Contraction Theorem). Let f : (X, B) → T be a projec-
tive morphism from a DLT pair, and let F ⊂ Nef(X/T ) be a face which is
visible from the point [KX +B+εH] as above. Then there exists a surjective
morphism φ : X → Y to a normal variety which is projective over the base
space T such that the geometric fibers of φ are connected and that

F = φ∗Nef(Y/T ).

In particular, if the codimension of the face F is equal to one, then we
call φ a primitive contraction.

The Contraction Theorem is equivalent to the Base Point Free Theorem:

Theorem 5.3 (Base Point Free Theorem). Let f : (X, B) → T be a
projective morphism from a DLT pair, and let D be a Cartier divisor on X.
Assume that D is f-nef and that D − ε(KX + B) is f-ample for a small
positive number ε. Then there exists a positive integer m0 such that mD is
relatively base point free for arbitrary m ≥ m0.

The conclusion is saying that the natural homomorphism

f∗f∗OX(mD) → OX(mD)
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is surjective. The Base Point Free Theorem implies in particular the
Non-Vanishing Theorem which states that f∗OX(mD) �= 0.

We explain steps of the MMP formulated by Reid ([48]) modified to
the log and relative situation. The coefficients of the boundaries are real
numbers, so that the limiting arguments are made possible.

We consider the category of Q-factorial DLT pairs (X, B) consisting of
varieties X which are projective over a base space T together with R-divisors
B. Let f : X → T be the structure morphism. This category includes pairs
consisting of smooth varieties and normal crossing divisors with coefficients
belonging to in the interval (0, 1].

Case 1: If KX +B is relatively nef over the base (i.e., f -nef), then (X, B)
is minimal. We stop here in this case.

Case 2: If KX + B is not relatively nef, then there exists a primitive
contraction morphism φ : X → Y by the Cone and Contraction Theorems.
It is important to note that we need to choose one of the codimension one
faces of the nef cone.

There are three cases for φ.

• If dimX > dim Y , then φ is called a Mori fiber space. We stop here
in this case.

• If φ is a birational morphism and contracts a divisor, i.e, if φ is a
divisorial contraction, then the exceptional locus of φ is proved to
be a prime divisor thanks to the Q-factoriality condition. The new
pair (X ′, B′) = (Y, φ∗B) is again Q-factorial and DLT. We go back
to Case 1 or 2, and continue the program.

• If φ is small, i.e., if φ changes the variety only in codimension
two or higher, then there exists another small projective birational
morphism φ′ : X ′ → Y for which KX′ + B′ is positive where
B′ is the strict transform of B. We note that the set of prime
divisors stay unchanged under the birational map (φ′)−1 ◦ φ
which is called a flip. The existence of a flip is now a theorem,
called the Flip Theorem, by Hacon and McKernan [14]. The new
pair (X ′, B′) is again Q-factorial and DLT. We can continue the
program.

We should prove that there does not exist an infinite chain of flips in
order to obtain the final product, a minimal model or a Mori fiber space.
This Termination of Flips is still a conjecture in the general case.

It is important to note that an inequality KX + B > KX′ + B′ always
holds after a divisorial contraction or a flip.

The Picard number drops by one after a divisorial contraction: ρ(Y/T ) =
ρ(X/T ) − 1. Therefore the number of possible divisorial contractions is
bounded by the Picard number.

But the Picard number stays the same after a flip. Indeed there is
a natural isomorphism (φ′

∗)
−1 ◦ φ∗ : N1(X/T ) → N1(X ′/T ). Under the
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identification of real vector spaces by this isomorphism, the nef cones
Nef(X/T ) and Nef(X ′/T ) are adjacent and touch each other along the face
F , the pull-back of the nef cone Nef(Y/T ). Therefore we can investigate the
changes of birational models by looking at a partial cone decomposition of
the real vector space.

Example 5.4. The following is an example of a flip called Francia’s
flip [10]. This example was first considered as a counterexample to the
existence of a minimal model in higher dimension. Now it is incorporated
into the MMP.

We have dim X = 3 and B = 0 in this example. Let X ′ be a smooth
projective variety containing a smooth rational curve C ′, i.e., a curve isomor-
phic to P1, whose normal bundle is isomorphic to OP1(−1) ⊕ OP1(−2). By
blowing-up and blowing-down, we can construct a normal projective variety
X with an isolated quotient singularity P and a smooth rational curve C
on X passing through P such that X ′\C ′ is isomorphic to X\C.

There is a small contraction morphism φ : X → Y which contracts C
to a point Q. KX is negative for φ; (KX · C) = −1

2 < 0. There is a small
biratiotnal morphism φ′ : X ′ → Y on the other side such that φ′(C ′) = Q.
KX′ is positive for φ′; (KX′ · C ′) = 1.

The MMP is a way to obtain a minimal model. We note that this is
not the only way. We give a formal definition of a minimal model and a
canonical model:

Definition 5.5. Let (X0, B0) be an LC pair which is projective over
a base T . We assume that there exists another boundary B′

0 such that
(X0, B

′
0) is KLT. A new Q-factorial LC pair (X, B) projective over a base T

together with a birational map α : X0 ��� X over T is said to be a minimal
model of (X0, B0) if the following conditions are satisfied:

(1) α0 is surjective in codimension one, i.e., an arbitrary codimension
one scheme theoretic point of X is in the image of a morphism
which represents α.

(2) B = α∗B0 is the strict transform.
(3) If μ0 : Y → X0 and μ : Y → X are common resolutions, then

the difference μ∗
0(KX0 + B0) − μ∗(KX + B) is effective. Moreover

arbitrary codimension one point of Y which remains codimension
one on X0 but not on X is contained in the support of the difference
μ∗

0(KX0 + B0) − μ∗(KX + B).

A surjective morphism f : X → Z with connected geometric fibers from
a minimal model to a normal variety projective over T is said to be the
canonical model if KX + B is numerically equivalent to the pull-back f∗H
for a relatively ample R-divisor H on Z.

The triple (X, B, α) is more precisely called a marked minimal model.
The last condition for the minimal model means that a prime divisor is
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contracted by α only if there is a reason to be contracted. The elliptic
fibration considered in §2 is an example of a canonical model.

The Base Point Free Theorem implies that if the boundary B of a
minimal model (X, B) is big over T , then a canonical model always exists.
The existence of a canonical model in general is a conjecture called the
Abundance Conjecture.

A minimal model of a given pair may not be unique if it ever exists. But
they are always equivalent; if (X, B) and (X ′, B′) are two minimal models
of a pair (X0, B0) over T , and if μ : Y → X and μ′ : Y → X ′ are common
resolutions, then we have μ∗(KX + B) = (μ′)∗(KX′ + B′). It follows that a
canonical model is unique if it exists.

We shall need a modified version of the MMP, called the MMP with
scaling or the directed MMP. It is much easier version than the general
MMP.

The process of the MMP is not unique because we should choose a face
in each step. The scaled version of the MMP has smaller ambiguity of
the choice. The termination conjecture for arbitrary sequence of flips is in
fact not necessary in order to prove the existence of a minimal model or
a Mori fiber space. What we have to prove is that some sequence of flips
terminates. It turned out that the termination conjecture is easier for the
sequence of flips which is directed by an additional divisor. We can expect
that a sequence of flips has more tendency to terminate when the boundary
moves along a line segment in the space of divisors.

We take an additional effective R-Cartier divisor H besides the pair
(X, B) such that (X, B + H) is still DLT. We assume that KX + B + H is
f -nef. Let

t1 = min{t ∈ R≥0 |KX + B + tH is f -nef} ∈ [0, 1].

If KX+B is not f -nef, then we choose a face F such that [KX+B+t1H] ∈ F .
The existence of such a face is clear in the case where B is big. In the general
case, the existence is proved by Birkar [4] using the boundedness of extremal
rays [22].

We perform a divisorial contraction or a flip to the pair (X, B). Let us
denote by (X, B) and H the new pair and the strict transform of H by abuse
of language. Then the threshold t1 for the new pair decreases or stays the
same. In other words, the MMP is directed by the scaling H. If it reaches
to 0, then KX + B becomes f -nef, so we are done.

The point is that the log pair (X, B + t1H) is already minimal, since
KX + B + t1H is f -nef, though it is an intermediate model of the MMP
for (X, B). It will be proved, in the course of inductive argument, that the
set of underlying varieties of minimal models is finite when we move the
coefficients of the boundary on the line segment joining B and B + H as
above. This is the Polytope Decomposition Theorem. We shall apply this
theorem to the MMP with scaling for the termination argument.
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6. Existence of minimal models

The paper [5] proved that minimal models exist for a Q-factorial DLT
pairs (X, B) in the case where the boundary divisor B is big with respect
to the pair (X, B) over the base in the following sense:

Definition 6.1. Let (X, B) be an LC pair. A subvariety Z of X is
said to be an LC center of (X, B) if there exists a log resolution μ : Y →
(X, B) such that, when one writes μ∗(KX + B) = KY + BY , there exists an
irreducible component E of BY whose coefficient is equal to one and such
that μ(E) = Z.

If (X, B) is a DLT pair, then it is easy to see that Z is an LC center if
and only if it is an irreducible component of the intersection of some of the
irreducible components of B whose coefficients are equal to one.

Definition 6.2. Let f : (X, B) → T be a projective morphism from a
DLT pair. An R-Cartier divisor D on X is said to be big with respect to
(X, B) if one can write D = A+E for an ample R-Cartier divisor A and an
effective R-Cartier divisor E whose support does not contain any LC center
of (X, B).

D is called pseudo-effective with respect to (X, B) if D + A is big with
respect to (X, B) for any ample R-Cartier divisor A.

There are many advantages to consider big boundaries. If B is big with
respect to (X, B), then the following hold:

• The log canonical divisor KX + B is semi-ample, i.e., it is numeri-
cally equivalent to a pull-back of an ample R-Cartier divisor by a
morphism. In other words, the Abundance Conjecture holds in this
case. In particular, if B is a Q-divisor, then there exists a positive
integer m such that m(KX + B) is relatively base point free over
the base. This is a consequence of the Base Point Free Theorem.

• The number of faces on the nef cone which was considered in the
MMP is finite even if ε goes to zero. This is a consequence of the
Cone Theorem.

• The number of marked minimal models for a fixed pair is finite,
where a marked minimal model is a minimal model together with
a birational map from the original pair. This is one of the results
proved in [5].

We note that there are examples where items 2 and 3 are false when B
is not big.

Hacon and McKernan [14] proved the following existence theorem of the
flip (when combined with results in [5]):

Theorem 6.3 (Flip Theorem). Let (X, B) be a Q-factorial DLT pair
which is projective over a base, and φ : X → Y a small contraction morphism
in the MMP for KX + B. Then there exists a flip φ′ : X ′ → Y .
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In order to prove the Flip Theorem, it is sufficient to consider the case
where the pair (X, B) is KLT and B is a Q-divisor by perturbing the coef-
ficients of B because the ampleness is an open condition. In this case, the
existence of a flip is equivalent to the finite generatedness of the sheaf of
graded OY -algebras

∞⊕
m=0

φ∗OX(�m(KX + B)�)

over OY , which is a a special case of the Finite Generation Theorem. In
other words, the inductive procedure of the MMP decomposes a difficult
global finite generation problem into easier local finite generation problems.

The termination conjecture of flips has not yet been fully proved. But
[5] proved a partial termination theorem for directed flips with scaling:

Theorem 6.4 (Scaled Termination Theorem). Let f : (X, B) → T be
a projective morphism from a Q-factorial DLT pair to a quasi-projective
variety. Assume that B is big over T with respect to (X, B). Then the MMP
for (X, B) with scaling always terminates after a finite number of steps.

By the MMP, we have the following consequence:

Theorem 6.5 (Existence of Models). Let f : (X, B) → T be a projec-
tive morphism from a Q-factorial DLT pair to a quasi-projective variety.
Assume that B is big over T with respect to (X, B). Then there exists is a
birational map α : (X, B) ��� (X ′, B′) over T to a Q-factorial DLT pair with
a projective morphism f ′ : X ′ → T which satisfies the following conditions:

(1) α is surjective in codimension one, and B′ = α∗B.
(2) If μ : Y → X and μ′ : Y → X ′ are common resolutions, then

μ∗(KX +B)− (μ′)∗(KX′ +B′) is an effective R-divisor whose sup-
port contains strict transforms of all the exceptional prime divisors
of α.

(3) If [KX + B] ∈ Psef(X/T ), then (X ′, B′) is a minimal model of
(X, B) over T , i.e., KX′ + B′ is f ′-nef. On the other hand, if
[KX + B] �∈ Psef(X/T ), then (X ′, B′) has a Mori fiber space struc-
ture φ : X ′ → Y over T , where dim Y < dim X ′ and −(KX′ + B′)
is φ-ample.

Now we state the Finite Generation Theorem. We note that we do not
need to assume the bigness of the boundary:

Theorem 6.6 (Finite Generation Theorem). Let f : (X, B) → T be a
projective morphism from a KLT pair to a quasi-projective variety. Assume
in addition that the boundary B is a Q-divisor. Then the relative canonical
ring

R(X/T, KX + B) =
∞⊕

m=0

f∗OX(�m(KX + B)�)

is finitely generated as a graded OT -algebra.
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We note that the assumption of B being a Q-divisor is indispensable.
Indeed the statement is clearly false for a non-rational R-divisor. On the
other hand, the limiting argument in the proof of the existence of minimal
models makes it necessary to consider R-divisors in the proof.

The proof of the Finite Generation Theorem is as follows. If B is big
with respect to the pair, then the theorem follows from the Base Point Free
theorem together with the existence theorem of a minimal model. For the
general case, we use the following reduction theorem ([12]):

Theorem 6.7. Let f : (X, B) → T be a projective morphism from a
KLT pair to a quasi-projective variety. Assume that the boundary B is a
Q-divisor, and that κ(Xη, (KX + B)|Xη) ≥ 0 for the generic fiber Xη of f .
Then there exists a projective birational morphism μ : Y → X from a smooth
variety, a surjective morphism f : Y → Z to a smooth variety projective
over T , a Q-divisor C =

∑
cjCj on Z such that

∑
Cj is a normal crossing

divisor and ci ∈ (0, 1), and a Q-divisor L on Z which is nef over T such
that the following are satisfied:

(1) KZ + C + L is big over T .
(2) f ◦ μ−1 induces an isomorphism of graded OT -algebras:

R(X/T, KX + B) ∼= R(Z/T, KZ + C + L).

The outline of the proof of this theorem is as follows. We consider a
rational map, called the Iitaka fibration, defined by some positive multiple
of KX +B whose image has relative dimension equal to κ(Xη, (KX +B)|Xη)
over T , and modify it by changing birational models and using covering
tricks. Then we apply the semi-positivity theorem of the Hodge bundles
in [19].

The rest of the proof of the Finite Generation Theorem is as follows.
We write KZ + C + L = A + E for an ample Q-divisor A and an effective
Q-divisor E. Then we apply the big case to a new pair (1+ε)(KZ +C+L) =
KZ + (C + εE) + (L + εA) for a small positive rational number ε.

The following Polytope Decomposition Theorem for varying boundaries
was proved in [5] after Shokurov [52]. This theorem is interesting in its own
right besides its importance for the termination argument. We formulate
the theorem in a more exact form and in the case where the boundary is not
necessarily big. The first part is a decomposition according to the canonical
models:

Theorem 6.8 (Polytope Decomposition Theorem 1). Let (X, B̄) be a
Q-factorial KLT pair with a projective morphism f : X → T to a base
space, B1, . . . , Br effective Q-Cartier divisors, and V̄ a polytope contained
in the set {B =

∑
i biBi | bi ∈ R} ∼= Rr such that the pairs (X, B) are LC

for all B ∈ V̄ . Consider a closed convex subset

V = {B ∈ V̄ | [KX + B] ∈ Psef(X/T )}.

Assume that for each B ∈ V , there exist a minimal model α : (X, B) ���
(Y, C) and a canonical model g : Y → Z for f : (X, B) → T . Moreover



FINITE GENERATION OF A CANONICAL RING 63

assume that there exists a real number ε > 0 for each B such that the
morphism g : (Y, α∗B′) → Z for B′ ∈ V̄ has minimal and canonical models
whenever B′ ∈ Psef(Y/Z) and ‖B′−B‖ ≤ ε, where ‖‖ denotes the maximum
norm of the coefficients. Then there exists a finite decomposition to disjoint
subsets

V =
s∐

j=1

Vj

with rational maps βj : X ��� Zj which satisfies the following conditions:
(1) B ∈ Vj if and only if βj gives the canonical model for f : (X, B)

→ T .
(2) The closures V̄j, hence V , are polytopes for all j. Moreover, if V̄

is a rational polytope, then so are the V̄j and V .

The second part is a finer decomposition according to the minimal
models:

Theorem 6.9 (Polytope Decomposition Theorem 2). Under the same
assumptions as the above theorem, each Vj are further decomposed into a
finite disjoint union

Vj =
t∐

k=1

Wj,k

which satisfies the following conditions: let α : X ��� Y be a birational map
such that

W = {B ∈ V |α is a minimal model for (X, B)}
is non-empty. Then

(1) There exists an index j such that W ⊂ V̄j.
(2) If W ∩Vj is non-empty for some j, then W ∩Vj coincides with one

of the Wj,k.
(3) The closure W̄j,k is a polytope for any j and k. Moreover, if V̄ is

a rational polytope, then so are the W̄j,k.

The existence of B̄ is assumed only to ensure that the MMP works well.
In the case where the B ∈ V are big with respect to the pairs, the existence
of minimal and canonical models is already proved, and the conditions in
the above theorems are always satisfied.

We note that the conclusions of the above theorems do not contradict
with examples in [25], where there are infinitely many chambers, even if the
boundaries are not big. The reason is that our finite decomposition theorem
is a statement of local nature in a sense.

The termination of the flips for the scaled MMP is an easy consequence
of the Polytope Decomposition Theorem. Indeed the models before and
after a flip correspond to different chambers. There are only finitely many
chambers on the line segment on which the scaled MMP is played, hence
the termination.
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7. The vanishing theorems and the extension techniques

Now we start to explain some ideas of proofs of the theorems. The
vanishing theorems of Kodaira type have surprizingly diverse applications
in the birational geometry. We need to assume that the characteristic of the
base field is zero.

We start with the original Kodaira vanishing theorem ([31]):

Theorem 7.1 (Kodaira Vanishing Theorem). Let X be a smooth pro-
jective variety, and D a divisor. If D − KX is ample, then Hp(X, D) = 0
for p > 0.

By applying a covering trick to the Kodaira vanishing theorem, we
deduce its log and relative version ([20, 62, 29]):

Theorem 7.2 (Kawamata-Viehweg Vanishing Theorem). Let X be a
normal variety, f : X → T a projective morphism to a base, B an effective
R-divisor, and D a Cartier divisor. If (X, B) is KLT and D − (KX + B) is
f-ample, then Rpf∗OX(D) = 0 for p > 0.

This generalization is used as in the following way. Let D be a divisor
on a smooth projective variety X. Suppose that D − KX is not ample, but
close to ample. We can sometimes find a small effective R-divisor B by a
perturbation such that (X, B) is KLT and D − (KX +B) is ample. Then we
have still the vanishing Hp(X, D) = 0 for p > 0.

The Cone and Contraction Theorems are proved by using the above
Vanishing Theorem ([29]). The method of proofs are called x-method, which
is a cohomological technique for proving base point freeness using the van-
ishing theorem. The name came from the surprizingly similar applications
of the vanishing theorem toward apparently different first two problems
in Reid’s list ([48]). The same method was later applied toward Fujita’s
conjecture on the base point freeness of adjoint systems.

The idea of the proof of the base point free theorem is as follows. The
point is to extend a holomorphic section from a codimension one subvariety
to the whole space, and use the induction on the dimension. Suppose that
we want to prove the base point freeness of a complete linear system |mD| on
a smooth projective variety X for a large integer m. First we take a positive
integer m1 such that |m1D| is non-empty, where the existence of such an
m1 is guaranteed by the Non-Vanishing Theorem which is also proved by
the x-method. We want to make the base locus smaller by taking a larger
integer m2 so that the base locus disappears eventually. We construct a
projective birational morphism μ : Y → X from a smooth variety with an
effective divisor E and a smooth prime divisor Z such that:

(1) The support of E is contracted by μ.
(2) The image of Z by μ is contained in the base locus of |m1D|.

The argument for finding such a situation looked tricky when it was
found, but we now know that the log canonical threshold is the concept
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hidden in this argument. We consider an exact sequence

0 → OY (m2μ
∗D + E − Z) → OY (m2μ

∗D + E)

→ OZ((m2μ
∗D + E)|Z) → 0

for a multiple m2 of m1. If m2 is suitably large, then we prove that

H0(Z, (m2μ
∗D + E)|Z) �= 0

by using the Non-Vanishing Theorem, and

H1(Y, m2μ
∗D + E − Z) = 0

by using the Vanishing Theorem. By condition 1, the natural homomor-
phism

μ∗ : H0(Y, m2μ
∗D + E) → H0(X, m2D)

is bijective. It follows that μ(Z) is not contained in the base locus of |m2D|,
hence it is strictly smaller that that of |m1D|.

The proof of the Non-Vanishing Theorem is similar, but we take an
artificial non-complete linear system compared to the natural one |mD|.
The proof of the Cone Theorem is also similar.

We worked “upstairs” in the above proof, i.e., on a resolution which lies
above the original variety, and extend holomorphic sections from a divisor to
the whole variety by using the Vanishing Theorem for line bundles. If we use
the vanishing theorem for multiplier ideal sheaves explained below, we can
work “downstairs”, i.e., on the original variety, for the extension argument.
Then we can obtain more powerful extension theorems because it becomes
possible to consider an infinite series of linear systems simultaneously.

We extend the vanishing theoren to the case where a pair (X, B) con-
sisting of a normal variety and an effective R-divisor such that KX + B is
an R-Cartier divisor but the pair is not necessarily KLT.

Definition 7.3. Let (X, B) be a pair consisting of a normal variety and
an effective R-divisor such that KX + B is an R-Cartier divisor. Let μ :
Y → X be a log resolution and we write μ∗(KX +B) = KY +

∑
ejEj , where∑

Ej is a normal crossing divisor. The multiplier ideal sheaf I(X, B) ⊂ OX

is defined by the following formula

I(X, B) = μ∗OY (−
∑

�ej�Ej).

It is independent of the choice of the log resolution. We have I(X, B) =
OX if and only if ej < 1 for all j, i.e., if (X, B) is KLT.

Let f : X → T be a projective morphism and D a Cartier divisor on X.
If D − (KX + B) is f -ample, then Theorem 7.2 implies that

Rpμ∗OX(μ∗D −
∑

�ej�Ej) = 0
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and
Rp(f ◦ μ)∗OX(μ∗D −

∑
�ej�Ej) = 0

for p > 0. Hence we have a vanishing theorem for non-KLT pairs:

Theorem 7.4 (Nadel Vanishing Theorem). Let f : X → T be a pro-
jective morphism from a normal variety, B an effective R-divisor such that
KX +B is an R-Cartier divisor, and D a Cartier divisor. If D − (KX +B)
is f-ample, then Rpf∗(I(X, B)OX(D)) = 0 for p > 0.

The above theorem was first proved by Nadel [42] in a more general
complex analytic setting (but on a smooth underlying variety). Indeed the
multiplier ideal sheaf is defined for a line bundle L with a singular hermit-
ian metric on a complex manifold X. A singular hermitian metric h is a
degenerate hermitian metric which can be written locally as h = h0e

−φ,
where h0 is a C∞ metric and φ is a locally integrable weight function. The
multiplier ideal sheaf I(L, h) is defined as the largest ideal sheaf such that
all local sections of I(L, h)L satisfy locally the L2 condition with respect to
the metric. It is proved to be a coherent sheaf on X.

For example, assume that X is an open subset of Cn and B =
∑

biBi

is an effective R-divisor. If the prime divisors Bi have local equations
gi = 0, then we can define an algebraically defined singular hermitian met-
ric on a trivial bundle L by using the weight function φ =

∑
i bi log |gi|.

In this case, the algebraic and analytic multiplier ideal sheaves coincide:
I(X, B) = I(L, h).

The point is that there are a lot more metrics which are essentially dif-
ferent from algebraic metrics. One can use a limit of a sequence of algebraic
metrics to produce a non-algebraic one provided that we can prove certain
convergence. For example, the analytic Zariski decomposition ([60, 9]) is a
singular hermitian metric which is defined naturally for an arbitrary pseudo-
effective line bundle. The metric on a Hodge bundle is another example of
analytic metrics.

A new extension technique using the multiplier sheaves was developed
by Siu [55] when he proved the deformation invariance of plurigenera:

Theorem 7.5. Let f : X → T be a smooth projective morphism. Then
the plurigenus dim H0(Xt, mKXt) of a fiber Xt = f−1(t) is independent of
t ∈ T for any positive integer m.

Nakayama [43] proved that positive solutions for conjectures in the
MMP including the Abundance Conjecture imply the invariance of pluri-
genera. But Siu proved the theorem in one step without using an inductive
approach of the MMP. The theorem is proved in the case where a fiber Xt

is of general type in [55], and in general in [56] (see also [59] and [47]).
The vanishing theorem used in these proofs is the Ohsawa-Takegoshi type
extension theorem ([45, 55]):

Theorem 7.6 (Ohsawa-Takegoshi Extension Theorem). Let X be a Stein
manifold, and Y a smooth hypersurface defined by a bounded holomorphic
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function t. Let (L, h) be a line bundle on X with a singular hermitian metric,
and s ∈ H0(Y, KY +L|Y ) a holomorphic section. Assume that the curvature
current −ddc log h is semipositive as a real current of type (1, 1), and that∫
Y |s|2h < ∞. Then there exists an extension s̃ ∈ H0(X, KX + L) such that

s̃ = s ∧ dt on Y and ∫
X

|s̃|2h ≤ C sup |t|2
∫

Y
|s|2h

for a universal constant C.

The advantage of Theorem 7.6 is that we do not need to assume the
strict positivity of the metric, which corresponds roughly to the ampleness
or bigness. But the semipositivity for the metric is strictly stronger the
corresponding algebraic concept of the nefness. This is the reason why there
is still no algebraic proof for the invariance theorem of plurigenera.

The idea of the proof of the invariance of plurigenera in the case where
the fibers are of general type is to use a construction downstairs which is
similar to the Zariski decomposition. The spaces of sections of pluricanon-
ical systems on the central fiber define a series of metrics on the canonical
line bundle, hence a sequence of multiplier ideal sheaves. Similar construc-
tions on the total space of the deformations define different metrics, hence a
different sequence of multiplier ideal sheaves. A suitable vanishing theorem
relates these ideals, and the extension of sections is proved.

This proof allowed an algebraic analogue in [26] (see also [44] and [27])
because the canonical line bundle is big in this case. The algebraic version
of the extension theorem were generalized to the logarithmic situation in
[13] and [58] (see also [61]). The logarithmic extension theorem was used
in the proof of the PL flip theorem [14] explained later. We note that the
algebraization of the proof in the general case, i.e., non general type case, is
still an open problem.

Now we state the logarithmic extension theorem:

Theorem 7.7. Let f : X → T be a projective morphism from a smooth
variety to an affine variety, and B =

∑
biBi a Q-divisor whose support

is a normal crossing divisor and such that only one coefficient b0 is equal
to 1 and other coefficients satisfy bi ∈ (0, 1) for i �= 0. Set Y = B0. Let
r be a positive integer such that r(KX + B) has integral coefficients. Set
(KX + B)|Y = KY + BY . Assume the following conditions:

(1) KX + B is pseudo-effective with respect to (X, �B�).
(2) B − Y is big with respect to (X, Y ).

Then natural homomorphisms

H0(X, mr(KX + B)) → H0(Y, mr(KY + BY ))

are surjective for all positive integers m.

This is a correct log generalization of the extension theorem, while [27]
Example 4.3 showed that a naive extension is false.
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8. Flip theorem

We start to explain how the remaining two conjectures on the flips, the
existence and the termination, are proved for the scaled MMP under the
additional assumption that the boundary is big.

The basic idea is to use the induction on the dimensions using the
adjunction formula which relates canonical divisors in different dimensions:
if Y is a smooth divisor on a smooth variety X, then we have

(KX + Y )|Y = KY .

This is a very different approach from the proof in dimension three in [39].
We need two theorems, the Special Termination Theorem and the

reduction to PL flips, due to Shokurov [53] (see also [11]) preceding to
the proof of the flip theorem. The first one is on the termination of flips
along boundary components with coefficient 1:

Theorem 8.1 (Special Termination). Let (X, B) be a Q-factorial DLT
pair of dimension n which is projective over a base. Assume that the MMP
holds, i.e., the existence and termination conjectures hold, in dimension less
than n. Let

(X, B) = (X0, B0) ��� (X1, B1) ��� · · ·
be an infinite sequence of flips. Then there exists a positive integer m0 such
that the flip (Xm, Bm) ��� (Xm+1, Bm+1) is an isomorphism in a neighbor-
hood of �Bm� for every m ≥ m0.

Similarly, if the MMP holds in dimension less than n under the addi-
tional condition that the MMP is scaled or the boundary is big, then the
special termination holds under the additional assumption that the MMP is
scaled or the boundary B is big with respect to (X, B).

The idea of the proof is to use the adjunction formula to reduced bound-
ary components. It turned out that the Special Termination Theorem, not
the general termination, is sufficient to prove the existence of minimal mod-
els thanks to the Non-Vanishing Thoerem explained in the next section.

A small contraction morphism of a Q-factorial DLT pair φ : (X, B) → Y
in the MMP is said to be a PL (prelimiting) contraction, if there is an
irreducible component S of �B� such that −S is φ-ample. A flip for a
PL contraction is called a PL flip. The second one is the reduction to
PL flips:

Theorem 8.2. Assume that the special termination theorem for the
scaled MMP with big boundaries and the existence of the PL flip hold in
dimension n. Then the existence of the flip in general holds in the same
dimension.

The idea of the proof is to introduce additional artificial boundary as a
scaling, and then reduce the boundary back to the original state gradually
by using the scaled MMP. This is the first appearance of the MMP with
scaling.
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Hacon and McKernan [14] proved the existence of a PL flip:

Theorem 8.3. Assume that a minimal models exists for any KLT pair
of dimension n−1 when the boundary is big. Then a flip exists for arbitrary
PL small contraction in dimension n.

The idea of proof is as follows. Let φ : (X, B) → Y be a PL contraction
morphism. We may assume that B is a Q-divisor. Let S be an irreducible
component of �B� such that −S is φ-ample. We use the adjunction formula:
(KX +B)|S = KS +BS , where BS is usually larger than the restriction B|S
because of the singularities of X, namely the subadjunction. In order to
prove the finite generation of the relative canonical ring

R(X/Y, KX + B) =
∞⊕

m=0

φ∗OX(�m(KX + B)�)

it is sufficient to prove the finite generation of the image of the restriction
homomorphism

R(X/Y, KX + B) → R(S/Y, KS + BS).

The target of this ring homomorphism is finitely generated by the induction
hypothesis, but the difficulty is that the homomorphism is not surjective.
The point of the proof of the PL flip theorem is to identify the image of this
homomorphism.

By restricting m-canonical systems on X to S and cancelling fixed com-
ponents from the boundary BS , we obtain a series of boundaries BS′,m

depending on m on a fixed birational model S′ of S. By using the exten-
sion theorem (Theorem 7.7), we prove that all the pluricanonical forms with
respect the boundaries BS′,m on S′ are in the images of the restriction homo-
morphisms. By the Polytope Decomposition Theorem in dimension n−1, we
find a fixed birational model S′′ of S which dominates all the minimal mod-
els corresponding to this series of boundary divisors. Then we prove that
certain stability of the movable parts of m-canonical systems holds when m
goes to infinity by using the vanishing theorem and the effective version of
the Base Point Free Theorem by Kollár [34].

We note that arbitrary divisor is big for a birational map such as φ. The
difficulty concerning the infinity arising from the fact that we should consider
all the m-canonical systems at the same time is solved by the finiteness
statement of the Polytope Decomposition Theorem.

9. Termination of flips and the non-vanishing theorem

An old approach to the termination conjecture is to use invariants of
singularities initiated by Shokurov [50]. Let us consider the simplest case;
let X be a three dimensional variety with only terminal singulsrities, and
μ : Y → X a resolution of singularities. We write μ∗KX = KY +

∑
ejEj .

By the assumption, we have ej < 0 for all j. The difficulty of the variety X
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is the number of j such that −1 < ej . One can prove that the difficulty is a
well defined non-negative integer, and it decreases strictly after a flip. The
termination follows immediately.

If the singularity is worse or if the dimension is higher, then similar
properties, the well-definedness and the monotoneness, fail. But we can
modify the definition of the difficulty and obtain some termination theorems.
The following is the known results up to now obtained by using the concept
of difficulty:

Theorem 9.1. (1) ([23, 52]) The termination conjecture holds for ar-
bitrary DLT pairs in dimension three.

(2) ([1]) The termination conjecture holds for a KLT pair (X, B) of di-
mension four if −(KX +B) is numerically equivalent to an effective
R-divisor over the base.

(3) ([1]) If (X,
∑

biBi) is a KLT pair of dimension four such that
c0KX +

∑
ciBi is relatively big over the base for some numbers

ci ∈ R. Then there exists a process of the MMP with scaling which
terminates.

In particular, the existence of a minimal model for arbitrary DLT pair
(X, B) over a base is proved only in the case dimX = 3 at the moment.

Birkar, Cascini, Hacon and McKernan [5] took a very different approach
to the termination conjecture. They did not prove the termination as an
isolated statement, but rather included it into a chain of statements con-
cerning the MMP. By using the induction on dimension, the termination is
reduced to the special termination as in the following way.

Let (X, B) be a DLT pair which is projective over a base T . Assume that
the log canonical divisor KX + B is numerically equivalent to an effective
R-divisor M over T . Then the minimality question for (X, B) is equivalent
to that for (X, B + tM) for t > 0 as long as the the new pair is LC. Assume
for simplicity that (X, B + tM) is DLT for some t > 0 and that the support
of �B + tM� coincides with that of M . By applying the Special Termination
Theorem, we conclude that the flips terminates near �B + tM�. Since M
is numerically equivalent to KX + B, it follows that KX + B becomes nef
in this process. In the general case, we need more careful argument on the
support of M during the process of the MMP with scaling.

There is a modified version of the above termination argument in Birkar
[4]. In particular it is proved that, if KX + B is numerically equivalent to
an effective R-divisor, then a minimal model exists if dimX ≤ 5.

The remaining problem is to prove the existence of an effective R-divisor
M . This is a generalization of the Non-Vanishing Theorem:

Theorem 9.2. Let (X, B) be a KLT pair which is projective over a
base T . Assume the following conditions:

(1) KX + B is pseudo-effective over T .
(2) B is big over T .
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Then there exists an effective R-divisor M which is numerically equiva-
lent to KX + B over T .

The assertion is only a part of the existence theorem of a minimal model,
but this is the key point in its proof. The proof in [5] is also a generalization
of the Non-Vanishing Theorem which is a part of the Base Point Free The-
orem which is already proved when KX + B is nef, together with the idea
similar to the proof of the flip theorem. We use the minimal model theorem
which is already proved under the additional assumption that KX + B is
effective, and the Polytope Decomposition Theorem in dimension one less.

The proof proceeds roughly as follows. As in the case of the Non-
Vanishing Thorem or the reduction theorem to the PL flip, we increase the
boundary artificially so that the pair (X, B) becomes DLT and �B� = Z is
irreducible. We consider the case where B is a Q-divisor for simplicity. If
we add an ample Q-divisor εH to the boundary, then KX +B+εH becomes
big, and there exists a minimal model for the pair (X, B + εH). If we take
the limit ε → 0, then there may be infinitely many chambers in the space of
divisors corresponding to the minimal models of the pairs (X, B + εH). By
using the Special Termination Theorem, we can prove that certain neighbor-
hood of Z becomes stable under this infinite chain of wall crossings. Then we
can fix a minimal model of Z, on which there exists a desired section thanks
to the usual Base Point Free Theorem. By using the Vanishing Theorem,
we infer that this section is extended to a birational model of X.

The assumption that the boundary B is big is indispensable in the first
step of the above proof where we find Z. Indeed as is shown in [4], the
Non-Vanishing Thorem is the most difficult point if we try to extend the
minimal model theory to the case where the boundary is not necessarily big.

10. Birational maps between birational models

The output of the MMP, a minimal model or a Mori fiber space, is not
uniquely determined in general when we start with a fixed pair, because there
are choices of the faces in the process of the MMP. We would like to control
the non-uniqueness. The answer is given by the Polytope Decomposition
Theorem again.

The non-uniqueness of a minimal model for a fixed variety is a new
phenomena in dimension three or higher. The following theorem asserts
that the existence of flops is the only reason.

A flop for a pair (X, B) is a diagram

X
φ−−−−→ Y

φ+

←−−−− X+

which is a flip for another pair (X, B′), where B′ is a suitably chosen different
boundary, and such that KX + B is numerically trivial for φ; [KX + B] = 0
in N1(X/Y ).

Theorem 10.1. Let f : (X, B) → T be a projective morphism from a
KLT pair, let g : (Y, C) → T and g′ : (Y ′, C ′) → T be its minimal models,
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and let α : Y ��� Y ′ be the induced birational map over T . Assume that there
exists a canonical model of (X, B). Then α is decomposed into a sequence of
flops in the follwoing way: there exists an effective Q-Cartier divisor D on
Y such that (Y, C + D) is still KLT and such that α becomes a composition
of a sequence of birational maps

Y = Y0 ��� Y1 ��� · · · ��� Yl = Y ′

such that αk : Yk−1 → Yk (1 ≤ k ≤ l) is a flop for the pair (Yk−1, Ck−1) as
well as a flip for the pair (Yk−1, Ck−1 + Dk−1), where Ck−1 and Dk−1 are
the strict transforms of C and D, respectively.

We note that α is an isomorphism in codimension one as we already
know. We remark that the boundary B need not to be big. There is a
differnt version of the factorization theorem in [28], where we do not need
to assume the existence of a canonical model, but we have to assume that
B is a Q-divisor.

A marked minimal model is a pair consisting of a minimal model and
a birational map to a fixed reference model. The number of birationally
equivalent marked minimal models is finite if the boundary B is big, but
it is not the case in general ([25]). The above theorem claims that there
are still only finitely many marked minimal models which lie between two
different minimal models. It is conjectured that the number of birationally
equivalent minimal models is finite up to isomorphisms, i.e., when we forget
the markings.

We use the Polytope Decomposition Theorem to prove the above theo-
rem in the following way. We take a general ample R-Cartier divisor H and
H ′ on Y and Y ′, respectively, and we consider a triangle spanned by C, C+H
and C + H ′ in the space of divisors on Y , where the strict transform of H ′

on Y is denoted by the same letter. The canonical model coresponds to the
chamber {0}. If we choose H and H ′ small enough, then the closures of the
chambers V and V ′ corresponding to the models Y and Y ′ contain 0. More-
over the union of the chambers between V and V ′ which contain 0 in the clo-
sures contains the line segment joining the points C + H and C + H ′. Then
the wall crossing process provides a decomposition of α. By induction on the
relative Picard numbers, we obtain eventually the decomposition to flops.

As for the Mori fiber spaces, the non-uniqueness phenomenon appears
already in dimension two. For example, ruled surfaces P(OP1 ⊕OP1(d)) over
P1 for different integers d are all birationally equivalent. An elementary
transformation of a ruled surface is a combination of a blowing up at a
point in a fiber and the blowing down of the strcit transform of the fiber.
If gi : Xi → C for i = 1, 2 are ruled surfaces over the same curve C, then
they are connected each other by a sequence of elementary transformations.
There is a different kind of decompositions; any birational map P2 ��� P2 is
decomposed into linear and quadratic transformations. The latter is further
decomposed into point blowings up, point blowings down, and elementary
tansformations.
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The Sarkisov program is a higher dimensional generalization. We can
decompose any birational map between the total spaces of Mori fiber spaces
into elementary links, generalizations of elementary transformations.

Hacon and McKernan [15] proved the following:

Theorem 10.2. Let f : (X, B) → T be a projective morphism from a
KLT pair, let φ : (Y, C) → Z and φ′ : (Y ′, C ′) → Z ′ be Mori fiber spaces
obtained by the MMP from a KLT pair (X, B) over T , and let α : Y ��� Y ′

be the induced birational map over T :

Y
α−−−−→ Y ′

φ

⏐⏐�
⏐⏐�φ′

Z Z ′

Then there exists a sequence of the following type commutative diagrams
called elementary links for 1 ≤ k ≤ l with some positive integer l:

U
(k)
1

β(k)

−−−−→ U
(k)
2

f
(k)
1

⏐⏐�
⏐⏐�f

(k)
2

V
(k)
1 V

(k)
2

g
(k)
1

⏐⏐�
⏐⏐�g

(k)
2

W (k) =−−−−→ W (k)

where β(k) is a composition of a sequence of flips for a suitably chosen bound-
ary on U

(k)
1 and such that α is decomposed as

α = αl ◦ · · · ◦ α1

where each αk is a birational map described in one of the following cases:

(1) g
(k)
1 and f

(k)
2 are Mori fiber spaces, f

(k)
1 is a divisorial contraction,

g
(k)
2 is a morphism with relative Picard number one, and αk =

β(k) ◦ (f (k)
1 )−1.

(2) g
(k)
1 and g

(k)
2 are Mori fiber spaces, f

(k)
1 and f

(k)
2 are divisorial con-

tractions, and αk = f
(k)
2 ◦ β(k) ◦ (f (k)

1 )−1.
(3) f

(k)
1 and g

(k)
2 are Mori fiber spaces, f

(k)
2 is a divisorial contraction,

g
(k)
1 is a morphism with relative Picard number one, and αk =

f
(k)
2 ◦ β(k).

(4) f
(k)
1 and f

(k)
2 are Mori fiber spaces, g

(k)
1 and g

(k)
2 are morphisms

with relative Picard number one, and αk = β(k).

The theorem was proved in dimension three by Corti [7]. The crucial
point of the proof is to prove that a sequence of elementary links terminates.
[15] interpreted the sequence of elementary links as a wall crossing process,
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and proved the termination by using the Polytope Decomposition Theorem.
It is remarkable that the four types of elementary links which are apparently
different have the same interpretation as a wall crossing process in terms of
the polytope decomposition.

The argument of [15] is as follows. We take a general ample R-Cartier
divisor H (resp. H ′) on Y (resp. Y ′) such that KY + C + H = φ∗L (resp.
KY ′ + C ′ + H ′ = (φ′)∗L′) for some ample R-Cartier divisor L (resp. L′) on
Z (resp. Z ′), and let D (resp. D′) be the strict transforms of H (resp. H ′)
on X. Then the pair (Y, C + H) (resp. (Y ′, C ′ + H ′)) is a minimal model of
(X, B + D) (resp. (X, B + D′)), and Z (resp. Z ′) is the canonical model.

We consider a triangle V̄ spanned by B, B + D and B + D′ in the space
of divisors on X, and let V be the subset corresponding to the pseudo-
effective log canonical divisors. The points (X, B + D) and (X, B + D′) are
on the boundary of V . We consider a path on the boundary which connects
these points, and look at the chambers whose closures intersect this path.
Then the wall crossing process provides a decomposition of α.

References

[1] Valery Alexeev, Christopher Hacon and Yujiro Kawamata. Termination of (many)
4-dimensional log flips. Invent. Math. 168 (2007), no. 2, 433–448.

[2] Urban Angehrn and Yum-Tong Siu. Effective freeness and point separation for adjoint
bundles. Invent. Math. 122 (1995), no. 2, 291–308.

[3] Michael Artin. Some numerical criteria for contractability of curves on algebraic sur-
faces. Amer. J. Math. 84(1962), 485–496.

[4] Caucher Birkar. On existence of log minimal models. arXiv:0706.1792.
[5] Caucher Birkar, Paolo Cascini, Christopher D. Hacon and James McKernan. Exis-

tence of minimal models for varieties of log general type. math.AG/0610203.
[6] Jungkai A. Chen and Meng Chen. Explicit birational geometry of threefolds of general

type. arXiv:0706.2987.
[7] Alessio Corti. Factoring birational maps of threefolds after Sarkisov. J. Algebraic

Geom. 4 (1995), no. 2, 223–254.
[8] Alessio Corti et. al. Flips for 3-folds and 4-folds. Oxford Lecture Ser. Math. Appl.

35(2007), 189 pp, Oxford Univ. Press.
[9] Jean-Pierre Demailly, Thomas Peternell and Michael Schneider. Pseudo-effective line

bundles on compact Kahler manifolds. Internat. J. Math. 12 (2001), no. 6, 689–741.
[10] Paolo Francia. Some remarks on minimal models. I. Compositio Math. 40 (1980), no.

3, 301–313.
[11] Osamu Fujino. Special termination and reduction theorem. in [8] http://www.

math.nagoya-u.ac.jp/ fujino/index.html.
[12] Osamu Fujino and Shigefumi Mori. A canonical bundle formula. J. Differential Geom.

56 (2000), no. 1, 167–188.
[13] Christopher Hacon and James McKernan. Boundedness of pluricanonical maps of

varieties of general type. Invent. Math. 166 (2006), no. 1, 1–25.
[14] Christopher Hacon and James McKernan. On the existence of flips. math.AG/

0507597.
[15] Christopher Hacon and James McKernan. presented at conferences.
[16] Heisuke Hironaka. On the theory of birational blowing-up. Thesis, Harvard Univ.,

1960.



FINITE GENERATION OF A CANONICAL RING 75

[17] Kazuya Kato. Logarithmic structures of Fontaine-Illusie. in Algebraic analysis,
geometry, and number theory (Baltimore, MD, 1988), 191–224, Johns Hopkins Univ.
Press, Baltimore, MD, 1989.

[18] Yujiro Kawamata. On the classification of noncomplete algebraic surfaces. Alge-
braic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978),
pp. 215–232, Lecture Notes in Math., 732, Springer, Berlin, 1979.

[19] Yujiro Kawamata. Characterization of abelian varieties. Compositio Math. 43 (1981),
253–276.

[20] Yujiro Kawamata. A generalization of Kodaira-Ramanujam’s vanishing theorem.
Math. Ann. 261 (1982), 43–46.

[21] Yujiro Kawamata. The Zariski decomposition of log-canonical divisors. in Algebraic
Geometry Bowdoin 1985, Proc. Symp. Pure Math. 46 (1987), Amer. Math. Soc.,
425–433.

[22] Yujiro Kawamata. On the length of an extremal rational curve. Invent. Math. 105
(1991), 609–611.

[23] Yujiro Kawamata. Termination of log-flips for algebraic 3-folds. Intl. J. Math. 3
(1992), 653–659.

[24] Yujiro Kawamata. On Fujita’s freeness conjecture for 3-folds and 4-folds. alg-geom/
9510004, Math. Ann. 308 (1997), 491–505.

[25] Yujiro Kawamata. On the cone of divisors of Calabi-Yau fiber spaces. alg-geom/
9701006, Internat. J. Math. 8 (1997), 665–687.

[26] Yujiro Kawamata. Deformations of canonical singularities. alg-geom/9712018,
J. Amer. Math. Soc. 12 (1999), 85–92.

[27] Yujiro Kawamata. On the extension problem of pluricanonical forms. math.
AG/9809091, Contemporary Math. 241(1999), 193–207.

[28] Yujiro Kawamata. Flops connect minimal models. arXiv:0704.1013.
[29] Yujiro Kawamata, Katsumi Matsuda and Kenji Matsuki. Introduction to the min-

imal model program. in Algebraic Geometry Sendai 1985, Advanced Studies in
Pure Math. 10 (1987), Kinokuniya and North-Holland, 283–360. http://faculty.ms.u-
tokyo.ac.jp/ kawamata/index.html.

[30] Steven L. Kleiman. Toward a numerical theory of ampleness. Ann. of Math. (2) 84
(1966), 293–344.

[31] Kunihiko Kodaira. On a differential-geometric method in the theory of analytic stacks.
Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 1268–1273.

[32] Kunihiko Kodaira. On compact analytic surfaces. II, III. Ann. of Math. (2) 77 (1963),
563–626; ibid. 78(1963), 1–40.

[33] János Kollár et. al. Flip and abundance for algebraic threefolds. Soc. Math. France,
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