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1. Introduction

These notes are a biased guide to some recent developments in the deformation
theory of hyperbolic 3-manifolds and Kleinian groups. This field has its roots in the
work of Poincaré and Klein, and connects to topology via Thurston’s geometrization
program, to analysis via the Ahlfors-Bers quasiconformal theory, and to complex
dynamics via the work of Thurston, Sullivan and others. It encompasses many
techniques and ideas and may be too big a subject for a single account. We will
focus on the geometric study of ends of hyperbolic 3-manifolds and boundaries
of deformation spaces, and in particular on the techniques that led to the recent
solution by Brock, Canary and the author [82, 23] of the incompressible-boundary
case of Thurston’s “Ending Lamination Conjecture”.

The space of hyperbolic structures on a fixed 3-manifold M is studied by con-
sidering representations of (M) into the isometry group of hyperbolic 3-space
H?2, up to a natural equivalence by conjugation. In this space, called the character
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variety, the injective representations with discrete image correspond to hyperbolic
3-manifolds that are homotopy-equivalent to M (see §2 for more details).

Mostow /Prasad rigidity tells us that when M is closed or admits a hyperbolic
structure of finite volume, the hyperbolic structure is unique, and hence the defor-
mation space is a single point. On the other hand, in the infinite volume case the
deformation space has nontrivial interior in the character variety.

This interior has been fairly completely described, in a complex-analytic sense,
by the work of Ahlfors, Bers, Kra, Marden, Maskit and Sullivan (see e.g. [3, 8, 9,
69, 61, 67, 100]. The boundary continues to pose challenging questions, although
considerable progress has been made in recent years. In many ways the general
picture we have of this deformation space is analogous to that of the Mandelbrot
set in complex dynamics, or more generally to the bifurcation locus in a family of
rational maps of the Riemann sphere.

FIGURE 1. A 2-dimensional slice of the 4-dimensional deformation
space associated to a once-punctured torus. The interior is the solid
white region. (Courtesy C. McMullen and D. Wright)

We can summarize the current state of knowledge in terms of the following
basic problems and questions:

e Classification: Describe elements in the deformation space in terms of
their asymptotic geometry. For elements in the interior this amounts to
the Ahlfors-Bers parametrization in terms of Teichmiiller parameters. For
elements on the boundary this corresponds to Thurston’s Ending Lami-
nation Conjecture.

e Density of the interior: Bers, Sullivan and Thurston conjectured that
the deformation space is the closure of its interior. This is analogous in dy-
namics to the density of hyperbolic (or Axiom A) systems — false in general
but still conjectured and open for rational maps. Density was established,
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for the incompressible boundary case without cusps, by Brock-Bromberg,
and is also a consequence of the Ending Lamination Conjecture.

e Bumping: Analogous to bifurcation in dynamics, this is the phenom-
enon, discovered by Anderson-Canary, that different components of the
interior of the deformation space can have intersecting closures. This in
particular implies that the topological type of a hyperbolic 3-manifold can
change discontinuously in the representation space. Bumping and associ-
ated phenomena are the chief remaining obstructions to having a complete
topological picture of the deformation space.

e Tameness: Marden conjectured that a hyperbolic 3-manifold with finitely-
generated fundamental group is tame, i.e. homeomorphic to the interior
of a compact 3-manifold. This is known for manifolds whose cores have
incompressible boundaries but for the compressible boundary case is open,
and is the chief obstruction to completing the classification problem.

There are other questions about the geometry of the deformation space, e.g.
Miyachi’s work on the shape of cusps [84], Kapovich’s work on hyperbolic fixed
points of ‘renormalization’ maps [54], or Keen-Series’ work on pleating coordinates
[66], which we will not address at all in this account. For a lovely semi-popular
and well-illustrated treatment of many aspects of the deformation theory, see the
book Indra’s Pearls [34] by Mumford-Series-Wright.

In §82—-4 we will discuss, in a general way, the structure of the deformation
theory and the current state of the problems listed above. In §§5-8 we will give a
tutorial-style discussion of some central geometric tools that are used in the analysis
of hyperbolic 3-manifolds: Margulis tubes, geometric limits, pleated surfaces, lami-
nations and the complex of curves. In §6, in particular, we will discuss a collection
of examples of Kleinian surface groups that illustrate some of the richness of the
geometric structures that can occur. In §9 we will indicate in a broad outline how
these ideas are put together to give a proof of the Ending Lamination Conjecture.
We will conclude in §10 with a discussion of some corollaries of this work, and of
some remaining open questions.

2. Hyperbolic geometry and deformations

Hyperbolic geometry. Hyperbolic n-space H™ is the unique complete simply
connected Riemannian n-manifold with all sectional curvatures K = —1. A stan-
dard model of H" is given by the upper half-space U = {(x1,...,2,) : &, > 0},
with the metric

dz? + - dz?

3

The isometries of H" are the Mobius transformations that preserve U. For n = 2, H?
can be identified with {z € C : Im z > 0}, and the orientation-preserving isometries
are just PSLo(R), acting by z — ‘Cljis For n = 3 the orientation preserving
isometries are PSLo(C), acting on the upper half-space {(z,t) : z € C,¢ > 0} by an

extension of the natural action on C. In fact the Riemann sphere C = CU{oo} is a
natural boundary for H?, and the group acts there by conformal homeomorphisms.

A hyperbolic structure on an n-manifold N is a complete metric of constant
sectional curvature K = —1 (usually considered up to diffeomorphism isotopic to
the identity). Every such structure is obtained as the quotient N 2 H"/I" where I"
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acts discretely on hyperbolic n-space H" by isometries. When n = 2 T" is called a
Fuchsian group, and when n = 3 it is called a Kleinian group.

Geometrization. Thurston conjectured in the 1970’s that all compact 3-manifolds
admit canonical decompositions into “geometric pieces,” where the geometry is
one of eight possible types coming from three-dimensional homogeneous spaces:
Euclidean space E?, the sphere S3, hyperbolic space H?, and the “fibred geome-
tries”, S? x R, H? x R, PT—S\]-__TQ(R), the 3-dimensional solvable group Sol, and the
3-dimensional (nilpotent) Heisenberg group Nil. By far the most interesting and
diverse family is the hyperbolic manifolds. See Scott [95] for a thorough discussion.

In particular, let M be the interior of a compact oriented 3-manifold M. The
hyperbolic part of Thurston’s conjecture states:

Hyperbolization Conjecture. M admits a complete hyperbolic structure if and
only if

(1) m1 (M) is infinite or M is the 3-ball,

(2) M is irreducible, and

(3) M is atoroidal.

M is irreducible if every embedded 2-sphere bounds a ball, and is atoroidal
if no immersed torus is 7 -injective unless it is homotopic into M. It is easy to
see that these conditions are necessary. Thurston proved this conjecture in many
cases, and in particular in the case that M # (J, which is the case that concerns
us the most in these lectures. (The work of G. Perelman, announced not long after
these lectures were given, promises to prove the Geometrization Conjecture in its
full generality.)

Rigidity. If M admits a hyperbolic structure, one naturally asks about the set of
all such structures, and this will be our concern in what follows. The theorems of
Mostow [86] and Prasad [93] tell us that

Mostow/Prasad Rigidity. If n > 3 and a hyperbolic n-manifold M is closed or
has finite volume, then its hyperbolic structure is unique.

In particular for oriented 3-manifolds, vol(M) < oo is equivalent to the condi-
tion that M is a union of tori. In this case the ends of M are cusps: a neighbor-
hood of a component T2 of M can be parameterized as T2 x (0, 00), where the
second coordinate denotes distance and the cross-sectional tori T2 x {t} contract
exponentially with ¢.

This uniqueness of the hyperbolic structure is of course of great value in topol-
ogy: any geometric property of the hyperbolic metric is automatically a topological
invariant. Since, for example, many knot complements admit hyperbolic structures,
this places hyperbolic geometry squarely in the center of 3 dimensional topology.

Deformations. When OM contains surfaces of genus 2 or greater, there is a very
rich deformation theory for hyperbolic structures on M.

Let us first return for a moment to the 2-dimensional case. If S is the interior
of a compact surface it is well-known that S admits a hyperbolic structure if and
only if x(S) < 0. Assume for simplicity that S is oriented. Since a hyperbolic
structure gives an identification of 7 (S) with a discrete subgroup of PSLa(R), the
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space of all such structures can be studied by first considering the quotient (in the
sense of algebraic geometry)

X(5) = Hom(m(S5),PSL2(R))//PSLa(R).

Here PSLy(R) acts on Hom(m(S), PSL2(R)) by conjugation of the image, since
conjugate representations certainly give the same geometric structure. X(.5) is
known as the character variety of w1(S), since it can be parametrized by traces of
the images of generators (see e.g. Shalen [96]). Within X (S) we consider those
(equivalence classes of) representations that are injective with discrete images, and
so that the quotient of H? by the resulting group action has finite area, and is
homeomorphic to S (when S is closed the last two conditions are automatic). This
is called the Teichmiiller space of S, denoted 7 (S). It is a well-known space that
has been studied from various points of view since Riemann, and is in particular
homeomorphic to R%976+2 where g is the genus of S and b is the number of
boundary components.

7 (S) can also be identified with the space of Riemann surface structures on
S modulo diffeomorphism homotopic to the identity. The equivalence with the
previous definition is via the Uniformization Theorem.

For our 3-manifold M we can consider a similar definition:

X (M) = Hom(m (M), PSLz(C))//PSL2(C).

Within this variety lies AH (M), those equivalence classes [p] where p : m (M) —
PSLs(C) is injective and has discrete image. (The terminology “AH”, due to
Thurston, indicates the Algebraic topology on the set of Hyperbolic structures.)
The quotient manifold N, = H3/p(r;(M)) is equipped with a homotopy class of
homotopy-equivalences M — N,,, determined by [p]. We can think of AH(M) as
the set of hyperbolic 3-manifolds equipped with such homotopy-equivalences, called
markings.

AH(M) is a closed subset (excluding the elementary cases where m (M) is
abelian): this is a theorem of Jgrgensen, using his criterion for discreteness [53] (or
alternatively the “Margulis lemma” applied to PSL2(C), see Thurston [103]). It is
a consequence of the Ahlfors-Bers quasiconformal deformation theory that AH (M)
has a non-empty interior if OM has components of genus 2 or more.

To gain some appreciation for this fact, consider first a natural decomposition
of the Riemann sphere imposed by the dynamics of the action of a discrete group
I' ¢ PSLy(C). The limit set A is the smallest closed invariant subset of C, and
the action of I on A is chaotic in various senses. The complement © = C \ A is
known as the domain of discontinuity, and the quotient /A is a Riemann surface,
sometimes denoted O, N.

Let us consider the special (but central) case that M = S x [—1, 1] where S is
a closed surface of genus g > 2. A point in 7(S) is represented by p : m1(S) —
PSL2(R), which can equally well be considered as a representation of 71 (M) into
PSLs( The quotient H?/p(m1(M)) is homeomorphic to M. The limit set of
p(m1(M)) is the circle R = R U {oo}, and © is a pair of disks Q4. The quotient
Q/p(m1(9)) is a pair of Riemann surfaces conformally equivalent to the original
point in 7 (5).

Poincaré and Klein were aware that such a group could be perturbed slightly
in PSLy(C) to yield a group that is no longer conjugate to a subgroup of PSLa(R).
Instead, such a small perturbation p’ will have a limit set that is a Jordan curve but

R),
Q).
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FIGURE 2. The limit set of a Kleinian group (courtesy C. McMullen)

not a circle. The quotients Q' /p/(7m1(M)) are a pair of Riemann surfaces equipped
with an identification with S, hence give rise to a new pair of points in 7(S). Bers
[8] proved the astonishing result that

Simultaneous Uniformization Theorem. FEvery pair of points in T(S) are
realized as Qy /p(71(S)) for some p € AH(S x [—1,1]). This correspondence yields
a homeomorphism

QF(S) = T(S) x T(S).

Here QF'(S) C AH(M) is the subset consisting of representations whose action
on C is topologically (in fact quasiconformally) conjugate to the Fuchsian action.
These are known as quasifuchsian groups. Bers used his work with Ahlfors [2] on
solutions to the Beltrami equation to show that any deformation of the confor-
mal structures at infinity, i.e. of the surfaces Q4 /p(m1(S)), can be extended to a
deformation of the entire group action.

The work of Marden [66] and Sullivan [100] shows that QF(S) is in fact the
interior of AH(S). This picture generalizes to any compact M: Each component of
int(AH(M)) is a region of structural stability: two points in the same component
correspond to marked hyperbolic manifolds that are in the same marked homeo-
morphism class, and whose associated actions on C are quasiconformally conjugate.
The Simultaneous Uniformization Theorem generalizes to give a parameterization
of each component in terms of a boundary Teichmiiller space (see Kra [61] and
Maskit [68]).

In general, quasiconformally conjugate actions on C correspond to quotient
manifolds that are quasi-isometric (via e.g. the extension theorem of Douady-Earle
[35]). Mostow rigidity depends on the fact that, when the manifolds are compact,
no quasiconformal deformation of their group actions is possible. Sullivan proved
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FIiGURE 3. This Jordan curve is the limit set of a quasifuchsian
group (courtesy D. Wright).

a strong generalization of Mostow rigidity to finitely generated groups with infinite
volume quotients, showing in essence that any quasiconformal deformation of a
group must be supported on its domain of discontinuity:

Sullivan Rigidity. [99] Let f : Ny — N be a quasi-isometry between hyperbolic
3-manifolds with finitely-generated fundamental groups, that extends to a conformal
homeomorphism from O N1 to OscNo. Then f is homotopic to an isometry.

Equivalently, a quasiconformal conjugacy in C between two finitely generated
Kleinian groups which is conformal on the domain of discontinuity is a Mobius
transformation.

3. Cores and ends of hyperbolic 3-manifolds

Let us consider a particular element of AH (M), with quotient manifold N. We
can understand, in a coarse sense, the hyperbolic structure of N by considering its
decomposition into a compact core and ends. Scott [94] showed that any 3-manifold
N with finitely-generated fundamental group contains a compact 3-dimensional
submanifold K whose inclusion into N is a homotopy-equivalence. The components
of N\ K are then in one-to-one correspondence with the ends of N as a topological
space, where each component is a neighborhood of an end. Let us assume, as we
may by changing our choice of M, that K is homeomorphic to M.

N also has a convex core Cn, which is the smallest closed conver submanifold
of N whose inclusion is a homotopy-equivalence. The structure of the ends of N is
classified by how they intersect with the convex core.

To simplify the discussion, assume from now on that the hyperbolic structure
on N has no cusps: that is, no element of the associated group I' = p(m1(N)) is
parabolic. In this case we have a dichotomy for the structure of each end of N:

e An end E is geometrically finite if it has a neighborhood that is outside

the convex core. Such a neighborhood can then be foliated by a family Sy
of surfaces, isotopic to a component S of 0K, so that each S; is convex,
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and the size of S; grows exponentially with distance from K. The metrics
on S, after conformal rescaling to constant size, converge to a unique
hyperbolic metric on S, which therefore gives a point vg in the Teichmiiller
space 7 (5).

Equivalently, such an end corresponds to a component of 0N =
Q/p(m1(M)), which is homeomorphic to S, and vg is the natural conformal
structure inherited from (2.

e An end F is geometrically infinite if it has a neighborhood that is com-
pletely contained in the convex core. (In this case there is no component
of Do N corresponding to E).

That these are the only two possibilities is a consequence of Ahlfors’ Finiteness
Theorem [3], which implies that the hyperbolic area of dCy is finite, from which it
follows that Cn cannot partition a neighborhood of an end into two unbounded
pieces.

FIGURE 4. Schematic of a compact core (dark grey). The convex
core includes the additional geometrically infinite end on the left

(light grey).

The geometry of a geometrically finite end is determined, up to uniform bilips-
chitz equivalence, from any of the surfaces S; (see Epstein-Marden [36]), or equiv-
alently from the limiting structure vg € 7(S). Furthermore, the general form of
the Ahlfors-Bers theory implies that, if N has only geometrically finite ends, then
it is uniquely determined by the corresponding points in the Teichmiiller space.

Note that, in this description, we did not need to know (because of Scott’s
theorem) that N was actually homeomorphic to M — the discussion goes through
just as well only with the assumption that 71 (N) is finitely generated. This is a
useful observation for considering arbitrary points in AH (M), which may not yield
manifolds homeomorphic to the interior of any compact manifold. The property of
being the interior of a compact manifold is known as topological tameness, and it
is worth recording here Marden’s conjecture from [66]:

Tameness Conjecture. A hyperbolic 3-manifold with finitely generated funda-
mental group is topologically tame.

Our description of geometrically finite ends implies in particular that any man-
ifold all of whose ends are geometrically finite is topologically tame — as originally
shown by Marden in [66].
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Geometrically infinite ends. What can we say about the structure of geomet-
rically infinite ends? Groups with such ends were constructed by Bers-Maskit [11]
(and shown to be geometrically infinite by Greenberg [40]), but very little was
understood about their geometry.

It turns out that the state of our knowledge depends on whether the boundary
of M is compressible or not — incompressibility means that the map 1 (S) — 71 (M)
induced by the inclusion of any component S of M is injective.

If OM is incompressible, then the work of Thurston and Bonahon [102, 13]
gives a preliminary description of the geometry and topology of the geometrically
infinite ends of N. Thurston defined the notion of a simply degenerate end, and
showed that such an end determines a unique lamination on the corresponding
boundary component of M, which is called an ending lamination. Thurston also
showed that if every geometrically infinite end of M is simply degenerate, then in
fact M is topologically tame. Bonahon showed that indeed every geometrically
infinite end of M is simply degenerate (provided OM is incompressible). Thus
Marden’s conjecture is established in the setting of incompressible boundary. We
will discuss ending laminations in more detail in the next section.

When dM is compressible, much less is known. Canary showed [29] that, if M
is topologically tame, then a suitable notion of simply degenerate ends and ending
laminations can be defined, so that the same theory carries through with suitable
modifications. There has also been a string of results [27, 90, 5, 38, 22] that
establish the tameness of certain limits of geometrically finite manifolds. However
the general tameness conjecture remains open, and is at this point the biggest
remaining problem in the deformation theory of hyperbolic 3-manifolds.

4. Laminations and degenerate ends
4.1. Geodesic laminations on surfaces

Consider, by way of motivation, the case of a torus T2. The set of simple closed
curves in T2, up to homotopy, can be described via the extended rational numbers
@ = QU {oc}, by associating each curve to its slope, in a chosen identification of
Hy(T?) with Z2. The natural completion of this countable set to R = RU{oo} can
be given a geometric interpretation in terms of foliations on T2, whose slopes can
be irrational.

A surface of higher genus does not admit non-singular foliations because of the
Poincaré index theorem, but the related notions of singular measured foliations and
measured geodesic laminations serve as good generalizations of the situation for the
torus. We will describe this using the language of laminations, but see e.g. [39, 63|
for the foliation point of view.

Fix a closed hyperbolic surface S. A geodesic lamination in S is a compact
set, foliated by complete geodesics. A simple closed geodesic is the simplest ex-
ample, but one can obtain more complicated examples by taking Hausdorff limits
of sequences of simple closed geodesics whose lengths go to co. In fact the space
GL(S) of all geodesic laminations in S is compact in the topology of Hausdorff
convergence.

A transverse measure on a geodesic lamination is a family of Borel measures on
arcs transverse to the lamination, invariant by holonomy; that is, by sliding along
the leaves. (See Figure 5).
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FIGURE 5. A geodesic lamination with closeup showing a transver-
sal sliding along the leaves.

Thurston introduced this notion and defined the space ML(S) of all such mea-
sured laminations. This space has a natural topology, coming from weak-* conver-
gence of the measures, which makes it homeomorphic to R%9~6 where g is the genus
of S. The hyperbolic metric we chose for S turns out to be irrelevant: different
choices yield canonically homeomorphic spaces. The projective lamination space,
denoted PML(S), is the quotient of ML(S)\ {0} by the Ry action that multiplies
measures by constants (0 denotes the empty lamination). PML(S) is homeomor-
phic to the 6g — 7-sphere, and contains the simple closed geodesics as a dense set
of “rational” points, in analogy with the torus. See Bonahon [14], Casson-Bleiler
[33] and Penner-Harer [92] for more details.

Let us also define the space UML(S) of “unmeasured laminations”, which is
just the quotient of ML(S) \ {0} under the equivalence relation that forgets the
measures.

This space is different from GL£(.S) in two ways. First, not all laminations admit
transverse measures of full support; UML(S) contains only laminations that are
the supports of measures. Second, the topology of Hausdorff convergence in GL(S)
is different from the quotient topology on UML(S).

UML(S) is also different from PML(S), and the difference is due to the fact
that there exist laminations which support a continuum of projectively inequivalent
measures. The natural map PML(S) — UML(S) collapses all these measures to
a point.

Although UML(S) is not a Hausdorff space, it contains a natural subset that
will be useful to us, and which is Hausdorff. This is the set of filling laminations:
A measured lamination A is called filling if it has non-trivial intersection with every
essential closed curve in S. Equivalently A is filling if it cuts S into a union of ideal
hyperbolic polygons (if S is not closed then these can be once-punctured polygons).

The filling laminations are in fact generic in PML(S), just as the irrational
numbers are generic among real numbers. Their image in UML(S), which we
denote by £L£(5), is a Hausdorff space (see Klarreich [58]) and we will revisit it in
the next section.

4.2. Simply degenerate ends

If an end of a hyperbolic 3-manifold is not geometrically finite, both its geom-
etry and topology are a priori rather mysterious. Thurston discovered a way to
“tame” the study of ends by considering the placement of closed geodesics within
them (and more usefully, of “pleated surfaces”, which we will discuss in §7).

Thurston defined an end E of N (in the incompressible-boundary case) to be
simply degenerate if there is a sequence of simple closed curves «; on the associated



THE CLASSIFICATION OF HYPERBOLIC 3-MANIFOLDS 191

surface S whose geodesic representatives o) in N are eventually contained in any
neighborhood of £ — we say that o ezit the end. Note the contrast between this
and the property of being geometrically finite: The existence of the convex surfaces
S; means that, outside S¢, there cannot be any closed geodesics. This is because
the exterior of a convex surface admits a distance-decreasing projection back to
the surface, and hence the shortest representative of any homotopy class of closed
curves must lie inside the convex core Cy.

If such a sequence «; exists, it turns out that its asymptotic behavior as a subset
of U ML(S) is quite simple. Thurston proved that a simply degenerate end always
has a unique lamination which is the limit point of any such sequence. Furthermore,
he showed:

THEOREM 4.1. [102] If OM s incompressible and N is the quotient manifold
of a point in AH (M) without cusps, then, whenever E is a simply degenerate end
of N facing a component S of the compact core boundary,

(1) There is a unique lamination vy € UML(S) such that a sequence o of
simple closed curves in S converges to vg in UML(S) if and only if of
exit the end E.

(2) There exists a sequence o exiting E such that {n(af) < Lo where Ly
depends only on the topological type of S.

(3) vg is filling: it has the property that any homotopically non-trivial simple
closed curve in S intersects vy nontrivially.

(4) E is topologically tame: it has a neighborhood homeomorphic to S x
(0, 00).

(For a few remarks on the case with cusps see §5).

Thurston called vg the ending lamination of E. He also proved that every limit
of geometrically finite elements of AH (M) has ends which are either geometrically
finite or simply degenerate. Ends which are either one or the other are called
geometrically tame. A few years later, Bonahon proved the foundational theorem:

THEOREM 4.2. [13] If OM is incompressible and N € AH(M), then every end
of N is geometrically tame.

In other words the ending laminations are well-defined in the setting that will
concern us in these notes. To unify notation, the end invariant of a geometrically
tame end facing a component S of M is the associated vg € 7(9) if the end is
geometrically finite, and the associated ending lamination in E£(S) if it is simply
degenerate.

Thurston’s Double Limit Theorem (see [101] and Ohshika [89]), together with
the quasiconformal deformation theory, implies that every filling lamination actu-
ally occurs as an ending lamination (this justifies our name EL£(S) for the set of
filling laminations). We state this a bit more carefully, and in the case without
cusps:

THEOREM 4.3. Let M be compact with incompressible boundary and let
(vs € EL(S)UT(9))s
be a set of choices of end invariants for components S of OM, with the restriction
that, when M = S x [~1,1], vgxi_1} # vsxq1} if they lie in EL(S). Then there

exists N € AH(M) homeomorphic to M, whose associated end invariants are the

(vs)-
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In other words, all possible combinations of end invariants are obtained (the
restriction when N is a product is necessary: Ending laminations for opposite ends
can never be the same).

Thus a complete classification of AH (M) would follow from the following con-
jecture of Thurston:

Ending Lamination Conjecture. An element of AH (M) is uniquely determined
by its list of end invariants.

The proof of this conjecture, in the case that M is incompressible (in particular
the case M = S x [0, 1]) will appear in [82] and [23].

5. Tubes, cusps and geometric limits

A central feature of the study of hyperbolic 3-manifolds is the notion of a thick-
thin decomposition, and we will take a little time now to discuss this decomposition
and the structure of the components of the thin part.

Hyperbolic tubes. A hyperbolic tube is the quotient of an r-neighborhood of a
geodesic in H? by a translation or a screw motion. Our goal here is to explain
how the geometry of a hyperbolic tube is controlled by the geometry of its marked
boundary.

More explicitly, given A € C with Re A > 0, and r > 0, we define T(A,r) to be
the quotient of the r-neighborhood of the vertical line L above 0 € C in the upper
half-space model of H? by the loxodromic v : z — e*z. The action of v in the third
coordinate is just multiplication by |e*|, and in particular ~ translates the axis L
by a hyperbolic distance Re A, and rotates around it by angle Im A. Any hyperbolic
tube is isometric to some T(A,r), but we note that the imaginary part of X is, so
far, only determined modulo 27.

Marked boundaries and Teichmiiller parameters. If T is an oriented Eu-
clidean torus, a marking of it is an ordered pair («, ) of homotopy classes of
unoriented simple closed curves with intersection number 1. There is a unique
t>0and w € H? = {z: Im z > 0} such that T can be identified with C/¢(Z + wZ)
by an orientation-preserving isometry, so that the images of R and wR are in the
classes o and [, respectively. The parameter w describes the conformal structure
of T' as a point in the Teichmiiller space 7(T) = H?.

FIGURE 6. A hyperbolic tube has a Euclidean torus boundary.
The meridian disk is shaded.
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The boundary torus of a hyperbolic tube T inherits a Euclidean metric and an
orientation from T, and it admits an almost uniquely defined marking: Let p denote
the homotopy class of a meridian of the torus (i.e. the boundary of an essential disk
in T) and let @ denote a homotopy class in JT of simple curves homotopic to the
core curve of T. While y is unique, « is only defined up to multiples of y. Fixing
such a choice (o, 1), we obtain boundary parameters (w,t) as above.

The freedom of choice of A (mod 27) is related to the freedom of choice of «
mod u, and indeed there is a natural way to choose a given A. We then obtain
(see [82, §3]) a bijective correspondence between the parameters (A,r) and the
boundary data (w,t).

Parabolic tubes. A rank-1 parabolic tube is the quotient of a horoball in H?
by a cyclic group of parabolic transformations. Explicitly, consider the parabolic
transformation z — z+t, acting on the region of height > 1 in the upper half space
model of H3. The quotient is homeomorphic to S* x R x [0, 00), and we note that
any rank-1 parabolic tube is obtained in this way for some t.

A rank-2 parabolic tube is the quotient of a horoball by a parabolic group
isomorphic to Z2. It is homeomorphic to T? x [0,00) and can be obtained as the
quotient of the region of height > 1 by the group generated by z — 2z + ¢ and
z + z + tw with w € H2. As for hyperbolic tubes, once a marking («, i) for the
torus boundary is chosen the parameters (w,t) are uniquely determined; but note
that there is no natural choice of either p or « in this case.

Thick-thin decomposition. By Margulis’ Lemma, or Jgrgensen’s inequality (see
e.g. Thurston [103] or Kapovich [55]), there is a universal ¢g > 0 such that the
e-thin part of a hyperbolic 3-manifold N, i.e. the set Ny q = {x : inj(z) < €}, is a
disjoint union of hyperbolic and parabolic tubes, whenever € < ¢g. The parabolic
tubes are usually called cusps.

While the structure of each individual tube is relatively simple, the real chal-
lenge in deformation theory is understanding how these tubes are organized within
a given hyperbolic 3-manifold. We will see some indication of the complexity of
this in the examples of Section 6.

Geometric limits. The geometric limit of a sequence of Kleinian groups I'; is
their Gromov-Hausorff limit as subsets of PSLy(C). Fixing an origin 0 € H?, if the
translation lengths d(0,+(0)) are bounded away from 0 and oo for all 1 # v € T';, for
all ¢, then such a limit always exists (after taking a subsequence) and is a nontrivial
and discrete group I's. The equivalent statement for the quotient manifolds N; =
H3/T; is this: let the basepoint x; of N; be the image of 0 under the quotient map.
Then geometric convergence implies that, for any R > 0, the R-neighborhood of x;
in NNV; is eventually diffeomorphic to the R-neighborhood of z, in N4, by a map
that is locally converging to an isometry as ¢ — co. The opposite implication also
holds, up to possibly conjugating the groups by rotations fixing 0. (See e.g. [30]).

The notion of geometric limit is extremely useful in the study of hyperbolic
3-manifolds — a lot of our available geometric control comes from compactness or
contradiction arguments involving geometric limits.

The simplest types of Kleinian groups are the cyclic groups giving rise to hy-
perbolic tubes as above. It is instructive to consider geometric limits in this setting.
Consider a sequence of hyperbolic tubes T; with boundary parameters (w;,1). If
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w; — w with Imw > 0 then it is fairly clear that the tubes (and the correspond-
ing groups) converge geometrically to the tube with parameters (w,1). The case
Imw = 0 involves a non-discrete limit and will not interest us here. More inter-
esting is the case that |w;| — oco. Here we find that the radii r; — oo, and (after
restricting to a subsequence and choosing appropriate basepoints) the tubes con-
verge geometrically to a parabolic tube. Which kind of parabolic tube depends on
the sequence: If Imw; — oo, then the limit is a rank-1 tube. But if Rew; — oo
and Imw; is bounded, the limit is a rank-2 tube. This is because in this case the
tori defined by (w;, 1) remain in a bounded set of shapes up to homeomorphism, or
equivalently the projections of w; to the moduli space of the torus remain bounded.
This phenomenon was first discovered by Jorgensen [52], and also plays a very
important role in Thurston’s “Dehn-filling theorem” and its generalizations, which
show that hyperbolic 3-manifolds with rank-2 cusps can be geometrically approxi-
mated by hyperbolic manifolds where the cusp tubes are replaced by solid tori.

End invariants in the presence of cusps. If N is allowed to have cusps the
description of ends from §3 becomes a bit more complicated, but is in principle the
same. The main idea is to consider Ny, the complement in N of the (interiors of)
parabolic Margulis tubes. This manifold has annuli (and/or tori) in its boundary,
and a relative compact core K (see McCullough [72] and Kulkarni-Shalen [62])
which meets Ny in compact annuli and tori. The components of Ny \ K determine
the ends of Ny. Assuming that the components of 0K \ N, are incompressible,
each one will support an end invariant as before, which is either a filling lamination
or an element of a Teichmiiller space.

The ending lamination conjecture now becomes the statement that all this
data — parabolic elements, ending laminations and Teichmiiller data — determine
N uniquely.

An important example comes from surface groups, if we consider a compact
surface S with boundary and an element [p] € AH(S x [—1,1]) such that p takes
dS to parabolic elements. Then the cusps associated to these elements cut N into
S x R. Note that the relative boundary components of Ny will be incompressible
in this case, in spite of the fact that S x [0,1] is a handlebody.

6. Examples of surface groups

The following collection of examples gives a taste of the huge variety of possi-
bilities for the geometry of Kleinian surface groups.

6.1. Fuchsian and Quasifuchsian groups

If T preserves a totally geodesic copy of H? inside H® as well as its transverse
orientation, then N = H?/T" contains a totally geodesic copy of the surface S =
H? /T, and the metric on N can be explicitly described in the coordinates S x R, as

(6.1) (cosh? t)ds? + dt?

where t is the R parameter, measuring distance from S, and ds is the hyperbolic
metric on S. T is conjugate to a subgroup of PSLy(R), and is called a Fuchsian
group, as described in §2.

For a general quasi-Fuchsian group, the geometry outside the convex core can
be modeled, up to uniform bilipschitz distortion, by half of the Fuchsian example,
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namely S x [0,00) with the metric (6.1) (see Epstein-Marden [36]). From now on
we will concentrate on describing the metric inside the convex core.

6.2. Periodic manifolds

Our next example is a well-known type of manifold with geometrically infinite
ends (the convex core is the whole manifold.)

Let ¢ : S — S be a pseudo-Anosov homeomorphism of the closed surface
S (this means that ¢ leaves no finite set of non-boundary curves invariant up to
isotopy). The mapping torus of ¢ is

My =S xR/{(z,1) = (p(2),t + 1)),

a surface bundle over S* with fibre S and monodromy . Thurston [101] showed, as
part of his hyperbolization theorem, that M, admits a hyperbolic structure which
we'll call N, (see also Otal [91] and McMullen [74]). Let N = S x R be the infinite
cyclic cover of N, “unwrapping” the circle direction (Figure 7). After identifying
S with some lift of the fibre, we obtain an isomorphism p : m(S) — m(N) C
PSLy(C), which gives us an element of AH(S x [-1,1]).

() [} (] ()

¢ ) (¢ )em o) (g
DO D)L =l C

Q Q Q

FIGURE 7. N covers the surface bundle N,.

The deck translation ® : N — N of the covering, acting as an isometry of the
lifted metric, induces ®, = ¢, : m1(S) — m1(S). Note that N has two ends, neither
of which can be geometrically finite: for if one of the ends were foliated by convex
surfaces S;, which are expanding exponentially, the isometry ® could not exist.

We next consider the action of ¢ on S, which, after isotopy, can be arranged
(by Thurston’s classification theorem for surface automorphisms, see e.g. [39, 33])
to have the following structure: There is a transverse pair (v4,v_) of laminations
so that ¢ preserves the leaves of both v, and v_, stretching the former and con-
tracting the latter. Every simple closed curve « in S intersects this system of leaves
nontrivially, and it follows that repeated application of ¢ tends to make  more
and more parallel to v, (and application of ¢! brings it more in the direction of
v_). Indeed in PML(S) (and in UML(S)) the sequences {¢"(v)} and {p"(7)}
converge to v4 and v_, respectively.

We can see v directly in the asymptotic geometry of N: For a curve y in S, let
~* be its geodesic representative in N. Now consider ®"(v*) — these are all geodesics
of the same length, marching off to infinity in both directions as n — 400, and note
that ®™(y*) = ¢™(y)*. So, we have a sequence of simple curves in S, converging to
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vy as n — 00, whose geodesic representatives “exit the + end” of N (similarly as
n — oo they converge to v_ and the geodesics exit the other end). It follows that
vy are the ending laminations of p.

The way that Thurston actually proved the existence of this example was to
obtain it as a limit of quasi-Fuchsian groups. For X,Y € 7(95), let ¢f(X,Y) denote
the quasi-Fuchsian group (up to conjugation) whose surfaces at infinity are X and
Y. That is, ¢f is the Ahlfors-Bers simultaneous uniformization map from §2.

Now if we fix X and consider the sequence

Pn = qf(go_n(X), Spn(X))v

Thurston showed that this converges in AH (S x [—1,1]) to the representation p. At
the n'"* stage, the convex core of p,, is roughly (up to uniform bilipschitz diffeomor-
phism) a concatenation of 2n fundamental domains of ®’s action on the limiting
manifold (see McMullen [74]).

6.3. Drilling out a curve

Kerckhoff-Thurston [57] constructed the following sequence of quasi-Fuchsian
representations p,, which is related to Jgrgenson’s original observation that the
geometric limit of a sequence of hyperbolic tubes can be a rank-2 parabolic tube.

Let v be an essential curve in S, and let D, be a Dehn twist on 7. Then
consider the sequence

Pn = Qf(XaD'ryl(X))

The bottom surface of the convex core of N, is (by Sullivan’s theorem [36]) uni-
formly bilipschitz equivalent to X, and so is the top, but by a map which is in the
homotopy class of D). Kerckhoff and Thurston showed that a uniform bilipschitz
model for the geometry of the convex core of N, can be described as follows:

Let M =S x [—1,1] and let A be a closed annular collar of v in S. Let U be
the solid torus A x [—1/2,1/2] (see figure 8). Place a fixed metric on M for which
the torus U is Euclidean. We can describe the meridian of U by choosing an arc

a in A connecting the two components of JA, and letting

= 0(ax [~1/2,1/2)).

Now remove U from M, and replace it by a new solid torus U,,, whose meridian
is obtained from p by twisting its top arc, a x {1/2}, n times around the core of
A x {1/2}. The new manifold is homeomorphic to the old, but the geometry will
be different.

Letting « be the core of A x {1/2}, we have a marking (o, u,,) for OU. As
discussed in §5, there is a unique hyperbolic tube whose marked boundary has the
same geometry as QU with this marking, and we can identify U, with this tube.
The resulting manifold thus has a very short representative -y, of v, surrounded by
a deep Margulis tube.

As n — o0, this sequence of models M,, (and hence also the convex cores of the
hyperbolic manifolds) converges in the sense of Gromov-Hausdorff to a manifold in
which U has been replaced by a parabolic tube with torus boundary. (This is just the
same as the limit discussed in §5, where the boundary parameters w,, satisfy Im w,,
bounded and Rew,, — o0.) Equivalently, the geometric limit is homeomorphic to
S x [—1, 1] minus the level curve v x {0}.
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F1GURE 8. The model for the Kerckhoff-Thurston “drilling” construction.

This example begins to show the role that Margulis tubes play in the structure
of surface groups. It also indicates that geometric limits of surface groups do not
themselves have to be surface groups.

6.4. Drilling out infinitely many curves

Thurston [101] and Bonahon-Otal [15] produced iterations of the Kerckhoff-
Thurston construction which illustrate that the geometric limit of a sequence of
quasi-Fuchsian groups can in fact be infinitely generated.

In this example, consider an infinite sequence {v1,72,...} of curves in S, and
let D; be Dehn twists about ;. Suppose that the sequence has the following two
properties:

e Fwentual filling property: For each i there is some j > 4 such that the
curves 7, .. .,; fill the surface, meaning that every essential curve in S
must intersect one of these curves.

o Non-annular property: 1If «; = «; for ¢ < j then there must be some
i < k < j such that v intersects ~y; essentially.

Then the sequence
pn = qf (X, D™ o0 DM (X))

(where e(n) — oo sufficiently fast) has a geometric limit which is homeomorphic to

SxR\ | J i x {i}.

i=1

The missing curves «; x {i} correspond to rank 2 cusps, and the non-annularity
condition is necessary because of the property of hyperbolic manifolds that curves
in distinct cusps cannot be homotopic. The “eventual filling” condition is not
necessary for the construction, but in its absence the structure of the limit can be
even more complicated.

A model for the n*” manifold in this sequence can be constructed, similarly to
the previous example, by starting with S x [0,n 4+ 1] and performing appropriate
integer Dehn surgeries on solid tori centered on ; x {i}, giving the new solid tori
the geometry of the appropriate hyperbolic tubes.
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FIGURE 9. The convex hull can have many Margulis tubes, which
in the geometric limit become cusps.

6.5. Brock’s example

Brock [20] gave an example that illustrates that exotic geometric limits do not
just involve appearance of rank-2 cusps, as in the previous two cases.

For this example, let R C S be a (closed) proper essential subsurface, not an
annulus or a 3-holed sphere. Let ¢r : R — R be a pseudo-Anosov and let ¢ : S — S
be a map which is the identity outside R and equal to ¢ in R. This is called a
partial pseudo-Anosov.

If we now let

Brock showed that the geometric limit of the manifolds N, is homeomorphic to

S xR\ R x {0}.

Moreover, the following is a uniform bilipschitz model for the convex core of the
nt" manifold: Let @ denote the periodic hyperbolic 3-manifold homeomorphic to
int(R) x R which covers the mapping torus of ¢, as in §6.2. Note that because
R has boundary, @ should have a parabolic tube of rank 1 for each component
of OR. Let Q,, denote the union of n successive fundamental domains of the deck
translation of @, minus the cusp tubes associated to OR. Thus @,, is homeomorphic
to R x [0, n], endowed with a metric such that each block R x [i,7 + 1] is isometric
to R x [0,1] by a map homotopic to ¢t

Now remove from S x [—1,1] a tubular neighborhood of OR x {0}, and then
cut out a small collar neighborhood of R x {0} and replace it by @Q,. Refill the
tube associated to each component of R by an appropriate hyperbolic tube — this
is done using the natural marking as in the previous examples; In this case w,, for
each torus will have large imaginary part, corresponding to the height of Q.

Thus as n — o0, each tube of R will become a cusp, but a rank-1 cusp now
instead of a rank-2 cusp. If we take a geometric limit with basepoint, say, on the
boundary of the convex core, then the distance to the top and bottom of @Q,, stays
bounded, but its middle grows ever farther, and hence in the geometric limit Q,, will
become two eventually periodic geometrically infinite ends of the form R x [0, 00).
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FiGURE 10. The bilipschitz model of the partial pseudo-Anosov example

6.6. Other constructions and limits

It is clear from these examples that many other variations are possible. For
example a combination of the iterated “drill holes” construction of §6.4 and Brock’s
partial pseudo-Anosov construction should yield sequences that develop many dif-
ferent kinds of Margulis tubes and almost-periodic regions, and whose geometric
limits can be the complement of many, even infinitely many, level surfaces and
curves. Indeed the homeomorphism type of a general geometric limit of quasi-
Fuchsian groups can be quite intricate, a fact which is expressed in the structure
of the “model manifolds” that we will discuss in Section 9.2. See also Soma [97],
and the discussion in §10.

6.7. Bounded and unbounded geometry

It is worth dwelling a bit more on the example N from §6.2 which cyclically
covers the pseudo-Anosov mapping torus N, and its relation to the general case.
First, since N admits a compact quotient, its geometry is bounded in a fairly strong
sense. In particular its injectivity radii are bounded away from 0. Let us say that N
in AH (M) has bounded geometry if it admits a positive lower bound on injectivity
radius (in the case with cusps we say that there is a positive infimum on the lengths
of closed geodesics). This case is considerably simpler than the general case. In
[76, 77] we showed that the Ending Lamination Conjecture holds in the setting of
manifolds with bounded geometry (and no cusps).

Furthermore a bounded-geometry manifold homeomorphic to S x R has struc-
ture similar to that of the pseudo-Anosov example, but not quite periodic: Part
of the proof in [76, 77] involved showing that such a manifold is modeled, up to
bilipschitz homeomorphism, by the “universal curve” over a Teichmiiller geodesic.
That is, there is a geodesic g in 7(S) and a metric on S x R such that S x {t} is
isometric to the hyperbolic surface parameterized by g(t) (where ¢ is an arclength
parameter for g). This metric on S x R is within uniform bilipschitz distortion of
the hyperbolic metric. In the pseudo-Anosov case, g is the axis of ¢ (as constructed
by Bers in [10]). See also Mosher [85] and Bowditch [17] for new alternative proofs.

The examples in §§6.3-6.5 illustrate what happens when the bounded-geometry
condition is dropped: the Margulis tubes cut the manifold into a number of different
types of pieces, the universal curve model for the geometry no longer holds, and
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sequences of such manifolds can have exotic geometric limits (whereas it follows
from Thurston’s work that the geometric limit of a sequence of surface groups
with uniformly bounded geometry is always a surface group). On the other hand
the manifold decomposes into pieces that are either tubes, or bounded-geometry
manifolds of lower genus (the @, in §6.5), or have bounded complexity. This
behavior, properly formalized, turns out to hold in the general case.

McMullen [73] showed that unbounded-geometry manifolds are generic, in an
appropriate sense, in the boundary of a Bers slice (a particular middle-dimensional
slice of AH (S x [—1,1]). This was generalized by Canary-Culler-Hersonsky-Shalen
[26] to other deformation spaces.

Uniform control of the geometry of elements of AH (S x [—1,1]) can only be
possible if a way is found to predict (in terms of end invariants) the occurrence and
configuration of Margulis tubes of short geodesics. In the sections that follow we
will outline the mechanism for deducing, from the structure of the end invariants
of N, the set of short geodesics in N and their topological arrangement.

7. Pleated surfaces

The geometry of a hyperbolic surface is rather simple and explicitly controlled
by its topology. The Gauss-Bonnet theorem fixes its area; injectivity radius is
bounded above; the thick-thin decomposition has a simple description in terms of
collars and pieces of bounded complexity. On the other hand the hyperbolic metrics
vary in a moduli or Teichmiiller space so there is great flexibility. Thurston’s idea of
pleated surfaces harnesses this control coupled with flexibility by considering useful
isometric maps of hyperbolic surfaces into hyperbolic 3-manifolds.

A pleated surface is something like a piecewise-geodesic surface, except that
there are no “corner points” and the bending lines are typically infinitely many.
More formally, it is a map f : S — N where N is a hyperbolic 3-manifold, together
with a hyperbolic metric oy on the surface S, such that path lengths are preserved
by f, and every point in S either has a neighborhood that is mapped totally geodesi-
cally or is on a leaf of a geodesic lamination Ay whose leaves are mapped totally
geodesically. Fairly detailed accounts of the theory of pleated surfaces can be found
in [30] and [36].

Spinning. Typically we will have a fixed homotopy class of maps [h : S — N]
in mind, and will look for pleated surfaces within this class. Starting with any
essential simple closed curve vy on S for which h(y) is not homotopic to a point
or into a cusp, there are pleated surfaces f ~ h such that v C A;. Suppose for
simplicity that + is part of a pants decomposition P of S. We can complete P
to a lamination of S by adding leaves in each pair of pants that spiral toward the
boundary (see Figure 11).

We can deform h to get a map taking each component of P to its unique
geodesic representative. Assuming appropriate topological conditions on h (being
an isomorphism on m suffices) each of the infinite spiraling leaves can be realized
in N as a leaf that spirals around the geodesic representatives of P. The remainder
is a collection of ideal triangles that can only be mapped in one way. It is not hard
to see that the resulting surface inherits a hyperbolic metric.

Other examples can be obtained from this one by a process of taking limits —
given a sequence P, converging to some lamination p the associated sequence of
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FIGURE 11. A lamination in a pair of pants with leaves spinning
toward the boundary.

pleated surfaces, if convergent, will yield a pleated surface which maps p geodesi-
cally. This convergence is made possible by a nice compactness property of pleated
surfaces — a sequence of pleated surfaces to a fixed manifold N, after taking a
subsequence, either leaves every compact set, or converges in a suitable sense to
a pleated surface, or degenerates in a predictable way, developing thin parts that
enter cusps of N.

Pleated surfaces also arise naturally as boundaries of convex hulls of hyperbolic
3-manifolds. Thurston pointed out that these boundaries are embedded pleated
surfaces with the added condition of convexity.

A lamination p is realizable in a homotopy class [h] if it is mapped geodesically
by some pleated surface in [h]. If h is the inclusion map of an incompressible
component of the compact core, non-realizability of y turns out to be equivalent to
the statement that p has a component which is either homotopic to a cusp or is an
ending lamination of N.

Pleated surfaces and ends. If E is an end of NV facing an incompressible compo-
nent S of the compact core, then we can begin to see the consequences of Thurston’s
simple degeneracy condition using pleated surfaces. A sequence «; of simple curves
in S whose geodesic representatives o exit E gives rise, via the spinning construc-
tion, to a sequence of pleated surfaces f; : S — N (homotopic to the inclusion)
whose images exit F (one must deal with the possibility that part of f;(5) is far out
in E and part remains near the core — this is understood in terms of the thick-thin
decomposition of the surface). Part (2) of Theorem 4.1, the existence of a sequence
of bounded curves exiting the end, is now a consequence of the fact that the shortest
curve in each hyperbolic metric oy, has uniformly bounded length.

Because laminations can be organized in a continuum, namely in the sphere
PML(S) (§4.1), it becomes possible to interpolate continuously between any two
pleated surfaces. Not all the intermediate surfaces in such an interpolation are
pleated — one must slightly generalize the category while keeping most of the geo-
metric control. With this, Thurston showed that a simply degenerate end E can be
“swept” by a family of these almost-pleated surfaces going all the way to infinity.
This implies for example upper bounds on injectivity radius anywhere in F, as well
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as the topological tameness of E (part (4) of Theorem 4.1). Thurston also used
this to control the growth of harmonic functions on N, thus obtaining a proof of
Ahlfors’ Measure Conjecture for the case that the core has incompressible boundary
(see §10).

Injectivity and Efficiency. One can get finer geometric control from a pleated
surface if one can control the extent to which it is “folded”. The presence of a
pleated surface f : S — N easily yields upper bounds: if a curve a has length L in
oy then L bounds the length of the geodesic representative of f(a). In his proof
of the Double Limit Theorem [101], which yielded the geometrization of manifolds
that fibre over S, Thurston needed to obtain lower bounds of the form

In(f(@)) 2 boy (@) = C(Af, )

where C'(Af,a) is a combinatorial constant determined by « and the lamination
As, and independent of the geometric data. That is, he needed to find in f(5) an
“efficient” representative of the curve a.

The main issue turned out to be preventing different leaves of Ay from having
images in N that are too close together and nearly parallel. Thurston proved the
Uniform Injectivity Theorem, which provides such control under suitable topological
restrictions (again f being an isomorphism on 71 suffices). This theorem is proved
by recourse to geometric limits: If it fails then there is a sequence of examples
fi S — N, in which leaves that remain apart in S get closer and more parallel in
N;. Extracting a suitable limit of the manifolds and maps Thurston obtained a map
in which two leaves have images that coincide, which he then showed contradicted
the topological restrictions.

The Uniform Injectivity Theorem also plays a major role in the proof of the
Ending Lamination Conjecture; see Section 9.

8. The complex of curves

We have already seen, in the examples of §6 and in the discussion of pleated
surfaces in §7, the important geometric role played by simple closed curves. A
central ingredient in a complete analysis of the structure of Kleinian surface groups
is the intrinsic combinatorial structure of the set of all simple closed curves on a
surface (up to homotopy), as encoded by Harvey’s complex of curves.

In this section let S be any compact surface with genus ¢ > 0 and n > 0
boundary components. Let £(S) = 3g + n.

We define the complex of curves C(S) as follows when £(S) > 4: the vertices of
C(S) are the essential homotopy classes of simple closed curves in S, and k-simplices
are (k + 1)-tuples [ap, ..., o] that have simultaneously disjoint representatives.

If £(S) = 4 then (g,n) = (0,4) or (1,1), and no two nonhomotopic essential
simple curves can be disjoint. We redefine C(S) so that [ag, 1] is an edge whenever
ap and oy have geometric intersection number 1 (for (1,1)) or 2 (for (0,4)). The
same can be done when (g,n) = (1,0). Other than that, C(S) is empty when
£(5) < 3.

These complexes were formulated by Harvey in [44], and later applied by Harer
[42, 43], Ivanov [49, 51, 50] and more recently Luo [65, 64] Korkmaz [60] and
Hempel [45] to the study of the mapping class group of a surface, and to Heegaard
decompositions of 3-manifolds.
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In joint work with Masur, we studied C(S) as a metric space, by endowing each
edge with length 1. We showed that

THEOREM 8.1. [70] Whenever £(S) > 4, C(S) is an infinite-diameter §-hyperbolic
space.

(See Bowditch [16] for a new and much improved proof). d-hyperbolicity is a
“coarse geometry” notion, introduced by Gromov [41] and Cannon [31], to capture
some of the large-scale properties of spaces such as H", and metric trees. Geodesics
in a d-hyperbolic space X tend to diverge exponentially fast, and there is a robust
notion of boundary at infinity O X , which roughly speaking is the set of asymptotic
classes of infinite quasi-geodesic rays. The union X U J, X admits a natural topol-
ogy. It is natural to ask what the boundary at infinity of C(S) would be. Because
C(S) is not locally finite it is not a proper metric space, and do,C(S) does not have
as many nice properties as less exotic examples. In particular it is not compact.

It is not unreasonable to expect that d.,C(S) should have something to do with
laminations on S. After all, any infinite sequence of simple closed curves should
accumulate on some set of laminations. A few moments of thought indicate that
not all laminations should correspond to endpoints at infinity. For example, if A
is a lamination in S which is disjoint from a curve «, we can approximate A (say
in UML(S)) by a sequence {v;} of vertices in C(S), which are themselves disjoint
from «. Thus d(«,~;) = 1 and hence {~;} are not a sequence going to infinity in
C(S). If X were filling then this particular phenomenon couldn’t occur, and this
suggests we should direct our attention to the filling laminations in S.

An additional issue that arises is whether points in dC(S) should correspond to
measured or unmeasured laminations. This is a subtle point, since there are filling
laminations which support more than one projective class of measures. Klarreich
[58] resolved this question in a nice way:

THEOREM 8.2. [58] The boundary 0-,C(S) is homeomorphic to EL(S), in such
a way that convergence to a point at infinity in C(S) U 0-C(S) corresponds to
convergence in UML(S).

Recall that £L£(S) are the filling laminations in UML(S), and by Theorem
4.3 are exactly those laminations that occur as ending laminations for manifolds
without cusps. Thus our ending laminations appear as points at infinity in the
complex of curves.

8.0.1. The torus and the Farey graph. When S is the torus (or one-holed
torus or 4-holed sphere), the complex of curves and its boundary recapitulate the
notion of approximation of irrational numbers by rationals via continued fraction
expansions.

As indicated in §4.1, the vertices of C(S) in this case are the extended rationals
Q = QU {oo}, associating to each curve its slope in Hi(S). It is a nice exercise
to check that the definition of C(S) in this case yields the “Farey Graph,” which is
embedded in the disk with vertices at the rational points of the circle. (See Figure
12, and [79, 78] for more details.)

In this case, the boundary of C(.5) is just the irrational points in the circle, with
convergence at infinity being the normal one in R. Furthermore, there is a natural
class of quasi-geodesic rays: Any irrational r € R\Q has a unique continued-fraction
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FI1GURE 12. The Farey graph in the disk is the complex of curves
of the torus

expansion of the form

1
r = [ng,n1,n2,...] =nog + ——F—
m n2+”3%
whereng € Z and n; € Nfori > 0. The sequence of partial expansions {[no, . .., nx|}
forms a quasigeodesic ray converging to 7.
The role of the coefficients n; is played, for general surfaces, by the “subsurface

coefficients” discussed in §9.2.

9. The proof of the Ending Lamination Conjecture

We will discuss now the main ideas that go into the proof of Thurston’s con-
jecture. For another expository account of part of this argument (particularly §9.1
and §9.2) see [83].

To simplify this discussion, we will restrict to the case of doubly degnerate
surface groups (although we will also discuss some examples from a more general
class). That is, let us fix an element [p] € AH(S x [-1,1]), and let N = N, denote
the quotient manifold. Suppose also, for simplicity, that NV has no cusps, and both
ends of N are simply degenerate, with ending laminations v4..

Our goal is to determine the geometry of N uniquely from v, and this can be
divided more or less into these steps:

(1) Quasiconvexity and a-priori length bounds: Using hyperbolicity of C(S)
and Thurston’s Uniform Injectivity theorem for pleated surfaces, we an-
alyze the set of vertices of C(S) whose length in N is bounded. In par-
ticular we obtain an interpolation between v_ and v via a “hierarchy of
geodesics” passing through this bounded-length vertex set.
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(2) Lipschitz Model: We apply the hierarchical structure of C(S) to build a
model for N which admits a Lipschitz map into V.

(3) Embeddings and Bi-Lipschitz bounds: we improve the Lipschitz map to a
bi-Lipschitz homeomorphism. This together with Sullivan’s rigidity theo-
rem is sufficient to establish the conjecture.

9.1. Length functions and quasiconvexity

Part (2) of Thurston’s Theorem 4.1 on simply degenerate ends tells us that the
set of vertices

C(p, Lo) = {a c Co(S) : KN(a*) < Lo},

for suitable Lo, accumulates onto the ending laminations v, which we now think
of as points in 9,,C(S). Because our goal is to control the geometry of N, we
would like to know that these accumulation points at infinity for C(p, L) suffice to
determine C(p, L), at least roughly.

Our first result in this direction, from [80], is:

THEOREM 9.1. The set C(p, Lo) is r-quasiconvex in C(S) where r depends only
on the topological type of S.

A set C' C X is r-quasiconvex if any geodesic of X with endpoints in C remains
in an r-neighborhood of C. If X is §-hyperbolic it is relatively easy to prove that
a subset C' is quasi-convex: all that is needed is a (coarse) Lipschitz retraction, i.e.
a map

nm:x-c
which is a uniformly bounded distance from the identity on C, and satisfies
d(I(x),II(y)) < Kd(z,y) + D

with uniform K, D (see Lemma 3.3 of [80]).
Such a map

II:C(S) — C(p, Lo)

is constructed by the use of pleated surfaces. For any vertex a we consider the set
of pleated surfaces f:.S — N in the homotopy class of p which take a to a*. The
image II(a) is obtained by selecting some curve of length bounded by Lj (one always
exists) on one of these surfaces. In order to obtain the coarse Lipschitz property for
II, it turns out to be sufficient to show that two different pleated surfaces mapping
a to o* yield curves of length < Lo that are not too far apart in C(S). This is done
using the Uniform Injectivity result discussed in §7. A bit more precisely: if f and
g are both pleated surfaces taking a to a*, then one can find a curve § in S which
is formed of an arc along « of bounded length (in both o and ¢,) composed with a
“jump” of bounded length in o¢. The Uniform Injectivity theorem is applied here
to show that the jump is small also in oy,.

Digression: motivation from harmonic maps. The idea for the map II came
from a natural construction in the analytical setting: Given a homotopy class [h :
S — N] (with mild topological restrictions) where N is a hyperbolic 3-manifold,
there exists a map

o :T(S) — T(S)
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where 7(S) is the Teichmiiller space of S, defined as follows: Fixing a Riemannian
metric on S, the Dirichlet energy of each f: S — N, defined as

E(f) = %/S|df|2dA,

is minimized in the homotopy class by a unique map, called a harmonic map.
Since £(f) is in fact invariant under conformal changes of the domain metric, this
harmonic map actually depends only on the choice of a point o € 7(5). If we then
pull back the metric of NV via the harmonic map to S, we obtain a new point in
T(S5), and this is ®(0).

It is not hard to see that the Dirichlet energy is bounded on the image of ®,
and one may attempt to study the geometry of N by understanding the Dirichlet
energy function on 7(S) and the self-map ®. In the case of manifolds with bounded
geometry (lower bounds on injectivity radius) this was somewhat successful, and
this was the basis of the solution of the Ending Lamination Conjecture in this case
[76, 77]. However, in the presence of very short curves in N the analytical approach
runs into trouble. It is hard to control the map ® because when a harmonic map
enters a very thin part its dependence on the domain structure becomes very loose.
The combinatorics of the thin parts themselves begin to play an important role,
and this is why the complex of curves must be considered.

The map II, then, is a combinatorial analogue of ®, in which we have replaced
harmonic maps with pleated surfaces, relinquished precise analytic control, and
obtained instead the coarse structure of -hyperbolicity and quasiconvexity.

The quasiconvexity theorem is not enough, however, to control the set C(p, Lo).
Since C(S) is locally infinite, distance bounds are not easy to use. Finer control is
obtained by looking at subsurfaces of S. If W is an essential subsurface of .S, then
there is a projection

mw : C(S) — C(W) U {0}

defined roughly as follows. If a intersects W essentially, select an essential arc of
intersection and a curve v in W disjoint from it. This is 7wy («) (the choices in
this construction yield a bounded-diameter set in C(W)). If o has no essential
intersection with W then 7y (a) = 0. Let dw (o, 3) denote dew(mw (@), 7w (5))
whenever these projections are nonempty.

’é?.» -

F1cURE 13. The subsurface projection my

The “relative quasiconvexity” theorem is the following:
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THEOREM 9.2. [82] The set ww (C(p, L)) is r-quasiconvez for each subsurface
W of S, and a uniform r.

This theorem does produce enough control to get a priori bounds on the set
C(p, Ly). We will describe some of this in the next section.

9.2. Hierarchies and model manifolds

We can use the combinatorial structure of C(S) and the points at infinity v4
to construct a certain manifold M, equipped with a piecewise-Riemannian metric,
and meant to be a bilipschitz model for the geometry of V.

We begin by letting ¢ be an infinite geodesic in the 1-skeleton C;1(S) of C(S),
such that the vertices of g converge in one direction to v_ and in the other to v,.
The existence of such a geodesic for two points on the boundary of a §-hyperbolic
space is easy to obtain by a limiting argument when the space is proper (bounded
balls are compact). In the case of C1(S) the limiting step is not automatic, but the
machinery developed in Masur-Minsky [71] provides sufficient control to carry out
such a limit.

We then build up g to obtain a “hierarchy of geodesics”, the main construction
of [71]. To give a hint of this procedure, let u, v, w be three succesive vertices of g,
and let Y be the component of S\ v containing u and w (if they were in different
components they would have distance 1, contradicting the assumption that ¢ is a
geodesic). Then u and w can be joined by a new geodesic h in C1(Y'), and all the
vertices in h are in the link of v. We can repeat this at every vertex, obtaining a
“thickening” of ¢ into a collection of geodesics in links of vertices, and then repeat
this inductively for each of those geodesics. The resulting object, a collection of
geodesics supported in curve complexes of subsurfaces of .S, is called a “hierarchy of
geodesics”. The construction is in fact considerably complicated by considerations
of how to deal with endpoints. In the case of a 5-holed sphere the construction is
especially simple to describe, and we refer to the expository article [83] for more
details.

The structure of this hierarchy is controlled by v4. In particular, for any
essential subsurface Y C S the projections 7y (v4) (which are defined similarly
to projections of simple closed curves) control whether or not Y appears as the
support of one of the geodesics in the hierarchy: we show in [71] that if dy (v4,v_)
is sufficiently large then Y must be the support of a geodesic in the hierarchy with
length roughly estimated by dy (v4,v_).

On the hyperbolic geometry side, we showed in [80] that, if dy (v4,v_) is large,
then ¢n(0Y ™) is very small.

These results, together with the relative quasiconvexity theorem 9.2, allow us
to show that

LEMMA 9.3. If W is an essential subsurace of S then
(9.1) dw (o, II(er)) < D
over all vertices « appearing in H, for which my (a) and mw (II(«)) are non-empty.

This roughly means that « and the bounded-length curves in II(«) are not too
far apart in a combinatorial sense. We can in fact use this to deduce an a priori
length bound on « itself:
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THEOREM 9.4. [82] Given [p] € AH(S x [—1,1]) with ending laminations vy,
let H be a hierarchy constructed from a geodesic g in C1(S) joining v_ and vy.
Then all the vertices that appear in H are contained in C(p, L), where L depends
only on the topology of S.

The hierarchy and the a priori bounds allow us to construct our model manifold
M, and its Lipschitz map to N,. M,, which can be identified with S x R, is
a union of pieces called “blocks” and “tubes”. The tubes are solid tori of the
form (annulus)x (interval), where the homotopy classes of the annuli are exactly
the vertices of C(S) that occur in the hierarchy construction. Each tube is given
the structure of a hyperbolic tube as in §5, which is controlled by a Teichmiiller
coefficient w € H?, defined with respect to a natural marking for OU. In fact these
coefficients can be estimated from the data of the hierarchy, and hence from the
subsurface projection distances, {dy (v—,v1)}.

The blocks are pieces that can be identified with W x [0, 1] where W denotes
a subsurface of S, and their geometric structures fall into a finite set of isometry
types. Different blocks are glued along subsurfaces of the boundary in W x {0} and
W x {1}, so that the unglued parts of the boundary are annuli; these annuli form
the boundaries of the tubes.

Theorem 9.4 gives us enough control to map the blocks of M, with Lipschitz
bounds into N. The tubes U with large w are shown to correspond to short curves
in N.

Furthermore the the map can be adjusted so that each U with large w maps
properly onto the corresponding Margulis tube in IV, and conversely that the com-
plement of this set of tubes maps to the complement of the corresponding Margulis
tubes.

In summary, we have a “Lipschitz model” for the thick part of V. It gives upper
bounds for the lengths of closed geodesics in IV, as well as a topological description
of the arrangement of the components of the thin part (collars of short geodesics).
However, it is not yet a bilipschitz model.

9.3. Examples

Let us consider what the model manifold would look like in some of the examples
from §6.

The periodic case. If N, is the cyclic cover of a fibred manifold, as described
in §6.2, then vy are the fixed points of the pseudo-Anosov monodromy ¢, and in
the construction of the hierarchy we start with a geodesic g which is a “pseudo-
axis” for ¢: ¢(g) and g are, if not identical, at least within bounded distance of
each other. The hierarchy in this case has a bounded structure: All geodesics that
occur in its construction have uniformly bounded lengths (essentially because of
the ¢-periodicity), and as a result the model manifold has bounded geometry: all
the tubes have bounded w coefficients, and it follows that there is some positive
lower bound on the length of the geodesics at their cores. The deck translation
of the covering acts on the model by a bilipschitz homeomorphism, showing that
the model structure is almost periodic. Of course we know that N, itself is exactly
periodic, but the hierarchy and model constructions are only rough approximations.
In view of Sullivan’s rigidity theorem (§9.4), this rough approximation suffices for
our needs.
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The drilling example. If p,, is the manifold ¢f (X, D} (X)) where D, is a Dehn
twist, as described in §6.3, then the model manifold contains a bounded number
of blocks and tubes of bounded w, and one tube associated with ~y, with coefficient
w & n + 4. This is essentially the model described in §6.3.

In Brock’s example in §6.5, where p,, = qf (X, ¢"(X)) with ¢ a partial pseudo-
Anosov supported in R C S, the hierarchy will contain a geodesic in the curve
complex C(R), and this will give an approximately periodic sequence of blocks
corresponding to the piece @,, described in §6.5. Again the tubes associated to OR
will arise in the model.

In all the rest of the examples of §6 something similar happens: the structure
of ¢f(X,Y), in particular those tubes with large coefficient and small core length,
is detected by the hierarchy construction and thus appears explicitly in the model
manifold.

The punctured torus. The case that S is a one-holed torus, treated separately
in [79], is especially simple. In this case the hierarchy corresponds to a geodesic
in the Farey graph (§8.0.1), and the data for the model manifold is carried in
the associated continued-fraction coefficients. For example if v_ = co and vy has
continued-fraction expansion [ng,ni,na,...], then the continued-fraction approxi-
mants [ng, ..., ng] represent the slopes of the curves associated to the tubes in the
model, whose tube coefficients wy, are estimated by ny + i.

9.4. Bilipschitz bounds

In Brock-Canary-Minsky [23] we show that the Lipschitz model of the previous
section can be converted into a bilipschitz homeomorphism

f:M, — N,

with uniform bounds. This is done by successively adjusting the map on pieces
of the model, and maintaining geometric control by a variety of geometric limit
arguments.

Embedding of horizontal subsurfaces. Let fy : M, — N be the Lipschitz
map described in §9.2. Within M, there are many “horizontal slices”, which are
surfaces F' isotopic to level subsurfaces Z x {t} C S x R, which have bounded
geometry in the model metric, and are properly embedded in M, \U. For example,
in Brock’s construction in §6.5, The subpiece @),, contains many bounded-geometry
surfaces isotopic to R x {t} with boundary in the hyperbolic tube(s) associated to
OR. There are also the bottom and top boundaries of the convex core, which can
be represented by horizontal slices of the form S x {t}.

The restriction of fy to such a surface F' is uniformly Lipschitz and homotopic
to an embedding, and the trick is to deform it to a uniformly bilipschitz embedding.
Using the techniques of Anderson-Canary [5] and Anderson-Canary-Culler-Shalen
[6], we are able to show that the only obstruction to this is the possibility that fo|r
is “wrapped” around a Margulis tube of N: If T is a standard Margulis tube in NV
we say that a map g : FF — N is wrapped around T if it cannot be deformed to
400 or —oo in N 2 § X R in the complement of T.

The argument is by contradiction. If there is a sequence of successively worse
examples, i.e. Lipschitz maps g; : F; — N; which are homotopic to embeddings
and satisfy the topological condition of not being wrapped around Margulis tubes
of N;, but which do not admit uniformly bounded homotopies to embeddings, we



210 YAIR N. MINSKY

FIGURE 14. A surface wrapped around a Margulis tube. Here T
is represented by a disk and the surface by a curve; crossing this
figure by S' yields a correct configuration in a neighborhood of T.

can extract a geometric limit g : F' — N in which some of the Margulis tubes have
become parabolic cusps, and the limit map is not homotopic to an embedding at
all. At this point we consider the way in which the subgroup g.(m1(F)) and its
conjugates lie inside 7 (IV), and the techniques of [5, 6] produce a contradiction to
the assumption that the original maps were not wrapped.

In the case of our model map, it is possible to show directly that for all of the
horizontal slices F, fo|r is not wrapped around any Margulis tubes. This is because
we know that the Margulis tubes are all images of tubes in U, and the complement
of the tubes in U (with large w) maps to the complement of the Margulis tubes.
Since in the model it is easy to show that each of the slices can be pushed to co or
to —oo in the complement of the model tubes, the same follows for its image in V.

We conclude that fy on any horizontal slice can be made an embedding, in a
uniform way.

Disjoint surfaces and partial orders. Thus fixing any set of disjoint horizontal
slices, the map fj can be deformed in a uniform way to a map f; which is an embed-
ding on each of these slices. However, there is nothing preventing these individual
embeddings from intersecting, and it is not possible to fix these intersections by
the simple expedient of performing surgeries on them: such surgeries increase the
bilipschitz constants, and since there may be infinitely many horizontal slices a bad
intersection pattern could cause the constants to grow without bound.

The solution to this is indirect. By the Lipschitz bounds on fj (and hence f1)
and the fact that each block in M, contains a bounded-length curve in a distinct
homotopy class, it is not hard to see that there is a uniform upper bound on the
number of horizontal slices whose images intersect the image of a given one. We use
this fact to obtain a decomposition of M, with local disjointness properties. That
is, we can carefully select among all the horizontal slices in M), to get a subset that
cuts M, \U into pieces of bounded diameter and geometry, and such that the slices
in the boundary of each piece have disjoint images. This requires careful use of the
structure of the hierarchy to organize these slices, and an analysis of a “topological
partial order” among embedded surfaces in S x R.

In Brock’s example of §6.5, the selected slices would be some set of disjoint
horizontal slices of type R x {t} in @,,, chosen with appropriate spacing, as well as
the top and bottom surfaces of the convex hull. This cuts M, into a large number
of pieces of type R x [0,1] (with bounded geometry), which decompose @, and
a piece that can be identified with M, \ @, (and of course the Margulis tubes
associated to OR).

The next step is to show that the topological partial order among the slices in
M, is preserved by the map f;, at least among those that are in the boundary of a
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particular complementary piece. The constants used in the selection of the subsets
of slices must be chosen so that this additional condition of order preservation is
satisfied. The proof that this is possible is, again, an argument by contradiction
and passage to a geometric limit, using the structure of the lipschitz model map.

The order preservation property implies that the images of slices from our
selected subset cut the hyperbolic manifold N into regions that are homeomorphic
(preserving orientation) to the complementary regions of the cuts in M,. A final
argument by contradiction and geometric limit shows that these homeomorphisms
can be made uniformly bilipschitz. Thus they piece together to a bilipschitz map
of M, \ U to the thick part of N. Bilipschitz extension of the map to the tubes of
U is now a fairly simple matter.

Applying Sullivan rigidity. Now suppose that p; and ps have the same pair of
ending laminations v4. Then there are bilipschitz homeomorphisms f1 and fo from
the same model manifold M, to Ny and N, respectively. Thus fs 0 fl_l : Ny — Ny
is a bilipschitz homeomorphism. Since 0., N1 and 0. N2 are empty in the case
we are considering, Sullivan’s rigidity theorem implies that f must be homotopic
to an isometry. This establishes the Ending Lamination Conjecture. (The case
with nonempty O, or with cusps is handled with standard modifications to this
argument).

10. Other theorems and conjectures

The Ending Lamination Conjecture has long been known to imply the Bers-
Sullivan-Thurston Density Conjecture, which can be stated this way:

Density Conjecture. AH (M) is the closure of its interior.

In other words, this conjecture states that every hyperbolic 3-manifold with
finitely generated fundamental group can be obtained as a limit of geometrically
finite manifolds.

Interestingly, a new and unexpected proof was recently found, at least in the
non-cusped cases (and with incompressible 9M), by Bromberg [24] and Brock-
Bromberg [21]. This argument uses a branched-cover construction to convert a
degenerate manifold with very short geodesics into a geometrically finite cone-
manifold, and then deforms this to a smooth geometrically finite hyperbolic mani-
fold using machinery developed by Hodgson-Kerckhoff [46, 47]. If there are infin-
itely many sufficiently short curves then this can be repeated to obtain a sequence
of elements in the interior converging to the desired manifold. If not, then the
manifold has bounded geometry, and this case is dealt with in [81].

The proof of the Density Conjecture via the Ending Lamination Theorem uses
Thurston’s Double Limit Theorem together with the Ahlfors-Bers quasiconformal
deformation theory. These imply, as stated in Theorem 4.3 for the case without
cusps, that any “legal” combination of end invariants can be obtained, and in fact
constructed as a limit of points from the interior of AH (M ). Thus given an arbitrary
point [p] of AH(M), a point [p'] on the closure of the interior of AH (M) can be
obtained with the same invariants. The Ending Lamination Theorem implies that
[o] = [¢']-

The Density Conjecture remains open in the compressible-boundary case. The
main hurdle appears to be the Tameness Conjecture, which continues to resist
attempts at its solution.
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Another application of the solution to the ending lamination conjecture is the
following further extension of the rigidity theory:

Topological Rigidity. If [p1], [p2] € AH(M) where OM is incompressible, and

the actions of p1 and p2 on C are topologically conjugate, then their actions are in
fact quasiconformally conjugate.

The point here is that a topological conjugacy at infinity implies that the two
representations have homeomorphic compact cores, and the same ending lamina-
tions. The solution to the ending lamination conjecture then implies the quotient
manifolds admit a bilipschitz homeomorphism, which extends to a quasiconformal
conjugacy at infinity. The significance of this, as we saw in Section 9.4, is that it
puts us in a position to apply Sullivan’s Rigidity Theorem.

Geometric limits of hyperbolic 3-manifolds play a central role in the proof
of our theorem, and indeed in the entire theory. Conversely, the existence of a
bilipschitz model manifold gives us the kind of uniform control that allows us to
describe fairly well the geometry of geometric limits. Here is a theorem about these
geometric limits:

Topology of geometric limits. Let M have incompressible boundary, and let
N; be a sequence of hyperbolic 3-manifolds homeomorphic to M, which converge
geometrically to No. Then Ny is homeomorphic to an open subset of M.

Although this seems to be rather a weak statement, it does not follow from any
kind of general considerations. In fact the topological type of a general geometric
limit can be quite wild. Soma [97] has also proved this theorem, and addition-
ally given a precise characterization of the possible topological types that occur as
geometric limits

One way to measure the complexity of a hyperbolic 3-manifold is to consider
volume growth functions. Fixing € > 0, let C' N, be the e-thick part of N, intersected
with its convex core Cy. Let d. denote the metric induced by lengths of paths in
CN.. Fix a basepoint x of C N, and define

gn(r) =vol{y € CN, : dc(z,y) <r}.

When N is geometrically finite, C N, is compact, so gny(r) is bounded. If N has
a degenerate end with bounded geometry, then gn(r) grows linearly with r. An
analysis of the geometry of the model manifolds verifies a conjecture of McMullen:

Polynomial volume growth. Let N be any element of AH(M), where OM is
incompressible. Then

gn(r) = O(r")
where k can be computed from OM.
For instance if M = S x [—1, 1] for a closed surface S of genus g then k = 3g—3.
This exponent is sharp, as can be shown by direct constructions.
Structure of the limit set. Ahlfors realized the importance of the limit set for

the study of deformations of Kleinian groups. He formulated

Ahlfors’ Measure Conjecture. The limit set of a finitely generated Kleinian
group is either the whole sphere, or has zero Lebesgue measure.

Ahlfors proved this conjecture for geometrically finite groups [1]. The orig-
inal motivation was the knowledge that no quasiconformal deformations can be
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supported on a set of zero measure. Although this application is now superseded
by Sullivan’s rigidity theorem (which applies even when the limit set is the whole
sphere), the conjecture remains of interest. Thurston proved that the conjecture
follows from geometric tameness, and hence Bonahon’s theorem implies it in the
incompressible-boundary setting. Later on, Canary [29] showed that in fact the
assumption of topological tameness, by a clever branched-cover argument, suffices
to make Thurston’s techniques apply even in the case of compressible boundary,
and Ahlfors’ measure conjecture holds in this case also. Thus, this conjecture and a
number of others would now follow from a solution of Marden’s tameness conjecture.
Recently, Brock-Bromberg-Evans-Souto [22] established the measure conjecture for
all limits of geometrically finite manifolds, hence reducing it to the Density Con-
jecture. This proof relies on theorems establishing the Tameness Conjecture for
certain limits of geometrically finite manifolds, extending results of Canary-Minsky
[27], Ohshika [88, 90] and Evans [37].

A stronger version of Ahlfors’ conjecture states that, when the limit set has
full measure, the group acts ergodically on it. This was verified as part of the
techniques of the previous paragraph, in all the topologically tame cases.

The measure-theoretic understanding of the limit set has also been further
refined — by Patterson and Sullivan [98] (see also Nicholls [87]), who constructed
invariant conformal densities on the limit set and related its Hausdorff dimension
to the spectral theory of the quotient manifold in the geometrically finite case.
These results were generalized by Canary [28] to the topologically tame category,
and by others. Of particular note is the result of Bishop-Jones [12], who show
that, for manifolds of infinite volume and finitely generated fundamental group, the
Hausdorff dimension of the limit set is 2 if and only if the manifold is geometrically
infinite.

In a different direction, it is of interest to know if the limit set is locally con-
nected. This is true for example for quasifuchsian groups, whose limit sets are
Jordan curves, but is a particularly difficult question for degenerate surface groups,
i.e. geometrically infinite elements of AH (S x [—1,1]). More generally, local con-
nectivity would be a consequence of a conjectural topological model for Kleinian
group actions on the sphere. Cannon-Thurston [32] established the correctness of
this model for groups closely related to the pseudo-Anosov examples of §6.2, and
the author [77] extended this to bounded-geometry groups without cusps. Klarre-
ich [59] extended this, still in the bounded geometry setting without cusps, to other
manifolds M, and Bowditch [18] treated the bounded-geometry case with cusps.

McMullen proved local connectivity for surface groups where S is a one-holed
torus, with an argument completely different from Cannon-Thurston’s original ap-
proach, and utilizing the model manifold constructed in Minsky [79] in an earlier
solution of the Ending Lamination Conjecture for that case. Now that there is a
good description of a model manifold for the general case, it is interesting to see if
McMullen’s argument can be generalized. This looks like a fairly hard problem.

Topological structure of AH(M). The Ending Lamination Conjecture provides
a unique description of every point in AH (M) (when M is incompressible), but it
does not give a description of the topology of AH(M). This is due to two related
facts: The ending invariants do not vary continuously in AH (M) in any of the
standard topologies (see Brock [19]), and there is a phenomenon of “bumping”:
the intersection of closures of components of the interior of AH (M), which is not
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accounted for by ending laminations (see Anderson-Canary [4], Anderson-Canary-
McCullough [7], Holt [48]). There is also a phenomenon of “self-bumping” of
single components (see McMullen [75], Bromberg-Holt [25]): A component of the
interior self-bumps at a boundary point p if its intersection with all sufficiently
small neighborhoods of p is disconnected. Figure 1 suggests self-bumping of a
quasifuchsian deformation space, although it has not to the author’s knowledge
been shown rigorously that the features of this figure are in fact true self-bumping,
and not artifacts of the choice of 2-dimensional slice.

All known bumping phenomena involve essential annuli in M. Given such an
annulus A a sequence of elements of AH (M) can be found whose geometric limit is
homeomorphic to M minus a core curve of A in the interior — this gives rise to a rank
2 cusp. Then an exotic immersion of M into this cusped manifold yields a sequence
of elements of AH (M) which converge to the closure of a different component, or
to the same component but from the “wrong” direction.

Although many different bumping and self-bumping points have been found, a
topological model for all of AH (M) remains out of reach. It is an indication of the
incomplete nature of our knowledge that the following question is still without an
answer in general:

Question. Is the closure of a Bers slice homeomorphic to a closed ball?

A Bers slice is the part of int(AH (S x [—1,1])) parameterized by {X} x T(S)
in the Ahlfors-Bers coordinates. Hence it is homeomorphic to the interior of a ball.
A weaker question is whether there is no bumping of a Bers slice with itself, which
seems quite plausible. The answer to this question is also known to be affirmative
when 7 (S) is one complex dimensional, e.g. when S is a once-punctured torus [79].

References

[1] L. Ahlfors, Fundamental polyhedrons and limit point sets for Kleinian groups, Proc. Nat.
Acad. Sci. 55 (1966), 251-254.

[2] L. Ahlfors and L. Bers, Riemann’s mapping theorem for variable metrics., Ann. of Math.
72 (1960), 385-404.

[3] Lars V. Ahlfors, Finitely generated Kleinian groups, Amer. J. Math. 86 (1964), 413-429.

[4] J. Anderson and R. Canary, Algebraic limits of Kleinian groups which rearrange the pages
of a book, Invent. Math. 126 (1996), 205-214.

, Cores of hyperbolic 3-manifolds and limits of Kleinian groups, Amer. J. Math. 118
(1996), 745-779.

[6] J. Anderson, R. Canary, M. Culler, and P. Shalen, Free Kleinian groups and volumes of
hyperbolic 3-manifolds, J. Differential Geom. 43 (1996), no. 4, 738-782.

[7] J. Anderson, R. Canary, and D. McCullough, The topology of deformation spaces of Kleinian
groups, Ann. of Math. (2) 152 (2000), no. 3, 693-741.

[8] L. Bers, Simultaneous uniformization, Bull. Amer. Math. Soc. 66 (1960), 94-97.

9] , Spaces of Kleinian groups, Maryland conference in Several Complex Variables I,
Springer-Verlag Lecture Notes in Math, No. 155, 1970, pp. 9-34.
[10] , An extremal problem for quasiconformal mappings and a theorem by Thurston,

Acta Math. 141 (1978), 73-98.

[11] L. Bers and B. Maskit, On a class of Kleinian groups, Contemporary Problems in Theory
Anal. Functions (Internat. Conf., Erevan, 1965) (Russian), Izdat. “Nauka”, Moscow, 1966,
pp. 44-47.

[12] C. J. Bishop and P. W. Jones, Hausdorff dimension and Kleinian groups, Acta Math. 179
(1997), no. 1, 1-39.

[13] F. Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. of Math. 124 (1986),
71-158.



[16]

THE CLASSIFICATION OF HYPERBOLIC 3-MANIFOLDS 215

, Geodesic laminations on surfaces, Laminations and Foliations in Dynamics, Ge-
ometry and Topology (Stony Brook, NY) (M. Lyubich, J. Milnor, and Y. Minsky, eds.),
Contemporary Mathematics, vol. 269, AMS, 2001, pp. 1-37.

F. Bonahon and J. P. Otal, Varietes hyperboliques a geodesiques arbitrairement courtes,
Bull. London Math. Soc. 20 (1988), 255-261.

B. Bowditch, Intersection numbers and the hyperbolicity of the curve complex, Preprint,
Southampton.

, Stacks of hyperbolic spaces and ends of 3-manifolds, Preprint, Southampton.

, The Cannon-Thurston map for punctured-surface groups, Preprint, Southampton.
J. Brock, Boundaries of Teichmdiller spaces and end-invariants for hyperbolic 3-manifolds,
Duke Math. J. 106 (2001), no. 3, 527-552.

, Iteration of mapping classes and limits of hyperbolic 3-manifolds, Invent. Math.
143 (2001), no. 3, 523-570.

J. Brock and K. Bromberg, On the density of geometrically finite Kleinian groups., Preprint
2002.

J. Brock, K. Bromberg, R. Evans, and J. Souto, Boundaries of deformation spaces and
Ahlfors’ measure conjecture., in preparation.

J. Brock, R. Canary, and Y. Minsky, Classification of Kleinian surface groups II: the ending
lamination conjecture, in preparation.

K. Bromberg, Projective structures with degenerate holonomy and the Bers density conjec-
ture, preprint.

K. Bromberg and J. Holt, Self-bumping of deformation spaces of hyperbolic 8-manifolds, J.
Differential Geom. 57 (2001), no. 1, 47-65.

R. Canary, M. Culler, S. Hersonsky, and P. Shalen, Density of maximal cusps in boundaries
of quasiconformal deformation spaces, preprint.

R. Canary and Y. Minsky, On limits of tame hyperbolic 3-manifolds, J. Differential Geom.
43 (1996), 1-41.

R. D. Canary, On the laplacian and the geometry of hyperbolic 3-manifolds, J. Differential
Geom. 36 (1992), 349-367.

, Ends of hyperbolic 8-manifolds, J. Amer. Math. Soc. 6 (1993), 1-35.

R. D. Canary, D. B. A. Epstein, and P. Green, Notes on notes of Thurston, Analytical and
Geometric Aspects of Hyperbolic Space, Cambridge University Press, 1987, London Math.
Soc. Lecture Notes Series no. 111, pp. 3-92.

J. Cannon, The theory of negatively curved spaces and groups, Ergodic theory, symbolic
dynamics, and hyperbolic spaces (Trieste, 1989), Oxford Univ. Press, 1991, pp. 315-369.

J. Cannon and W. Thurston, Group invariant peano curves, preprint, 1989.

A. J. Casson and S. A. Bleiler, Automorphisms of surfaces after Nielsen and Thurston,
Cambridge University Press, 1988.

D. Wright D.Mumford, C.Series, Indra’s Pearls, Cambridge Univ. Press, 2002.

A. Douady and C.J. Earle, Conformally natural extension of homeomorphisms of the circle,
Acta Math. 157 (1986), 23-48.

D. B. A. Epstein and A. Marden, Convex hulls in hyperbolic space, a theorem of Sullivan,
and measured pleated surfaces, Analytical and Geometric Aspects of Hyperbolic Space,
Cambridge University Press, 1987, London Math. Soc. Lecture Notes Series no. 111, pp. 113—
254.

R. Evans, Tameness persists in type-preserving limits, Preprint.

, Deformation spaces of hyperbolic 3-manifolds: strong convergence and tameness,
Ph.D. thesis, U. of Michigan, 2000.

A. Fathi, F. Laudenbach, and V. Poenaru, Travauz de Thurston sur les surfaces, vol. 66-67,
Asterisque, 1979.

L. Greenberg, Fundamental polyhedra for kleinian groups, Ann. of Math. (2) 84 (1966),
433-441.

M. Gromov, Hyperbolic groups, Essays in Group Theory (S. M. Gersten, editor), MSRI
Publications no. 8, Springer-Verlag, 1987.

J. Harer, Stability of the homology of the mapping class group of an orientable surface, Ann.
of Math. 121 (1985), 215-249.

, The virtual cohomological dimension of the mapping class group of an orientable
surface, Invent. Math. 84 (1986), 157-176.




216

[44]

[45]

[46]

[47]

YAIR N. MINSKY

W. J. Harvey, Boundary structure of the modular group, Riemann Surfaces and Related
Topics: Proceedings of the 1978 Stony Brook Conference (I. Kra and B. Maskit, eds.), Ann.
of Math. Stud. 97, Princeton, 1981.

J. Hempel, 3-manifolds as viewed from the curve complez, Topology 40 (2001), no. 3, 631—
657.

C. D. Hodgson and S. P. Kerckhoff, Universal bounds for hyperbolic Dehn surgery, preprint,
arXiv:math.GT/0204345.

C. D. Hodgson and S. P. Kerckhoff, Rigidity of hyperbolic cone-manifolds and hyperbolic
Dehn surgery, J. Differential Geom. 48 (1998), no. 1, 1-59.

J. Holt, Multiple bumping of deformation spaces of hyperbolic 8-manifolds, preprint.

N. V. Ivanov, Complexes of curves and the Teichmiiller modular group, Uspekhi Mat. Nauk
42 (1987), 55-107.

, Complexes of curves and Teichmiiller spaces, Math. Notes 49 (1991), 479-484.

, Automorphisms of complexes of curves and of Teichmiller spaces, Internat. Math.
Res. Notices (1997), no. 14, 651-666.

T. Jergensen, On cyclic groups of Mobius tranformations, Math. Scand. 33 (1973), 250-260.
, On discrete groups of Mobius transformations, Amer. J. of Math. 98 (1976), 739—

49.

M. Kapovich, On the dynamics of pseudo-Anosov homeomorphisms on representation va-
rieties of surface groups, Ann. Acad. Sci. Fenn. Math. 23 (1998), no. 1, 83-100.

, Hyperbolic manifolds and discrete groups, Progress in Mathematics, vol. 183,
Birkhauser Boston Inc., Boston, MA, 2001.

L. Keen and C. Series, Pleating coordinates for the Maskit slice of Teichmiiller space, Topol-
ogy 32 (1993), 719-749.

S. Kerckhoff and W. P. Thurston, Noncontinuity of the action of the modular group at Bers’
boundary of Teichmiiller space, Invent. Math. 100 (1990), 25-47.

E. Klarreich, The boundary at infinity of the curve complexr and the relative Teichmdller
space, preprint.

, Semiconjugacies between Kleinian group actions on the Riemann sphere, Amer. J.
Math. 121 (1999), no. 5, 1031-1078.

M. Korkmaz, Automorphisms of complexes of curves on punctured spheres and on punctured
tori, Topology Appl. 95 (1999), no. 2, 85-111.

1. Kra, On spaces of Kleinian groups, Comment. Math. Helv. 47 (1972), 53-69.

R. S. Kulkarni and P. B. Shalen, On Ahlfors’ finiteness theorem, Adv. Math. 76 (1989),
no. 2, 155-169.

G. Levitt, Foliations and laminations on hyperbolic surfaces, Topology 22 (1983), 119-135.
F. Luo, On Heegaard diagrams, Math. Res. Lett. 4 (1997), no. 2-3, 365-373.

, Automorphisms of the complex of curves, Topology 39 (2000), no. 2, 283-298.

A. Marden, The geometry of finitely generated Kleinian groups, Ann. of Math. 99 (1974),
383-462.

A. Marden and B. Maskit, On the isomorphism theorem for Kleinian groups, Invent. Math.
51 (1979), 9-14.

B. Maskit, On boundaries of Teichmdiller spaces and on Kleinian groups II, Ann. of Math.
91 (1970), 607-639.

Bernard Maskit, Classification of Kleinian groups, Proceedings of the International Congress
of Mathematicians (Vancouver, B. C., 1974), Vol. 2, Canad. Math. Congress, Montreal, Que.,
1975, pp. 213-216.

H. A. Masur and Y. Minsky, Geometry of the complex of curves I: Hyperbolicity, Invent.
Math. 138 (1999), 103-149.

, Geometry of the complex of curves II: Hierarchical structure, Geom. Funct. Anal.
10 (2000), 902-974.

D. McCullough, Compact submanifolds of 3-manifolds with boundary, Quart. J. Math. Ox-
ford 37 (1986), 299-306.

C. McMullen, Cusps are dense, Ann. of Math. 133 (1991), 217-247.

, Renormalization and 3-manifolds which fiber over the circle, Princeton University
Press, Princeton, NJ, 1996.

, Complex earthquakes and Teichmiiller theory, J. Amer. Math. Soc. 11 (1998), no. 2,
283-320.




[76]
[77]

[78]

[84]
[85]
[86]
[87]
[88]
[89]

[90]

[100]
[101]
[102]

[103]

THE CLASSIFICATION OF HYPERBOLIC 3-MANIFOLDS 217

Y. Minsky, Teichmiiller geodesics and ends of hyperbolic 8-manifolds, Topology 32 (1993),
625-647.

, On rigidity, limit sets and end invariants of hyperbolic 3-manifolds, J. Amer. Math.
Soc. 7 (1994), 539-588.

, A geometric approach to the complex of curves, Proceedings of the 37th Taniguchi
Symposium on Topology and Teichmiiller Spaces (S. Kojima et. al., ed.), World Scientific,
1996, pp. 149-158.

, The classification of punctured-torus groups, Annals of Math. 149 (1999), 559-626.
, Kleinian groups and the complex of curves, Geometry and Topology 4 (2000),
117-148.

, Bounded geometry in Kleinian groups, Invent. Math. 146 (2001), 143-192,
arXiv:math.GT/0105078.

, Classification of Kleinian surface groups I: models and bounds, preprint, 2002.

, Combinatorial and geometrical aspects of hyperbolic 3-manifolds, Kleinian Groups
and Hyperbolic 3-Manifolds (V. Markovic Y. Komori and C. Series, eds.), London Math.
Soc. Lec. Notes, vol. 299, Cambridge Univ. Press, 2003, pp. 3-40.

H. Miyachi, On cusps in the boundary of the Maskit slice for once punctured torus groups,
Sturikaisekikenkytisho Kokytroku (2000), no. 1153, 20-28, Comprehensive research on com-
plex dynamical systems and related fields (Japanese) (Kyoto, 1999).

L. Mosher, Stable quasigeodesics in Teichmiiller space and ending laminations, preprint.
G. D. Mostow, Quasiconformal mappings in n-space and the rigidity of hyperbolic space
forms, Publ. LH.E.S. 34 (1968), 53-104.

P.J. Nicholls, The ergodic theory of discrete groups, London Math. Soc. Lecture Notes no.
143, Cambridge University Press, 1989.

K. Ohshika, On limits of quasi-conformal deformations of Kleinian groups, Math. Z. 201
(1989), 167-176.

, Ending laminations and boundaries for deformation spaces of Kleinian groups, J.
London Math. Soc. 42 (1990), 111-121.

, Limits of geometrically tame Kleinian groups on boundaries for deformation spaces,
Invent. Math. 99 (1990), 185-203.

J.-P. Otal, Le théorém d’hyperbolisation pour les wvariétés fibrées de dimension trois,
Astérisque No. 235, 1996.

R. Penner and J. Harer, Combinatorics of train tracks, Annals of Math. Studies no. 125,
Princeton University Press, 1992.

G. Prasad, Strong rigidity of Q-rank 1 lattices, Invent. Math. 21 (1973), 255-286.

G. P. Scott, Compact submanifolds of 3-manifolds, J. London Math. Soc. 7 (1973), 246-250.
P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-487.

P. B. Shalen, Representations of 3-manifold groups, Handbook of geometric topology, North-
Holland, Amsterdam, 2002, pp. 955-1044.

T. Soma, Geometric limits of quasi-Fuchsian groups, preprint.

D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Publ. LH.E.S.
50 (1979), 419-450.

, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic mo-
tions, Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Confer-
ence, Ann. of Math. Stud. 97, Princeton, 1981.

, Quasiconformal homeomorphisms and dynamics II: Structural stability implies hy-
perbolicity for Kleinian groups, Acta Math. 155 (1985), 243-260.

W. Thurston, Hyperbolic structures on 3-manifolds, II: surface groups and manifolds which
fiber over the circle, preprint, arXiv:math.GT/9801045.

, The geometry and topology of 3-manifolds, Princeton University Lecture Notes,
online at http://www.msri.org/publications/books/gt3m, 1982.

, Three-Dimensional Geometry and Topology, Princeton University Press, 1997, (S.
Levy, ed.).

SUNY AT STONY BROOK



