NSF-CBMS Regional Conference Series in Probability and Statistics Volume 7

GENERALIZED LINEAR MIXED MODELS

Charles E. McCulloch University of California, San Francisco

Institute of Mathematical Statistics Beachwood, Ohio American Statistical Association Alexandria, Virginia Conference Board of the Mathematical Sciences

Regional Conference Series in Probability and Statistics

Supported by the National Science Foundation

The production of the *NSF-CBMS Regional Conference Series in Probability and Statistics* is managed by the Institute of Mathematical Statistics: Patrick Kelly, IMS Production Editor; Julia Norton, IMS Treasurer; and Elyse Gustafson, IMS Executive Director.

Library of Congress Control Number: 2002116025

International Standard Book Number 0-940600-54-4

Copyright © 2003 Institute of Mathematical Statistics

All rights reserved

Printed in the United States of America

Contents

Pr	eface		vii
1	Inti	roduction	1
	1.1	Example: Chestnut leaf blight	1
		a. A model	2
		i. Basic elements of the model	2
		ii. Using the model	3
		b. Threshold model	3
		c. Correlations in the chestnut blight example	4
	1.2	Consequences of introducing random factors	4
		a. On the mean	4
		b. On the variance-covariance structure	5
		c. On the likelihood	6
	1.3	Testing for other genetic effects	7
	1.4	Summary	8
2	Line	ear Mixed Models (LMMs)	9
	2.1	Introduction	9
	2.2	Example: Propranolol and hypertension	9
	2.3	Fixed versus random factors	10
	2.4	Estimation and prediction	11
		a. A more general formulation	12
		b. Means and variances	12
		c. Estimation and prediction	13
		d. Best prediction of the random effects	13
		i. Prediction with a balanced data set	14
	2.5	The mixed model equations	16
	2.6	Testing fixed effects	17
	2.7	Testing random effects	17
		a. Numerical illustration for the Propranolol data	18
	2.8	Generalized estimating equations	18
		a. Example: milk, cows and diets	18
		b. Weighted estimation	19
	2.9	Summary	20
3	Gen	eralized linear models (GLMs)	21

3 Generalized linear models (GLMs)

	3.1	Introduction					
	3.2	The modeling process 23					
	3.3	Transforming versus linking					
	3.4	Potato flour revisited					
4	\mathbf{GL}	MMs 28					
	4.1	Introduction					
	4.2	Basic idea					
	4.3	Example: Skin cancer					
		a. Covariances					
		b. Bandom slopes					
		c Prediction 30					
		d Unequal variances 31					
	44	Specifying GLMMs 31					
	 15	A more general model 31					
	4.0	Informed in CLMMa 29					
	4.0	Interence in GLMMS					
	4.7	Further notes					
5	Mo	deling and inference using GLMMs 34					
	5.1	Introduction $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 34$					
	5.2	Chestnut blight (gene effects) 34					
	5.3	Progabide and seizures					
	5.4	Chestnut blight (isolate effects)					
	5.5	Potomac River Fever					
	5.6	Neotropical migrants					
	5.7	Photosynthesis in corn relatives					
6	Early research 40						
	6.1	Introduction					
	6.2	Beta-binomial model 40					
	6.3	A Poisson-Gamma model 41					
	64	Marginal models					
	0.1	$\begin{array}{c} \text{A model for hipprv data} \\ \end{array}$					
	65	Conditional informed					
	0.0	Matched pairs: maximum likelihood					
		a. Matched pairs, maximum likelihood					
		D. Matched pairs: conditional likelihood					
	66	c. Between pairs: conditional likelinood					
	0.0	Summary \ldots 46					
	0.7	Further notes $\ldots \ldots 47$					
7	Max	kimum likelihood for GLMMs 48					
	7.1	Introduction					
	7.2	A simple example					
		a. Numerical evaluation of the likelihood					
	7.3	Simulation approaches to ML					
		a. Model and notation					
		b. Monte Carlo EM					
		c. Monte Carlo Newton–Raphson					

CONTENTS

	$7.4 \\ 7.5 \\ 7.6$	d.Simulated maximum likelihood and moments	54 54 55 55 56		
8	Oth	er estimation methods	57		
	8.1	Introduction	57		
	8.2	Generalized estimating equations	57		
	0.1	a. Non-normal data	59		
		b. Comparison of marginal versus conditional modeling	60		
		c. Comparison of GEE and random effects estimation methods.	61		
	8.3	Dispersion-mean model	62		
	8.4	Penalized quasi-likelihood	62		
	_	a. Higher-order Laplace approximations	66		
	8.5	Choosing good estimating equations	66		
		a. Illustration: REML.	67		
		b. BLUP methods	68		
		c. Composite and working likelihoods	69		
	8.6	Progabide and seizures revisited	69		
	8.7	Further notes	70		
9	Con	clusions	71		
	9.1	Introduction	71		
	9.2	Chestnut leaf blight revisited	71		
	9.3	Further work	72		
		a. Random effects distribution	72		
		b. Small sample distributions	73		
		c. Prediction error	73		
	9.4	Summary	73		
Bi	bliog	raphy	74		
Index					

v

Preface

When Jim Booth from the University of Florida first approached me about being nominated as the primary lecturer for a Conference Board in the Mathematical Sciences (CBMS) summer conference I was both flattered and slightly apprehensive. When Jim called me to tell me the conference had been approved he only slightly jokingly asked if it was good news or bad. He had to set about organizing a large workshop and I had to prepare ten lectures on the state of generalized linear mixed models (GLMMs). While travelling to the conference and looking at the participant list, I realized there was likely no topic I was lecturing on for which I was the most expert participant. Fortunately, the conference participants were tolerant and engaging and Jim and I both agreed afterwards that it was a wonderful experience and well worthwhile. To a large extent the thanks go to Jim Booth, Jim Hobert, the other speakers (Xihong Lin, David Ruppert, Pat Heagerty and Jim Hobert) and participants.

I apologize for taking so long to get this monograph produced. Shortly after the conference I accepted a position at the University of California, San Francisco. Moving and adjusting to a new position simply did not allow me the time to work on the monograph.

This monograph is a fairly accurate account of the lectures I gave at the CBMS conference with a bit of updating, especially in the bibliographic notes sections that follow each of the later chapters. Compared to my other books, *Variance Components* (with Shayle Searle and George Casella) and *Generalized, Linear, and Mixed Models* (with Shayle Searle) this monograph has much more of a research focus and I have taken the liberty of covering in more depth topics I feel personally passionate about and less obligated to provide textbook-like coverage. Though the title is very similar to *Generalized, Linear, and Mixed Models* the focus is quite different: the lack of commas and the missing "and" are statistically significant!

This monograph is written assuming familiarity with linear models and matrix algebra and some exposure to mixed models and logistic regression. References are given to more standard texts that cover some of the basic material in more depth. The monograph begins with an extended example that introduces all the main ideas. Chapters 2 and 3 briefly review linear mixed and generalized linear models and Chapter 4 defines and introduces GLMMs. Chapter 5 illustrates the breadth of inferential goals possible with GLMMs. One of my main attractions in conducting research on this class of models was the wide variety of practical applications. Chapters 6 through 9 contain the "meat" and tackle the difficult aspects fitting these models to data. The monograph is organized along the lines of

the CBMS lectures.

Work on this monograph was partially supported by NSF Grants DMS-96-25476 and 01-03792.