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Global behaviour of nonlinear dispersive and

wave equations

Terence Tao

Abstract. We survey recent advances in the analysis of the large
data global (and asymptotic) behaviour of nonlinear dispersive
equations such as the nonlinear wave (NLW), nonlinear Schrödinger
(NLS), wave maps (WM), Schrödinger maps (SM), generalised
Korteweg-de Vries (gKdV), Maxwell-Klein-Gordon (MKG), and
Yang-Mills (YM) equations. The classification of the nonlinearity
as subcritical (weaker than the linear dispersion at high frequen-
cies), critical (comparable to the linear dispersion at all frequen-
cies), or supercritical (stronger than the linear dispersion at high
frequencies) is fundamental to this analysis, and much of the recent
progress has pivoted on the case when there is a critical conserva-
tion law. We discuss how one synthesises a satisfactory critical
(scale-invariant) global theory, starting the basic building blocks of
perturbative analysis, conservation laws, and monotonicity formu-
lae, but also incorporating more advanced (and recent) tools such
as gauge transforms, concentration-compactness, and induction on
energy.

1. Introduction

The purpose of this survey is to discuss recent progress in under-
standing the global and asymptotic behaviour of various model nonlin-
ear evolution equations of dispersive or wave type (as opposed to para-
bolic, transport, or kinetic equations) on Euclidean spacetimes R×Rd

for various dimensions d. These equations are semilinear, meaning that
they are perturbations of a linear dispersive or wave equation by a non-
linearity of lower order (i.e., using fewer derivatives than the linear part
of the equation); the evolution is then a competition between the lin-
ear part of the equation (which tends to disperse the solution) and the
nonlinear part (which can either focus or defocus the solution, depend-
ing on the sign of the nonlinearity). They are also Hamiltonian (and
hence time-reversible), in contrast to parabolic equations (such as the
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heat equation, or Navier-Stokes) which are dissipative and non-time-
reversible. The evolution can be expected to broadly be a combination
of one of three forms:

• Linearly dominated behaviour. In some cases the linear
effects dominate the nonlinear effects, and the solution ex-
ists globally and converges asymptotically to a linear solution
(which itself should disperse to zero). In such cases one tends
to have very good spacetime bounds (basically, the nonlinear
solution should obey almost the same bounds as the linear so-
lution) and a complete scattering theory for the equation. This
scenario tends to occur for small data, high regularities, short
times, low dimensions, and weak (low-power) nonlinearities.

• Nonlinearly dominated behaviour. In opposition to the
previous case, it is possible for the nonlinear effects to dominate
the linear effects. In “focusing” cases, this typically causes the
solution to become very unstable, and singularities develop in
finite time or even instantaneously. In “defocusing” cases, the
solution is still rather unstable for medium times, but typically
the nonlinearity acts to disperse the solution, at which point
the evolution switches over to linearly dominated behaviour.
This scenario tends to occur for large data, low regularities,
long times, high dimensions, and strong (high-power) nonlin-
earities.

• Intermediate behaviour. A third regime of behaviour em-
erges when the nonlinear and linear effects are roughly in bal-
ance. The most notable example of this are the soliton solu-
tions in focusing (or at least non-defocusing) equations, which
are typically stationary or traveling wave solutions in which the
dispersive effect of the linear equations is perfectly counterbal-
anced by the attractive (or focusing) nature of the nonlinearity.

A major goal of the analytical theory of these equations is to rig-
orously classify, based on the equation and on the class of initial data
involved, whether the global evolution of the equation exhibits linear
behaviour or nonlinear behaviour. In doing so, two basic features of
these equation have proven to be of vital importance. The first are the
conserved quantities (and to a lesser extent, the monotone quantities)
of the evolution, and more precisely those quantities which are coercive

(in that they provide non-trivial upper bounds on the size of the solu-
tion) or at least positive semi-definite to top order. In the large data
theory, the conserved and monotone quantities determine what control
one can retain on the solution after long times. The second is the nat-
ural scale-invariance (or approximate scale invariance) of the equation,
which provides an identification between the fine-scale and coarse-scale
behaviour of the evolution. Using this invariance, one can classify the
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conservation laws as being either subcritical (strong at fine scales, weak
at coarse scales), critical (scale-invariant), or supercritical (strong at
coarse scales, but weak at fine scales). One can similarly classify reg-
ularity classes (such as Sobolev spaces Hs

x(Rd)) as being subcritical,
critical, or supercritical for a certain equation. The equations with crit-
ical conservation laws provide a context where the nonlinear and linear
parts are roughly comparable in strength, and represent the frontier of
current technology for analysing large data global behaviour of evolution
equations.

After the classification of equations and their conservation laws as
being subcritical, critical, or supercritical, the next most important
distinction is whether the equation is defocusing, focusing, or neither.
These terms do not have a fully precise meaning, but roughly speak-
ing in a defocusing equation the nonlinear component of the equation
is typically aligned to have the “same sign” as the linear component,
thus (hopefully) amplifying the dispersive effects of the linear equation,
whereas in the focusing case the opposite is true, and the dispersive
effects can be attenuated, halted (to cause stationary or travelling wave
solutions such as soliton solutions) or even reversed (to cause blowup).
In some cases (e.g., for the Korteweg-de Vries, Maxwell-Klein-Gordon
and Yang-Mills equations) the nonlinearity does not have a preferred
sign, and can act either to aid the dispersion or to counteract it.

One can seek to understand the behaviour of these solutions either at
high regularities (smooth solutions) or low regularities (rough solutions).
In many applications, it is the smooth solutions which are of importance;
but even if one is only ultimately interested in high regularity solutions,
it is often worthwhile to fully develop the low regularity theory, as the
estimates obtained as a consequence of that theory are often extremely
useful in controlling the global and asymptotic behaviour of smooth
solutions, and in particular in obtaining precise criteria as to whether
blowup or other bad behaviour will occur from smooth initial data. In
any event, in cases where the key conserved quantity is critical, the
smooth theory and the critical-regularity theory are often very closely
related, and many of the deepest results concerning smooth solutions
to these equations arose directly from, or were at least inspired by, the
critical-regularity theory1.

1This does not necessarily mean however, that one has to abandon the classical
concept of solution for weaker notions of solution (such as distributional solutions); in
many cases, one can proceed by working entirely in the category of smooth solutions,
so long as one is always seeking estimates which are scale-invariant in nature, and
in particular not reliant on the high regularity norms of the solution, except to
justify certain formal computations or to run qualitative arguments such as continuity
arguments.
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There are a large number of interesting nonlinear evolution equa-
tions of dispersive or wave type. In contrast to other fields of mathe-
matics, it is not always profitable to try to treat all of these at once
by working with an abstract class of PDE; while a limited amount of
generalisation is possible, each individual PDE typically has its own
“personality” which requires separate treatment, especially when work-
ing with the particularly delicate issue of global large data theory at
critical regularities. On the other hand, the techniques, heuristics, and
principles for analysing these PDE are remarkably constant from one
equation to the next. Furthermore, we shall see that there are several
connections and analogies, both formal and heuristic, between different
equations. Thus it is important to study these equations both individ-
ually (at the rigorous level) and collectively (at the informal level).

With a few notable exceptions (KdV, mKdV, 1-dimensional cubic
NLS, 1-dimensional wave maps, restricted classes of Yang-Mills), the
majority of equations discussed here are not completely integrable, and
almost certainly not reducible via algebraic transformations to a linear
evolution; thus there is essentially no hope of finding exact solutions to
these equations from general initial data via some algebraic formula, al-
though there are certainly many important special exact solutions (e.g.,
solitons, highly symmetric solutions, or the trivial vacuum solution 0)
which play major roles in the subject and provide important examples
and intuition. In the absence of exact formulae for general solutions,
the analytical theory instead revolves around qualitative and quanti-

tative properties of the solutions. Qualitative properties include the
fundamental question of wellposedness (existence, uniqueness, and con-
tinuous dependence of the solution on the initial data in some prescribed
data class), as well as regularity, approximation by smooth solutions,
justification of formal algebraic manipulations (e.g., conservation laws),
and asymptotics at infinity. At very low regularities, even the utterly
basic (but surprisingly subtle) question of what it even means to be a so-
lution has to be properly addressed. Quantitative properties typically
involve estimating various spatial or spacetime norms of the solution
(e.g., Sobolev or Lebesgue norms) in terms of various norms of the ini-
tial data (such as the mass and energy). The two types of properties
are often closely intertwined; one needs quantitative estimates in order
to conclude enough convergence or continuity to justify a qualitative
argument, and conversely qualitative results are often needed to jus-
tify quantitative computations; in many cases one needs a bootstrap,
continuity, or iteration argument to produce both the quantitative and
qualitative results simultaneously. Our focus here shall be more on the
“hard” quantitative components of recent results; the “soft” qualitative
arguments are also a necessary component of these results, but these
tend to be relatively routine once the quantitative estimates are ob-
tained. In particular we shall often assume that a solution has been a
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priori given to us, and is already sufficiently regular to justify all formal
computations, but lacks strong quantitative estimates; we shall then
work hard to establish such quantitative estimates (known as a pri-

ori estimates). Once these estimates are obtained, there are a number
of “soft” techniques (approximation, penalisation, iterative methods,
continuity methods, use of higher-regularity wellposedness theory) to
remove the a priori restriction and show existence and uniqueness of
solutions with the desired bounds from all data in a given class. While
these arguments are necessary and sometimes subtle, the technical is-
sues they raise tend to distract from the physical intuition underlying
the dynamics of these equations, and so we will not dwell on them here.

The author thanks Zhen Lei for corrections.

2. The model equations

In this section we describe several model equations which we will
discuss in this survey. There are many model nonlinear equations of
dispersive or wave type which are of importance, but we shall select only
some particularly symmetric ones, in particular those which enjoy an
exact translation-invariance and scaling-invariance, as these are slightly
simpler to study analytically and already exhibit many of the key phe-
nomena that one wishes to understand in this field. Also, the presence
of symmetries naturally leads one to special self-symmetric sub-classes
of solutions (e.g., travelling wave solutions, self-similar solutions, spher-
ically symmetric solutions) of interest. We shall also focus attention on
those equations for which our current level of understanding is at or
very close to the critical regularity level; there are other equations (e.g.,
Benjamin-Ono, Einstein, Zakharov, Kadomtsev-Petviashvili, etc.) for
which there are additional obstructions which seem to prevent us from
getting close to a critical theory, and we will not discuss these here.

The analytic theory associated to each of the equations is extensive,
and we will not be able to even begin to survey all of the develop-
ments for each of the equations in this paper, focusing instead only on
some representative recent results. In this particular section we shall
concentrate instead on the more algebraic features of these equations,
such as the conservation laws, symmetries (especially scaling symme-
try), soliton-like solutions, and exact embeddings (or asymptotic em-
beddings) from one equation to another.

2.1. Spacetime geometry. The model equations are intimately
tied to the geometry of the underlying spacetime domain, and in some
cases also to the geometry of the target (which is a manifold for the
wave maps equation, or a vector bundle for the Maxwell-Klein-Gordon
or Yang-Mills equations). For simplicitly we are considering spacetimes
which are completely flat and scale-invariant, but it is still important
to note some key geometric features of these spacetimes.
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Definition 2.2 (Spacetime conventions). We use R1+d to denote
Minkowski spacetime, i.e., the points (t, x1, . . . , xd) endowed with the
Minkowski metric ds2 = −c2dt2 + dx2

1 + . . . + dx2
d, where c > 0 is the

speed of light (we shall usually normalise c = 1). We also write x0 for xd

and ∂α for ∂
∂xα

. We use Roman indices i, j, k to sum from 1, . . . , d, and
Greek indices α, β, γ to sum from 0, . . . , d. We use ∇ = ∇x to denote
the spatial gradient, and ∇t,x for the spacetime gradient. We raise
and lower Greek indices using the Minkowski metric, thus for instance
∂i = ∂

∂xi
but ∂0 = −c2 ∂

∂t . Repeated indices will be implicitly summed
as per usual, thus for instance the d’Lambertian operator � := ∂α∂α

can be written in co-ordinates as

� = ∂α∂α = ∂0∂0 + . . .+ ∂d∂d = −c2∂2
t + ∆

where ∆ = ∂i∂i is the spatial Laplacian. We use R × Rd to denote
Galilean spacetime, which as a set is identical to Minkowski spacetime,
but without the Minkowski metric2; thus with these spacetimes we do
not use Greek indices or raising and lowering operations.

Both Minkowski and Galilean spacetimes enjoy the symmetries of
spatial (Euclidean) rotations and reflections, spatial translation, time
translation, and time reversal. Minkowski space also enjoys the addi-
tional scaling symmetry (t, x) 7→ (λt, λx) and the Lorentz boosts

(t, x) 7→

(

t+ v · x/c2
√

1 − |v|2/c2
, xv⊥ +

xv + vt
√

1 − |v|2/c2

)

for any velocity vector v ∈ Rd with |v| < c, where xv is the orthogonal
projection to the space spanned by v, and xv⊥ := x−xv is the projection
to the space orthogonal to v. Meanwhile, Galilean spacetime enjoys
a two-parameter scaling symmetry (t, x) 7→ (λ′t, λx) and a Galilean
invariance

(t, x) 7→ (t, x+ vt)

which is the limit of the Lorentz invariance in the nonrelativistic limit

c→ ∞. Many of these symmetries will be reflected in the model equa-
tions; one reason for this is that many of these equations have La-
grangian formulations where the Lagrangian can be defined purely in
terms of the geometry of the domain and range and so are automati-
cally invariant (or covariant, in the case of non-scalar equations) under
all the symmetries of the underlying geometry.

2There is a natural pseudometric that one should place on Galilean spacetime,
which in some sense is the limit of the Minkowski metrics −c2dt2 + dx2

1 + . . . +
dx2

d as c → ∞, but defining the pseudometric structure rigorously is somewhat
tedious. Since Galilean spacetime is the only pseudometric space which we will
ever consider here, we shall not detail this structure here, though we do remark that
this pseudometric can be used to justify the terminology “pseudoconformal” which
appears later. Much later on we will also encounter parabolic spacetime R

+ × R
d,

which is the natural spacetime for handling parabolic equations.
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2.3. The nonlinear wave equation. Let d ≥ 1, and consider the
nonlinear wave equation (NLW)

(1) �u = µ|u|p−1u

where u : R1+d → C is a complex scalar field, p > 1 is the power of
the nonlinearity, and µ = ±1 is the sign of the nonlinearity (the case
µ = +1 is defocusing, while the case µ = −1 is focusing). One often
restricts attention to the case when u is real-valued, though most of
the analysis extends without difficulty to the complex case also. This
equation is also the Euler-Lagrange equation for the functional

∫

R1+d

1

2
∂αu∂αu+ µ|u|p+1 dxdt

and is thus one of the simplest nonlinear Lagrangian perturbations of
the free wave equation (which has the same Lagrangian but with µ = 0).
They also appear as special cases of more geometric equations such as
wave maps (see below).

Henceforth we normalise c = 1. The equation (1) has a conserved
energy

E(u) = E(u[t])(2)

: =

∫

Rd

1

2
|∂tu(t, x)|

2 +
1

2
|∇u(t, x)|2 + µ

1

p+ 1
|u(t, x)|p+1 dx.

Here we adopt the useful convention that u[t] := (u(t), ∂tu(t)) de-
notes the instantaneous state (both position and velocity) of the field
u at time t. Indeed, one can easily verify from differentiating under
the integral sign that E(u[t]) is independent of t if u is a sufficiently
smooth and rapidly decreasing solution to (1); one can also observe that
this energy is the Hamiltonian for (1) using the symplectic structure
{(u, ut), (v, vt)} := Re

∫

Rd uvt − vut dx. Observe that in the defocusing

case µ = +1 the nonlinear component µ 1
p+1 |u|

p+1 of the energy density

has the same sign as the linear component 1
2 |ut|

2 + 1
2 |∇u|

2, whereas in
the focusing case these components have opposing signs. Thus in the
defocusing case we heuristically expect the nonlinearity to amplify the
dispersive effects of the linear equation, while in the focusing case we
expect the nonlinearity to oppose this dispersion.

The equation (1) also enjoys the scaling invariance

(3) u(t, x) 7→
1

λ2/(p−1)
u

(

t

λ
,
x

λ

)

.

In the energy-critical case d ≥ 3, p = 1 + 4
d−2 , the scaling (3)

preserves the energy (2). Note also that in this case the exponent 2d
d−2

appearing in the nonlinear component of the energy (2) is precisely the
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exponent appearing in the endpoint Sobolev inequality

‖f‖
L

2d/(d−2)
x (Rd)

≤ Cd‖∇f‖L2
x(Rd).

Historically, the energy-critical wave equation was one of the first critical
nonlinear evolution equations to have a satisfactory global theory. This
is due to a number of factors, including the finite speed of propagation
property (which allows one to analyse blowup by localisation in space),
as well as the fact that the conserved momentum

~p(u) = ~p(u[t]) := −Re

∫

Rd

ut(t, x)∇u(t, x) dx

(which will ultimately be the source for a key monotonicity formula in
the defocusing case) has the same scaling as the conserved energy.

In the focusing case µ = −1 we have the stationary solutions u(t, x)
= Qω(x)eiωt, where ω > 0 is a time-frequency and Qω solves the elliptic
equation

∆Qω + |Qω|
p−1Qω = ω2Qω.

One can also create travelling wave solutions by applying Lorentz trans-
forms to the stationary solution. When Qω is a ground state (i.e., it is
positive), then these solutions are believed to mark the transition be-
tween linear behaviour (such as decay in time) and nonlinear behaviour
(such as blowup, or at least lack of decay in time); very recently there
has been some progress in making this behaviour rigorous. One also
expects these stationary solutions to play a prominent role in analysis
of singularities (blowup) of solutions, though the precise relationship
here is presently rather poorly understood.

When d ≤ 2, or when d ≥ 3 and p < 1 + 4
d−2 , the equation (1)

is energy-subcritical, because the scaling (3) for λ > 1 will decrease
the energy rather than preserve it. Thus a bounded amount of energy
at fine scales is equivalent (after scaling) to a small amount of energy
at unit scales, and so we therefore expect the fine-scale behaviour of
bounded-energy solutions to be close to linear. Because of this, the
local theory of subcritical equations is very well understood, though the
global asymptotic behavior remains a mystery.

There are a number of other important exponents p, such as the
conformal power p = 1 + 4

d−1 , which makes the equation (1) invariant
under conformal transformations of spacetime, and in particular under
the Kelvin inversion

u(t, x) 7→ (c2t2 − |x|2)−(d−1)/2u

(

t

c2t2 − |x|2
,

x

c2t2 − |x|2

)

.

With this power the equation is energy-subcritical, though the symplec-
tic structure is now critical. We will however not discuss this equation
in this survey (focusing instead on equations with a critical conserved
quantity which is positive definite to top order).
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2.4. The nonlinear Schrödinger equation. Take d ≥ 1 and
consider the energy-critical nonlinear Schrödinger equation (NLS)3

(4) iut + ∆u = µ|u|p−1u

where u : R × Rd → C is a complex scalar field, and µ = ±1 is
the sign of the nonlinearity (again, µ = +1 is defocusing, while the
case µ = −1 is focusing). These equations arise naturally as models
describing various forms of weakly dispersive behaviour; see [70] (as well
as the discussion on the gKdV equation below). The case d = 1, p = 3
happens to be completely integrable, but in general the equations are
merely Hamiltonian (though they do enjoy a large, but finite, number
of conserved quantities).

The scaling symmetry is now given by

(5) u(t, x) 7→
1

λ2/(p−1)
u

(

t

λ2
,
x

λ

)

while the conserved energy is now

(6) E(u) = E(u(t)) :=

∫

Rd

1

2
|∇u(t, x)|2 + µ

1

p+ 1
|u|p+1(t, x) dx.

Again, this energy can be interpreted as a Hamiltonian for (4), using
the symplectic form {u, v} =

∫

Rd Im(uv) dx. The NLS also has an

additional phase rotation symmetry u(t, x) 7→ eiθu(t, x), which leads
(via Noether’s theorem) to a second important conserved quantity4, the
mass (or charge)

(7) M(u) = M(u(t)) =

∫

Rd

|u(t, x)|2 dx.

The translation symmetry u(t, x) 7→ u(t − x0) also leads to a third
conserved quantity, the momentum

(8) ~p(u) = ~p(u(t)) := 2

∫

Rd

Im(u(t, x)∇u(t, x)) dx.

When d ≥ 3 and p = 1 + 4
d−2 , the equation (4) is energy-critical

but mass-supercritical and momentum-supercritical; conversely, in the
pseudoconformal case p = 4

d the equation (4) is mass-critical but energy-
subcritical and momentum-subcritical. Thus in both cases, the momen-
tum (which supplies a crucial monotonicity formula in the large data

3It is sometimes convenient to replace the linear part i∂t + ∆ of this operator
with −i∂t + ∆, i∂t + 1

2
∆, or −i∂t + 1

2
∆ to make certain formulae slightly prettier,

however it is a trivial matter to transform one equation to the other (by conjugating,
dilating, or stretching the solution u in space or time) and so all choices of operator
here are essentially equivalent.

4The analogue of this quantity for NLW would be the charge
R

Im(uut) dx, but
this quantity vanishes for the most important case of real scalar fields u and so has
not been of major importance in the analysis.
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theory) is not scale-invariant, which causes significant technical difficul-
ties in the analysis.

Of the two critical equations, the mass-critical equation is considered
harder to analyse. This is because in this case the NLS equation enjoys
two less obvious symmetries, namely the Galilean invariance

u(t, x) 7→ e−it|v|2/4eiv·x/2u(t, x− vt)

where v ∈ Rd is arbitrary5, as well as the pseudoconformal symmetry

(9) u(t, x) 7→
1

|t|d/2
ei|x|

2/4tu

(

1

t
,
x

t

)

for t 6= 0. These two symmetries (as well as spatial translation sym-
metry) also preserve the mass (7), thus the mass is in fact critical with
respect to quite a large group of symmetries. This wealth of symmetries
complicates the analysis, because it implies quite a serious breakdown of
compactness for the “essential” part of the dynamics. (The Galilean in-
variance is not as serious issue for the energy-critical equation, because
it does not leave the energy invariant.)

As with NLW, the focusing NLS (µ = −1) also enjoys stationary
solutions (or solitons) u(t, x) = Qω(x)eiωt, where ω > 0 is a time-
frequency and Qω solves the elliptic equation

∆Qω + |Qω|
p−1Qω = ωQω.

One can apply Galilean invariance to also obtain travelling soliton so-
lutions. As with NLW, the ground state solitons are expected to de-
marcate the transition between linear and nonlinear behaviour, and to
dominate the dynamics of blowup (at least in certain cases), and there
are now several rigorous results that demonstrate this fact.

There is an algebraic embedding of NLS into NLW: if u : R ×
Rd → C solves (4) in d spatial dimensions, then the complex field

ũ : R1+(d+1) → C defined by

ũ(t, x1, . . . , xd+1) := ei(t+xd+1)u(t− xd+1, x1, . . . , xd)

solves (1) in d+1 spatial dimensions (with c = 1); in Fourier space, this
fact becomes the geometric observation that a d-dimensional paraboloid
can be viewed as a section of a d+ 1-dimensional cone. This allows one
to deduce many algebraic identities for the d-dimensional NLS from the
corresponding identities for the d+1-dimensional NLW (the “method of
descent”). However, this embedding of NLS into NLW, while exact, is
not very useful analytically as it maps finite-energy solutions to infinite-
energy ones. There is a more profitable asymptotic embedding from NLS

5Indeed, this invariance holds for all powers p, being the analogue of the Lorentz
invariance for the NLW. The pseudoconformal symmetry however is restricted to the
pseudoconformal exponent p = 1 + 4

d
.
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to a variant of NLW, the nonlinear Klein-Gordon equation (NLKG)

�u = c4u+ µ|u|p−1u,

namely that if u : R×Rd solves NLS, then the complex field ũ : R1+d →
C defined by

ũ(t, x) := e−ic2tu(t/2c2, x)

solves NLKG up to errors which are O(c−4). We will however not discuss
the NLKG here (it is not scale-invariant and so the study of this equation
at critical regularities becomes messier).

2.5. The generalised Korteweg-de Vries equation. Take d =
1, and consider the generalised Korteweg-de Vries (gKdV) equation6

(10) ut + uxxx = µ(up)x

where u : R × R → R is a real scalar field, p ≥ 2 is an integer, and
µ = ±1 is a sign. When p is even the sign of µ is irrelevant (as one
can remove it via the change of variables u 7→ −u); but when p is
odd we make a distinction between the defocusing case µ = +1 and the
focusing case µ = −1. The case p = 2 is known as the Korteweg-de Vries

(KdV) equation, while the case p = 3 is the modified Korteweg-de Vries

(mKdV) equation, which are both well-known examples of completely
integrable systems. The higher values of p are not completely integrable.
These equations can arise as dispersive models for the evolution of one-
dimensional water waves in shallow canals.

The gKdV equations are somewhat similar to the one-dimensional
NLS equations with the same values of µ and p (especially when p is
odd). One evidence of this similarity can be seen the conserved mass
and energy for gKdV,

M(u) = M(u(t)) :=

∫

R

u(t, x)2 dx

E(u) = E(u(t)) :=

∫

R

1

2
ux(t, x)2 + µ

1

p+ 1
|u(t, x)|p+1 dx

and the scaling symmetry

u(t, x) 7→
1

λ2/p−1
u

(

t

λ3
,
x

λ

)

.

The energy is once again the Hamiltonian for the flow, but now using
a slightly different symplectic form, {u, v} :=

∫

R
u∂−1

x v dx. On the
other hand, in contrast to NLS, the gKdV equation is not Galilean-
invariant, although in the limiting case of very coherent wave trains with

6This family of equations should not be confused with the Korteweg-de Vries

hierarchy or the modified Korteweg-de Vries hierarchy, which are a commuting se-
quence of completely integrable equations starting from KdV or mKdV which are of
increasingly high order (involving more and more spatial derivatives) as one proceeds
up the hierarchy.
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almost constant frequency, the envelope of these trains does behave in
a Galilean-invariant manner and indeed is asymptotically modeled by
NLS; more precisely, if u : R × R → C solves NLS with d = 1 and
p an odd integer, then the field ũN : R × R → R defined for a large
frequency parameter N ≫ 1 by

ũN :=

(

2p−1

N
( p
(p−1)/2

)

)1/(p−1)

Re

(

eiNxeiN
3tu(t,

x+ 3N2t

31/2N1/2
)

)

solves gKdV up to errors which are small (or at least “non-resonant”) in
the limit N → ∞; see [9], [80] for some applications of this asymptotic
embedding of NLS in gKdV.

When µ = −1, the gKdV equation admits traveling wave (soliton)
solutions u(t, x) = Qv(x− vt), where v > 0 is a rightward velocity and
Qv solves the ground state equation

∆Qv + |Qv|
p−1Qv = vQv.

Once again, we expect these solitons to mark the transition between
linear and nonlinear behavior, and to be involved in the mechanism for
blowup, and we have a certain number of results in these directions, es-
pecially concerning small perturbations of the ground state (or vacuum
state).

The energy for gKdV is always supercritical. The mass is subcrit-
ical for p < 5, critical for p = 5, and supercritical for p > 5. One
complication in this equation compared to the NLS is that there is no
exact Galilean invariance, and no conserved momentum; nevertheless,
one still has the same type of failure of compactness that one would nor-
mally associate with this invariance. On the other hand, this equation
has a useful decoupling property, in that radiative components of the
solution tend to propagate to the left, while soliton-type components
of the solution tend to propagate to the right. The derivative in the
nonlinear term in (10) causes some difficulty, though these are largely
compensated for by the strong dispersive and local smoothing proper-
ties of the linear counterpart of the gKdV equation, namely the Airy

equation ut + uxxx = 0.
The KdV equation (with the normalisation µ = 3, p = 2) and the

defocusing mKdV equation (with the normalisation µ = 2, p = 3) are
connected by the remarkable Miura transform: if u solves mKdV, then
ux+u2 solves KdV. This transform is almost a bijection between Hs and
Hs−1 for various values of s, which has allowed one to derive analytical
results for one equation via analytical results (at one higher or lower
derivative of regularity) for the other. We will however not discuss
these types of results here, focusing instead on the scale-invariant theory
(which for a number of reasons is not currently available either for KdV
or for mKdV).
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2.6. The wave maps equation. We now move from the scalar
field models to the geometric model nonlinear wave equations, which
we shall also refer to as systems to emphasise their non-scalar nature.
These systems are often significantly more nonlinear in nature, but to
compensate for this they have an extremely geometric structure which
can be exploited (e.g., via gauge symmetries) to renormalise the equa-
tion.

Let d ≥ 1, let M = (M, g) be an m-dimensional Riemannian man-
ifold with Levi-Civita connection ∇, which acts on smooth sections of
the tangent bundle TM . If φ : R1+d → M is a smooth map, then we
obtain the pullback φ∗∇, which acts on smooth sections of the pullback
bundle φ∗(TM). We say that φ is a wave map if we have

(φ∗∇)α∂αφ = 0

where we again use the usual raising and lowering conventions; this is
the Euler-Lagrange equation for the functional

∫

R1+d

〈∂αφ(t, x), ∂αφ(t, x)〉g dxdt

and is thus the natural Lagrangian generalisation of the free wave equa-
tion to fields that take values in Riemannian manifolds. This equation
is also the natural hyperbolic generalisation of harmonic maps (or of
the parabolic counterpart, the harmonic map heat flow), and also is a
simplified model for studying certain symmetric cases of the Einstein
equations of general relativity.

If we parameterise M by local coordinates, thus φ = φi for i =
1, . . . ,m, then we can recast the wave maps equation as a nonlinear
wave equation

�φi = −Γ(φ)i
jk∂

αφj∂αφ
k

where Γ is the Christoffel symbol. If M is the unit sphere Sm ⊂ Rm+1,
so that φ can be viewed as taking values in the Euclidean space Rm+1

subject to the constraint 〈φ, φ〉Rm+1 = 1, then the wave maps equation
becomes

�φ = −φ〈∂αφ, ∂αφ〉Rm+1

which can be viewed as a “defocusing” case of the wave maps equation,
whereas ifM is the hyperbolic spaceHm ⊂ R1+m, which can be thought
of as the upper unit sphere Hm = {(t, x) ∈ R1+m : t =

√

1 + |x|2} of
Minkowski space R1+m, then the wave maps equation becomes

�φ = φ〈∂αφ, ∂αφ〉R1+m

which can be viewed as a “focusing” case of the equation. Note in all
cases the wave maps equation takes the schematic form

�φ = O(F (φ)∂φ∂φ)
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for some specific function F (). In particular, the nonlinearity contains
first derivatives of φ, which creates significant new technical difficulties
(not present in simpler models such as NLW) when trying to control the
nonlinear terms by perturbative methods.

Now we set c = 1. The wave maps equation has a scale invariance

φ(t, x) 7→ φ

(

t

λ
,
x

λ

)

and so the natural scale-invariant norm to analyse this data would be
the homogeneous Sobolev norm

‖φ(t)‖
Ḣ

d/2
x (Rd)

+ ‖φt(t)‖Ḣ
d/2−1
x (Rd)

ignoring for now the delicate issue of how to properly define this norm
for fields taking values in a manifold M . Comparing this against the
conserved energy

E(φ) = E(φ[t]) =

∫

Rd

1

2
|∂tφ(t, x)|2g +

1

2
|∇φ(t, x)|2g dx

of the equation, we see that the energy is subcritical in one dimension
d = 1, critical in two dimensions d = 2, and supercritical in higher di-
mensions. Unlike NLW, the distinction between focusing and defocusing
wave maps is not immediately apparent from the energy density, but
can be seen from a number of more subtle considerations, such as the
embedding of NLW in WM discussed below.

The current tools used to analyse solutions of nonlinear PDE, such
as the Fourier transform, are well adapted to scalar fields but are not
as suitable for more complicated fields, such as the field φ, as they
are sensitive to the choice of co-ordinates used. Indeed, selecting good
coordinates on M (or on the pullback tangent bundle φ∗TM) is a key
step in obtaining a satisfactory critical-regularity analysis.

The analogue of solitons for the WM equation are the harmonic
maps (and their Lorentz boosts). One reason why the negative curvature
case is considered defocusing (and thus easier to study) is because such
target manifolds cannot support any non-trivial finite energy harmonic
maps (thanks to the Bochner identity); heuristically, this should thus
prevent the wave map equation from blowing up in finite time, though
it turns out that in the supercritical case d > 2 that blowup can still
occur. In the focusing case, harmonic maps played a key role in the
recent establishment of blowup in the critical case d = 2. In contrast,
in the defocusing case it is conjectured (and widely believed) that no
blowup occurs. It seems that harmonic maps in fact play a decisive
role in the blowup and asymptotics of the wave map equation, but the
situation is certainly far from understood at present (except when one
imposes strong symmetry assumptions on the initial data).

There is a connection between U(1)-equivariant energy-critical wave
maps, and (spherically symmetric) energy-critical NLW. For instance,
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if M is the surface {(s, α) : R+ ×R/2πZ : 1+ µ
2 s

2 > 0} with the metric

ds2 + (s2 + µ
2 s

4)dα2, and φ : R1+2 → M is an equivariant map in the
sense that

φ(t, r cos θ, r sin θ) = (ru(t, r), θ)

for all r ≥ 0, t ∈ R, and θ ∈ R, and some u : R×R+ → R then one can
verify (assuming that φ avoids the singularity 1 + µ

2 s
2 = 0, which only

occurs in the focusing case µ = −1) that the spherically symmetric field
u : R1+4 → R defined by u(t, x) := u(t, |x|) solves the energy-critical
NLW (1) with d = 4 and p = 3. Note that M has negative curvature
when µ = +1 and positive curvature when µ = −1, thus reinforcing
the analogy between negative (resp. positive) curvature and defocusing
(resp. focusing) nonlinear equations.

2.7. Schrödinger maps. Schrödinger maps are the analogue of
wave maps, but where the linear operator underlying the evolution is
the Schrödinger operator i∂t+∆ rather than the d’Lambertian �. (Sim-
ilarly, harmonic maps and the harmonic map heat flow have the Lapla-
cian ∆ and the heat operator ∂t + ∆ respectively as the underlying
linear operator.) The geometric setup is the same as that for wave
maps, except that the domain is now Galilean spacetime R × Rd in-
stead of Minkowski spacetime R1+d and that the manifold M is not
just a Riemannian manifold, but is in fact a Kähler manifold. In partic-
ular, the tangent bundle TM has a complex structure z 7→ iz. A map
φ : R×Rd →M is then said to be a Schrödinger map (SM) if it obeys
the equation

i∂tφ+ (φ∗∇)j∂jφ = 0.

In coordinates, the SM equation takes the schematic form

i∂tφ+ ∆φ = O(F (φ)∂φ∂φ)

for some function F (φ) depending on the manifold M (and the coor-
dinate system chosen). While very similar in form to the wave maps
equation, the derivatives in the nonlinearity are significantly harder to
handle here, because the linear operator i∂t + ∆, being only first order
in time, has more difficulty compensating for (or “recovering”) the loss
of derivative in the nonlinearity than the linear operator � = −∂2

t + ∆,
which is second order in time. Thus while the geometry and algebraic
structure of the SM equation is very similar to that of the WM equation,
the analysis is significantly more technical.

For simplicity let us restrict attention to the case when the target
manifold M is the Riemann sphere S2; this has positive curvature and
should thus be viewed as a “focusing” case. If we embed S2 in the
Euclidean space R3, thus viewing φ as a map from R1+d to R3 with
〈φ, φ〉R3 = 1, then the equation becomes

∂tφ = φ× ∆φ
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where × is the cross product on R3. This is not obviously a nonlinear
Schrödinger equation. If however we place complex coordinates on the
sphere, for instance by using the stereographic projection

(

2Re(z)

1 + |z|2
,

2Im(z)

1 + |z|2
,
1 − |z|2

1 + |z|2

)

7→ z

(ignoring for now the issue of the singularity at the north pole (0, 0, 1))
to identify S2 with the complex plane C with the metric 4

(1+|z|2)2
|dz|2,

then the equation becomes

i∂tz − ∆z =
2z

1 + |z|2
∂jz∂jz.

The Schrödinger maps equation has the scale invariance

φ(t, x) 7→ φ

(

t

λ2
,
x

λ

)

and so the natural scale-invariant norm to analyse this data would be

the homogeneous Sobolev norm Ḣ
d/2
x (Rd). Comparing this against the

conserved energy

E(φ) = E(φ[t]) =

∫

Rd

1

2
|∇φ(t, x)|2g dx

we see (as with WM) that the energy is subcritical in one dimension
d = 1, critical in two dimensions d = 2, and supercritical in higher
dimensions.

As with wave maps, harmonic maps are the natural analogue of the
soliton solutions for the SM equation. However, at present we have
virtually no understanding of the role these stationary solutions play
in the evolution. Nevertheless, there has been some extremely recent
progress towards a global critical theory for these equations, and while
the results here lag somewhat the analogous results for wave maps, it
seems reasonable to expect parity in these theories in the long term.

2.8. The Maxwell-Klein-Gordon system. After the wave maps
equation, the next most complicated field equation is the Maxwell-Klein-

Gordon (MKG) system, which is a coupled system of a section φ of a
complex line bundle on R1+d and a U(1) connection D on this bundle,
being the Euler-Lagrange equation for the Lagrangian

∫

R1+d

1

2
〈Dαφ,Dαφ〉 +

1

4
〈Fαβ , Fαβ〉 dxdt

where Fαβ = [Dα, Dβ] is the curvature of the connection. Physically, φ
represents a charged particle field, while D represents the electromag-
netic field which is both generated by and drives the particle field. If one
removes the particle field φ, one obtains the (linear) Maxwell equations,
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while if one instead removes the electromagnetic field D then one ob-
tains the free wave equation. The nonlinear effects of the MKG system
thus arise solely from interactions between the two fields.

We can recast the MKG system in coordinates by choosing a trivi-
alisation R1+d ×C of the complex line bundle, thus φ : R1+d → C now
is interpreted as a complex scalar field, and Dα = ∂α + iAα for some
real one-form Aα : R1+d → R. We then have Fαβ = i(∂αAβ − ∂βAα),
and the Maxwell-Klein-Gordon system can be written as

∂βFαβ = iIm(φDαφ)

DαD
αφ = 0.

The second equation can be regarded as a nonlinear equation for φ,
which schematically has the form

�φ = O(A∂φ) +O(∂Aφ) +O(A2φ).

The first equation can be viewed as partially describing an evolution for
the connection A, but it is underdetermined (roughly speaking, it only
specifies the curl of A but not the divergence). This is ultimately due to
the fact that there are many possible trivialisations of the complex line
bundle, each leading to essentially the same field, and that the evolution
should really be quotiented out by the action of the gauge symmetry

(φ,Aα) 7→ (eiχφ,Aα − ∂αχ)

for any smooth gauge function χ : R1+d → R. Ideally, all of the ana-
lytical tools used to study this equation should be invariant under this
gauge invariance. This turns out however to be impractical (at least
with current technology), and instead one selects a gauge for this equa-
tion in order to make the evolution determined, and also as “linear” as
possible, in order to maximise the effectiveness of the analytical tools.
A particularly popular gauge for this equation is the Coulomb gauge

divA = 0. This turns the equation for A into something schematically
resembling

�A = O(φ∂φ) +O(Aφ2).

Thus we see that we obtain a system of nonlinear wave equations, con-
taining derivatives in the nonlinearity.

We again set c = 1. The Maxwell-Klein-Gordon system enjoys the
scaling symmetry

(φ(t, x), Aα(t, x)) 7→

(

1

λ
φ

(

t

λ
,
x

λ

)

,
1

λ
Aα

(

t

λ
,
x

λ

))
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and the conserved energy

E(φ,A)

= E(φ[t], A[t])

: =

∫

Rd

1

2
|F0i(t, x)|

2 +
1

2
|Fij(t, x)|

2 +
1

2
|D0φ(t, x)|2 +

1

2
|Diφ(t, x)|2 dx

where the Roman indices i, j are implicitly summed from 1 to d. One
can then easily verify that the equation is energy-subcritical in three
and fewer dimensions, energy-critical in four dimensions, and energy-
supercritical in five and higher dimensions.

Although not apparent at first glance, the Maxwell-Klein-Gordon
equation has many similarities with the wave maps equation, especially
if the target manifold of the latter is a Riemann surface. Then both
equations can be rewritten as a U(1)-covariant wave equation, where
the U(1) connection itself obeys some differential equation. However, a
key difference is that in wave maps the connection obeys (after suitable
gauge fixing) an elliptic equation which makes the connection close to
flat, whereas in Maxwell-Klein-Gordon the connection itself evolves by
a nonlinear wave equation. For the critical regularity global theory,
one is then forced to develop more “covariant” techniques, in which one
exploits the dispersive properties of covariant wave equations rather
than free wave equations. Also, the MKG equation is not considered to
be either focusing nor defocusing; the nonlinear effects do not have a
preferred sign.

2.9. The Yang-Mills equation. The (hyperbolic) Yang–Mills

(YM) equation is the time-dependent analogue of the more well-known
elliptic Yang-Mills equation, which plays an important role in physics,
geometry, and integrable systems. Informally, the hyperbolic Yang-Mills
equation describes the free evolution of a connection, just as the wave
maps equation describes the free evolution of an immersed surface. It is
closely related to the Maxwell-Klein-Gordon equation; it does not have
the scalar field φ, but to compensate for this the connection D now acts
on a vector bundle with a nonabelian gauge group, thus re-introducing
nonlinearity back into the system. (One can simultaneously generalise
the NLW, MKG, and YM by considering the Yang-Mills-Higgs equation,
but we will not discuss this more complicated system here.)

More formally, given a vector bundle7 on Minkowski space R1+d with
the orthonormal action of a compact Lie group G (with Lie algebra g),
consider (smooth) connections D on this bundle, and form the curvature
Fαβ = [Dα, Dβ] in the usual manner; one can view Fαβ as an equivariant
two-form on the bundle taking values in g, and so in particular the
Yang-Mills density 〈Fαβ(t, x), Fαβ(t, x)〉 is well-defined (here the inner

7One can of course define Yang-Mills connections on other G-bundles, such as
principal bundles; the theory is essentially the same.
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product is the Hilbert-Schmidt inner product). One then defines D to
be a Yang-Mills connection if it is a critical point for the Yang-Mills
functional

∫

R1+d

〈Fαβ(t, x), Fαβ(t, x)〉 dxdt.

In co-ordinates (choosing a trivialisation R1+d ×Rm of the vector bun-
dle, and identifying G with a subgroup of the orthogonal group O(m)),
the connection D (when acting on the original vector bundle) takes the
form Dα = ∂α+Aα, where A is a g-valued one-form, and the connection
Fαβ is now the g-valued two-form

Fαβ = ∂αAβ − ∂βAα + [Aα, Aβ ].

The Yang-Mills equation is then

DαFαβ = 0

where the connection Dα acts on g-valued forms ω by the formula

Dαω = ∂αω + [Aα, ω]

and is raised and lowered via the Minkowski metric in the usual manner.
We remark that the curvature Fαβ , by definition, also automatically
satisfies the Bianchi identity

DαFβγ +DβFγα +DγFαβ = 0,

thus in some sense the curvatures of Yang-Mills connections are simul-
taneously “divergence-free” and “curl-free”.

As with the Maxwell-Klein-Gordon equation, the Yang-Mills equa-
tion has a gauge symmetry due to the fact that bundles have multiple
trivialisations. Indeed, given any smooth map U : R1+d → G, we have
the gauge invariance

Aα 7→ UAαU
−1 − (∂αU)U−1; Dα 7→ UDαU

−1; Fαβ 7→ UFαβU
−1.

Thus we need to fix the gauge (at least partially) before the Yang-
Mills system is well-posed. One possible choice is the Lorenz gauge

∂αAα = 0, which would convert the Yang-Mills equation into a nonlinear
wave equation, schematically of the form

�A = O(A∂A) +O(A3).

As it turns out, however, this is not the ideal formulation for this system,
and a slight variant of this gauge (the Coulomb gauge) is preferred
instead. Nevertheless, one should still think of the Yang-Mills equations
as a type of nonlinear wave equation, whose nonlinearity is similar in
strength to that of the Maxwell-Klein-Gordon system.

Now we set c = 1. The Yang-Mills equation enjoys the scaling
symmetry

Aα(t, x) 7→
1

λ
Aα

(

t

λ
,
x

λ

)

; Fαβ(t, x) 7→
1

λ2
Fαβ

(

t

λ
,
x

λ

)
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(thus A scales like a first-order derivative, while F scales like a second-
order derivative) and also has the conserved energy

E(A) = E(A[t]) :=

∫

Rd

1

2
|F0i(t, x)|

2 +
1

2
|Fij(t, x)|

2 dx

where we sum Roman indices i, j from 1 to d, and the magnitude of F
is taken in the Hilbert-Schmidt sense. As with MKG, the equation is
energy-subcritical in three and fewer spatial dimensions, energy-critical
in four spatial dimensions, and energy-supercritical in five and higher
dimensions.

Progress on the Maxwell-Klein-Gordon and Yang-Mills systems have
proceeded more or less in tandem, with the Yang-Mills equations con-
sidered slightly more difficult due to the non-abelian gauge group and
due to the less decoupled nature of the nonlinear interactions (in MKG,
the connection A evolves in a nearly linear manner, while the nonlinear
effects on the particle field φ are caused entirely by A). In the most
recent progress on these systems, in which gauge theory has played a
more prominent role, the non-abelian nature of the gauge group has
caused some highly nontrivial technical difficulties for YM that were
not present for MKG. Nevertheless, these two systems of equations are
still considered very similar (for instance, they are closer to each other
than they are to WM).

As with MKG, the YM equations are not considered to be either
focusing or defocusing. Nevertheless, they have an important family of
stationary solutions, the instantons (finite-energy global smooth solu-
tions to the elliptic Yang-Mills equations), which are analogous to the
soliton solutions for other models such as NLW, NLS, and gKdV. Based
on this analogy one would expect the instantons to play a role in the
large data global theory of YM, but the theory here is virtually non-
existent (except for numerics), due to the significant analytical difficul-
ties encountered in trying to obtain a critical theory for the Yang-Mills
equation.

3. The scaling heuristic

In this section we try to informally motivate the importance of the
criticality, sub-criticality, or super-criticality of the conserved quantities
in determining whether the evolution is ultimately linear or nonlinear;
in the next section we discuss how to make these heuristics rigorous. To
illustrate the principle, we shall work with one of the simplest models,
namely the NLS (4), and with a simple conserved quantity, namely the
mass.

By restricting the class of initial data u(0) appropriately, one may
assume that this initial data is smooth and rapidly decreasing, and thus
bounded in all norms. However, as the evolution progresses, the solution
may well grow in many of these norms. The only norms which we know
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for certain to be bounded uniformly in time are those given by conserved
quantities (or variants of conserved quantities, such as monotone quan-
tities or quantities which are conserved up to lower order errors). If we
know or suspect that the linear behaviour will be dominant for all time,
then we also expect to control the solution in all the norms for which we
know the linear solution to be bounded. This type of result can often
be established for small data by perturbative and boostrap techniques,
and (with much more effort) for large data when the nonlinearity is de-
focusing. However, in many cases we cannot assume a priori that the
linear behaviour is dominant, and so we can only rely on the control on
the solution given by the conserved quantities8. This naturally leads to
the following question: if all we know about the solution is that its con-
served quantities are all bounded, is this enough to determine whether
the linear behaviour of the solution dominates the nonlinear behaviour
or not?

Of course, we have not rigorously defined what it means for the linear
behaviour to “dominate” the nonlinear behaviour. Let us experiment
by using a very crude test for this domination. Write u0(x) := u(0, x)
for the initial data. Rewrite the NLS equation (4) at time t = 0 as

ut(0, x) = i∆u0(x) − iµ|u0(x)|
p−1u0(x),

thus the initial time variation ut(0, x) of the solution has a linear compo-
nent i∆u0(x) and a nonlinear component iµ|u0(x)|p−1u0(x). We shall
naively decide that the linear evolution dominates if the initial mag-
nitude |i∆u0(x)| of the linear component exceeds that of the initial
nonlinear component iµ|u0(x)|

p−1u0(x), or in other words that

|∆u0(x)| ≫ |u0(x)|
p.

Of course, if the reverse inequality holds then we shall decide that the
nonlinear evolution will dominate. Note that this crude test is insen-
sitive to the sign µ of the nonlinearity, as we are ignoring whether the
linear and nonlinear components are interfering constructively or de-
structively. Also, this test is only inspecting the behaviour at the initial
time t = 0; at late times the solution may be so different from the initial
data that the initial comparison is no longer relevant. As this is only a
heuristic discussion, we will not try to address these objections here.

8One could also hope to exploit the heuristics of thermodynamics, which predict
that for sufficiently complex systems, the evolution should be distributed “uniformly”
across all areas of phase space which are consistent with the conservation laws, the
initial data, and other structures of the equation. Such uniform distribution results
could significantly augment the control on the solution given by the conservation laws
alone. However, for deterministic PDE such as the ones studied here, there have been
no rigorous results in this direction with the current level of technology.
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Now suppose we know that the mass of the initial data is equal to
some value M , thus

∫

R2

|u0(x)|
2 dx = M.

There are of course infinitely many such data which obey this mass
bound. But let us make some guesses as to which data should provide
the “worst” or “most nonlinear” behaviour. Typically, the nonlinear
effects tend to be strongest when the solution is concentrated all in one
place (so that its amplitude is maximised), rather than when it is dis-
persed in multiple places. One model for depicting such a concentration
is by assuming that u0(x) is a rescaled bump function

u0(x) := M1/2Nd/2ϕ(Nx)

where ϕ ∈ C∞
0 (Rd) is a bump function, which we normalise to have total

mass
∫

Rd |ϕ(x)|2 dx = 1. The factor M1/2Nd/2 is needed to ensure
that the mass of u0 remains at M . Informally, u0 has magnitude ∼
M1/2Nd/2 on a ball of radius ∼ 1/N ; the parameter N then represents
the main frequency magnitude of this data, while the inverse parameter
1/N represents the spatial scale. Thus large N corresponds to high
frequencies and fine scales, while small N corresponds to low frequencies
and coarse scales.

In this rescaled bump function example, the initial linear component
magnitude |∆u0(x)| has magnitude ∼ M1/2Nd/2N2 on a ball of radius
∼ 1/N , while the initial nonlinear component magnitude |u0(x)|

p has

magnitude ∼ (M1/2Nd/2)p on the same ball. Thus we expect the linear
behaviour to dominate when

M1/2Nd/2N2 ≫ (M1/2Nd/2)p

which can be rearranged as

(11) Np−(1+ 4
d
) ≪M (1−p)/d.

Thus, in the mass-subcritical case, when p− (1+ 4
d) is negative, we thus

expect the linear behaviour to dominate for high frequencies N ≫ 1, but
not for low frequencies N ≪ 1. However, in the latter case we see that
the components i∆u0 and −iµ|u0|p−1u0 to the time variation ∂tu0 are
both small compared to u0 itself. Informally, this suggests that while
the low-frequency behaviour is nonlinear, this nonlinear behaviour will
not manifest itself for some time. Thus for short times we expect linear
behaviour at both low and high frequencies, but for long times we ex-
pect nonlinear behaviour at low frequencies; in practice, this is reflected
by the phenomenon that local existence is typically easy to establish
at subcritical regularities, but that control of long-time asymptotics is
very difficult unless one also has a critical or supercritical conservation
law which prevents mass or energy from flowing completely to low fre-
quencies. If the mass M increases, the time for which linear behaviour
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is expected will shrink, in some inverse polynomial relationship to the
mass (which can also be deduced from dimensional analysis considera-
tions).

Now we turn to the mass-supercritical case, when p− (1+ 4
d) is pos-

itive, it is the high frequencies which one expects to behave nonlinearly.
Furthermore, in this case i∆u0 and −iµ|u0|

p−1u0 are both large com-
pared to u0, so one expects the nonlinear behaviour to manifest itself
very quickly. Thus we expect supercritical equations to behave very
badly; unless there is another property of the equation, such as energy
conservation, which prevents mass from moving to high frequencies, it
might happen that the mass concentrates at finer and finer scales, lead-
ing to blowup in finite time even from very smooth initial data. Note
that shrinking the mass M may delay the time in which blowup oc-
curs, but from scaling considerations we see that such shrinking cannot
prohibit blowup entirely unless the mass is zero. Thus, in the absence
of any control of higher regularities on the time interval of interest, we
expect the solution to be very unstable, and the Cauchy problem to
either be illposed or to exhibit some form of blowup. When the ini-
tial data is smooth in a supercritical equation, then one still expects
local existence (because the high frequencies are initially quite small)
but once the mass and energy flows into fine scales (e.g., by self-similar
concentration, or by some sort of turbulence effect) it is not known in
general what happens to the evolution. (The notorious global regularity
problem for the Navier-Stokes equations falls into this category, as all
the known conserved or monotone quantities are supercritical.)

Now we turn to the critical case, which for the mass in NLS occurs
when p = 1 + 4

d . Now we see from (11) that when the mass M is small,
we expect the linear behaviour to dominate the nonlinear behaviour at
every scale; however, when the mass is large, it is possible at any given
frequency scale N for the nonlinear behaviour to dominate the linear
behaviour. In such a case, one can check that i∆u0 and −iµ|u0|p−1u0

have size roughly comparable to N2u0, so that we expect the solution to
stay close to the initial data u0 only for time O(1/N2). Thus we expect
global existence, regularity, and scattering to a linear solution when
the mass is small, but when the mass is large one only expects to the
linear approximation to the solution to be valid for a time T ∼ 1/N2

depending on the natural frequency scale N of the data (which can
be arbitrary). Beyond this time scale, one must account for nonlinear
effects in order to determine the future behaviour of the evolution. It is
usually here that the sign of the nonlinearity (focusing, defocusing, or
neither) is decisive.

The above heuristics can be remarkably accurate, but they are im-
plicitly assuming that the rescaled bump functions are the “worst” type
of initial data in a certain class (e.g., data with a certain prescribed
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mass), where by “worst” one means that the ratio between the nonlin-
ear and linear components of the equation is strongest. This is often the
case, but when other symmetries than the scaling symmetry are present
(particularly symmetries arising from a non-compact group) then one
sometimes has to consider other types of data instead. For instance,
because of the Galilean invariance of NLS, one might expect frequency-

modulated bump functions such as M1/2eiξ0·xϕ(x) to be a competitor
for the title of worst initial data; more typically, hybrid examples such
as rescaled frequency-modulated bumps M1/2Nd/2eiξ0·xϕ(Nx), whose
Fourier transform is concentrated on some ball of radius N centred at
a frequency ξ0, tend to play an important role. In wave equations,
Lorentz-transformed bump functions (related to the Knapp example in
restriction theory) are also often of importance, when the Lorentz in-
variance is somehow “stronger” or “higher-regularity” than the scale-
invariance. See e.g., [9] for some discussion of the relative strengths of
these symmetries for various classes of equations.

4. Perturbation theory

In the previous section we made some extremely informal compu-
tations regarding the “ratio” between the nonlinear and linear compo-
nents of an equation for certain initial data, to then deduce predictions
as to what the evolution should look like. Now we formalise this intu-
ition in the case where the linear behaviour is expected to dominate; in
subcritical cases this corresponds to restricting time to a small interval
depending on the norm of the initial data, while in critical cases this cor-
responds to either global solutions with small norm, or local solutions
with large norm (and with time of existence depending on the initial
data itself and not just on the norm).

To achieve this formalisation, it is plausible that one should view
the nonlinear equation as a perturbation of the linear equation, so that
the nonlinearity is a kind of error term. It turns out that one of the
most effective ways to accomplish this is by converting the differential
equation into an integral (or Duhamel) equation, via the fundamental
solution of the linear operator; this is basically because integral opera-
tors are far more likely to be bounded on various function spaces than
differential operators.

To illustrate the method, we once again take the NLS (4), with ini-
tial data u(0) = u0 in some data class, and solutions u : I × Rd → C

restricted to some time interval I. (For second-order-in-time equa-
tions such as nonlinear wave equations, some slight modifications to the
scheme below are needed to account for the initial velocity as well as ini-
tial position.) Typically one selects a Sobolev space such as Hs

x(Rd) =

W 2,s
x (Rd); these L2-based spaces are preserved by the linear propagator

eit∆ (as can be seen from Plancherel’s theorem) and thus have at least
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some chance of being stable under the nonlinear evolution as well. The
differential equation (4) is then equivalent9 by Duhamel’s formula

u(t) = eit∆u(0) +

∫ t

0

d

dt′
[ei(t−t′)∆u(t′)] dt′

= eit∆u(0) − i

∫ t

0
ei(t−t′)∆(iut + ∆u) dt′

to the integral equation10

(12) u(t) = eit∆u0 + (i∂t + ∆)−1(F (u))(t)

where F is the nonlinearity function F (z) := µ|z|p−1z, eit∆ is the prop-
agator associated to the free Schrödinger equation iut + ∆u = 0, or
equivalently is defined via the Fourier inversion formula

f(x) =

∫

Rd

f̂(ξ)eix·ξ dx

as

eit∆f(x) =

∫

Rd

f̂(ξ)e−it|ξ|2eix·ξ dx,

and (i∂t + ∆)−1 is the Duhamel operator, defined by the formula

(i∂t + ∆)−1f(t) :=:= −i

∫ t

0
ei(t−t′)∆f(t′) dt′.

The first term on the right-hand side of (12) if the nonlinearity F () was
absent, or in other words if one evolved purely by the linear evolution.
Thus the Duhamel formulation splits the nonlinear solution u(t) as the
sum of the linear solution ulin(t) := eit∆u0, and the cumulative effect
(i∂t + ∆)−1(F (u))(t) of the nonlinearity. Thus we can view solutions u
of (4) as fixed points of the map

(13) u 7→ ulin + (i∂t + ∆)−1(F (u)).

Note that F is the only source of nonlinearity in this equation, while the
initial data u0 only intervenes via its linear development ulin. To find
fixed points of (13), one surprisingly effective method (for semilinear
evolution equations of the type discussed here) is the Duhamel iteration

method (also known as the contraction mapping method or inverse func-

tion theorem method), which is a variant of the classical Picard iteration

9This equivalence requires some mild regularity and decay assumptions on the
solution; for instance, it will suffice that u and F (u) are both tempered distributions
of spacetime which have some continuity in time. In practice it is not difficult to
justify these formal computations for the classes of solution that one is interested in,
and we will not dwell on these technical issues here.

10In some cases it is convenient to apply a smooth time cutoff which equals 1 on
I and vanishes outside of a neighbourhood of I, but this is a minor technical issue
which we will not discuss here.
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method and is one of the fundamental perturbative methods in the sub-
ject. This method proceeds by establishing iterates u(j) : I × Rd → C

for j = −1, 0, 1, . . . recursively by setting u(−1) := 0 and then setting

(14) u(j) := ulin + (i∂t + ∆)−1(F (u(j−1)))

for j = 0, 1, . . .. Thus for instance u(0) is just the linear solution ulin,
while the first nontrivial iterate u(1) = ulin + (i∂t + ∆)−1(F (ulin)) is
formed by combining the linear solution with the cumulative forcing
term generated by that solution. Further iterates become significantly
more complicated to express non-recursively11. The strategy of the it-
eration method is then to conclude that the iterates u(j) converge (in
suitable topologies) to a limit u; taking limits in (14) one should then
obtain a fixed point of (13), provided that D and F are continuous in
appropriate topologies.

In order to obtain this desired convergence, the standard approach is
to show that the map (13) is not only continuous in some topology, but
is in fact a Lipschitz map from some complete metric space (typically
a closed ball in a Banach space) to itself, with Lipschitz constant less
than 1

2 (say). Then the existence of a fixed point follows from the
contraction mapping theorem. Furthermore, one automatically gains
uniqueness of the fixed point (at least in the metric space used), as
well as some stability properties relative to the linear solution ulin (and
hence on the initial data u0). If the nonlinearity F is real analytic, then
the solution map u0 7→ ulin will be also. A basic way to achieve this
Lipschitz behaviour is to design a Banach space S of functions on the
spacetime slab I × Rd to hold the solution u, and a Banach space N
of functions on the same slab to hold the nonlinearity F (u). If one has
the linear estimate

(15) ‖(i∂t + ∆)−1f‖S ≤ C0‖f‖N

and the nonlinear estimate

(16) ‖F (u)‖N ≤ C1‖u‖S whenever ‖u‖S ≤ R

and more generally

(17) ‖F (u) − F (v)‖N ≤ C1‖u− v‖S whenever ‖u‖S , ‖v‖S ≤ R

for some C0, C1, R > 0 then we easily verify that the map (13) is a
contraction on the complete metric space {u ∈ S : ‖u‖S ≤ R} with
Lipschitz constant at most 1

2 whenever

(18) ‖ulin‖S ≤
R

2

11In the case where p is an odd integer, then the nonlinearity F (z) is a polynomial
of z and z, and the iterates can be expressed as a certain sum over p-ary trees with
bounded size. While this explicit expansion does clarify a few things, in particular
the connection between the iteration method and the method of power series, it is
unwieldy to work with in practice.
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and C0C1 ≤ 1
2 , thus generating a unique fixed point of (13) in this space.

(The quantity C0C1 is a rigorous analogue of the informal concept of
the “ratio between the nonlinear and linear parts of the equation” from
the preceding section.) Notice that this type of perturbative argument
is insensitive to the sign µ of the nonlinearity, and so cannot be used to
detect phenomena which are only present in the focusing case but not
the defocusing case, or vice versa.

The task now reduces to one in harmonic analysis, namely to come
up with spaces S,N which obey the estimates (17), (15), (18) for suit-
able constants C0, C1, R. In order to generate the smallness condition
C0C1 ≤ 1

2 , one typically either has to make the initial data u0 small
(in order to allow R and hence C1 to be small, see (18), (17)) or to
make the interval I small (in order to make C0 small, see (15) and the
definition of D), or some combination of both (e.g., to make the size
of I small depending in some inverse manner on the norm of the ini-
tial data). When the initial data lies in a scale-invariant space, one
can use scaling considerations to see that without loss of generality we
must take the spaces S and N to also be scale-invariant (note however
that the nonlinearity F (u) scales slightly differently frmo the solution
u itself). This reduces the number of spaces and estimates available,
which makes the harmonic analysis component of the argument slightly
trickier, though as compensation the arguments are then insensitive to
the exact length of the time interval involved and so can extend more
readily to global control of solutions as opposed to merely local control.

As a simple example of the iteration strategy, the classical energy

method (or semigroup method) for generating local solutions from initial
data u0 in a high regularity (and definitely subcritical) Sobolev space
Hs

x(Rd) with s > d/2 proceeds by taking12 S = N = C0
t H

s
x(I × Rd).

The linear estimate (15) is then true with C0 = |I| from Minkowski’s
inequality and the observation that the linear propagator eit∆ preserves
the Hs

x(Rd) norm. The estimate (18) is similarly true so long as the
initial data u0 has Hs

x norm less than R/2. Finally, Schauder estimates
combined with the hypothesis s > d/2 (which allows the Hs

x norm to
control boundedness and even Hölder continuity of the solution) imply
(at least in the case when p is an odd integer) that (17) holds with
C1 = Cp,dR

p−1 for some constant Cp,d depending only on p and d.
Putting all this together, one obtains a local existence result for initial

data in Hs
x(Rd) for an interval I of length |I| ≈ ‖u0‖

−1/(p−1)

Hs
x(Rd)

. It is

instructive to compare this result against what one might expect from
the scaling heuristics of the previous section.

12We use C0
tH

s
x(I × R

d) to denote the Banach space of bounded continuous
functions from I to Hs

x(Rd) with the uniform norm. This should be contrasted with
the Frechet space C0

t,locH
s
x(I × R

d), which are the space of merely continuous (and

thus locally bounded) functions from I to Hs
x(Rd).
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While the energy method does give local existence and unique-
ness for smooth solutions, it is unsatisfactory in a number of ways.
Firstly, it does not work at low regularities; in particular the energy
class H1

x(Rd) and the mass class L2
x(Rd) are often out of reach of the

energy method. Secondly, and perhaps more importantly (from the
perspective of smooth solutions), the time of existence given by this
argument depends on a high-regularity norm ‖u0‖Hs

x(Rd) rather than a
lower regularity norm such as the energy norm. This can cause difficulty
when considering the long-time evolution of the equation, because low
regularity norms are often easier to control (for instance via a conserva-
tion law) than higher regularity ones. In some cases one can use ad hoc

methods, for instance using the Duhamel formula (12) combined with
harmonic analysis estimates and tools such as Gronwall’s inequality or
a bootstrap argument, to convert low regularity control (and high regu-
larity control of the initial data) to high regularity control of the entire
solution, thus allowing one to continue the solution globally. However,
it turns out that one can often obtain even more precise control on the
solution by reworking the local existence argument so that it relies on
less regularity on the initial data. To do this, one must use finer proper-
ties of the linear equation iut+∆u = 0 (as represented both in the linear
solution ulin and in the Duhamel operator (i∂t +∆)−1, and in particular
in the dispersive properties of this equation. Informally, the dispersive
property (which is the analogue of the elliptic regularity effect for el-
liptic equations, or parabolic smoothing effect for parabolic equations)
asserts that solutions to this linear equation cannot concentrate signifi-
cant amounts of mass or energy in small regions of space for extended
periods of time; indeed, once a solution concentrates at one point in
space and time, then at all later (or earlier) points in time, that com-
ponent of the solution must disperse away from that point and towards
spatial infinity. There are many ways to capture this dispersive effect.
One basic and useful one is via the Strichartz inequalities, which are
the dispersive analogue of the well-known (and extremely fundamental)
Sobolev inequalities in elliptic theory, and control the boundedness of
the propagators eit∆ and (i∂t + ∆)−1 in various Sobolev and Lebesgue
spaces. There are many such Strichartz inequalities; a typical one is the
estimate

(19) ‖(i∂t + ∆)−1f‖
L2

t L
2d/(d−2)
x (R×Rd)

≤ Cd‖f‖L2
t L

2d/(d+2)
x (R×Rd)

for all d ≥ 3 and all spacetime test functions f (see [30]); compare this
with the Sobolev inequality

‖∆−1f‖
L

2d/(d−2)
x (Rd)

≤ Cd‖f‖L
2d/(d+2)
x (Rd)

,

which is in fact a special case of the above Strichartz inequality, spe-
cialised to the limiting case of time-invariant functions.
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Strichartz inequalities have been intensively studied; they ultimately
arise from the L∞

x (Rd) decay properties in time of the fundamental

solution 1
(4πit)d/2 e

i|x|2/4t of the propagator eit∆. Using these inequalities,

one can develop a very satisfactory local (and in some cases global) well-
posedness theory for NLS and NLW (excluding some technical cases of
very low regularity or very rough nonlinearities) at the subcritical and
critical regularities13. For instance, the theory for NLS in the energy
space H1

x(Rd) for d ≥ 3 in the energy-subcritical (p < 1 + 4
d−2) case is

as follows.

Theorem 4.1 (LWP for energy-subcritical NLS). Let d ≥ 3, p <
1+ 4

d−2 , µ = ±1, and u0 ∈ H1
x(Rd). Then there exists a unique maximal

Cauchy development u ∈ C0
t,locH

1
x(I×Rd), where I ⊂ R is an open time

interval (possibly half-infinite or infinite) containing zero, which solves

(4) in the sense that (12) holds. Furthermore:

• (Lifespan estimate) We have I ⊃ [−T, T ] for some time T ≥

cd,p‖u0‖
−Cd,p

H1
x(Rd)

and some constants cd,p, Cd,p > 0 depending

only on d, p. Furthermore, if p ≥ 1+ 4
d (i.e., the equation is not

mass-subcritical14) and ‖u0‖H1
x(Rd) ≤ ǫd,p for some sufficiently

small ǫd,p > 0, then I = R ( thus we have global existence for

small energy data).
• (Blowup criterion) If T∗ is a finite endpoint of I then

lim
t→T∗

‖u(t)‖H1
x(Rd) = +∞.

(This follows easily from the lifespan estimate.)
• (Persistence of regularity) If u0 is Schwartz (resp. in Hs

x(Rd)
for some s ≥ 0) and p is an odd integer, then u will be smooth

in space and Schwartz in time (resp. in C0
t,locH

s
x(I × Rd)).

• (Scattering criterion) Suppose p ≥ 1 + 4
d (i.e., the equation is

not mass-supercritical ). If I contains [0,+∞) and

‖u‖
L

(p−1)(d+2)/2
t,x ([0,+∞)×Rd))

<∞,

13Scaling arguments can be used to show that iteration methods must fail for
supercritical regularities, and examples are known (especially in focusing cases) where
the equation is either extremely unstable or for which blowup occurs instantaneously
at these regularities. Our understanding of evolution in supercritical spaces, where
the nonlinearity is significantly stronger than the linear part of the equation, is still
extremely poor, and further progress may well require a radically different way to
construct and control solutions.

14In the mass-subcritical case we in fact have global existence for arbitrary finite
energy, or even finite mass, initial data, but this relies on the mass conservation law
and so we do not include that result in this section, which is devoted to purely
perturbative methods.



284 T. TAO

then there exists a unique u+ ∈ H1
x(Rd) such that

lim
t→+∞

‖u(t) − eit∆u+‖H1
x(Rd) = 0.

Furthermore, if u ∈ Hs
x(Rd) for some s ≥ 0 and p is an

odd integer, then u+ is also in Hs
x(Rd) and limt→+∞ ‖u(t) −

eit∆u+‖Hs
x(Rd) = 0. Similarly if I contains (−∞, 0].

• (Continuous dependence on the data) If u
(n)
0 is a sequence

which converges in H1
x(Rd) norm to u0, and J is a compact

subinterval of I containing zero, then for sufficiently large n
there exists solutions u(n) to (4) (or (12)) with initial data

u
(n)
0 which converge to u0 in C0

t H
1
x(J × Rd) norm.

• (Energy and mass conservation) We have E(u(t)) = E(u0) and

M(u(t)) = M(u0) for all t ∈ I.

Remark 4.2. The various components of this theorem are obtained
by several variations on the iteration scheme discussed above, using
various Sobolev and Lebesgue spaces to control the solution and nonlin-
earity, and using Sobolev and Strichartz estimates (together with such
mundane tools as the Leibnitz rule and Hölder’s inequality) to establish
the required linear and nonlinear estimates. See e.g., [7], [82]. The
energy and mass conservation laws are obtained by the usual density

method, namely by first establishing these results for smooth solutions
(where everything can be easily justified rigorously) and then taking lim-
its using the continuous dependence and persistence of regularity theory.
(When p is not an odd integer, one sometimes also needs to smooth out
the nonlinearity F slightly; see [7].) There are more technical estimates
one can obtain here, which roughly speaking assert that the solution u
obeys all the same estimates (up to a factor of two or so) as the linear
solution ulin on the interval [−T, T ] identified above, but we will not
explicitly state those estimates here. The hypothesis that p be an odd
integer is a technical one and is only needed when considering very high
regularity solutions (e.g., in Hs

x(Rd) where s > p). The spacetime norm

L
(p−1)(d+2)/2
t,x in the scattering criterion may seem arbitrary, but it is

the unique pure Lebesgue spacetime norm which is invariant under the
scaling of the equation. It arises naturally when trying to stretch the
iteration argument to noncompact time intervals such as [T,+∞) for
large T (which is what one needs to do to obtain the scattering result),
as one can not afford to lose any power of the length of the time interval
from Hölder’s inequality when running such an argument. Actually, one
could replace this norm by several other scale-invariant norms, and often
control of one such scale-invariant norm automatically implies control
of many other scale-invariant norms. We remark that energy class scat-
tering for mass-subcritical data is unknown even if the norm is assumed
to be small (the problem is somewhat similar to that of establishing
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local existence in supercritical norms), although in some cases one can
still recover scattering results if additional decay conditions are placed
on the data (e.g., xu0 ∈ L2

x(Rd)).

As p approaches the energy-critical limit p = 1 + 4
d−2 , the exponent

Cd,p in the above theorem goes to infinity (as can be seen from scaling
heuristics), and we obtain a slightly different local existence theorem:

Theorem 4.3 (LWP for energy-critical NLS). Let d ≥ 3, p = 1 +
4

d−2 , µ = ±1, and u0 ∈ Ḣ1
x(Rd). Then there exists a unique maximal

Cauchy development u ∈ C0
t,locḢ

1
x(I×Rd), where I ⊂ R is an open time

interval (possibly half-infinite or infinite) containing zero, which solves

(4) in the sense that (12) holds. Furthermore:

• (Lifespan estimate) We have I ⊃ [−T−, T+], where T−, T+ > 0
are any times for which ‖ulin‖L

2(d+2)/(d−2)
t,x ([−T−,T+]×Rd)

≤ ǫd,

where ǫd > 0 is a small constant depending only on d. Fur-

thermore, if ‖u0‖Ḣ1
x(Rd) ≤ ǫd, then I = R (thus we have global

existence for small energy data).
• (Blowup criterion) If J is any subinterval of I containing a

finite endpoint of I then ‖u‖
L

2(d+2)/(d−2)
t,x (J×Rd)

= +∞.

• (Persistence of regularity) If u0 is Schwartz (resp. in Ḣs
x(Rd)

for some s ≥ 0) and p is an odd integer, then u will be smooth

in space and Schwartz in time (resp. in C0
t,locḢ

s
x(I × Rd)).

• (Scattering criterion) If I contains [0,+∞) and

‖u‖
L

2(d+2)/(d−2)
t,x ([0,+∞)×Rd))

<∞,

then there exists a unique u+ ∈ Ḣ1
x(Rd) such that

lim
t→+∞

‖u(t) − eit∆u+‖Ḣ1
x(Rd) = 0.

Furthermore, if u ∈ Ḣs
x(Rd) for some s ≥ 0 and p is an

odd integer, then u+ is also in Ḣs
x(Rd) and limt→+∞ ‖u(t) −

eit∆u+‖Ḣs
x(Rd) = 0. Similarly if I contains (−∞, 0].

• (Continuous dependence on the data) If u
(n)
0 is a sequence

which converges in Ḣ1
x(Rd) norm to u0, and J is a compact

subinterval of I containing zero, then for sufficiently large n
there exists solutions u(n) to (4) (or (12)) with initial data

u
(n)
0 which converge to u0 in C0

t Ḣ
1
x(J × Rd) norm.

• (Energy and mass conservation) We have E(u(t)) = E(u0) and

(if u0 ∈ L2
x(Rd)) M(u(t)) = M(u0) for all t ∈ I.

Here, we see that the spacetime scale-invariant norm L
2(d+2)/(d−2)
t,x

plays a governing role in the existence of the solution. Very roughly
speaking, when this norm is small, the solution behaves linearly; when
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the norm is large but finite, the solution behaves nonlinearly but does
not blow up, and even scatters to a free solution at t = ±∞; and
when the norm is infinite, then the solution of course blows up. The
above results are achieved by pure perturbative analysis, relying only
on variants of the iteration method and on harmonic analysis estimates
such as Strichartz and Sobolev inequalities; see [8], [7], [83].

We have seen how perturbative analysis allows one to demonstrate
existence, uniqueness, regularity, and spacetime bounds on solutions.
Another important application of perturbation theory is in showing that
equations such as (4) are stable, in the sense that one can add or remove
small additional forcing terms to the right-hand side (or to the initial
data) without significantly affecting the evolution. Thus for instance if
v approximately solves (4) in the sense that

(20) ivt + ∆v = F (v) + e

for some small e, and v(0) is close to u0 in some suitable norm, then we
expect v to be close to the exact solution u to (4) with initial data u0,

(21) iut + ∆u = F (u); u(0) = u0

for short times at least This type of stability result has a number of
uses. Firstly, it can permit one to use the model equation (in this
case, NLS) to approximate more complicated equations from which the
model was derived (by dropping various “small” terms). Related to
this, one can use stability results to rigorously justify the convergence
of various numerical schemes to the exact equation, thus allowing for
rigorous numerical results for this equation. Finally, it gives a powerful
method to construct exact solutions to the equation, namely by first
constructing a sufficiently accurate approximate solution to the equation
(for instance, by some asymptotic expansion, or by suppressing some
nonlinear interactions from the equation), and then using the stability
theory to perturb the approximate solution to a nearby exact solution.

There are many stability results in the literature. The basic idea
is to express v as a perturbation of u or vice versa, and solve for the
difference. For instance, if we write u = v + w, then w is small at time
zero and solves the difference equation

iwt + ∆w = F (v + w) − F (v) + e.

One can then use iterative methods (or other perturbative methods,
such as the energy method and Gronwall’s inequality) to control w, at
least for short and medium times. A typical stability result, for the
energy-critical NLS discussed above, is as follows.

Theorem 4.4 (Long-time perturbations). [83] Let d ≥ 3, p = 1 +
4

d−2 , and µ = ±1. Let I be a time interval containing 0 and let v ∈



NONLINEAR EVOLUTION EQUATIONS 287

C0
t Ḣ

1
x(I × Rd) solve (20) with the bounds

‖v‖
L

2(d+2)
d−2

t,x (I×Rd)

≤M

‖v‖C0
t Ḣ1

x(I×Rd) ≤M

‖∇e‖
L2

t L
2d

d+2 (I×Rd)
≤ ε

for some M > 0, ε > 0. Suppose also that u0 ∈ Ḣ1
x(Rd) is such that

‖v(0) − u0‖Ḣ1
x
≤ ε. Then if ε is sufficiently small depending on d,M ,

Then there exists a solution u to (21) such that

‖u− v‖
L

2(d+2)
d−2

t,x (I×Rd)

+ ‖u− v‖C0
t Ḣ1

x(I×Rd) ≤ C(M,d)
(

ε+ ε
7

(d−2)2
)

for some C(M,d) <∞ depending only on ε and d.

The exponent 7
(d−2)2

is a technicality arising from the low regularity

of the nonlinearity F () in higher dimensions and should be ignored. The
stability result in [83] is in fact slightly stronger than stated here but
we have given a simplified version for sake of exposition. The argument
is purely perturbative; the key idea is to first subdivide the interval I

so that the L
2(d+2)

d−2

t,x norm of v is small rather than merely finite, and
then to apply perturbative arguments of the type sketched above to
each subinterval separately. This type of stability result turns out to
play a crucial role in the large data theory for critical equations, as it is
usefully encapsulates a large portion of the perturbative theory.

4.5. Other function spaces. The above considerations for NLS
in the energy class have analogues for the other equations listed previ-
ously, at various levels of regularity. For the NLS and NLW equations,
which have no derivatives in the nonlinearity, the Strichartz estimates
are sufficient to establish a satisfactory theory. However, for the more
complicated models which contain derivatives, the need to establish (the
analogue of) the estimate (16) will force the nonlinearity space N to be
at least one derivative rougher in regularity than the solution space S.
Inspecting (15), we thus see that the task then falls to the Duhamel
operator (such as (i∂t + ∆)−1, �−1, or (∂t + ∂xxx)−1) to “recover” this
loss of derivative. This is often not possible to establish with Strichartz
estimates alone (except sometimes when the linear part is second-order
in time, which is the case with nonlinear wave equation models), and so
more advanced spaces have been developed for this recovery of deriva-
tives. In the case of highly dispersive models such as the gKdV equa-
tions, it turns out that local smoothing estimates (coupled with the more
technical maximal function estimates that give some complementary lo-
cal control on the solution) are a useful tool. A typical local smoothing
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estimate (first observed by Kato) is as follows: if u ∈ C0
t L

2
x(R×R → R)

solves the Airy equation ut + uxxx = 0, then we have
∫ 1

0

∫ 1

−1
ux(t, x)2 dxdt ≤ C

∫

R

u(0, x)2 dx

for some absolute constant C. Note the gain of one degree of regularity
on the left-hand side. This particular estimate can be proven by a direct
integration by parts argument, using firstly the conservation of the L2

mass
∫

R
u(t, x)2 dx and secondly the monotonicity of a weighted L2 mass

such as
∫

R
tanh−1(x)u(t, x)2 dx; we omit the details. More refined local

smoothing estimates can be proven by harmonic analysis techniques, in
particular invoking the Fourier transform, which can then be be used to
give local wellposedness results for the gKdV equation which are largely
sharp; see [32].

When approaching critical regularities, it seems that even local
smoothing and maximal function estimates are not sufficient. For slight-
ly subcritical regularities, a very useful tool has been the development of
the Fourier restriction norm spaces Xs,b (also called Hs,b) developed by
Bourgain [4] for nonlinear dispersive equations and by Klainerman and
Machedon [36] for nonlinear wave equations15. These spaces are to dis-
persive and wave equations as Sobolev spaces are to elliptic equations.
For sake of discussion let us work with the Xs,b spaces associated with
the Schrödinger operator (i∂t + ∆). Just as a Sobolev space Hs

x(Rd) is
essentially given for s ∈ R by the norm

‖u‖Hs
x(Rd) ≈ ‖〈∇〉su‖L2

x(Rd),

where 〈x〉 := (1 + |x|2)1/2 is the Japanese bracket, interpreted ap-
propriately for operators such as ∇ using a functional calculus, the
Xs,b(R × Rd) spaces are essentially given for s, b ∈ R by the norm

‖u‖Xs,b(Rd) ≈ ‖〈∇〉s〈i∂t + ∆〉bu‖L2
t,x(R×Rd).

To formalise this properly one needs the spacetime Fourier transform,
and there are also some technical adjustments needed to localise this
norm to a compact time interval. For details see [17].

The indices s and b measure the “elliptic” and “dispersive” regular-
ity of the solution respectively. The power of these spaces lies in the
fact that they fully capture the smoothing effect of the Duhamel oper-
ator (i∂t + ∆)−1; indeed, to oversimplify substantially, this operator is
essentially an isometry from Xs,b−1 to Xs,b for all s and “reasonable”
values of b. Strichartz estimates can be reinterpreted as “dispersive
Sobolev embedding theorems” from the Xs,b spaces to other Lebesgue
spaces. The task of establishing nonlinear estimates such as (16) in
these spaces requires a certain amount of multilinear harmonic analysis

15These spaces also appeared in earlier work on propagation of singularities in
[2], [58].
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but the techniques for doing so are now rather well understood; see e.g.,
[73].

At the critical regularity, even the Xs,b spaces begin to break down.
The problem is similar to that faced in Sobolev spaces, when the fun-
damental Sobolev embedding Hs

x(Rd) ⊂ L∞
x (Rd) breaks down at the

endpoint s = d/2. However, critical substitutes for these Xs,b spaces
are known, thanks to the work of Tataru [86], [87], [88]. These substi-
tutes are rather technical and messy to describe, but roughly speaking
they combine Besov-space variants of theXs,b spaces with certain space-
time frequency-localised versions of Strichartz spaces; the idea is to use
Xs,b type control in the “non-resonant” region where the symbol of the
linear operator is large, and Strichartz type control in the “resonant”
region when the symbol is small. In low dimensions, when the standard
Strichartz estimates are weak, one must also sometimes introduce more
exotic Strichartz estimates, for instance adapted to null frames. This is
in particular the case for two-dimensional wave map equations; see [88].

The need to use Besov spaces at the critical level means that per-
turbation theory often hits a natural limit at the scale-invariant Besov

space Ḃs,1
2 (Rd) rather than the scale-invariant Sobolev space Ḣs(Rd).

To break this barrier for wave maps (and more recently for Schrödinger
maps) has required the additional technique of gauge transformations;
see Section 9.

At present it seems that our collection of function spaces and es-
timates are sufficient for the subcritical and critical perturbative the-
ory for most of the standard model equations, although some of the
spaces are rather messy and one can hope for further simplification in
the future. There are a variety of results and heuristics which indicate
that the supercritical theory is out of reach of perturbation theory, no
matter how refined the spaces and estimates one uses. Firstly, there
is the problem that perturbation theory does not seem able to exploit
the defocusing sign in a nonlinearity, which appears to be essential in
the supercritical theory since focusing equations often blow up instan-
taneously at supercritical regularities. Secondly, there are a number of
instability results [9], [42] for supercritical equations which are incon-
sistent with the type of control that perturbative techniques naturally
give. Finally, basic dimensional analysis shows that it is not possible to
simultaneously have all three estimates (15), (17), (18) for any super-
critical data class. Thus the establishment of a good existence theory
for supercritical data classes16 will have to rely on some sort of non-
perturbative method which fully exploits the defocusing nature of the
nonlinearity.

16If the degree of supercriticality is only logarithmic, then it turns out that one
can sometimes augment the perturbative method with nonlinear a priori estimates
to continue to control the solution; see [81].
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4.6. Alternatives to perturbative methods. To close this sec-
tion, we should emphasise that perturbative techniques, while very ef-
fective in the regime where the linear behaviour dominates the nonlinear
behaviour, are not the only way to construct solutions; we mention two
key ones here.

An important non-perturbative method to construct solutions is the
weak compactness method, in which penalisation, viscosity, discretisa-
tion or other approximation methods (generally based on suppressing
fine-scale behaviour) are used to construct a family of approximate solu-
tions to the equation, obtain uniform bounds on such solutions (typically
using conservation laws) and then weak limits extracted to obtain a lim-
iting object which solves the equation in some weak sense. This method
is very robust and can work even for large data in supercritical equa-
tions provided that one has a sufficiently positive-definite conservation
law. However, the solution obtained is typically of low regularity (e.g.,
the energy class) even when the initial data is smooth, and a priori is
only known to solve the equation in a weak (distributional) sense. This
has some non-trivial consequences regarding the justification of various
formal computations regarding such solutions; for instance, a quantity
which is conserved for smooth solutions may merely be non-increasing
for weak solutions (due to the inequality in Fatou’s lemma, for instance).
Substantial additional work is often needed to upgrade the solution to
be regular, unique, or to enjoy conservation laws. To give one example,
the existence of global weak solutions for the Navier-Stokes equations
from smooth initial data has been known for over seventy years, thanks
to the work of Leray, but to this date there has been little progress in
upgrading these weak solutions to a globally smooth solution (except
when the initial data is small, or some other bound is assumed on the
solution). The basic “enemy” in the weak solution method, namely the
cascade of energy from coarse scales to fine scales, is ultimately the same
as the one encountered in perturbation theory when trying to extend
local existence of smooth solutions to global existence, and so it appears
that working with weak solutions does not allow one to automatically
evade this fundamental obstruction to global regularity. On the other
hand, a close relative of the weak compactness method, the concen-

tration compactness method, has recently proven to be very useful in
analysing global behaviour or blowup behaviour of these equations, by
isolating the key “blowup profiles” of the evolution; see Section 8.

Another major development has been to extend the reach of both
perturbative and non-perturbative methods by various nonlinear trans-
formations, most notably normal forms and gauge transforms, in or-
der to reduce the strength of the nonlinear component of the equation.
(The Miura transform connecting KdV and mKdV also falls into this
category.) Normal form transformations are often motivated from con-
siderations in Hamiltonian dynamics or symplectic geometry, and seek
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to transform either the equation or the Hamiltonian (often by a sym-
plectic transformation which is a perturbation of the identity map) in
order to remove or attenuate the “non-resonant” portions of the non-
linearity, possibly replacing them with higher order terms. While these
techniques are important in many problems in this field, they have so
far not made much impact on the critical-regularity theory and so we
shall not discuss them here. Gauge transforms, on the other hand, tend
to arise from considerations in differential geometry, and can be effec-
tive in reducing the strength of nonlinearities which contain first-order
derivatives of the solution. We discuss these in Section 9.

With the important exception of the completely integrable equa-
tions, the number of demonstrably effective methods to construct rea-
sonable17 solutions to nonlinear dispersive and wave equations from gen-
eral data still remains unacceptably low compared to other areas of
PDE. There are some variants of the basic Duhamel iteration method,
such as the Nash-Moser iteration scheme, but while this scheme is some-
what useful for quasilinear equations, it does not seem to be more ef-
fective than Duhamel iteration for semilinear equations. The classical
method of power series expansions (as used for instance to prove the
Cauchy-Kowalevski theorem) is useful for real-analytic classes of initial
data, but for non-analytic data it seems to be essentially equivalent in
strength to (and messier to use than) the Duhamel iteration method.
The lack of anything resembling a maximum principle or comparison
principle prevents comparison methods from being effective (except in
demonstrating blowup for scalar wave equations), in sharp contrast to
elliptic and parabolic PDE. Similarly, the extreme non-convexity (and
non-Palais-Smale nature) of the Lagrangian functionals for these equa-
tions has so far prevented the use of variational methods (though see
Section 7). Kinetic formulations (for instance, transforming Schrödinger
equations via the FBI or Wigner transforms) have so far also failed to
noticeably improve the existence theory for these equations. There are
also essentially no known topological, dynamical, symplectic, or sto-
chastic methods to construct solutions to these PDE, with the possible
exception of some isolated work in constructing invariant measures. Any
new method to construct solutions for such PDE along these or other
lines may well represent a significant breakthrough in the field.

17What “reasonable” means is of course somewhat subjective, but at a bare
minimum, solutions should have some existence and uniqueness theory, be compatible
with more classical concepts of a solution, and basic physical properties of these
solutions such as conservation laws should be rigorously justifiable.
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5. Conservation laws

Having discussed the perturbative theory in the previous section, we
now turn to the topic of non-perturbative methods for analysing non-
linear dispersive equations, which are valid even for large data or long
times (in other words, in regimes where the nonlinear component of the
evolution is not insignificant). For equations which are not completely
integrable, one relies primarily on three types of non-perturbative tools:
conservation laws, monotonicity formulae, and transformations (such as
gauge transformations). This is admittedly a small list of techniques,
and it would be of great interest to develop additional types of non-
perturbative methods.

In this section we discuss conservation laws and how they are used.
One can approach conservation laws either from a algebraic perspective
(multiplying the equation against various well-chosen multipliers and
then integrating by parts), from a Fourier analytic perspective (study-
ing which multilinear Fourier multipliers of the solution are preserved
by the flow), from a Hamiltonian perspective (connecting conserved
quantities to symmetries of the equation or Hamiltonian, via Noether’s
theorem), or from a Lagrangian perspective (viewing conserved quan-
tities in terms of symmetries of the Lagrangian). All four perspectives
are important; for sake of exposition we shall focus here on just one
approach, based on the Lagrangian perspective. (See [82] for some
discussion of the other approaches.) This approach is especially well
suited to geometric equations, such as the nonlinear wave equations
on Minkowski space, as one can take advantage of the diffeomorphism
invariance of such equations to obtain a stress-energy tensor which is
pointwise conserved. This is in contrast to the Hamiltonian approach, in
which finite-dimensional symmetries are used to generate finitely many
conserved integrals; the infinite-dimensional diffeomorphism symmetry
is significantly more powerful than finite-dimensional sub-symmetries
(such as translation or rotation symmetry), and the pointwise control
will be essential for establishing the monotonicity formulae of the next
section.

For sake of discussion, let us consider the nonlinear wave equation
NLW, normalised so that c = 1, although the approach here is very gen-
eral and applies to any geometric equation associated to a Lagrangian.
We shall work formally for now, ignoring issues such as integrability or
regularity; once the form of the conservation laws are obtained, they
can be justified rigorously by a number of means.
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We view this equation as the Euler-Lagrange equation for the action

S(u, g) : =

∫

R1+d

1

2
gαβ∂αu∂βu+

µ

p+ 1
|u|p+1 dg(22)

=

∫

R1+d

L(u, g)
√

−det g dxdt

where g is the Minkowski metric gαβx
αxβ = −t2 + x2

1 + . . . + x2
d,

dg =
√

−det(g) dxdt is the associated volume form, and L(u, g) is
the Lagrangian density

L(u, g) :=
1

2
gαβ∂αu∂βu+

µ

p+ 1
|u|p+1.

Thus if u solves (1), then u is a critical point for S(u, g) with g fixed:

(23)
δS

δu
(u, g) = 0.

On the other hand, the action S(u, g) is clearly invariant under
diffeomorphisms φ : R1+d → R1+d of the underlying spacetime manifold
R1+d:

S(u ◦ φ, φ∗g) = S(u, g).

In particular, if we consider infinitesimal diffeomorphisms eεX associated
to an arbitrary (smooth) vector field X : R1+d → TR1+d we have

d

dε
S(u ◦ e−εX , (eεX)∗g)|ε=0 = 0.

From the chain rule, the left-hand side is

−
δS

δu
(u, g)[Xα∂αu] +

δS

δg
(u, g)[LXg]

where LXg is the Lie derivative of g along the vector field X. Applying
(23) we conclude that

δS

δg
(u, g)[LXg] = 0

for arbitrary smooth vector fields X. From differential geometry we
recall the formula (LXg)αβ = παβ , where π is the deformation tensor

(24) παβ = ∇αXβ + ∇βXα

where ∇ is the Levi-Civita connection with respect to the metric g (in
the case of the Minkowski metric, this is the same as the ordinary partial
derivative ∂). Applying (22), we can then write

δS

δg
(u, g)[LXg] =

∫

R1+d

[
∂L

∂gαβ
(u, g)παβ−

1

2
L(u, g)gαβπ

αβ ]
√

−det g dxdt.

If we then define the stress energy tensor

Tαβ :=
∂L

∂gαβ
(u, g) −

1

2
L(u, g)gαβ
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we conclude that
∫

R1+d

Tαβπ
αβ dg = 0

for all smooth vector fields X. Using (24) and the symmetry of T we
conclude that

∫

R1+d

Tαβ∇
αXβ dg = 0

for arbitrary X; integrating by parts and using duality we then conclude
the pointwise conservation of stress-energy

(25) ∇αTαβ = 0.

In co-ordinates, we thus have

(26) ∂tT
00 + ∂jT

0j = 0; ∂tT
k0 + ∂jT

kj = 0.

The above computations can be performed for an arbitrary geometric
wave equation, though the precise form of L (and hence T) of course
varies from equation to equation. In the specific case of the NLW, we
have

Tαβ = (∂αu)(∂βu) − gαβ

(

1

2
∂γu∂γu+

2µ

p+ 1
|u|p+1

)

= (∂αu)(∂βu) − gαβ

[

1

4
�(|u|2) −

µ(p− 1)

p+ 1
|u|p+1

]

or in coordinates

T00 =
1

2
|ut|

2 +
1

2
|∇u|2 +

µ

p+ 1
|u|p+1

T0j = Tj0 = −Re(utuj)

Tjk = Re(ujuk) − δjk

(

1

2
|∇u|2 −

1

2
|ut|

2 +
µ

p+ 1
|u|p+1

)

where δjk is the Kronecker delta. The density T00 is known as the

energy density, while the vector T0j is the energy current or momentum

density. The tensor Tjk is the momentum current or the stress tensor.
The pointwise conservation law (25) (or (26)) has many uses. One

of the simplest is obtained simply by integrating (26) in space and using
Stokes’ theorem, to obtain (formally, at least)

∂t

∫

Rd

T00(t, x) dx = ∂t

∫

Rd

Tk0(t, x) dx = 0.

Thus the total energy

E(u[t]) :=

∫

Rd

T00(t, x) dx =

∫

Rd

1

2
|ut|

2 +
1

2
|∇u|2 +

µ

p+ 1
|u|p+1 dx

and the total momentum

pk(u[t]) :=

∫

Rd

Tk0(t, x) dx = −

∫

Rd

Re(utuj) dx
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are conserved quantities. We will see further consequences of the con-
servation laws in the next section.

Recall from Section 2.4 that the NLS can be embedded in the NLW
of one higher dimension. Thus the stress-energy conservation law for
NLW must have some analogue for NLS. If one performs the algebraic
computations (using the null coordinate frame ∂t±∂d+1, ∂1, . . . , ∂d), one
sees that the d+ 1-dimensional stress-energy conservation law for NLW
decouples into a d-dimensional stress-energy conservation law for NLS

(27) ∂tT
00 + ∂jT

0j = 0; ∂tT
k0 + ∂jT

kj = 0.

where the pseudo-stress-energy tensor Tαβ is defined by

T00 := |u|2

T0j = Tj0 := 2Im(uuj)

Tjk := 4Re(ujuk) − δjk∆(|u|2) +
4µ(p− 1)

p+ 1
δjk|u|

p+1

and an additional (scalar) energy conservation law

(28) ∂te
0 + ∂je

j = 0

where the energy density e0 and energy current ej are defined as

e0 :=
1

2
|∇u|2 +

µ

p+ 1
|u|p+1; ej := Im(ujkuk) + µ|u|p−1Im(uuj).

We thus obtain three important conserved quantities, namely the total

mass

M(u(t)) :=

∫

Rd

T00(t, x) dx =

∫

Rd

|u(t, x)|2 dx

the total momentum

(29) pk(u(t)) :=

∫

Rd

Tk0(t, x) dx = 2

∫

Rd

Im(uuk) dx

and the total energy

E(u(t)) :=

∫

Rd

e0(t, x) dx =

∫

Rd

1

2
|∇u|2 +

µ

p+ 1
|u|p+1 dx.

Similar conservation laws can also be deduced for the other equa-
tions (gKdV, SM, WM, MKG, YM) discussed earlier, although for cer-
tain equations (notably gKdV and SM) the Lagrangian formulation is
not as convenient as the Hamiltonian formulation for locating the con-
served quantities. In the case of the equations with a covariant wave
or Schrödinger equation (e.g., MKG, WM, SM, NLW, NLS) there are
also “charge conservation laws” arising from the gauge group, but these
have limited usefulness for the analysis of these equations, as neither the
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charge density nor the charge current enjoy any positivity properties in
general18.

In the theory of ODE, a conservation law (such as energy conser-
vation) restricts the dynamics to a lower-dimensional subset of phase
space, such as the energy surface where the energy is constant. If the
conservation law is sufficiently coercive (so that the conserved quan-
tity goes to infinity at phase space infinity), then this subset will be
bounded. ODE existence theorems such as the Picard existence theo-
rem then ensure global existence for the evolution.

In the theory of PDE, which can be viewed as an infinite-dimensional
analogue of ODE, the situation is more complicated because there are
many inequivalent norms with which to measure the “boundedness” of
a subset of phase space, and a conserved quantity can give control in
one norm whereas the criterion needed for the local existence theory
to prevent blowup may require another norm. A related issue is that
even when the energy surfaces are bounded, they are usually quite non-
compact. However, when the conservation laws and the local existence
theory are both sufficiently strong, one can combine the two to still
obtain global existence. Typically, this compatibility between the con-
servation laws and the local existence theory only occurs when a key
conserved quantities is subcritical; a large part of recent developments
have centred on extending this compatibility to the case when the key
conserved quantity is critical.

Let us illustrate the above discussion with the defocusing NLS µ =
+1 with subcritical or critical energy (thus we have d ≤ 3 or p ≤ 1+ 4

d−2),
we see from Sobolev embedding that

cd‖u(t)‖
2
H1

x(Rd) ≤M(u(t))+E(u(t)) ≤ Cd(‖u(t)‖
2
H1

x(Rd) + ‖u(t)‖p+1
H1

x(Rd)
)

for some constants cd, Cd > 0 depending only on the dimension d. Since
M(u) and E(u) are conserved in these cases (by Theorems 4.1, 4.3,
we thus see that if the solution is initially in H1

x(Rd), then it will be
bounded inH1

x(Rd) throughout the entire lifespan of the solution. In the
subcritical case, the blowup criterion in Theorem 4.1 then immediately
shows that the solution is in fact global. In the focusing case µ = −1,
the above argument does not quite work directly because E contains a
negative component. However, it turns out that in the mass-subcritical
case p < 1 + 4

d (or the mass-critical case with small mass) one can use
the Gagliardo-Nirenberg inequality to show that the positive (linear)
component of the energy E still dominates the negative part when the

18An exception is NLS, in which the conserved charge density arising from the
phase rotation symmetry u 7→ eiθu is in fact the same as the conserved mass density
|u|2. This is because the embedding of NLS into NLW identifies phase rotation with
translation in a spacetime null direction, and the mass density is nothing more than
the component of the NLW stress-energy tensor in that direction.
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solution is large, and so one can continue to obtain global existence in
this case.

The critical case is however much more delicate, because the blowup
condition given by Theorem 4.3 is not precluded by the boundedness
of the H1

x(Rd) norm. Global existence in the energy class is indeed
known in the defocusing energy-critical setting, but this is an extremely
recent and difficult result. To illustrate the difficulty, let us consider
the mass-critical focusing NLS (p = 1 + 4

d , µ = −1). For this equation,

it is known that there is local existence from L2
x(Rd) initial data, and

even global existence if the mass is small. However, in the large mass
case the time of existence depends on the data itself and not just on the
mass. In particular, conservation of mass, while true, is not sufficient
by itself to prevent the time of existence shrinking to zero, thus creating
finite time blowup. Indeed, if one considers a soliton solution u(t, x) =
Q(x)eiωt and applies a pseudoconformal transformation (9) followed by
time translation, one obtains the explicit solution

1

|t− 1|d/2
ei|x|

2/4(t−1)eiω/(t−1)Q

(

x

t− 1

)

to this NLS. This solution is smooth with finite mass at t = 0, and
remains smooth with conserved mass for 0 ≤ t < 1, but nevertheless
develops a singularity at t = 1 because the mass has concentrated to a
point. Basically, the scale-invariance of the equation has created a non-
compactness in the phase space into which the dynamics can escape into
in finite time. To prevent this type of blowup one must thus exclude
this type of mass concentration or energy concentration where the mass
or energy is scaling itself into higher and higher frequencies in finite
time. To do this, conservation laws alone are not enough; one needs the
additional tool of monotonicity formulae, which we turn to in the next
section.

We remark that it is possible, and very useful, to modify conserved
quantities by inserting either spatial weights (e.g., cutoff functions) or
frequency weights (e.g., derivatives or Littlewood-Paley projections) to
create a much larger class of almost conserved quantities, whose deriva-
tive is not quite zero, but is still somehow “lower order” than what one
might naively expect. To give a simple example, in the KdV equation19,
the “second energy”

E2(t) :=

∫

R

u(t, x)2 + ux(t, x)2 + uxx(t, x)2 dx,

19For this particular equation, which is completely integrable, one can find a
quantity similar to E2 which is exactly conserved. However, the approach here is
more robust, and in particular applies to variants of the KdV equation, such as the
difference equation governing the difference to two solutions to KdV; because of this,
the “energy method” we give here can be used, with some additional arguments, to
give a simple local existence theorem in H2

x(R) for KdV. See [3], [27], [28].
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which is essentially the standard energy weighted by a single derivative
(or the mass weighted by two derivatives), is not a conserved quantity.
However some routine integration by parts (and Sobolev embedding)
eventually yields the differential inequality

∂tE2(t) = O(E2(t)
3/2)

which gives an elementary a priori local estimate for the growth of the
H2

x(R) norm. The point here is that the right-hand side only involves
second derivatives of u at most, whereas a naive inspection of the KdV
equation might have suggested instead that as many as five derivatives
of u would have to be involved.

These almost conserved quantities can serve as more flexible sub-
stitutes for the usual conservation laws, being adaptable to situations
where one only has local control of the mass or energy, or for which one
is in a rougher or smoother Sobolev space than the mass or energy class.
For instance, the “I-method” for extending subcritical global existence
results from the energy regularity to slightly rougher regularities, as em-
ployed for instance in [12], is of this type. These types of “local” almost
conservation laws are important in both subcritical and critical equa-
tions in controlling how much mass and energy flows low frequencies to
high, and from nearby locations to distant ones, or vice versa; see e.g.,
[82] for some examples of this. For reasons of space, however, we will
not discuss these techniques in detail here.

6. Monotonicity formulae

All the model equations here are examples of Hamiltonian PDE,
and in particular are all time reversible. Thus, in contrast to parabolic
equations (such as the heat equation), there is no preferred direction of
time. Thus we do not expect behaviour such as the existence of compact
attractors. In the case of Hamiltonian ODE, one has some additional
results (e.g., Liouville’s theorem on preservation of symplectic volume,
Gromov’s nonsqueezing theorem, or the Poincaré recurrence theorem)
which further strengthen this intuition that a Hamiltonian flow cannot
“compress” the dynamics of arbitrary data into that of a smaller set.

However, the situation can be remarkably different in the case of
Hamiltonian PDE, especially those on non-compact domains such as
Euclidean space Rd. Here one encounters a phenomenon that while
quantities such as energy and mass are conserved, they often radiate
away to spatial infinity, so that the local mass and energy in a compact
region goes to zero both as t → +∞ and as t → −∞. This mechanism
of dispersion can serve as a weak substitute for the dissipation mecha-
nism for parabolic equations20; roughly speaking, the dispersive effect

20Indeed, a useful (though not entirely accurate) rule of thumb is that dispersive
models such as the ones studied here are, generally speaking, expected to have similar
global existence and blowup properties to their parabolic counterparts; for instance,
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is expected to cause most of the infinite degrees of freedom in the PDE
to radiate harmlessly away to spatial infinity, following the linear evo-
lution, leaving only an “essentially compact” core of the phase space to
evolve in a genuinely nonlinear manner.

Our understanding of this dispersive effect, especially as it pertains
to large data over long periods of time, is not well understood in the
focusing case, where there are portions of phase space which do not
disperse, but instead lead to solitons or to blowup solutions. However,
in defocusing cases we now have a reasonably satisfactory mechanism
to rigorously establish dispersion, by modifying the conservation laws
of the preceding section to produce quantities which are monotone de-
creasing or increasing in time, rather than being constant in time. The
reason this can be used to establish dispersion is due to a simple fact
(from the fundamental theorem of calculus): if a quantity is both mono-
tone and bounded, then its derivative is absolutely integrable, and in
particular decays (at least on average) as time goes to infinity. This
decay can then be combined with the Duhamel formula (12) and per-
turbation techniques (e.g., Strichartz estimates) to obtain good control
on the solution at infinity (basically, that the linear behaviour dominates
the nonlinear behaviour for sufficiently large times).

Now we turn to the algebraic manipulations which create these
monotonicity formulae. For simplicity let us ignore all issues of smooth-
ness and regularity that would be needed to justify the manipulations
below; in practice, the rigorous justification can be achieved by standard
regularisation or limiting arguments and will not be discussed here.

Monotonicity formulae are close cousins of conservation laws, and
so it is not surprising that the stress-energy tensor Tαβ is a rich source
of such formulae. Indeed, if Tαβ is any rank-two tensor obeying the con-
servation laws (26), then on multiplying these laws against an arbitrary
scalar weight21 a(x) or a vector weight ak(x) and integrating by parts,

the theory for wave and Schrödinger maps should be roughly analogous to that of
the harmonic map heat flow, the theory for NLS and NLW should be analaogous
to that of the nonlinear heat equation, etc. Indeed, the parabolic equations face
many of the same key distinctions as the dispersive models, such as subcritical vs.
supercritical energies, focusing vs. defocusing, etc. Nevertheless the actual proof of
global existence or blowup tends to be quite different in the two settings.

21Here we are taking a “spatial” perspective, in which we decouple the roles of
space and time; this is particularly useful for NLS. For nonlinear wave equations it
is more profitable to take a “spacetime” approach which we discuss shortly. On the
other hand, it is sometimes useful for NLS to consider weights a which depend on
time as well as space, see e.g., [56].
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we obtain (formally, at least) the integral identities

∂t

∫

Rd

T00(t, x)a(x) dx =

∫

Rd

T0j(t, x)∂ja(x) dx(30)

∂t

∫

Rd

Tk0(t, x)ak(x) dx =

∫

Rd

Tkj(t, x)∂jak(x) dx.(31)

The first identity (30) is thus a first variation formula for integrals of the
energy or mass density T00, and is particularly useful for understanding
the local flux of such densities. The second identity (31) (which is
a first variation formula for the momentum density) turns out to be
particularly useful when the stress-energy tensor is symmetric, and ak =
∂ka is a gradient vector field, in which case it becomes a second variation
formula for the above integrals:

∂tt

∫

Rd

T00(t, x)a(x) dx = ∂t

∫

Rd

T0j(t, x)∂ja(x) dx(32)

=

∫

Rd

Tjk(t, x)∂jka(x) dx.(33)

We have complete freedom to choose the weight a. It turns out that
if this weight is sufficiently “convex” (so that ∂jka is positive definite),
the quantity (33) can be non-negative, thus leading to a monotonicity
formula for the weighted momentum22

Ma(t) :=

∫

Rd

T0j(t, x)∂ja(x) dx = ∂t

∫

Rd

T00(t, x)a(x) dx.

If for instance we specialise to the NLS, then we have

Ma(t) = 2

∫

Rd

Im(uuj)(t, x)∂ja(x) dx = ∂t

∫

Rd

|u(t, x)|2a(x) dx

and (after one last integration by parts)

∂tMa(t) =

∫

Rd

4Re(ujuk)(t, x)∂jka(x) dx

−

∫

Rd

|u(t, x)|2∆∆a(x) dx

+
4µ(p− 1)

p+ 1

∫

Rd

|u(t, x)|p+1∆a(x) dx.

Now suppose that a is (non-strictly) convex, so that ∂jka(x) is positive-
definite; then the first term on the right-hand side (which is the top

22Note that it is only the weighted momentum which has a chance to enjoy a
monotonicity formula. A weighted mass or weighted energy cannot be monotone in
time as this would be inconsistent with time reversal symmetry; on the other hand,
reversing time also reverses the momentum and so does not contradict a momentum
monotonicity formula. However, we see from (32), (33) that a weighted mass or
energy can be convex in time. These convexity formulae are known as virial identities

and play an important role in both focusing and defocusing equations.
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order term) is non-negative. If we also have µ ≥ 0 (so we either have a
defocusing NLS, or the linear Schrödinger equation), and we also have
the sub-biharmonic condition23 −∆∆ ≥ 0, then the two lower order
terms are also non-negative, and so we have a genuine monotonicity
formula. This is the ideal situation; however, even when some of the
lower order terms have no preferred sign, one can often still extract
nontrivial control on the solution as long as the top order term is mostly
positive. Thus it is really the convexity of a which leads to important
formulae.

Let us give some basic examples of this formula in action. Setting
a := 1 simply gives conservation of mass. Setting a := x (or a ≡ xk for
k = 1, . . . , d) simply gives conservation of the total momentum (29), and
also reveals that the (un-normalised) centre-of-mass

∫

Rd x|u(t, x)|2 dx
varies linearly in time, with rate of change equal to the total momentum.
Setting a := |x|2 gives rise to Glassey’s virial identity[21]

∂tt

∫

Rd

|x|2|u(t, x)|2 dx

= 2

∫

Rd

xjIm(uuj)(t, x) dx

= 8

∫

Rd

|∇u(t, x)|2 dx+
8µ(p− 1)d

p+ 1
|u(t, x)|p+1 dx.

(34)

For simplicity let us consider the pseudoconformal case p = 1 + 4
d , in

which the virial identity takes the particularly appealing form

∂tt

∫

Rd

|x|2|u(t, x)|2 dx = 16E(u),

thus the second variation of the (un-normalised) mass variance
∫

Rd |x|2|u(t, x)|2 dx is essentially equal to the conserved energy. This
variance can be viewed as a measure of how close the mass clusters to
the origin; thus when the energy is positive, we expect the mass to be
repelled from the origin, while when the energy is negative (which can
happen in the focusing case µ = −1), the mass should be attracted to
the origin. (For stationary solitons in the pseudoconformal NLS, the
energy is precisely zero; this is a special case of the Pohozaev identity.)
One consequence of this is that when the energy is negative (and as-
suming suitable decay and regularity conditions on the initial data),

23This term arises from “quantum corrections” to the classical analogue of this
formula, which asserts that if a particle t 7→ x(t) evolves by Newton’s first law
∂ttx(t) = 0, then the weighted momentum Ma(t) := ∂txj(t)∂ja(x(t)) = ∂ta(x(t))
evolves by the formula ∂tMa(t) = ∂txj(t)∂txk(t)∂jka(x(t)). In general, while any
monotonicity formula for the Schrödinger equation must necessarily imply a classical
monotonicity formula for Newtonian particle motion (by taking the semiclassical

limit ~ → 0), the converse is not always true, unless one is only interested in top
order terms.
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then the solution to NLS must blow up in finite time (both for positive
and negative times); see [21]. Similar results hold for higher (mass-
supercritical) powers. In the defocusing case µ = +1 and with arbitrary
power p (or in the focusing case µ = −1 and mass-subcritical power),
we obtain the inequality

∂tt

∫

Rd

|x|2|u(t, x)|2 dx ≥ cp,dE(u)

for some positive constant cp,d > 0 depending only on p, d. If the energy
is strictly positive, this implies that

∫

R2 |x|2|u(t, x)|2 dx goes to infinity
as t → ±∞; thus the solution cannot stay strongly localised near the
origin indefinitely. This statement is not always directly useful, because
it requires a lot of decay on the solution u (in particular, that xu is
square integrable) but in practice one can modify the above argument
by smoothly truncating the weight a(x) = |x|2 smoothly at infinity and
dealing somehow with the error terms. There are many instances of this
trick in the literature; see e.g., [31] for a very recent one.

An alternative monotonicity formula, which is especially useful in
the defocusing case is the Morawetz inequality of Lin and Strauss [45],
which is obtained by setting a(x) = |x|. It is geometrically obvious that
a is non-strictly convex. For sake of discussion let us specialise to three
dimensions d = 3, to defocusing nonlinearities µ = +1, to finite energy
and mass solutions, and to energy critical or sub-critical nonlinearities
p ≤ 5 (in order to be able to use Theorem 4.1 or Theorem 4.3). In this
setting we have −∆∆a = 8πδ in the sense of distributions, where δ is
the Dirac mass; thus (after doing some standard arguments to handle
the singularity of a and its derivatives at the origin) we obtain

Ma(t) = 2

∫

Rd

Im(uuj)(t, x)
xj

|x|
dx

and

∂tMa(t) =

∫

Rd

4
|∇/ u(t, x)|2

|x|
dx

+ 8π|u(t, 0)|2

+
8(p− 1)

p+ 1

∫

Rd

|u(t, x)|p+1

|x|
dx

where ∇/ u is the angular component of the gradient, thus

|∇/ u(t, x)|2 = |∇u(t, x)|2 − |
x

|x|
· ∇u(t, x)|2.
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In particular, in the defocusing case µ = +1 in three dimensions, we
have the monotonicity formula24

∂tMa(t) ≥ cp

∫

Rd

|u(t, x)|p+1

|x|
dx ≥ 0

for some absolute constant cp > 0. On the other hand, from the Cauchy-
Schwarz inequality and conservation of mass and energy we have the
upper bound

|Ma(t)| ≤ 2M(u)1/4E(u)1/4.

From the fundamental theorem of calculus we thus obtain the global
spacetime bound

(35)

∫

I

∫

Rd

|u(t, x)|p+1

|x|
dxdt ≤ CpM(u)1/4E(u)1/4

where I is the maximal interval of existence. Note that the right-hand
side does not depend on the size of I (which in fact turns out to be
infinite), and also does not require any decay on the solution other than
finite mass and energy. If I is infinite, then this estimate shows that the

quantity |u(t,x)|p+1

|x| is globally integrable in spacetime, and in particular

decays in some suitable norm as t→ ±∞.
One drawback of the above Morawetz estimate is the presence of

the 1
|x| weight, which means that the estimate is strong near the spatial

origin x = 0 and weak away from this origin. For the class of spherically
symmetric solutions, one can use the radial Sobolev inequality

|f(x)| ≤ Cmin

(

1

|x|
,

1

|x|1/2

)

‖f‖H1
x(R3) for all x ∈ R3\{0},

which localises the finite-energy function u(t) to near the origin, to
effectively exploit the Morawetz estimate (35). However, for solutions
in translation-invariant classes such as the energy class without any
symmetry assumption, the estimate (35) can be arbitrarily weak and
thus will not be able by itself to establish translation-invariant control
on such solutions. There is however an interesting “doubling” trick
that can get around this difficulty, by introducing two spatial variables
x, y ∈ Rd instead of one. Indeed, a routine modification of the second

24Physically, Ma(t) represents the radially outward momentum; the portion of
the momentum which is radiating away of the origin. As time progresses, inward mo-
mentum gets converted into outward momentum, but not vice versa, thus explaning

the monotonicity. The nonlinear factor
R

Rd

|u(t,x)|p+1

|x|
dx represents the fact that the

defocusing nonlinearity also converts inward momentum to outward momentum, but
not vice versa.
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variation formula (32), (33) yields the “two-particle” variant

∂tt

∫

Rd

T00(t, x)T00(t, y)a(x− y) dxdy

= 2∂t

∫

Rd

T0j(t, x)T00(t, y)∂ja(x− y) dxdy(36)

= 2

∫

Rd

[Tjk(t, x)T00(t, y) − Tj0(t, x)Tk0(t, y)]∂jka(x− y) dxdy(37)

whenever a is an even function. In the case of the NLS, we obtain the
identity

∂tMa,2(t) = 2

∫

Rd

Re(pj(t, x, y)pk(t, x, y))∂jka(x− y) dx

2

∫

Rd

Re(qj(t, x, y)qk(t, x, y))∂jka(x− y) dx

− 2

∫

Rd

|u(t, x)|2|u(t, y)|2∆∆a(x− y) dxdy

+
8µ(p− 1)

p+ 1

∫

Rd

|u(t, x)|p+1|u(t, y)|2∆a(x− y) dx

where

Ma,2(t) : = 4

∫

Rd

Im(uuj)(t, x)|u(t, y)|
2∂ja(x− y) dxdy

= ∂t

∫

Rd

|u(t, x)|2|u(t, y)|2a(x− y) dxdy

and

pj(t, x, y) := u(t, x)uj(t, y) − uj(t, x)u(t, y)

qj(t, x, y) := u(t, x)uj(t, y) + uj(t, x)u(t, y).

In particular, if a is non-strictly convex then

∂tMa,2(t) ≥ −2

∫

Rd

|u(t, x)|2|u(t, y)|2∆∆a(x− y) dxdy.

Setting a(x) := |x|, µ = 1 and d = 3 as before, we conclude that

∂tMa,2(t) ≥ c

∫

R3

|u(t, x)|4 dx

for some absolute constant c > 0, which eventually leads to the space-
time bound

(38)

∫

I

∫

R3

|u(t, x)|4 dxdt ≤ CM(u)3/2E(u)1/2

for energy-class solutions to the NLS with µ = 1, d = 3, p ≤ 5 and I
the maximal interval of existence. This “interaction” or “two-particle”
Morawetz inequality is similar to the “one-particle” Morawetz inequality
(35), but now does not have the weight 1

|x| and is now better suited
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for translation-invariant situations. These spacetime bounds can be
inserted (possibly after combining them with other spacetime bounds,
such as those arising from mass and energy conservation or from the
Duhamel formula (12)) into the scattering criterion in theorems such
as Theorem 4.1, for instance giving a fairly quick proof of scattering in
the energy class in the regime µ = 1, d = 3, 3 < p < 5 (a result first
obtained in [19]); see [13].

Analogous monotonicity formulae exist for nonlinear wave equations
(although finding good analogues of the interaction Morawetz inequality
for such equations has proven surprisingly elusive, except in one dimen-
sion when they correspond to the classical Glimm interaction estimates).
Here it is more natural geometrically (and physically) to treat spacetime
as a unified object (Minkowski spacetime). Again we work formally, ig-
noring issues of regularity or integrability. From the conservation law
(25) we have the divergence identity

∂α(TαβXβ) =
1

2
Tαβπαβ

for any vector field X = Xα, where π = παβ is the deformation tensor

παβ := ∇αXβ + ∇βXα

(or παβ = ∂αXβ + ∂βXα in the usual Minkowski coordinate system).
This identity is particularly simple when X is a Killing vector field (i.e.,
an infinitesimal isometry of Minkowski space), since in this case the
deformation tensor vanishes, and we obtain a conserved current TαβXβ .
However, the number of linearly independent Killing vector fields is very
small (basically one only obtains the conservation of energy, momentum,
and energy momentum this way). One can often also extract conserved
(or almost conserved) currents from conformal Killing vector fields (such
as the scaling vector field t∂t + xj∂j or the Morawetz vector field (t2 +
x2)∂t +2txj∂j), in which the deformation tensor παβ is a scalar multiple

of the metric gαβ , basically because the trace Tαβgαβ of the stress-
energy tensor is often either zero, or is itself the divergence of another
vector field. For instance, using the scaling vector field t∂t + xj∂j in
the energy-critical defocusing case µ = +1, d = 3, p = 5 and Stokes’
theorem, combined with some additional arguments, one can obtain a
non-concentration property for the potential energy density:

(39) lim
t→0

∫

|x|≤t
|u(t, x)|6 dx = 0;

see e.g., [65]. When combined with finite speed of propagation and
perturbative analysis (based on Strichartz estimates), one can use (39)
to establish global regularity (or well-posedness in the energy class) for
this equation; the point is that (39) shows that even large energy data
will behave like small (potential) energy locally in spacetime, at which
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point the perturbative theory can be used to show that no blowup can
occur.

It is also useful to consider other types of vector fields than conformal
Killing vector fields. As was the case with NLS, it is profitable to
consider vector fields which are gradients of some scalar potential a,
thus Xα = ∂αa, and we obtain

∂α(Tαβ∂βa) = Tαβ∂αβa;

in the specific case of NLW, the right-hand side becomes

(∂αu)(∂βu)∂αβa−
1

4
(�a)�(|u|2) +

µ(p− 1)

p+ 1
|u|p+1�a.

Once again, one can often obtain a useful monotonicity formula from the
case when a is non-strictly convex. For instance, with the same equation
µ = +1, d = 3, p = 5 as before, one can use the weight a(t, x) = |x| to
obtain the Morawetz inequality

∫

I

∫

R3

|u(t, x)|6

|x|
dxdt ≤ CE(u)

for some absolute constant C (compare with (35)). This can be used as
a substitute for (39) for the purposes of establishing global regularity
or scattering.

A variety of monotonicity formulae are also known for wave maps,
especially in the presence of symmetry; see [65], [75], [82]. Gener-
ally speaking, these formulae assert that as one approaches a poten-
tial singularity of a wave map, that the (rescaled) wave map converges
(in some weak sense) to a harmonic map. It would be of interest to
make this phenomenon more quantitative, as this would undoubtedly
be useful in the (still incomplete) theory of large energy wave maps.
For the Maxwell-Klein-Gordon and Yang-Mills equations, no nontrivial
monotonocity formulae appear to be known.

It would be of interest to obtain further monotonicity formulae
which are not so dependent on the stress-energy tensor. One tentative
step in this direction is in [80], in which the mass and energy conser-
vation laws for (defocusing) gKdV are played off against each other to
obtain a dispersion estimate.

7. Induction on energy

Historically, the first large data global regularity result for a criti-
cal nonlinear dispersive or wave equation was that for the defocusing
energy-critical NLW in three dimensions (µ = +1, d = 3, p = 5); see
[69], [22], [23], [64], [65]. The approach (which was inspired by some
similar arguments in nonlinear elliptic and parabolic equations) was
based upon two basic ingredients:
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• (Small energy implies regularity) If the energy is sufficiently
small, then no singularities can form; this follows from pertur-
bative analysis. In practice, one needs stronger versions of this
statement, in which only the potential energy is assumed to be
(locally) small.

• (Nonconcentration of energy) The (potential) energy is shown
to locally decay as one approaches any given point in spacetime.
This is non-perturbative and is achieved by a monotonicity
formula approach (e.g., Morawetz estimates).

This two-step approach then formed the model for a number of other
critical global regularity results, such as those for radially or equiv-
ariantly symmetric critical wave maps [10], [11], [67] or Yang-Mills-
Higgs [29]. A crucial feature of these equations was that the quantity
which was shown to decay by a monotonicity formula was critical (scale-
invariant); otherwise, there was no chance that smallness of this quan-
tity would be at all helpful for establishing regularity. For nonlinear
wave equations, this type of scale-invariance was achievable, ultimately
because the momentum density (which was the source of monotonicity
formulae) had the same scaling as the energy density (which was already
assumed to be critical).

The energy-critical defocusing NLS (e.g., µ = +1, d = 3, p = 5)
thus presented a new difficulty, because the momentum and energy no
longer had the same scaling, and so the known monotonicity formulae
(such as (35)) did not establish decay of any useful critical quantity
near a potential singularity. This difficulty was resolved by Bourgain
[5] and Grillakis [24] in the case of spherical symmetry, and later by
Colliander-Keel-Staffilani-Takaoka-Tao [14] in the general case, based
on a number of additional observations. The first was that a non-critical
monotonicity formula such as (35) could be localised via cutoff functions
to obtain a critical estimate, albeit one which now depended on the scale
of the cutoff. For instance, by smoothly truncating the weight a(x) = |x|
to a ball centred at the origin, one can modify (35) to the estimate

(40)
1

|J |1/2

∫

J

∫

|x|≤K|J |1/2

|u(t, x)|6

|x|
dxdt ≤ CKE(u)

for all intervals J inside the maximal interval of existence and all K > 0,
where the constant CK depends on K; see [5], [24]. The point is that
the right-hand side only involves the critical energy E(u) and not the
supercritical mass M(u); indeed, both sides of this inequality are scale-
invariant. The drawback to this estimate was the unusual nature of the
left-hand side, in particular the presence of the weight 1

|J |1/2 . This made

it difficult to convert this type of scale-invariant control to an estimate
which could be used as input for the perturbation theory (which would
require a critical unweighted spacetime norm, such as the L10

t,x norm



308 T. TAO

of the solution). The basic problem is that any two given norms on
the solution need not be comparable, even after insisting that both
norms are critical; there is a serious lack of compactness in the space of
solutions that is not resolved simply by quotienting out by symmetries
such as scale invariance.

A key breakthrough25 was made by Bourgain [5], who introduced an
induction on energy method which “compactified” the dynamics of solu-
tion sufficiently that one could begin comparing different (but critical)
norms on the solution. The method is closely related, though not iden-
tical, to the concentration compactness method of Lions; we compare
the two methods in the next section.

The induction on energy method is the analogue of the energy min-
imisation method used to construct solutions of elliptic equations (for
instance, minimising the Dirichlet energy to solve the Dirichlet prob-
lem). The fact that one works with minimisers of a functional, rather
than merely critical points, can allow one to restrict the solution26 to
a compact set (perhaps after quotienting out by the symmetries of the
problem); in practical terms, this means that the minimiser “behaves
like a bump function” in the sense that it is localised in both space and
frequency.

We illustrate this technique with the energy-critical defocusing three-
dimensional NLS (so µ = +1, d = 3, p = 5), though the method is quite
general and has been extended to several other equations. The main
result here is the following a priori estimate:

Theorem 7.1. [5], [14] Let u ∈ C0
t Ḣ

1
x(I × R3) be an energy-class

solution to NLS with µ = +1, d = 3, p = 5 on a compact time interval I
with energy E(u) ≤ E. Then we have the bound

∫

I

∫

R3

|u(t, x)|10 dxdt ≤ A(E)

for some finite quantity A(E) depending only on E.

From this theorem and Theorem 4.3 one obtains

Corollary 7.2. Let u0 ∈ Ḣ1
x(R3). Then there is a unique global

energy-class solution u ∈ C0
t Ḣ

1
x(R → R3) to NLS with µ = +1, d =

3, p = 5 and u(0) = u0, which also lies in the space L10
t,x(R×R3). Also, u

scatters to a linear solution eit∆u± as t→ ±∞ for some u± ∈ H1
x(R3),

and if u0 is Schwartz then u will be Schwartz in space and smooth in

time.

25This method is not strictly necessary for the energy-critical NLS; see [24], [76]
for some alternate approaches. However, the induction on energy philosophy seems
to provide a powerful and unified tool to approach many other critical problems,
decreasing the need to rely on more ad hoc methods.

26This is of essentially the famous Palais-Smale condition for variational
functionals.
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Thus the main task is to establish Theorem 7.1. We introduce the
function A : R → [0,+∞] by

A(E) := sup

{
∫

I

∫

R3

|u(t, x)|10 dxdt : E(u) ≤ E

}

where the supremum ranges over all energy-class solutions u to NLS
of energy at most E, with the convention that A(E) = 0 when E is
negative. The task is to establish that A(E) is finite for all E; note that
Theorem 4.3 already gives this for small E.

The basic induction-on-energy strategy of Bourgain [5] is to estab-
lish this finiteness by estimating A(E) in terms of A(E′) for various
explicit smaller energies E′ ≤ E. In particular, when restricting to
spherically symmetric solutions (thus decreasing A(E)), the recursive
inequality

(41) A(E) ≤ C exp(Cη−CA(E − η4)C)

was proven for all energies E ≥ C−1, where C is an absolute con-
stant and η was a small quantity depending on E (one can take η :=
1/(CEC)). Very briefly, this type of inequality was obtained by first per-
forming some lengthy analysis (both perturbative and non-perturbative)
to argue that if a solution with energy E had very large L10

t,x norm, then
at some time the solution must decouple into an isolated “bubble” (of
energy comparable to some power of η), together with a remainder com-
ponent of energy at most E−η4. By inductive hypothesis, the remainder
would evolve with an L10

t,x norm controlled by A(E − η4). One then ap-
plies stability theory (such as Theorem 4.4), combined with the isolation
property, to then control the L10

t,x norm of the original solution.
From iterating (41) it is not difficult to show that A(E) is finite for

all E, although the upper bound obtained in A() is rather poor (it is a
tower of exponentials of height polynomial in E).

In [14] the induction-on-energy strategy was reinterpreted as an
analysis of minimal-energy blowup solutions, in analogy to the method
of mathematical induction can often be reinterpreted in the contrapos-
itive as the method of descent. It is not hard to show (using Theorem
4.3) that A is monotone non-decreasing, left-continuous, and finite for
small E. From this we obtain a dichotomy: either A(E) is finite for
all E, or else there exists a critical energy 0 < Ecrit < ∞ with the
property that A(E) < ∞ for all E < Ecrit and A(E) = +∞ for all
E ≥ Ecrit. Thus Ecrit is the minimal energy required for the solution
to blow up in the sense that the L10

t,x norm becomes infinite (which is a
natural criterion for blow up, in light of Theorem 4.3). Thus to show
that A(E) is finite for all E, we may assume for contradiction that a
finite critical energy Ecrit exists, and then obtain a contradiction. Note
for instance that a bound such as (41) can achieve this. One advantage
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of this formulation is that it allows one to exploit a system of inequal-
ities connecting A() with various quantities such as η, as opposed to
just a single inequality; such systems often require a multiple induc-
tion if one wanted to apply them directly. Conversely, if one uses the
minimal-energy blowup formulation it is quite difficult to establish any
explicit bounds on A(E) other than that it is finite. For instance, if one
established the conditional inequality

A(E) ≤ C0(E, η0, η1, A(E − η0), A(E − η1))

whenever 1/η1 ≤ C1(E, η0, A(E − η0)) and η0 ≤ 1/(CEC)

where C0(), C1() denote various explicit functions, then it is easy to see
that this is inconsistent with the existence of a finite critical energy Ecrit,
although to establish the finiteness of A(E) directly from this inequality
requires a double induction.

Suppose that the critical energy Ecrit was finite. Then we can find
solutions u : I × R3 → C of energy E(u) ≤ Ecrit whose L10

t,x norm is
arbitrary large. In fact, it turns out (by the concentration compactness
arguments below, see [34]) that we can find a maximal-lifespan solution
u : I × R3 → C of energy exactly E(u) = Ecrit whose L10

t,x norm is

infinite; in fact with a little refinement (see [84]) we can ensure L10
t,x

blowup in both directions, thus the L10
t,x norm is infinite on both (I ∩

[t0,+∞)) × R3 and (I ∩ (−∞, t0]) × R3 for any t0 ∈ I. we refer to
such solutions as minimal-energy blowup solutions. For the purposes of
the induction-on-energy argument, it is not strictly necessary to work
with minimal-energy blowup solutions, and one can instead work with
almost-blowing-up solutions of nearly the minimal energy, in which the
L10

t,x norm is very large rather than infinite (see e.g., [14]), but we shall
use exactly minimal-energy blowup solutions as they are conceptually
and technically simpler to deal with.

Remark 7.3. In the focusing case µ = −1, there is a smooth non-
negative stationary solution u(t, x) = W (x), where ∆W = −W 5 (in fact

we have the explicit formula W (x) := 1/(1 + |x|2/3)1/2). This solution
exists globally, but blows up in the sense that its L10

t,x norm is infinite.
Thus in the focusing case, the analogue of the critical energy is at most
E(W ). It is conjectured in the focusing case that the critical energy

is in fact exactly E(W ), thus any solution with energy (and Ḣ1 norm)
less than that of the stationary solution should exist globally with finite
L10

t,x norm; then the stationary solution u(t, x) = W (x) would become
a minimal-energy blowup solution. This conjecture has recently been
verified in the spherically symmetric case [31].

The key advantage of working with minimal-energy blowup solu-
tions, as opposed to more general solutions, lies by exploiting the fol-
lowing informal principle:
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Principle 7.4. Minimal-energy blowup solutions are irreducible and

hence localised. In fact they are almost periodic modulo symmetries.

Readers who are familiar with elliptic variational theory may see
an analogy here between minimal-energy blowup solutions and energy-
minimisers of various elliptic functionals, such as the Dirichlet energy
functional. Thus the induction-on-energy method can be viewed as an
analogue of the variational method for evolution equations.

Let us now explain some of the terms in the above principle more
precisely. By irreducible, we mean that a minimal-energy blowup so-
lution cannot ever decompose into the sum of two weakly interacting
components of non-trivial energy. For, if this were the case, each of the
components would have strictly smaller energy than the critical energy
Ecrit, and hence they each evolve separately by NLS with bounded L10

t,x

norm. Because the NLS equation is not completely linear, the super-
position (sum) of these two evolutions is not quite a solution to NLS.
However, if the interaction between the two components is sufficiently
weak, then this superposition will approximately solve the NLS equation,
with an accuracy which is sufficient for the stability theory (Theorem
4.4) to be applicable. This allows us to establish an L10

t,x bound on
the original solution, contradicting the blowup hypothesis (i.e., that the
L10

t,x norm is infinite). We illustrate this informal strategy by sketching
a proof of frequency irreducibility from [14, Proposition 4.3]:

Proposition 7.5 (Minimal-energy blowup solutions are frequency-
irreducible). [14] Let u : I×R3 → C be a solution to NLS (with µ = +1,
p = 5, d = 3). Suppose that we have a time t0 ∈ I, a frequency N > 0,
and η,K > 0 such that we have the frequency separation property

‖P≤Nu(t0)‖Ḣ1 ≤ η

and

‖P≥KNu(t0)‖Ḣ1 ≤ η

where P≤N is a Littlewood-Paley frequency projection27 to low frequen-

cies {ξ : |ξ| ≤ N}, and P≥KN is a Littlewood-Paley projection to high

frequencies {ξ : |ξ| ≥ KN}. Then, if K is sufficiently large depending

on η, then u cannot be a minimal-energy blowup solution.

Proof. (Sketch) Let u, t0, N, η,K be as above; suppose for con-
tradiction that u is a minimal-energy blowup solution, so in particular
E(u) = Ecrit. We first invoke a useful pigeonholing trick to locate a
suitably “empty” region of frequency space in which to split the solu-
tion.

Let 0 < η′ ≪ η be a small quantity, and K ′ ≫ 1 be a large quantity.
If K is sufficiently large depending on η′,K ′, then by the pigeonhole

27The exact definition of Littlewood-Paley projection will not be important for
this informal discussion.
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principle one can find N ′ between N and KN/K ′ such that

‖PN ′<·<K′N ′u(t0)‖Ḣ1 ≤ η′,

where PN ′<·<K′N ′ is a Littlewood-Paley projection to frequencies {ξ :
N ′ < |ξ| < K ′N ′}. We can then split

u(t0) = ulo(t0) + uhi(t0) +OḢ1(η
′),

where ulo(t0) := P≤N ′u(t0) and uhi(t0) := P≥K′N ′u(t0) are the low and

high frequency components of u(t0), and OḢ1(η′) is an error whose Ḣ1

norm is O(η′). By hypothesis we see that ulo(t0) and uhi(t0) both have

an Ḣ1 norm of at least η, and from this it is not too difficult (from
orthogonality arguments, assuming η′ small and K ′ large) that ulo(t0)
and uhi(t0) have energy strictly less than Ecrit; more precisely one has

E(ulo(t0)), E(uhi(t0)) ≤ Ecrit − c(η)

for some c(η) > 0 depending only on η. By induction hypothesis, we
thus see that we may evolve ulo and uhi by NLS to create global solutions
ulo, uhi : R × R3 → C with bounded L10

t,x norm:

‖ulo‖L10
t,x(R×R3), ‖uhi‖L10

t,x(R×R3) ≤ A(Ecrit − c(η)).

In particular, the scalar field ũ := ulo + uhi has bounded L10
t,x norm on

R × R3.
Now we compare ũ and u. At time t0, the two fields only differ in

Ḣ1 norm by O(η′), by construction. Now at later times, the field ũ does
not quite solve NLS; instead, it solves the equation

(i∂t + ∆)ũ = |ũ|4ũ+ e

where

e : = |ulo|
4ulo + |uhi|

4uhi − (|ulo + uhi|
4)(ulo + uhi)

= O(|ulo||uhi|
4 + |uhi||ulo|

4).

One can show (with some effort) that e is quite small in appropriate
norms. Roughly speaking, the reason is that uhi and ulo are widely sep-
arated in frequency at time t0, and hence (by perturbation theory and
the L10

t,x bounds) will also be essentially widely separated in frequency
at all other times also. It turns out (due to certain “bilinear Strichartz
estimates”, which ultimately stems from the basic dispersive fact that
different frequencies propagate at different velocities) that the interac-
tion of two linear solutions to the Schrödinger equation with widely
different frequencies will be quite small. The L10

t,x bounds ensure that
the solutions uhi, ulo behave somewhat linearly (at least at short times),
and it is possible (by choosing K ′ sufficiently large) to ensure that the
interaction is indeed small; for details see [14]. If η′ is also sufficiently
small, Theorem 4.4 now applies, and we pass from L10

t,x control of the

approximate solution ũ to L10
t,x control of the exact solution u. But this
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implies that u cannot be a minimal-energy blowup solution, and the
claim follows. �

By applying the above proposition (in the contrapositive) for all
values of η at once, it is not difficult to conclude:

Corollary 7.6 (Minimal-energy blowup solutions are frequency-
localised). Let u : I × R3 → C be a minimal-energy blowup solution to

NLS. Then there exists a function N : I → R+, and for every η > 0
there exists K(η) > 0 such that

‖P≤N(t0)/K(η)u(t0)‖Ḣ1 ≤ η

and

‖P≥K(η)N(t0)u(t0)‖Ḣ1 ≤ η.

Indeed one can select N(t0) to be (say) the median frequency of the

Ḣ1 energy distribution. A similar (but more intricate) argument can
also be employed to obtain spatial concentration:

Proposition 7.7 (Minimal-energy blowup solutions are spatially-
localised). [14] Let u : I×R3 → C be a minimal-energy blowup solution

to NLS, and let N : I → R+ be as above. Then there exists x : I → R3,

and for every η > 0 there exists K(η) > 0 such that
∫

|x−x(t0)|≥K(η)/N(t0)
|∇u(t0, x)|

2 dx ≤ η

for all t0 ∈ I.

Proof. (Sketch) The first step is to establish the weaker property of
spatial concentration of energy, namely that there exists an x(t0) ∈ R3

for each t0 ∈ I such that
∫

|x−x(t0)|=O(1/N(t0))
|∇u(t0, x)|

2 dx ≥ c > 0

for some c > 0 depending only on the critical energy Ecrit. For if this
were not the case for some t0 ∈ I, one can use some harmonic analysis
to show that the free evolution ei(t−t0)∆u(t0) of u from t0 is dispersed
for times t near t0, in the sense that

‖ei(t−t0)∆u(t0)‖L10
t,x([t0−C/N(t0)2,t0+C/N(t0)2]×R3) ≤ 1/C

for C > 0 which can be arbitrarily large (this C is essentially the recip-
rocal of the c appearing above). On the other hand, if the free evolution
is globally small in L10

t,x norm, then perturbative theory (e.g., Theorem

4.4) easily lets one show that u is globally bounded in L10
t,x norm, con-

tradicting the blowup hypothesis. Thus ei(t−t0)∆u(t0) must concentrate
at some time t1 far away from t0, say at a past time t1 < t0. Thus
the backward-propagated wave ei(t1−t0)∆u(t0) has a large inner prod-
uct with some highly concentrated “wavelet” f ; by duality, this means
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that u(t0) has a large inner product with a forward-propagated wavelet

ei(t0−t1)∆f . We can then split28 u(t0) into a small multiple v(t0) of this
propagated wavelet, plus a remainder w(t0) of strictly smaller energy.
We use the induction on energy hypothesis to propagate w to all of
R × R3 by the nonlinear evolution, and v by the linear evolution. The
point is that because v(t0) was already a wavelet propagated forward
by a long period of time, the further linear propagation of v(t0) will
be extremely small to the future of t0. This allows one to apply the
perturbative theory (Theorem 4.4) on the future interval [t0,+∞), and
pass from L10

t,x control of the solution w to L10
t,x control of the solution

u. But we are assuming that u blows up both to the future and to the
past29, which is a contradiction.

Once we have physical space concentration, the stronger property
of localisation is obtained by a variant of the arguments used to prove
Proposition 7.5. Indeed, if localisation failed, so that a significant por-
tion of energy at some time t0 was distributed far away from x(t0),
then by pigeonholing as before we can locate a splitting u(t0) = v(t0) +
w(t0) + small, where v(t0) is supported near x(t0), w(t0) is supported
well away from the support of v(t0), and the error is very small in en-
ergy norm. Also one can arrange matters so that v(t0) and w(t0) have
energy strictly smaller than Ecrit. Thus by the induction hypothesis one
can propagate v and w by the NLS flow and obtain L10

t,x bounds. To
finish the argument one needs to show that the nonlinear interactions
O(|v||w|4 + |v|4|w|) between v and w are suitably small. For times t
near t0 this can be accomplished by exploiting approximate finite speed
of propagation phenomena for linear and nonlinear Schrödinger flows,
which will keep v and w more or less separated in physical space. For
times t far away from t0, the physical supports of v and w can inter-
mingle; however, the physical space localisation of v at time t0, com-
bined with dispersive estimates (such as those arising from pseudocon-
formal energy identities) will ensure that v will be so small away from
these times that the interactions at these times will necessarily be quite
weak. �

Remark 7.8. An alternate approach to establishing space and fre-
quency concentration (but not localisation) for arbitrary solutions with

28This splitting argument is based on an earlier argument in [5].
29In the “finitary” version of this argument, where u : I × R

3 → C has very
large but finite L10

t,x norm, what we have to do instead is split I = I−∪I0∪I+, where

I−, I0, I+ are intervals which each capture one third (or more precisely 1/31/10) of
the L10

t,x norm. The physical space concentration effect then only is valid on the
middle third interval I0; dispersion can occur at one or both of the endpoints I−, I+
(think of a near-soliton which stays coherent for a long time interval I0 but disperses
both to the future and past of this interval). The point is that while dispersion can
occur, any energy which has radiated away by dispersion cannot be subsequently
reconcentrated, and so one no longer has true critical energy behaviour.
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large L10
t,x norm appeared in [76]. The main point there is that in order

for the L10
t,x norm to be large, the nonlinear component of the Duhamel

formula (13) must dominate. One then inspects this component using
harmonic analysis to deduce concentration, which turns out to be suffi-
cient (in the radial case) to establish global L10

t,x bounds. A somewhat
related approach also appears in [24]. At present, however, the only
known proof of global existence in the non-radial case for this equa-
tion requires the full strength of the induction-on-energy machinery (or
the closely related concentration compactness machinery of the next
section). Also the reliance on fundamental solution methods (i.e., the
Duhamel formula) requires a substantial amount of decay on the fun-
damental solution, which is typically available only in high dimensions
(such as three and higher), whereas the induction on energy approach
extends to general dimension.

Informally, what we have shown is that for a minimal-energy blowup
solution u : I × R3 → C, the solution concentrates at each time t0 es-
sentially all of its energy in a frequency annulus {ξ : |ξ| ∼ N(t0)} and
in a dual spatial ball {x : |x−x(t0)| . 1/N(t0)}. A particularly elegant
of saying this is that after quotienting out by the scaling and spatial
translation symmetries of the NLS equation, the orbit {u(t0) : t0 ∈ I}
of the minimal-energy blowup solution is precompact (its closure is com-
pact). In the language of dynamical systems, minimal-energy blowup
solutions are almost periodic modulo the symmetries of the equation.
This phenomenon is in fact very general and can be extended to other
model equations in which all the “defects of compactness” are caused
by symmetries; see [84] and the next section. In the case of spheri-
cal symmetry (which eliminates the defect of compactness caused by
translation invariance) one can basically set x(t0) = 0; see [5], [76], or
[84].

Aside from this compact dynamics, the only remaining non-compact
degrees of freedom are the frequency N(t0) and the position x(t0). The
above perturbative arguments do not provide any significant long-term
control on these quantities30. On the other hand, one can recast space-
time integrals in terms of these degrees of freedom, and thus use tools
such as monotonicity formulae to obtain further control. For instance,
the fact that the L10

t,x norm of u blows up both forward and backward in
time can be shown to be equivalent to the assertion that the improper

30One can however use perturbative theory to show that on time intervals cen-
tered at t0 of length ≪ 1/N(t0)

2, the frequency N(t0) does not move by more than
a constant multiplicative factor, while the position x(t0) moves by a displacement
of at most O(1/N(t0)). One can use this to view the solution as being composed
of a sequence of “bubbles” of energy concentration in spacetime, where each bubble
has a spatial width of 1/N and lifespan of 1/N2 for some N . See [82] for further
discussion.
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integral
∫

I N(t)2 dt also blows up forward and backward in time31 In
the radial case (so x(t) ≡ 0), the Morawetz estimate (40) can be shown
to be equivalent for minimal-energy blowup solutions to the Morrey-
Campanato type estimate

(42)
1

|J |1/2

∫

J
N(t) dt . 1

for all J⊂I. This comes close to contradicting the blowup of
∫

I N(t)2dt,
except that the power of N(t) is wrong (this is related, via scale invari-
ance, to the undesirable weight of 1

|J |1/2 on the left-hand side of (40)).

Nevertheless, the Morawetz estimate does show that the frequency N(t)
cannot stay bounded by any given frequency cutoff N0 for times much
longer than 1/N2

0 . By iterating this fact in an elementary manner (see
[5], [76]) one can show that N(t) must move from low frequencies to
high frequencies in a rapid amount of time; indeed one can show that
for any K > 1 there exist times t0, t1 with

(43) N(t1) ≥ KN(t0) and t1 = t0 +O(N(t0)
−2).

It is important to note here that the implied constant in theO() notation
is independent of K; this is ultimately due to the convergence of the
geometric series

∑

j N
−2
j when the Nj are growing exponentially in j.

In order to exclude this last remaining blowup scenario (which can
be viewed as a kind of “self-similar” blowup scenario) one can exploit
local approximate conservation of mass in physical space. At time t0,
the frequency N(t0) is relatively low compared to N(t1), which (because
the energy is fixed) will imply that the mass is relatively large; indeed,
the mass in the ball {x = O(1/N(t0))} at time t0 is at least as large as
c/N(t0)

2 for some c > 0. One can then use localised mass conservation
laws such as (30) (with a being a smooth cutoff to a dilated version of
this spatial ball) to show that the mass in the ball {x = O(1/N(t0))}
at time t1 is also at least as large as c′/N(t0)

2. Some Fourier analysis
then shows that at time t1, a significant portion of the energy must be
concentrated near the frequency N(t0). But this contradicts Corollary
7.6 since N(t1) ≥ KN(t0) and K can be taken arbitrarily large. This
concludes the proof of Theorem 7.1 in the spherically symmetric case.

An alternate approach, given recently by Kenig and Merle [31], uses
the viriel identity as a substitute for the (localised) Morawetz inequality
(40). Indeed, modifying (34) with a suitable spatial cutoff we easily

31One can view the renormalised time variable s defined infinitesimally by ds :=
N(t)2 dt (as well as the renormalised spatial parameter y := N(t)(x − x(t))) as
natural scale-invariant spacetime coordinates in which to view the dynamics; see
[70] for some elaboration of this viewpoint. This has some advantages for numerical
computations, but is difficult to use analytically for a number of reasons, notably the
lack of control on derivatives of N(t) and x(t).
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verify that

∂tt

∫

R3

|x|2|u(t, x)|2ϕ(x/R) dx

≥ c

∫

|x|≤R
|∇u(t, x)|2 + |u(t, x)|6 dx

+O

(

∫

|x|∼R
|∇u(t, x)|2 + |u(t, x)|6 dx

)

for some c > 0, where ϕ(x/R) is a cutoff supported on the ball |x| . R
which equals one when |x| ≤ R. Integrating this on a time interval
J ⊂ I and specialising to minimal energy blowup solutions, one obtains
the inequality

|{t ∈ J : N(t) ≫ R−1}| . R2 + |{t ∈ J : N(t) . R−1}|.

This is a weaker version of (42), but has the same key effect, namely
it prevents the frequency N(t) from staying near a constant value R−1

for periods of time much longer than R2. In conjunction with the mass
conservation argument one can then obtain a bound on

∫

I N(t)2 dt as
before. The advantage of using the virial identity is that it also works
well in the focusing case, even for solutions close in the energy to the
stationary state, due to the variational properties of that state; see [31].

Now we turn to the non-radial case (so x(t) 6≡ 0), which is signifi-
cantly more difficult. The local mass conservation argument extends to
this case without difficulty, and establishes the weak continuity bound

(44) N(t1) ≤ C(B)N(t0) whenever B > 1 and |t1 − t0| ≤ BN(t0)
−2

where C(B) is some finite quantity depending on B. However, this
by itself is certainly not enough to establish a bound on

∫

I N(t)2 dt
(think of the “pseudosoliton” case when N is bounded). The Morawetz
estimate (40) is now much weaker; it essentially asserts that

1

|J |1/2

∫

J

1

N(t)−1 + |x(t)|
dt . 1 for all J ⊂ I.

Since x(t) can be arbitrarily far away from the origin, this estimate does
not give much control on either N(t) or x(t), other than to say that x(t)
cannot linger close to the time axis for times much longer than N(t)−2.
One can use translation invariance to generalise this bound slightly to

1

|J |1/2

∫

J

1

N(t)−1 + |x(t) − x0|
dt . 1 for all J ⊂ I and x0 ∈ R3

but this is still quite weak (for instance, it cannot even prevent a “mov-
ing pseudosoliton” example in which N(t) stays constant and x(t) moves
linearly in t). As of this time of writing, the only monotonicity formula
which is known to give a usable spacetime bound on N(t) in the non-
radial case is (a localised version of) the interaction Morawetz inequality
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(38). Unlike the situation with (40), it turns out that one needs to lo-
calise this inequality in frequency space rather than in physical space.
Indeed one has

Proposition 7.9 (Frequency-localised interaction Morawetz esti-
mate). [14] Let u : I × R3 → C be a minimal-energy blowup solution,

let η > 0, and suppose that J ⊂ I is an interval. Let N∗ be such that

N∗ ≤ c(η)N(t) for all t ∈ J and some sufficiently small c(η) > 0. Then

(45)

∫

J

∫

R3

|P≥N∗u(t, x)|
4 dx ≤ ηN−3

∗ .

The proof of this proposition is quite complicated, taking up almost
24 pages in [14]! The idea is to repeat the derivation of (38) but with u
replaced by the high-frequency component P≥N∗u. Note that the ana-
logue of the right-hand side of (38) can be easily estimated as O(ηN−3

∗ ).
However, there are now several new “low-high interaction” error terms
arising from the fact that the high-frequency component does not quite
solve NLS by itself. To control these interaction terms one needs to use
some perturbative analysis (and a bootstrap assumption of L4

t,x con-
trol on the high frequencies) to establish some preliminary estimates of
Strichartz type on the low and high frequency components of u. Here
one crucially needs the hypothesis N∗ ≤ c(η)N(t) to ensure that the low
frequencies have very small energy and are thus amenable to a treate-
ment by perturbative theory. This deals with most of the error terms,
but even so there are a few very unpleasant “top order” error terms
which do not fall to the above estimates. For this one needs to fully
exploit the concentration properties of the minimal-energy blowup so-
lution u, especially the spatial energy decay away from x(t), and also
to play the forward and backward Duhamel formula against each other.
See [14] for full details.

The estimate (45) implies an integral bound on N(t), namely
∫

J
N(t)−1 dt ≤ C[inf

t∈J
N(t)]−3

for all J ⊂ I and some absolute constant C (depending only on Ecrit).
This is somewhat similar to (42) in that it prevents N(t) from lingering
near a constant value for extended periods of time. Unfortunately this
estimate is in some sense “too far away” from control of

∫

I N(t)2 dt to
force a rapid frequency cascade as in (44). Instead, all one can conclude
at this point is that if

∫

I N(t)2 dt is finite, then supj∈I N(t)/ infj∈I N(t)
is unbounded. In particular, given any K ≥ 1 we can find times t0, t1
for which

N(t1) ≥ KN(t0)

but for which we have no upper bound on the time difference |t1 − t0|,
thus prohibiting us from exploiting short-time estimates such as (44)
(other than to establish lower bounds on |t1 − t0|). In order to prevent
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this from happening, we once again must use some sort of localised mass
conservation law. The spatial localisation used previously is no longer
effective at long times, but it turns out that frequency localisation of
the mass conservation law is much more effective (note that for the
linear evolution, frequency localisation of data persists for arbitrarily
long times, in contrast to spatial localisation).

We briefly sketch some details of the frequency localisation argument
(which, while simpler than the derivation of Proposition 7.9), is still
non-trivial, occupying about 10 pages of [14]). With a little additional
argument (rescaling and exploiting the compactness of the dynamics
modulo symmetries) one can pass to a minimal-energy blowup solution
with a slightly stronger property, namely that there is a time t0 for
which N(t1) ≥ N(t0) = 1 for all t1 ∈ I with t1 ≥ t0 and

(46) sup
t1∈I;t1>t0

N(t1) = +∞.

This reduction is not absolutely essential for the argument but it does
simplify things slightly. It implies that for some sequence of times ap-
proaching the future endpoint sup(I) of the maximal lifespan I, the
energy of the solution goes to infinity in frequency space; in particu-
lar, the solution converges weakly to zero. This allows one to obtain a
backward Duhamel formula

u(t) = i

∫ sup(I)

t
ei(t−t′)∆(|u(t′)|4u(t′)) dt′

where the improper integral has to be interpreted in a weak condi-
tional sense, using the above-mentioned sequence of times converging
to sup(I). On the other hand, from (45) we also have L4

t,x estimates on
the high frequencies of u to the future of t0; combining the two using
Strichartz estimates, one can obtain quite strong estimates on the low

frequencies of u to the future of t0; in particular one has very strong en-
ergy decay as one approaches the frequency origin - much stronger (by
about 3/2 inverse derivatives) than what one obtains just from Corollary
7.6. See [14] for details. It turns out that this control is now sufficient
to establish that the high-frequency components of the solution obey an
approximate mass conservation law, indeed for suitably small η > 0 one
can show

∫

R3

|P≥ηu(t1, x)|
2 dx ≥

1

2

∫

R3

|P≥ηu(t0, x)|
2 dx

for all t1 ≥ t0. In terms of the frequency variable N(), this implies that
N(t1) = O(N(t0)) for all t1 ≥ t0, contradicting (46). This eliminates the
last outstanding blowup scenario (a kind of “slow low-to-high frequency
cascade”) and establishes Theorem 7.1.

Remark 7.10. The above arguments even give an explicit bound
on A(E) in the non-radial case, although due to the extremely heavy
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reliance of the induction on energy hypothesis, the bound is incredibly
poor (an eightfold-iteratred exponential tower!). In the radial case, there
are methods avoiding induction on energy (or compactness) which give a
more civilised exponential bound [76]. In the case of the critical NLW,
the situation is better; one has exponential bounds in the non-radial
case [57], [79] and polynomial bounds in the radial case [18]. We do
not know at present whether any of these bounds are sharp (although
the analysis from [9] in principle gives some very weak lower bounds).
Improving these bounds has application to pushing the critical theory
to slightly supercritical regimes; see [81].

Remark 7.11. The above general scheme has been extended to
higher dimensions [61], [89], to the nonlinear wave and Klein-Gordon
equations [56], [57], and recently to the mass-critical NLS in high di-
mensions with spherical symmetry [85]. It is likely that the method
extends further, in particular it should have relevance to the large data
theory of energy-critical wave maps and mass-critical gKdV (and more
ambitiously to the energy-critical MKG and YM equations, once the
perturbative theory of these equations is settled).

8. Concentration compactness

In the previous section we described a general “induction on en-
ergy” strategy to deal with large data solutions to a critical energy,
which focused attention on the critical threshold energy between lin-
ear and nonlinear behaviour. The arguments here tended to be quite
“quantitative” or “hard” in nature, in that one relied quite heavily on
various estimates arising from either perturbative analysis (e.g., from
harmonic analysis estimates on the linear propagator) or on the bounds
arising from conserved and monotone quantities.

In parallel to this, a seemingly rather different “qualitative” or “soft”
strategy to control solutions, based on compactness methods (notably
concentration compactness), was developed, originally from calculus of
variations (see e.g., [43], [44]) but in recent years now firmly established
in nonlinear wave and dispersive equations. Like the induction on energy
method (when viewed contrapositively as an analysis of minimal-energy
blowup solutions), the compactness method32 is somewhat indirect; in
order to prove that solutions exhibit some sort of behavior, assume for
contradiction that the behavior is violated, and then consider an “ex-
treme” example of this violation and deduce a contradiction. In the

32The methods here should be compared with the compactness methods dis-
cussed in Section 4.6. In both cases one uses sequential compactness to extract
solutions with special properties. In Section 4.6, the special property is an initial
condition u(t0) = u0; here, the special property might be that a certain spacetime
norm is infinite, that a certain energy is minimal, that there is no radiation at infinity,
etc.
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induction-on-energy approach, the extreme solution is obtained by min-
imising an energy (subject to a blowup condition, which is a kind of
boundary condition). In the compactness method, one takes an arbi-
trary sequence of progressively egregious examples of bad behaviour,
and extracts a convergent subsequence in order to find an extreme ex-
ample which has “infinitely bad” behaviour in some sense. The power
of this method lies in the fact that quantities which were merely decay-
ing to zero for solutions in the sequence, would now be identically zero

for the limiting solution, which often simplifies the subsequent analysis
both technically and conceptually. Further applications of this limit-
of-subsequence idea can be used to erase all “good” behaviour (e.g.,
linear dispersion) from the solution (because dispersive behaviour often
converges to zero in some weak sense), leaving a “pure” bad solution
which is then often very rigid and can be controlled by a variety of
methods (perturbation theory, monotonicity formulae, variational prin-
ciples). This latter idea has been particularly fruitful in analysing the
stability of solitons for the NLS and gKdV equations (see e.g., [51], [48],
[49], [50]), though recently it has begun to be extended to more general
situations. As it turns out, these methods can be used to reinterpret the
induction-on-energy method in a clean and qualitative context, albeit
at the cost of foregoing any hope of explicit quantitative bounds.

In running the compactness method, one runs into the problem that
the sequence of solutions for which one wishes to extract a convergent
subsequence need not be sequentially compact, except in very weak
topologies. One can of course use the Banach-Alaoglu theorem (or more
precisely the Arzela-Ascoli diagonalisation argument) to extract weakly
convergent subsequences from any bounded sequence, but the main dif-
ficulty with weak convergence is that properties of the elements of the
sequence (e.g., regularity, or largeness of certain norms) need not be pre-
served in the weak limit (although uniform upper bounds will in general
be preserved, thanks to the weak closure of the unit ball or by Fatou’s
lemma). To resolve this, it becomes necessary to seek ways in which to
upgrade weak convergence to stronger notions of convergence.

Of course, the basic problem here is that the function spaces one
works in (e.g., the energy space Ḣ1(Rd)) have infinitely many degrees
of freedom, and thus bounded sequences in such spaces are almost cer-
tainly not compact in the strong topology. In subcritical cases one can
sometimes exploit compact embeddings (e.g., the Rellich compactness
theorem) to recover compactness in slightly coarser (but still strong)
topologies, but in critical cases, the presence of non-compact symmetry
groups such as scaling and spatial translation show that one cannot hope
for compactness in any norm which is preserved by these symmetries,
unless one somehow “quotients out” these symmetries first. When one
is close to a ground state, one can often exploit a variational character-
isation of that ground state to obtain the desired compactness modulo
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symmetries, if the variational functional obeys a suitable Palais-Smale
type condition.

For more general classes of data, not close to a ground state, the
presence of symmetries combined with the ability to superimpose two
disjoint solutions means that the failure of strong compactness cannot
be resolved merely by quotienting out by the symmetry group. To give
a simple example, let xn, yn ∈ Rd be a sequence of points which diverge
from each other in the sense that limn→∞ |xn − yn| = ∞, and consider
the “two bump” examples un(x) := ψ(x − xn) + ψ(x − yn) where ψ is
a test function. Then this sequence un is bounded in any reasonable
translation-invariant norm (e.g., in the Sobolev norms Hs(Rd) for any
s) but have no convergent subsequence in any of thse norms, even if one
is allowed to translate each un by an arbitrary amount; the problem is
that one can make one of the bumps stay confined to a compact region of
space (and thus have a convergent subsequence), but only at the cost of
the other bump escaping to infinity, thus converging weakly to zero but
diverging in every strong topology. One can concoct similar examples
with the translation symmetry replaced by other non-compact symme-
tries, such as scaling symmetry and modulation symmetry, provided of
course that all topologies one is studying are invariant with respect to
these symmetries.

Fortunately, in many situations this type of example - superposi-
tions of fixed objects - each moved around by a different symmetry of
the equation, and with the symmetries becoming “asymptotically or-
thogonal” in the limit n → ∞ - turns out to be the only source of
non-compactness for bounded sequences, provided that one is willing to
measure errors in a slightly coarse topology, which allows the error to
be large in energy or mass so long as it is somehow “dispersed” (asymp-
totically orthogonal to all concentrated objects). This phenomenon,
known as concentration compactness, was introduced by Lions for ap-
plications to elliptic variational problems, although it has since proven
to have many further applications. It is a surprisingly effective sub-
stitute for genuine compactness. Informally, it says that any bounded
function splits as the “asymptotically orthogonal” sum of boundedly
many concentrated objects (each of which can be placed into a compact
region of space and frequency after applying suitable symmetries), plus
a dispersed error. In many applications the dispersed error is negligi-
ble, and the asymptotically orthogonal components become decoupled,
and so the analysis reduces to understanding the compact dynamics of
an evolution of concentrated fields - just as in the induction-on-energy
method.

Let us now briefly outline some details of this theory. One typically
works in a Hilbert space H such as L2

x(Rd) or Ḣ1
x(Rd). We will capture
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the symmetries33 by introducing a (non-compact) finite-dimensional Lie
group G of unitary transformations on H. For instance, G might be the
group of translations τx0 : f(x) 7→ f(x − x0), or perhaps the group of

L2
x(Rd)-unitary dilations σλ : f(x) 7→ λ−d/2f(x

λ), or the group generated
by both translations and dilations. For us, the relevant properties we
need are that (a) G is indeed a finite-dimensional Lie group in the
strong operator topology, and (b) G can be compactified in the weak
operator topology by adjoining 0. More precisely, we need the crucial
dislocation property that if gn is a sequence in G which goes to infinity
(i.e., it escapes every compact set, as measured in the strong operator
topology), then it converges to zero in the weak operator topology. One
can easily verify that the groups discussed above have this property.

The dislocation property has the following important consequence.
Call two sequences gn, g

′
n ∈ G asymptotically orthogonal if (g′n)−1gn goes

to infinity inG. Then for every f, f ′ ∈ H we have limn→∞〈gnf, g
′
nf

′〉H =
0, explaining the terminology “asymptotically orthogonal”.

A related consequence is as follows. Let us say that a bounded
sequence fn ∈ H converges weakly to zero with G-concentration if the
sequence gnfn converges weakly to zero for any sequence gn ∈ G; this
is thus intermediate in strength between weak and strong convergence.
For instance, the two-bump example mentioned earlier does not con-
verge weakly to zero modulo the group of translations, because we can
translate so that one of the bumps stays near the origin, thus ensuring
failure of weak convergence to zero. Intuitively, sequences which con-
verge weakly to zero with G-concentration are “dispersed” even if they
stay large in the strong norm ‖‖H , because they are asymptotically or-
thogonal to all concentrated functions (fixed functions, moved around
by arbitrary group elements).

Lemma 8.1 (Abstract dichotomy between dispersion and concentra-
tion). Let G,H be as above. Let fn ∈ H be a bounded sequence which

does not converge weakly with G-concentration to zero. Then by passing

to a subsequence if necessary, we can find a non-zero φ ∈ H and a de-

composition fn = gnφ+ f ′n, where gn ∈ G, and g−1
n f ′n converges weakly

to zero. In particular gnφ and f ′n are asymptotically orthogonal.

Furthermore, if g′n is any sequence in G such that (g′n)−1fn converges

weakly to zero, then gn and g′n are asymptotically orthogonal.

Proof. Since fn does not converge weakly with G-concentration to
zero, we can find gn such that g−1

n fn does not weakly converge to zero.
By weak compactness, we may then pass to a subsequence for which
g−1
n fn converges weakly to a non-zero φ. Setting f ′n := fn − gnφ we

obtain the first claim.

33One can also replace this group with a more general collection of bounded
operators satisfying certain axioms; see [62].
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To prove the second claim, assume for contradiction that we can find
g′n such that (g′n)−1fn converges weakly to zero, but that gn and g′n are
not asymptotically orthogonal. By the dislocation property, we may
thus pass to a subsequence where g−1

n g′n converges strongly to some
fixed group element g, and thus g−1

n fn = (g−1
n g′n)(g′n)−1fn converges

weakly to zero. But this contradicts the fact that g−1
n fn converges to

the non-zero φ. �

Repeated iteration of this lemma eventually leads to

Corollary 8.2 (Abstract concentration compactness). [62] Let

G,H be as above. Let fn ∈ H be a bounded sequence. Then after passing

to a subsequence we have an absolutely convergent decomposition

fn =
∞
∑

j=1

g(j)
n φ(j) + wn,

where φ(j) ∈ H are functions, g
(j)
n are sequences of group elements with

g
(j)
n and g

(j′)
n asymptotically orthogonal for all j 6= j′, and wn is bounded

in H and converges weakly with G-concentration to zero. Furthermore

we have the asymptotic Pythagoras theorem

lim sup
n→∞

‖fn‖
2
H =

∞
∑

j=1

‖φ(j)‖2
H + lim sup

n→∞
‖wn‖

2
H .

Remark 8.3. It turns out that for many applications in nonlinear
dispersive and wave equations it is better to use a truncated version of
the above decomposition, in which we only sum finitely many of the

main terms g
(j)
n φ(j), at the cost of worsening the behaviour of the error

wn. We shall describe such a truncated version shortly.

In order to use this type of concentration compactness result effec-
tively, one needs to deal with the error wn. It is here that the choice
of group G becomes important (beyond merely obeying the dislocation
property), for when G is sufficiently large, one can upgrade weak con-
vergence with G-concentration to strong convergence in various Banach
space norms ‖‖X which are controlled by H. Roughly speaking, this
occurs when the group G captures all the “defects of compactness” of
the embedding of H into X; in more quantitative terms, this means
that the X and H norms are only comparable for functions which cor-
relate with a test function, shifted by a group element in G. A pro-
totypical example arises from non-endpoint Sobolev embedding, such
as H1

x(R3) ⊂ L3
x(R3). When the domain is compact, the well-known

Rellich compactness theorem shows that this embedding is compact, in
particular weak convergence in bounded subsets of H1

x implies strong
convergence in L3

x. For unbounded domains such as L3
x(R3), the invari-

ance under the group G of translations shows that the embedding can
no longer be compact; nevertheless, we have
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Lemma 8.4 ( Concentration–compact Sobolev embedding ). Any

bounded sequences in H1
x(R3) which converge weakly with G-concentra-

tion also converges strongly in L3
x(R3).

For a proof, see e.g., [44]. One can use “soft” arguments to show that
the above “qualitative” statement is in fact equivalent to the following
“quantitative” assertion:

Lemma 8.5 (Inverse Sobolev theorem). Let G be the group of trans-

lations. For every η > 0 there exists a finite set Eη ⊂ C∞
0 (R3) of test

functions with the following property: for every f ∈ H1
x(R3) such that

‖f‖H1
x(R3) ≤ 1 and ‖f‖L3

x(R3) ≥ η, there exists φ ∈ Eη and g ∈ G such

that |〈f, gφ〉| ≥ 1.

This lemma can in turn be proven by a variety of means, for instance
by using Littlewood-Paley theory, or the wavelet characterisation of
various Besov and Sobolev function spaces. Using this fact, one can
convert the abstract concentration compactness result into something
more quantitative. For instance, we have

Proposition 8.6 (Profile decomposition for H1
x(R3) ⊂ L3

x(R3)).
[16] Let G be the translation group on R3. Let fn ∈ H1(R3) be a

bounded sequence. Then after passing to a subsequence we have decom-

positions

fn =
l
∑

j=1

g(j)
n φ(j) + wn,l

for all l ≥ 0, where φ(j) ∈ H1
x(R3) are functions, g

(j)
n ∈ G are sequences

of group elements with g
(j)
n and g

(j′)
n asymptotically orthogonal for all

j 6= j′, and wn,l is bounded in H1
x(R3) with

lim
n→∞

lim sup
l→∞

‖wn,l‖L3
x(R3) = 0.

Furthermore we have the asymptotic Pythagoras theorem

lim sup
n→∞

‖fn‖
2
H1

x(R3) =
l
∑

j=1

‖φ(j)‖2
H1

x(R3) + lim sup
n→∞

‖wn,l‖
2
H1

x(R3)

for all l ≥ 0.

Note that the embedding H1
x(R3) ⊂ L3

x(R3) is invariant under
translations, but not under other symmetries such as scaling or fre-
quency modulation. This is basically why the translation group G is
the natural group that appears for this embedding. For applications
to critical (scale-invariant) problems, however, we need to understand
the defect of compactness for embeddings which are invariant both un-
der scaling as well as translation. A good example is the Strichartz
embedding

‖eit∆f‖L10
t,x(R×R3) ≤ C‖f‖Ḣ1

x(R3)
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which we have already seen to play a major role in the theory of the
energy-critical NLS. This estimate is invariant under the group G′′ gen-
erated by translations, Ḣ1

x(R3)-preserving scalings f(x) 7→ 1
λ1/2 f(x

λ),

and the linear propagators eit∆. This group G′ also enjoys the dislo-
cation property, and one can show the analogue of Lemma 8.4, namely
that if fn is bounded in Ḣ1

x(R3) and converges weakly modulo G′, then
eit∆fn converges in L10

t,x(R × R3). As a consequence we have a profile
decomposition:

Proposition 8.7 ( Profile decomposition for linear Schrödinger

waves). [34] Let G′′ be as above. Let fn ∈ Ḣ1(R3) be a bounded se-

quence. Then after passing to a subsequence we have decompositions

fn =
l
∑

j=1

g(j)
n φ(j) + wn,l

for all l ≥ 0, where φ(j) ∈ Ḣ1
x(R3) are functions, g

(j)
n ∈ G′′ are sequences

of group elements with g
(j)
n and g

(j′)
n asymptotically orthogonal for all

j 6= j′, and wn,l is bounded in Ḣ1
x(R3) with

lim
n→∞

lim sup
l→∞

‖eit∆wn,l‖L10
t,x(R×R3) = 0.

Furthermore we have the asymptotic Pythagoras theorem

lim sup
n→∞

‖fn‖
2
Ḣ1

x(R3)
=

l
∑

j=1

‖φ(j)‖2
Ḣ1

x(R3)
+ lim sup

n→∞
‖wn,l‖

2
Ḣ1

x(R3)

for all l ≥ 0.

Similar profile decompositions are known for other equations and
regularities, for instance for the wave equation in the energy class see
[1].

These profile decompositions combine very well with stability the-
ory such as Theorem 4.4, especially when the underlying group G is
also a symmetry group for the equation. Roughly speaking, they assert
that the asymptotic behaviour of any sequence of solutions from initial
data fn decouples into the asymptotically orthogonal superposition of
the solutions arising from the data φ(j), moved around by symmetries
of the group, plus a negligible radiation term. (See [1] for a precise for-
mulation of this statement, in the context of the energy-critical NLW.)
This type of decoupling has many uses. For instance, one can analyse
the behaviour of a solution near a singularity by continually rescaling
around that singularity and then applying the above profile decompo-
sitions to the sequence of rescaled solutions; see [54] for a very typical
instance of this type of argument. More recently, in [31] it was observed
that this profile decomposition can be used (together with the stability
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theory) to very quickly imply the localisation results in Corollary 7.6
and Proposition 7.7. A key lemma is

Lemma 8.8 (Palais-Smale type lemma modulo G). [31] Let µ =
+1, d = 3, p = 5, and suppose that the critical energy Ecrit for NLS is

finite. Let G′ be the group of unitary transformations on Ḣ1(R3) gen-

erated by translations and dilations, and let fn be a sequence of initial

data with energy less than or equal to Ecrit whose maximal Cauchy de-

velopments un : In×R3 → C blow up in L10
t,x both forward and backward

in time, thus

‖un‖L10
t,x(In∩[0,+∞)×R3), ‖un‖L10

t,x(In∩(−∞,0]×R3) → ∞ as n→ ∞.

Then after passing to a subsequence, the fn will be strongly convergent in

Ḣ1
x(Rd) modulo G′, thus there exist gn ∈ G′ such that g−1

n fn converges

strongly in Ḣ1
x(Rd).

Proof. (Sketch) We use an argument from [84]. We apply the
profile decomposition from Proposition 8.7, passing to a subsequence if
necessary, thus writing fn in terms of components φ(j), moved around

by group elements g
(j)
n ∈ G′′ plus negligible errors wn,l.

A technical difficulty arises because of the presence of the linear

propagators eit∆ in the group elements g
(j)
n , because these propagators

are not symmetries of NLS. For now let us simply ignore the linear

propagators and assume that g
(j)
n consists entirely of translations and

dilations, i.e., that g
(j)
n lies in G′; we briefly comment on what changes

have to be made to address the general case at the end of this sketch.
First suppose that all the components φ(j) have energy strictly less

than Ecrit. Then by induction hypothesis, one can find global solutions
with initial data φ(j) with a bounded L10

t,x norm. By the translation
and scaling symmetries of NLS, we can achieve a similar statement for

g
(j)
n φ(j). The asymptotic orthogonality of the g

(j)
n (and the dispersed

nature of the errors wn,l) then allows us to superimpose these solutions
together and obtain an L10

t,x bound for the un for sufficiently large n, a
contradiction.

Thus at least one of the components φ(j) must have energy at least
Ecrit. An asymptotic Pythagoras-type theorem for the energy then
shows that that component will have energy exactly Ecrit, while all other
components will vanish, and the error wn,l will have asymptotically van-
ishing energy as n → ∞. This implies that fn converges strongly in
Ḣ1

x(Rd) as desired. (Compare this with the heuristic from the previous
section that minimal energy blowup solutions must be “irreducible”.)

Now we comment on what happens when the g
(j)
n contain some

linear time propagation, thus g
(j)
n = g̃

(j)
n eit

(j)
n ∆ for some g̃

(j)
n ∈ G′ and

t
(j)
n ∈ R. For sake of argument let us just work with a single j. If
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the t
(j)
n stay bounded then after passing to a subsequence we can make

them converge to a finite time as n → ∞, at which point it is easy to
absorb these propagators into the φ(j) and wj,l and argue as before. If

instead the t
(j)
n go to −∞ (say) then the nonlinear evolution of eit

(j)
n ∆φ(j)

can be approximated by the nonlinear evolution of φ
(j)
+ , shifted in time

by t
(j)
n , where φ

(j)
+ is the forward scattering state of φ(j) as Theorem

4.3. Applying the symmetry associated to g̃
(j)
n one can then control the

nonlinear evolution of g
(j)
n φ(j) as before. Continuing the argument, we

eventually see that fn is asymptotically close to g
(j)
n φ(j) in the Ḣ1

x(R3)
norm. But from this and the stability theory one can easily show that un

converges to zero forward in time in the L10
t,x norm (because the same is

true for the linear evolution of g
(j)
n φ(j)), a contradiction. Hence this case

cannot occur. A similar argument also works if t
(j)
n goes to +∞. These

three cases cover all the possibilities (after passing to a subsequence),
and we are done. �

Just as the classical Palais-Smale condition in calculus of variations
implies the existence of minimisers, Lemma 8.8 implies the following
result, which in turn can be easily shown by simple compactness argu-
ments to imply Corollary 7.6 and Proposition 7.7:

Corollary 8.9 (Existence of almost periodic minimal energy blow-
up solutions). [31] Let µ = +1, d = 3, p = 5, and suppose that the criti-

cal energy Ecrit for NLS is finite. Let G′ be the group of unitary transfor-

mations on Ḣ1(R3) generated by translations and dilations. Then there

exists a minimal energy blowup solution u : I × R3 → C which blows

up both forward and backward in time, and whose orbit {u(t) : t ∈ I} is

precompact modulo G′ in Ḣ1
x(R3), or in other words there exists a com-

pact set K ⊂ Ḣ1
x(R3) and a map g : I → G′ such that g(t)−1u(t) ∈ K

for all t ∈ I.

Proof. (Sketch) We again use an argument from [85]. By defini-
tion of Ecrit we can find a sequence of initial data fn of energy at most
Ecrit whose maximal Cauchy developments un asymptotically blow up
in L10

t,x norm. By translating in time appropriately one can easily ensure
that these un in fact asymptotically blow up both forward and back-
ward in time. We apply Lemma 8.8 to pass to a limit f , and from the
stability or well-posedness theory it is not hard to see that the maximal
Cauchy development u to this data must blow up forward and backward
in time. In particular u must be a minimal energy blowup solution.

Now suppose for contradiction that the orbit of u is not precompact
modulo G′, then there exists a sequence of times tn where g−1

n u(tn)
has no convergent subsequence for any gn ∈ G′. But then we can
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apply Lemma 8.8 to the initial data fn := u(tn) and obtain the desired
contradiction. �

Analogues of this result exist for focusing NLS [31] and for L2-
critical NLS [85]. It is likely that this type of result in fact very general
and should apply to any equation with a symmetry group which is
large enough to cover all the essential defects of compactness in the
perturbation theory.

In view of this Corollary, one can reduce Theorem 7.1 to the follow-
ing rigidity result, which is known as a “Liouville theorem” in analogy to
the classical result of Liouville that any entire function which is bounded
must in fact be constant.

Theorem 8.10 (Liouville theorem). Let µ = +1, d = 3, p = 5, and

let u : I × R3 → C be a maximal Cauchy development for NLS whose

orbit is precompact modulo G′. Then u is identically zero.

This theorem can be proven using the localised Morawetz and mass
conservation laws of the previous section; in the spherically symmet-
ric case it can be achieved using localised virial identities and mass
conservation, see [31]. The latter argument has the significant advan-
tage that it also extends to the focusing case, so long as the energy and
Ḣ1

x(R3) norm of the initial data are strictly less than that of the ground
state. This two-step approach of controlling arbitrary solutions by first
using compactness methods to reduce to “almost periodic” solutions,
and then using additional arguments (typically based on various local-
isations of conservation laws and monotonicity formulae) to establish
Liouville theorems for such solutions, also underlies a number of other
recent breakthroughs in this field, for instance in the stability theory of
solitons for critical gKdV [51], [48], [49], [50] and also for the critical
theory of NLS at exponents other than the mass or energy [52], [53].

9. Gauge fixing

In the preceding sections we have discussed the small and large data
wellposedness theory for various semilinear wave equations (particularly
NLS and NLW), in which the nonlinearity did not involve derivatives.
Because of this low-order nature of the nonlinearity, it was relatively
easy to apply perturbation theory to approximate the nonlinear flow by
the linear one (assuming that certain key norms are small or at least
finite, of course). This then set the stage for further tools, such as con-
servation laws, monotonicity formulae, and concentration compactness
to be applied.

However, once one turns to equations with derivatives in the non-
linearity, such as the WM, MKG, YM equations34, the presence of a

34The gKdV equation also has derivatives which cause some analytical difficulty,
but it turns out in this case that the high order of dispersion in the linear term uxxx
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derivative in the nonlinearity becomes highly troublesome for the pertur-
bation theory, especially when one seeks a scale-invariant theory (which
is needed in order to obtain global-in-time asymptotic control). In par-
ticular, the sign of the nonlinearity, which previously played absolutely
no role in the perturbative theory, is now often decisive. We illus-
trate this with an example of Nirenberg. Let us first consider solutions
φ : R1+2 → R to the wave maps-type equation

−∂ttφ+ ∆φ = |φt|
2 − |∇φ|2.

Formally, one has solution to this equation of the form φ = log u, where
u : R1+2 → R+ solves the linear wave equation

(47) −∂ttu+ ∆u = 0.

Of course, the logarithm function has a singularity at zero. This is not
a problem locally in time if the solution is sufficiently regular, since
u = eφ will stay away from zero at the initial time t = 0, and hence for
a short time after that if u is smooth enough. However, if the initial po-
sition and velocity of φ and u lie in the energy class Ḣ1

x(R2)×L2
x(R2),

which just barely fails to imply continuity (or even boundedness) on
u or φ due to the logarithmic failure of Sobolev embedding, then it is
not difficult to construct examples of solutions φ which have bounded
or even small energy at time zero, but develop singularities instanta-
neously afterwards. In particular the standard perturbative approach
to analysing this equation in the energy class must necessarily fail no
matter how cleverly one chooses the spaces to iterate in. This can also
be seen by analysing the Taylor expansion

log(1 + u) = u−
u2

2
+
u3

3
− . . .

for u in Ḣ1
x(R2). The first term of this expansion is of course also in

the energy class Ḣ1
x(R2), but subsequent terms will not, because the

space Ḣ1
x(R2) is not closed under multiplication (this is again related

to the failure of the endpoint Sobolev theorem to embed Ḣ1
x(R2) into

L∞
x (R2)).

On the other hand, consider the very similar equation

−∂ttφ+ ∆φ = φ× (|φt|
2 − |∇φ|2)

where φ : R1+2 → S1 now takes values on the unit circle S1 := {z ∈
C : |z| = 1}. The presence of the additional bounded factor φ should
not significantly affect the perturbation theory. On the other hand,
this equation can be solved explicitly by the substitution φ = eiu for
real-valued u : R1+2 → R, and one quickly sees that u (formally at

generates enough of a local smoothing effect to compensate for this loss of one degree
of regularity in the nonlinearity, and so the gKdV perturbation theory is closer in
spirit to the NLS and NLW than to the WM, MKG, and YM equations. See [33],
[78].
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least) must solve the linear wave equation (47). Now the nonlinear map

u 7→ eiu is well-behaved on the energy class Ḣ1
x(R2) for real-valued u,

indeed it clearly preserves the Ḣ1
x(R2) norm, and with a little additional

effort one can even show this map is continuous in Ḣ1
x(R2). This is

despite the failure of the power series

eiu = 1 + iu−
u2

2!
−
iu3

3!
+ . . .

to converge or even have its quadratic and higher terms to make sense
in the energy class Ḣ1

x(R2); the map u 7→ eiu is continuous in Ḣ1
x(R2)

but not analytic. Note that for this map to be well-behaved one has
to crucially exploit the simple but nonlinear (and non-perturbative)
observation that eiu is bounded whenever u is real; the map u 7→ eiu

can easily be shown to be very badly behaved in Ḣ1
x(R2) when u is no

longer assumed to be real.
The above simple examples already show that a simple algebraic

transformation can sometimes simplify a nonlinear equation into a linear
one. In the case of the wave maps equation, this type of transformation
is available whenever the target manifold is one-dimensional, or (slightly
more generally) if the initial data lies on (and moves tangentially to) a
geodesic in the target; a nonlinear transformation based on the arclength
parameterisation of the geodesic will then convert the wave maps equa-
tion to the free wave equation (actually this is geometrically obvious
from any intrinsic formulation of the wave maps equation, such as the
Lagrangian one, since geodesics are isometric to subsets of R). One can
generalise this slightly to the case of wave maps from R×R2 into a sur-
face of revolution which has an equivariant U(1) rotation symmetry; in
this case, the wave maps equation does not collapse all the way down to
the free wave equation due to a residual non-flatness in the angular di-
rections, but it does simplify to a semilinear NLW-type equation which
can then be handled by existing perturbation theory techniques (e.g.,

Strichartz estimates) even at the critical regularity Ḣ1
x(R2) × L2

x(R2);
see e.g., [65].

For general target manifolds, one cannot hope to find such a nonlin-
ear transformation (essentially a selection of coordinates on the target)
that achieves such a dramatic reduction in the strength of the non-
linearity; it is akin to hoping for a coordinate system on an arbitrary
manifold which flattens most components of the metric. Of course, the
Riemann curvature tensor provides an inherent geometric obstruction
to this goal. It turns out however that if one works not on the manifold
directly, but on the tangent bundle of that manifold (basically by differ-
entiating the wave maps equation), one obtains a much richer class of
“gauge transformations” which can be used to weaken the nonlinearity.

From an algebraic perspective, the advantage of differentiating the
equation lies in the fact that the nonlinearity becomes linear in first
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derivatives instead of quadratic. Very schematically, if one starts with
an equation of the rough form

�φ = O(∂φ∂φ)

and differentiates it, setting ψ := ∂φ, one expects by the product rule
to get a (non-scalar, overdetermined) equation of the rough form

�ψ = O(ψ∂ψ)

The nonlinearity now is linear in first derivatives and thus has a “mag-
netic”, or more generally a “connection” flavour. This will be formalised
geometrically later, but let us first argue algebraically. Consider a mag-
netic (or “U(1) covariant”) wave equation of the form

�ψ = −2iAα∂αψ

where ψ : R1+d → C and Aα are some real-valued coefficients, which
one should think of as being “smooth” and fixed35. This equation is
linear in ψ, but the term on the right-hand side (which is analogous to
the “nonlinearity”) involves first order derivatives in ψ. In some cases
however, we can transform this equation to eliminate or at least weaken
this derivative term. If we make the gauge change ψ̃ := eiχψ for some
arbitrarily chosen field χ : R1+d → R, then we see (formally at least)

that ψ̃ solves the wave equation

�ψ̃ = −2iÃα∂αψ − (∂αA
α)ψ̃

where Ãα := Aα−∂αχ. If we can arrange for the transformed connection
Ãα to vanish or be otherwise “negligible”, then we have significantly
improved the right-hand side of this equation as the remaining term
no longer involves derivatives of ψ or ψ̃. (We will consider A as being
smoother than ψ, so that, all else being equal, a term with derivatives
on A is preferable to one with derivatives on ψ.)

In general, we do not expect to be able to make Ãα to vanish com-
pletely, as this is asking Aα to be a gradient36. The obstruction to this

35More generally, one can view ψ as living in a vector space R
n and iAα taking

values in the skew-adjoint operators on such spaces; this is the case of interest for
Yang-Mills equations, and for wave maps into targets of dimension higher than two.
However this case is slightly more complicated due to the non-abelian nature of the
gauge group and we shall avoid discussing it here.

36For scalar Schrödinger equations in one spatial dimension, the connection only
has one component and is thus a gradient by the fundamental theorem of calculus.
This can be used to eliminate magnetic components completely in this special case. A
variant of this trick has proven decisive in the low-regularity theory of the Benjamin-
Ono equation, in effect neutralising the effect of the derivative from the nonlinearity;
a key observation is that the Benjamin-Ono equation can be recast using Riesz pro-
jections as a nonlinear Schrodinger equation with a nonlinearity which is of magnetic
type (plus a small non-local error). See [77], [6], [25].
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occuring is described (locally, at least) by the curvature tensor

Fαβ := ∂αAβ − ∂βAα;

observe that this curvature is unaffected by gauge transforms. Thus it is
necessary for the curvature to vanish in order for Aα to be transformed
to the zero connection; the contractibility of spacetime R1+d ensures
that the converse is also true. If the curvature is non-zero but small
in some sense, then we cannot make Ãα vanish entirely, but we can
hope to make it small also by choosing χ appropriately. For instance,
one can consider the (formal) variational problem of minimising the L2

norm
∫

Rd

∑d
j=1 |Ãj(t, x)|

2 dx for each t (note that we are ignoring the

A0 component for now). This leads to the Coulomb gauge condition

divÃ = ∂jÃj = 0.

In terms of the gauge field χ, this becomes the elliptic equation

∆χ = ∂jAj

which thus has a unique solution (assuming suitable decay and regularity

hypotheses on A,χ. The gauge transformed connection Ã can also be
read off directly from the curvature via the elliptic equations

∆Ãα = ∂j∂jÃα − ∂α∂jAj = ∂jFjα.

Thus schematically we have Ã = O(∇−1F ), so that if F is small in

suitable norms then Ã is also small in a norm of one higher degree of
regularity. Given that F was essentially a derivative of A (and Ã) in
the first place, we see that this should be about the best we can do in
minimising the size of the connection.

The Coulomb gauge was used crucially37 in the sub-critical local
wellposedness theory of the MKG and YM equations in [35], [36], [38],
in order to generate certain “null form” structures in the nonlinearity
which provided enough cancellation for an iteration argument to es-
tablish local existence; this should be constrasted with the examples
from [46] which showed that wellposedness can fail even for subcriti-
cal regularities for (non-geometric) wave equations whose nonlinearities
did not obey the null condition. Even with this gauge, however, the
well-posedness (or regularity) theory at the critical regularity (and in
particular, the establishment of global solutions for data with small crit-
ical norm) had been elusive until very recently. An initial breakthrough
was established by Tataru [86], [87], [88], who introduced sophisticated
refinements of existing function spaces to essentially push the iteration
method to its natural limit, namely a critical-regularity Besov space (ba-
sically, this is the minimal strengthening of the critical Sobolev space re-
quired to obtain some substitute for false endpoint Sobolev embeddings

37It is however possible to see these null forms also appear in some other gauges,
such as the temporal gauge; see [74].
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such as Ḣ
d/2
x (Rd) 6⊂ L∞

x (Rd)). These spaces resolved a certain tech-
nical “division problem” which was preventing scale-invariant iteration
methods from working, leaving only the interaction between different
frequency ranges as the only remaining obstacle to a critical Sobolev
space theory.

For wave maps, the key to proceeding further was to recast this equa-
tion as An equation with a gauge symmetry. We have already sketched
how this could be done by differentiating the equation. A slightly dif-
ferent approach, adopted first in [71], [72], performed Littlewood-Paley
projections instead of taking derivatives in order to reveal a connection-
type structure. Later, in [55], [66], a simpler and more geometric per-
spective was introduced to greatly clarify the situation. Given any map
(not necessarily a wave map) φ : R1+d →M , the tangent bundle TM of
M pulls back to a vector bundle φ∗(TM) on R1+d. The partial deriva-
tives ∂αφ are then sections of this bundle. The Levi-Civita connection
∇ on TM similarly pulls back to a connection φ∗∇ on φ∗(TM), and the
wave maps equation becomes

φ∗∇α∂αφ = 0.

This formulation is manifestly geometric, but difficult to analyze due
to the lack of a co-ordinate system for the vector bundle φ∗(TM). To
address this, one can choose an (at present arbitrary) orthonormal frame
bundle e1, . . . , em on φ∗(TM), where m is the dimension of M (and
hence of the vector bundle). Note that the Riemannian metric on M
pulls back to a Hilbert space structure on each fibre of φ∗(TM), so the
notion of an orthonormal frame makes sense; the contractibility of the
domain R1+d also makes it easy to ensure that at least one continuous
orthonormal frame exists (at least for smooth φ). Using this frame, one
can rewrite the derivative ∂αφ as an Rm-valued field ψα := (ψ1

α, . . . , ψ
m
α )

by the formula

ψi
α := 〈∂αφ, ei〉

where one uses the Hilbert space structure on φ∗(TM). Similarly, the
connection φ∗∇α can now be rewritten as Dα := ∂α +Aα, where Aα is
the skew-adjoint matrix on Rm with components

Aij
α := 〈φ∗∇αei, ej〉.

The wave maps equation now becomes Dαψα = 0, while the torsion-free
nature of the Levi-Civita equation forces the compatibility condition

DαψβDβψα = 0.

Finally, the curvature of the target M manifests itself as an equation for
the curvature Fαβ := [Dα, Dβ] of the connection. For instance, if M has
constant curvature κ, then standard differential geometry computations
show that

Fαβ = κψα ∧ ψβ.
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These are now the three equations of motion for the wave maps equation
when viewed using the “differentiated fields” Aα and ψα. On differen-
tiating the wave maps equation we thus see that ψα obeys a covariant
cubic nonlinear wave equation:

DαDαψβ = κ(ψα ∧ ψβ)¬ψα.

Because our orthonormal frame was chosen arbitrarily, one has a gauge
freedom

Aα 7→ UAαU
−1(∂αU)U−1; ψα 7→ Uψα

for an arbitrary rotation matrix-valued gauge field U . As before, one
can exploit this gauge freedom to place the connection A in a convenient
form. By using the Coulomb gauge divA = 0, small data global regu-
larity for wave maps at the critical Sobolev regularity was established
in four and higher dimensions in [55], [66] (with a microlocal Coulomb
gauge approach giving a similar result in five and higher dimensions in
[37]). Roughly speaking, the Coulomb gauge places the connection in
the form A = O(∇−1F ) = O(∇−1(ψ2)), so the cubic wave equation now
has the schematic form

�ψ = O(∇−1(ψ2)∇ψ) +O(ψ3)

which turns out to be amenable to relatively simple Strichartz esti-
mate techniques in four and higher dimensions. In the special case of
hyperbolic space targets, this approach was pushed (with Substantial
difficulty) to three and two dimensions in [39], [40], using much more
sophisticated function spaces. However, the Coulomb gauge actually be-
comes quite problematic to use here, due to the increasingly divergent
nature of the inverse derivative operator ∇−1 in low dimensions at low
frequencies. This made it quite difficult to go beyond small data global
regularity and obtain other expected features of the critical perturba-
tion theory, such as a large data result, a usable blowup criterion, and a
stability and well-posedness theory. To resolve these issues, a more geo-
metric “caloric gauge was proposed in [75]. Re-interpreting an earlier
microlocal gauge construction from [71], [72] by replacing the (discrete,
linear) Littlewood-Paley projections with the (continuous, nonlinear)
harmonic map heat flow propagator, it was shown in [75] that the heat
flow naturally induced a gauge which was slightly more regular than the
Coulomb gauge, replacing the problematic bilinear form O(∇−1(ψ2))
with a nonlinear paraproduct in which the inverse derivative was guar-
anteed to fall on the higher frequency factor and thus staying relatively
small. Interestingly, the reliance on the heat flow means that the gauge
extends to large data (unlike all previous gauges), provided that the heat
flow is known to converge asymptotically to zero for this data (which is
true, for instance, for surfaces of constant negative curvature, due to a
classical result of Eells and Sampson [15]). It looks likely that this will
lead to a satisfactory large data perturbation theory for critical wave
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maps in two dimensions; this in turn sets the stage for the tools of pre-
ceding sections, such as induction on energy, to be brought to bear on
the large data critical regularity problem in two dimensions, which is
currently open except in the case of symmetric data. This is currently
work in progress by the author. For further discussion of all of these
issues on wave maps we refer to the recent survey [59].

We close with a brief discussion of status of the corresponding crit-
ical regularity theory for the Yang-Mills and Klein-Gordon equations.
Here, many of the expected analogous results for instance, that the four-
dimensional Yang-Mills equations enjoy global regularity for any small
energy data are still open. One of the main difficulties here is that the
connections are significantly more curved than in the wave maps case;
indeed, even after taking a good gauge such as the Coulomb gauge, the
best thing that can be said about a connection is that it itself obeys
a nonlinear wave equation. One consequence of this is that even after
selecting the gauge carefully, one cannot hope to dispense with the influ-
ence of the connection via an iteration argument. Instead, one is forced
to work with the connection as an integral part of the equation, and
begin developing dispersive estimates for the covariant wave equation
DαDαφ = 0. This is now a problem in variable-coefficient liner equa-
tions rather than nonlinear PDE, and as such requires a rather different
set of tools to those discussed above, namely the method of paramet-
rices. Such parametrices were developed in six and higher-dimensions,
first for the Maxwell-Klein-Gordon equations in [60] (which is simpler
due to the abelian nature of the gauge group), and then for the non-
abelian Yang-Mills equations in [41]. The basic idea is to construct cer-
tain “distorted plane wave functions which almost solve the covariant
wave equation, and then superimpose these waves together to create a
parametrix (approximate solution) for the equation. In order to ensure
that the error terms accrued in this process are manageable, a large
number of harmonic analysis preparations (such as Littlewood-Paley
projections) have to be carefully performed first. In the non-abelian
case an additional difficulty arises because the distorted plane waves
are obtained by solving a nonlinear ODE, and many regularity esti-
mates on the solutions to that ODE must then be obtained. See [60],
[41] for details. The lower-dimensional cases, especially the energy-
critical four-dimensional case, remain of great interest; it appears that
the necessary step here is to develop covariant null form estimates, but
there appear to be significant technical obstacles to doing so at present.
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