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1. Introduction

In a previous paper [1], we discussed the distribution of a score, representing
a diversity index, when a number of different colored balls are randomly dropped
into M (=mn) identical compartments, one ball only permitted per compartment.
We now generalize and at the same time simplify the previous setup by allowing
more than one ball per box.

2. Notation

Abox of m X n = M compartments is supposed. There willbe (m — 1)(n — 1)
crossover points each of which will be surrounded by four compartments. Denote
these crossover points by (%), 7=1,2,---,m—1,7=1,2,.+- ,n — 1. Let
there be K; balls in s colors with k; the number of balls of the fth color and

2.1) 2'1 k, = Ki.

These K; balls are supposedly dropped randomly into the M compartments,
with no limitation on the individual compartment capacity. Consider the (4j)th
crossover point. Let T;; be the total number of balls in the four compartments
surrounding (7). Let ¢:;; be the total number of balls of the £th color in the same
four compartments so that

8
(22) T,'j = {gl tijt.

The number of joins between balls of like and unlike colors will be, omitting the
factor of one half,

8
(2.3) TP = Xt + T tidim
=1 i#h
for the four boxes. Summed for all values of < and j, we have
m—1 n—1 m—1 n—1 8 2 m—1 n—1
(24) Y XTP =X L X+ X X T bt
i=1 j=1 i=1 j=1i=1 i=1 j=1 {7k
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Let us write this as Sy = Sy + Sz, a break up of the joins scores reminiscent
of the classical analysis of variance setup. Clearly, Sy represents a measure of
the within color joins, while Sp gives the between color joins. Accordingly, Sy
may be used as a measure of aggregation (or clumping), while Sz may be used
to measure segregation (or affinity). A modification of Sp is suggested below.

3. Conditional means

The restriction that there is no limit on the individual compartment capacity
means that, for any four boxes considered, the number in these four boxes of
any one given color will be a positive binomial variable with index k,, £ = 1, 2,

-, 8, and probability p = 4/M. The restriction is not very important and the
procedure can be modified if desired by placing an upper content limit on each
box. The supposition that the balls are randomly dropped implies an independ-
ence between and within color content for the four boxes, but because of the
method of scoring Sw and Sp will be correlated. Conditional on the numbers
key £=1,2,--- s, and K;, we have

&(8r) = (m — 1)(n — HKPp?,
(3.1) &(Sw) = (m — 1)(n — 1)K,p?,
&(8p) = (m — 1)(n — 1)[KP — Ka]p?,

where, following our previous notation,

(3.2) K, =3 K.
{=1

When n = 1, that is, when the boxes are in a line, the score will be taken for
each of two connected boxes, p will be 2/m and

(3.3) &(Sr) = (m — HNEPp?

with the Sy and Sp similarly modified. It may also be noted that for three dimen-
sions there will be a three dimensional lattice formed by the intersections of the
box edges. The score will be calculated from the contents of the eight boxes
surrounding the (4jw) node, p will be equal to 8/M where M = m X n X w, w
being the number of boxes in the third dimension. Accordingly, for three dimen-
sions,

(3.4) &(8r) = (m — 1)(n — 1)(w — 1)KPp?

with similar expressions for the other two sums.

4. Unconditional means

Biologically measures conditional on the {k; seem to be those sought after.
However the k may themselves have arisen from a larger set and so the uncon-
ditional moments may be of interest. Suppose free multinomial sampling with
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8 1
4.1) Pl k:} = K Lo P,

(=1 H kt‘ {=1

i=1
and write
(4.2) P, = 3::1 o, Pi=1
Then we have
(4.3) &(Sw) = (m — 1)(n — 1)K{PPyp?,
’ &(8p) = (m — 1)(n — Np’KP (1 — Py),

with
4.4) &(Sr) = (m — 1)(n — 1)p*KP

as before. The modifications for one or three dimensions instead of the two di-
mensional result above are easily written down.

Instead of multinomial sampling, we may wish to suppose a multiple Pélya
urn model. Let there be an urn containing N balls of s different colors with R,
balls of the £th color, £ = 1,2, - -, s. A ball is drawn, the color noted, and it is
returned to the urn together with A balls of the same color. Writing § = A/N,
Pt = Ry/N, we have

s ke
K ),131 i %+ (b — 1)5)
k ﬁ 14 (a—1)d

a=1

@5 P = (,

If the sampling is of this type and if

_ S pipt+d) - (4 (r — 1)9)
(*4.6) Pf_él 11+0) --- QA+ ¢ — Do)

then the expectations are formally as above.

6. Conditional variances (two dimensions)

As in our previous paper it proved advantageous to evaluate the second crude
moment and to split the evaluation into four different steps. Thus, we have

(5.1 Sy = LTI Tl + 3 ).
Case (3):t =1,j = 8; (m — 1)(n — 1) terms.

(5:2) X‘l ) = Z‘i [t + 43 + 26R],

which has expectation

(5.3) Kot + 4Ksp® + 2K p2.

Again,

(54) = tGh = p* p kPkP = p*{K} — K, — 4K, — 2K},
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so that the total contribution is
(55) p"[K% —_ 4:K3 nd 2K2] + 4p3K3 + 2P2K2.
Case (1): r=14+1, j=sore=7r,s=7+1;2m — 2) (n — 1) or
2(m — 1) (n — 2) terms. The total contribution is
(5.6) K% — 4K; — 2K,] + 2p°K; + $p’K.
Case (7i5): r =1+ 1,s =7+ 1;4(m — 2)(n — 2) terms. The total contri-
bution is
5.7 p'[K? — 4K5 — 2K,] + p°Ks + §p?Ko.
Case (w): |1 —r| 2 2,7 — 8] 2 2;[(m — 1)2(n — 1)2 — B3m — 5)(Bn — 5)]
terms. The total contribution is
(5.8) p‘[Kg — 4K; — 2K2].
Collecting terms, we have
(5.9) &(S%) = (m — 1)¥(n — 1)2p*[K3 — 4K; — 2K,]
+ 4p°K3(2m — 3)(2n — 3) + 3p*Ks(3m — 4)(3n — 4)
with
(5.10) Var Sy = —(m — 1)*(n — 1)?p*(4K; 4 2K,)
+ 4p°K3(2m — 3)(2n — 3) + 3p2K.(8m — 4)(3n — 4).
Similarly,
(5.11) Var Sy = —(m — 1)%(n — 1)2p*4KP + 2K{)
+ 4p*K® (2m — 3)(2n — 3) + 3p2KP(Bm — 4)(3n — 4),

(5.12)
Var Sp
= —(m — 1*n — 1)2p‘[4K® + 2K® + (4K; + 2K,) — 4K.(2K; — 3)]
4+ 4(2m — 3)(2n — 3)p’[KP + K; — 2Kx(K; — 2)]
+ 3p°(3m — 4)(3n — 4)[KP — K],
and

(5.13) Cov SwSe
= 4[K; — Kx(Ky — 2)][p*(m — 1)*(n — 1)* — p’(2m — 3)(2n — 3)].

6. Conditional variances (one and three dimensions)

Remembering that p = 2/m for one dimension,
(6.1) Var Sy = —(m — 1)?p*(4K; + 2K,) + 4p*Ks(2m — 3) + p*Kx(3m — 4)
with similar modifications for the others, namely,

(62) Var SB = — (m - 1)2114(41{;3) - 4K; — 8.K2K1 + 14K, + 2K§2))
+ 4p3(2m o 3)[K§3) + K3 _ 2K2K1 + 4:K2]
+ pBm — Y[KP — K],

(6.3) Cov (SwSp) = 4[K: — K:(K; — 2)][p*(m — 1) — p*(2m — 3)].
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For three dimensions m, n and w, we have that p = 8/m-n-w. The functions
of K remain as before with suitable modifications of the multiplying factors.

7. Unconditional variances (two dimensions)

The unconditional variances follow along lines similar to those for the means.
With free multinomial sampling, we have

(7.1) &%) = KOPiphm — 1)%n — 1)

+ 4KPP:p*(2m — 3)(2n — 3) + 1KPPyp2(3m — 4)(3n — 4),
giving
(7.2) VarSw = —(4KP + 2KP)Pip*(m — 1)¥(n — 1)?

+ 4K® Pyp*(2m — 3)(2n — 3) + 3K Psp2(3m — 4)(3n — 4).
Similarly,

(7.3)  VarSz = —(@dK® + 2K®)(1 — Py)p4(m — 1)%(n — 1)
+ 4KPp*2m — 3)(2n — 3)[(Ps — 2P: + 1)
+3KPp*(3m — 4)(3n — 4)(1 — Py)],
Cov SwSs = — (4K + 2KP)Py(1 — Pa)pi(m — 1)%(n — 1)?
+ 4K®p*(2m — 3)(2n — 3)[—Ps + Px).

The Pélya second order moments may be calculated from first principles but are
possibly more simply achieved from the k-function technique of the next section.

8. Augmented factorial monomial symmetric procedure

As previously written, k, stands for the number of the ¢th kind to be distrib-
uted. The suffix is, however, not important and in cases where there is no possi-
bility of confusion it may be omitted, following the usual symmetric function
procedure. For the sake of example, let us suppose we are interested in the sum
of the rth factorial powers of all the k. We may write this sum as follows:

8.1) QW=W.
Again, we may write
(8.2) gl h'gl KPR = (k2.

Accordingly for the first moments of Sy and S, respectively, we may write

pio = (m — 1)(n — Dp*Ks = (m — D)(n — Dp’[ks],

(83) 4 = (m— (n — DpY[KP — Kilp? = (m — D(n — Dp*[K],

since
84) [K] = Eh ko = (k) — T ke = K§ — [Z k& + Z k]

2
= KP — K.
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This notation enables complicated multiplications to be carried out quickly and
lessens the risk of error. Thus, we have, for two dimensions,

(8.5) um = p'(m — 1)*(n — 1*[—4[ks] — 2[k»]]
+ 4p*(2m — 3)(2n — 3)[ks] + 3p*(Bm — H)(3n — 4)[ka],

(8:6) un = 4[k:kn][—p*(m — 1)*(n — 1)* + p*2m — 3)(2n — 3)],

(8.7) e = pi(m — 1)%(n — 1)[—4keks] — 4[k}] — 2[kF]]
+ 4p*(2m — 3)(2n — 3)[[kekr] + [K3]] + $p*(3m — 4)(3n — 4)[Ki],

giving as a check

(8.8) VarSr = —pi(m — 1)2(n — 1)2{4[[ks] + 3[kk] + [3]1] + 2[[k.] + [K3]1}
+ 4p*2m — 8)(2n — 3){[ks] + 3[koks] + [Ki1}
, + §p°(Bm — 4)(3n — 4){[k=] + [#31},
or
(8.9) Var 8y = —p(m — 1)¥(n — 1)2{4Kf + 2KP}
+ 4p*2m — 3)(2n — 3)KP + 3p2(3m — 4)(3n — 4)KP
as before.

In a previous paper [1] when I introduced these k-functions I demonstrated
how the augmented monomial symmetric function tables ([2] or [3]) could,
formally, be used to evaluate the k-functions in terms of the K-functions, and
gave expressions for the products of the K-functions corresponding to the prod-
ucts of the usual augmented monomial symmetrics. From these tables (see
Table IV for illustrations), we read off the K-functions from the k experssions
and writing for brevity,

X = Ks, Y= Kz(Kl - 2), Z = Kis),
xr = Kz, y= K{z);
we have, as already demonstrated,
(811) pio = (m — D(n — Dp*>z, pa=(m—1)(n— py — 7],
(8.12) px = —pi(m — 1)*n — 1)’[4X + 2]
+ 4p3(2m — 3)(2n — 3)X + 3p(3m — 4)(3n — 4)z,
(8.13) un = —4[—pi(m — 1*(n — 1)? + p*(2m — 3)(2n — 3)][X — Y],

(8.14) oz = —pi(m — 1)*(n — 1)[4(X — 2Y + Z) — 2(z — y)]
+ 4p*@2m — 3)(2n — 3)[X — 2Y + Z]
+ 3p?(Bm — 4)(3n — H[—(z — y)].

(8.10)

9. Conditional third moments (two dimensions)

Using the k-function technique and writing

(9 1) a. = K4, [3 = Ka(Kl - 3), Y = Kz(Kz - 2) o 4K3,
) 6= Kz(K1 - 2)(2), £ = i4)

with X, Y, Z, z, and y as defined above, we may construct Table I.
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No new principle is involved in finding these third order moments and so I have
not reproduced the algebraic detail. The numbers of terms involved is not with-
out interest and so they are given in Table II. Each cell, however, will need to be
split again according to the permutations of the suffices under consideration.

10. Product of k-functions

In finding the central third moments given in Table I, I found it convenient
to derive the crude moments and then reduce them. This meant some algebraic
manipulations became rather heavy, with transforming k-functions to K-func-
tions and conversely. Accordingly, it proved profitable to tabulate products of
the Augmented Factorial Monomial Symmetric Functions (AFMSF’s). Thus,
for example,

(10.1)  [kek (K] = (f;;, k?’k,‘.") (Z k.

u #v

=2Y (kPk)ED) +2 X (kke) () (k)
I3 t=h#u
+2 ¥ GE)YE) ) + X (k) ) (k) (K)
t=h L7h 2 u

= 2ksks] + {6{ksks] + 2[kikr]} + {6[ksk:]}
+ 2[kk3] + {6[kakT]} + 2[kskokr] + {2[kskT1}
+ [ksk3].

Table AI of the Appendix gives the expression of the products of all separates
of weight 6, 5, 4, 3, 2, in terms of the AFMSF’s. This table enables any reduction
from crude moments to central moments to be made reasonably quickly.

11. Unconditional moments

Expression of the moments in terms of the AFMSF’s calls for the minimum
of manipulation when we turn from the conditional to the unconditional case.
With free multinomial sampling

(11.1) elkakok, -] = X KKK -+
#l6#h
= K{ftvter) O pipRpE .-,
LFL#EDH#E

with the reduction of the last summation following from the AMSF’s of [2].
With Pélya sampling of the type delineated earlier, writing

(11.2) piled = pilpt + 8][pt + 28] - - - [pt + (a — 1)3],

we have

Kptoteteo

(11.3) &[kaoksk, + -] = NG pf.[“]'pz[b]'pz.[d" .o,

7% 223 7 TR
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Thus, for example, conditionally,

(11.4) i = p*(m — 1)2(n — 1)2{[ks] + [K3]}

+ 4p*(2m — 3)(2n — 3)[ks] + 3p*(Bm — 4)(3n — H[k,].
If the contents of the m X n squares have supposedly arisen from sampling
from a multiple Pélya urn scheme, then unconditionally

11.5
(11.5) o

wo = pilm — ' — D {5 a1 39)
{£ 701+ 961+ 2001+ 39 + Z 9101+ oitei + 0}

+ 45 em — B — 3) [ e L, P+ @+ 20 |

+3pm = 9@ = ) T £ g+ 9

Here § = 0 gives the multinomial result, 8 = —1/N gives the ‘“no replacement”’
result. Generally,

(1L6) po = p*(m — 1)*(n —

K®
VT 9a+ 290 + 39

{P? + 5(4P; + 2Py) + 8*(10P; + 1) + 65%

' (3)
+ 4p'(@m — 3)(2n — 3) (I—Jral){—(llﬁs—)

+3 p’(3m —H@n -4 77 (1 + 5) {P.+ 8}

{Ps + 3P:% + 26%

with
(11.7) o = pm — Dln — 1) 15 (Ps+ ).

No general simplification appears possible for the central moments, except in the
multinomial case. For this latter case, we have

(11.8)  pgo = p¥(m — 1)*(n — 1’K{"P}
+ 12p5(m — 1)(n — 1)(2m — 3)(2n — 3)K{P P3P,
+ $p*(m — 1)(n — 1)(3m — 4)(3n — 4)K{*P}
+ p*[6(8m — 15)(8n — 15) 4 8(4m — 7)(4n — 7)]P.K{®
+ p*[24(8m — 5)(3n — 5) + 2(5m — 8)(5n — 8)]KP Py
+ p*(5m — 8)(5n — 8)K{PP,.
For brevity, let
KiG) — 3Ki4)K§2) + 2(K12))3 =F

(11.9) KPP — KPKP =@
K®» — (K®)2=H
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Then

(11.10)  pso = p(m — 1)*(n — 1)°P3F
+p%(m — 1)(n — 1)(2m — 3)(2n — 3)12P,P:G
=+ pt(m — 1)(n — 1)(3m — 4)(3n — 4)P}H
+ p'[6(8m — 15)(8n — 15) + 8(4m — 7)(4n — T)PK{®
+ p*[24(3m — 5)(3n — 5) + 2(5m — 8)(5n — 8)]P:K®
+ p*(5m — 8)(5n — 8)P:K{®,

(11.11)  pu = pS(m — 1)%(n — 1)*P3(1 — Py)F
+ 4p¥(m — 1)(n — 1)(2m — 3)(2n — 3)[—3PyPs + 2P% + P4]G
+ ip'(m — 1)(n — 1)(3m — 4)(3n — H)Py(1 — P)H
+ 2p*(8m — 15)(8n — 15)K{*(—3P, + P} + 2P,)
+ 8p*(dm — T)(4n — T)K{’[— P, + Py
+ 8p%(3m — 5)(3n — 5)K®(—Ps + Ps),

(11.12)
pz = p¥(m — 1)}(n — 1)*Py(1 — Py)°F
+ 4p5(m — 1)(n — 1)(2m — 3)(2n — 3)[3P,P; — 2P; — 4P} + 3P3]G
+ ipMm — 1)(n — 1)(3m — 4)(3n — 4)Py(1 — P)H
+ 2p4(8m — 15)(8n — 15)K{¥(3P, — 2P} — 4P; + 2Py)
+ 8p4(4m - 7)(4n - 7)K§4)[P4 — 2P; + Pz]
+ p*[8(8m — 5)(3n — 5) + 2(5m — 8)(5n — 8)K{’[—Ps + Pa],

(11.13)
po = pi(m — 1)¥(n — 1)*(1 — P5)°F

+ 12p%(m — D(n — 1)(2m — 3)(2n — 3)G(1 — Py)(P; — 2P: + 1)
+ 3p'(m — 1)(n — 1)(3m — 4)(3n — 4)(1 — P2)°H
+ 6p4(8m — 15)(8n — 15)K{[(1 — P3)? — (Py — 2P; + Py)]
+ 8p*(4m — T)(4n — T)K{*[1 — 3P; + 3P; — P,]
+ 24 p*(3m — 5)(3n — 5)KP(1 — 2P; + Py)
+ 2p*(5m — 8)(5n — 8)K{’[1 — 2P; + Pj]
+ p*(bm — 8)(5n — 8)(1 — P;)K{,

It remains to note that F = 40K{¥ + 64K + S8K{® with similar reductions
for the others.

12. Distribution of Sy and Sp

In order to reduce Sy or Sp to a diversity index, it was suggested in [1] that
for an observed score S, it would be appropriate to calculate P{S < So} and use
this quantity as a measure of aggregation, or segregation, in diversity. It will
however be recognized that this requires the distribution of S and this is difficult
to obtain except possibly for the case of one dimension. Such random sampling
experiments as we have done indicates that both Sy and Sz have distributions
which look like x2 (or x) and we would accordingly suggest that a suitable ap-
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proximating function to these distributions may be x2, keeping the normal ap-
proximation for use when B is very small. Thus, we write

(12.1) &8) — A = qf, Var § = 2a?f, us(S) = 8a?,
so that
2
12.2 w8 = 8(8) — 2.
(12.2) “= 1 f A A = &(S) .

This will usually mean that f, the degrees of freedom, are fractional, and inter-
polation into the x? tables will be necessary. On the whole, such sampling results
as we have indicate that for reasonable sized chessboards and with K; not very
different from M = mn the x* approximation is adequate. For one dimension as
indicated below the start may be fixed at one half below the first possible fre-
quency of S and the first two moments only will then yield values of a and f.
It will not escape notice that the numerical calculation of us will be heavy arith-
metically and we have in fact written a program for it.

12.1. One dimension. The distribution of Sw for five balls of the same color
in five boxes arranged in a line is as in Table III.

The momental constants are

pi = 12.8, pe = 28.032, o = 5.294525
B1 = 1.4288, Bs = 4.7768.

For the (8,8:) point to lie on the Type III line, we should have 28, — 38, — 6 =
0, or for given 81, we have 8; = 5.1432.

The true (818:) point accordingly lies in the Type I area but it is not far off the
Type III line.

If A, a, and f have the meanings of the previous section then A = 3.94136,
a = 1.5822, f = 5.5989. We use the x? tables and obtain x30s = 11.9832; thus,
the frequency beyond ax3os is 183 which is 5.86 per cent. The x§01 = 16.1216;
thus the frequency beyond ax3o: is 33 or 1.056 per cent. This example takes an
extreme case and the approximation using x3.0; may be expected to become better
as the number of balls and/or boxes increases. For instance, suppose we drop five
balls of one color and four balls of another color in five boxes arranged in a line.
The distribution of Sw is shown in Table IV.

The momental constants are:

ui = 20.48, pe = 43.008, ¢ = 6.5580, B = 0.7673,
A = 550656, f=10.42615*, a = 1.43614.

(12.3)

(12.4)

The %305 point cuts off 4.6 per cent from the upper tail and the x3o1, 1.1 per cent.

If B, is of negligible proportions, which implies that f, the degrees of freedom
of the x2 are large, the normal curve may be used. For small degrees of freedom,
as above, the use of the normal curve may be misleading. Thus, 1.6449 X
6.5580 + 20.48 = 31.26. The actual percentage frequency beyond 31.26 is 7.39
per cent.
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The complete enumeration of S for two dimensions called for extensive com-
putations, given any realistic set of numbers. Accordingly, we resorted to ran-
dom sampling. Given m = 4, n = 5, ks = 10, k2 = 8, ks = 5, ky = 4, (that is,
K, = 27), the 27 points were put down randomly on the 4 X 5 chessboard and
Sw and Sg calculated. In all, this process was carried out 500 times. The dis-
tributions obtained are shown in Table V. The observed value of 8; is 3.88. The

TABLE V

DiISTRIBUTION OF Sy IN 500 SamMPLES
m=4,n=5k =10,k =8k =5kk=4

Sw  Frequency Sw  Frequency Sw  Frequency
36 1 88 20 140 1
38 —_ 920 14 142 2
40 _— 92 22 144 —_
42 —_ 94 15 146 —_
44 2 96 12 148 —_
46 4 98 12 150 1
48 — 100 16 152 1
50 6 102 11 154 —
52 3 104 6 156 —
54 10 106 5 158 —_
56 9 108 12 160 —_
58 10 110 10 162 —
60 10 112 8 164 —
62 15 114 5 166 —_
64 10 116 1 168 —_
66 17 118 6 170 -
68 22 120 7 172 1
70 11 122 6 174 1
72 21 124 3 176 1
74 20 126 3

76 31 128 1 Total 500
78 19 130 3

80 17 132 1

82 12 134 1

84 22 136 3

86 15 138 —_

condition for the Type III line is 28, — 381 — 6 = 0, which will give for the
theoretical 8, (if the Type III assumption is justified) a value of 3.87. It is clear
that a Type III may be a suitable approximating function, although the (8.8:)
point might suggest the inverse of the Type III, that is, the Type V. Using Type
III and the x? tables with fractional degrees of freedom, we obtain the values
of Sw, in both the observed and theoretical cases, which should cut off 50 per
cent, 5 per cent, and 1 per cent from the right tail of the distribution (Table VI).
These values are then used on the actual sampling distribution of Sy to obtain
the true percentage tail content. The results are given in Table VII. For the
case we are considering 20(= 5 X 4) cells and 27 objects the agreement between
the estimated percentage points and the true 5 per cent points would appear
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TABLE VI

MoMENTAL CONSTANTS FOR DISTRIBUTION OF Sy

" M2 13 B
Observed 85.424 486.4042 7550.01 0.495
Theoretical 85.44 457.4336 7457.88 0.581
TABLE VII

PERCENTAGE PoinTs FOR Sw UsiNg CONSTANTS
oF TABLE VI AND THE TypE III DISTRIBUTION

Nominal points

A a f 509, 59, 1%
Observed 22.75 3.881 16.151 49.8 4.2 1.2
Theoretical 29.33 4.076 13.767 49.8 4.2 1.2

reasonably good. With a larger chessboard, and thus a lessening of the part
played by the edge effects, the agreement should be closer.

For Sz we have the following distribution in the 500 samples shown in Tables
VIII, IX, and X.

The values of the momental constants are in reasonably close agreement. Using
the assumption that Sp/2 is distributed as ax? the nominal 50 per cent, 5 per cent,
and 2.5 per cent points were found in each case and the actual percentages were
calculated for these points from the sampling distribution.

12.2. Two dimensions (Pielow’s examples). Pielou ([4], p. 180) gives two exam-
ples of spatial patterns which she has created in order to illustrate specific points.
We use her data here to illustrate the application of the various criteria proposed.
Two species only are considered. We denote these by A and C. The areas were
gridded by us into 10 X 8 cells and the count per cell was determined. The
counts for Pattern 1 are shown in Table XI.

We note that 4 and C together have a random pattern; A and C are segre-
gated (that is, tend not to occur together). We have as observed moments

Sr = 2246,  Sr = 2325.015, Var 8y = 28835.906275,
(12.5) Sy = 1664, Sy = 1349.775, Var Sy = 12551.642875,
Sy = 582, Sp= 97524, Var Sp = 7906.4874,

Cov SwSe = 4188.888.

Calculation of the third moments show the skewness to be negligible. Conse-
quently from normal tables,

(12.6)
P{Sr = St} = 0.309, P{Sy = Sw} = 0.998, P{Sp = Sp} = 0.231.



DIVERSITY, II 125
TABLE VIII

DisTrIBUTION OF Sp/2 IN 500 SAMPLES
m=4,n=5,k1=10,k2=8,ka=5,k4=4

Ss/2  Frequency Ss/2 Frequency Sg/2 Frequency Sz/2  Frequency

70 B | 113 5 156 3 199 —
71 — 114 7 157 2 200 -
72 — 115 1 158 1 201 —
73 — 116 12 159 8 202 —
74 — 117 9 160 — 203 -_—
75 — 118 5 161 2 204 —
76 1 119 10 162 4 205 —
77 — 120 7 163 1 206 —
78 1 121 10 164 4 207 —
79 2 122 7 165 4 208 1
80 2 123 8 166 1 209 —
81 2 124 7 167 7 210 —
82 2 125 6 168 2 211 —
83 4 126 11 169 3 212 —
84 1 127 6 170 — 213 -
85 — 128 10 171 2 214 —
86 3 129 8 172 1 215 -
87 2 130 6 173 1 216 1
88 3 131 4 174 1 217 —
89 2 132 5 175 — 218 —
90 2 133 5 176 2 219 -
91 3 134 5 177 — 220 —
92 4 135 5 178 — 221 —
93 7 136 3 179 — 222 —
94 9 137 8 180 2 223 —
95 2 138 8 181 1 224 —
96 4 139 1 182 — 225 —
97 6 140 5 183 2 226 —
98 6 141 4 184 1 227 —
99 2 142 6 185 — 228 —
100 8 143 4 186 1 229 —
101 4 144 8 187 1 230 —
102 6 145 3 188 2 231 —
103 4 146 4 189 1 232 —
104 6 147 8 190 1 233 —
105 10 148 3 191 — 234 —
106 12 149 3 192 — 235 1
107 9 150 5 193 — 236 —
108 6 151 11 194 — 237 1
109 10 152 3 195 —
110 5 153 6 196 — Total 500
111 12 154 7 197 —
112 11 155 4 198 —
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TABLE IX

DisTRIBUTION OF S3/2 IN 500 SAMPLES
Momental Constants

ol ™ ™ B
Observed 126.146 673.5287 11516.5453 0.43
Theoretical 125.76 655.7792 11485.8965 0.47
TABLE X

PERCENTAGE PoINTS FOR Sp/2 UsiNG THE CONSTANTS
oF TaBLE IX AND THE TyrE III DISTRIBUTION

Nominal
Mean S.D. 509, 5% 2.5%
Observed 126.146 25.95 49.09, 3.8%, 2.09%
Theoretical 125.760 25.61 50.6%, 4.0% 2.29,

TABLE XI

CounTts ¥OrR PATTERN 1

>
w
Q
m

2 2 0 0 0 1 2 1 1 O 0O 0 2 1 0 O 0 0 O O
1 1 0 0 0 4 2 1 2 2 6 0 2 1 3 0 0 0 1 3
1 2 2 0 0 1 1 2 O O o 0 0 0 2 0 O O 0 2
2 0 2 0 2 O 4 0 0 O o 0 o 0 0 0 0 1 2 1
i1 0 0 1 2 1 2 O O O 0 1 1 0 0 O O 1 4 1
2 2 0 2 2 3 1 1 0 0O 0o 0 2 0 0 O 0 0 0 O
1 1 0 1 2 1 O0 1 2 2 01 2 2 0 O 0 0 O0 O
o 2 1 1 2 2 2 2 1 1 0O 0 0 0 0 0 O O o0 o
Total A’s: 86 Total C’s: 36

Since the correlation between the within and between scores is high (p =
+0.4205) and Sw is large, it would seem appropriate to modify Sz by calculating
the quantity

1 Sz — S N
(12.2) (1 — p?)* ( 0Sp - OSw ) = S (sy).

From unit normal tables S% cuts off 0.017 from the left tail. It is clear that if the
86 4 36 = 122 are put down randomly on the 10 X 8 chessboard, then the ideal
randomness score will give a value of 0.5 for P{Sr < Sr.}. If the observed value
Sr, is large, then this will imply clumping of the combined values; if it is small,
then we would suspect there was regularity in the positioning of the A’s and the
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C’s. The fact that Sy is large indicates that the A’s and the C’s tend to be
clumped among themselves. A glance at the counts shows this indeed to be the

case. The small value of S% indicates that A tends not to oceur with C, which is
again the case.

TABLE XII

CoUNTS FOR PATTERN 2

A’s C’s
0 0 1 1 2 2 4 0 0 O 0o 0 0 1 1 1 1 1 O O
o 0 0 3 3 1 2 0 0 O o 0 0 2 0 0 2 0 O0 O
0O 0 0o 2 2 2 0 O O0 O 0 0 o0 1 1 1 0 O O O
0O 0 0 0 0 0 O O O0 O 0O 0 0 0 0 0 O O O0 1
0O 0 0 0 0 O O0 1 1 3 0O 0 0 0 0 0 0o 0 3 O
9 2 2 0 0 0 2 1 2 0 0 3 0 0 0 0 1 O O0 1
0o 3 2 0 0 0 O 3 0 3 0 2 1 0 0 0 0 1 1 O
0 1 0 0 0 O 2 2 3 O o 0 0 0 0 0 1 1 1 1
Total A’s: 58 Total C’s: 30

The counts for Pattern 2 are shown in Table XII. Here we note a two species
population in which the plants have clumped patterns but the species are un-
segregated (that is, tend to occur together).

We have as observed moments

Sy = 2216, Br = 1205.82, Var Sy = 12020.2071,
(12.8) Sy =1132, By = 657.72, Var Sy = 4869.2856,
Sp = 1084, B = 548.10, Var Sz = 3776.5395,

Cov SzSw = 1687.1910.

The indices for Sr, Sw, Ss and Sp+ are all unity to five decimal places. Thus,
neither the species, considered together or separately have a random pattern and
A and C are not random with respect to their juxtaposition.

Table XIII shows the counts for Pattern 3, which is a random arrangement of

TABLE XIII

Counts FOR PATTERN 3

A’s C’s
3 01 2 1 2 1 0 1 1 1 0 2 0 2 0 0 O 0 1
o 0 01 1 1 0 1 2 1 1 1.0 01 0 2 0 0 1
1 0 3 4 0 2 1 0 2 1 0o 0 0 1 1 1 0 1 O0 O
0 2 11 2 0 0 1 1 3 0o 2 0 0 2 1 0 1 1 O
0 4 1 1 1 0 1 0 1 1 0 1. 0 0 0 1 0 O O O
2 01 2 0 2 1 1 1 1 o 0 1 1 0 1 O O O O
1 1.1 0 0 O O o0 2 2 0o 0 0 0 0 0 O 2 1 O
1 2 0 3 1 2 0 3 1 1 o0 1 0 0 1 1 0 O 1 1
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Pattern 1. In fact the 86 A’s and 36 C’s of Pattern 1 were put down randomly
using a random number table.
We have the observed

Sr = 2134,
(12.9) Sw = 1170,
Sg = 964,
with indices Sr: 0.130, Sw: 0.054, and Sg: 0.450, and
Sw(4) = 996,
(12.10) 8w (C) = 174,

observed separately, with indices Sw(A4): 0.072 and Sy (C): 0.244.

Although the letters were put down randomly there is a suspicion of the anti-
thesis of clumping as evidenced by the low value of the index for Sw. We break
up Sw into the two parts of the contribution for A and the contribution for C,
calculate the separate means and variances and calculate an index for each. The
indications are that there is a suspicion of nonrandomness among those “random”
numbers used to put down the A4’s.

13. Discussion

The spatial pattern of points representing objects belonging to different cate-
gories has been examined in a series of papers relating to the distribution of the
chromosomes in the human cell in mitosis. The material algebra for these investi-
gations was given in Barton and David [5]. The essence of the method is to
recognize that the plotted centromeres (that is, the central points of the chromo-
somes) will most likely not be spatially random, but the numbers attached to the
chromosomes might be. Accordingly, it was suggested that the variance of two
like numbers be compared with the overall variance.

There is no doubt that this randomization test could be extended and applied
to this present problem, but there is an essential difference. Given several species
of plants (4, B, C, D, - - -), it is hypothesized that the spatial points representing
these plants are randomly distributed over the area. (In the chromosome case
we were reasonably certain that they were not, and we were principally interested
in whether the like pairs tended to lie too close together.) Under the hypothesis
alternate to randomness we ask do the plants of the same species tend to cluster
together (possibly in many clusters) and is there any tendency for there to be a
segregation of the different species?

It is recognized that the method used—that of gridding the area—may lead
to a loss of information, and certainly the optimum number of cells to use for the
chessboard is a matter for investigation. Intuitively, one feels that an average
of one observation per cell should be aimed at, but only the specification of suit-
able alternate hypotheses could decide this. Further, and more importantly, the
scoring for the four cells surrounding each node is flexible. For example, if there
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are t;;; plants of the £th kind and ¢;; of the hth kind in the four cells surrounding
the (¢j)th node, then the contribution towards aggregation has been taken as
7 + 3 and the contribution towards segregation as t;;; X tis. A different sys-
tem, suggested in [1] might be to exclude contributions which are only joined
by a diagonal line. For example, consider the sets of four cells in Figure 1.
Under the system of scoring of this present paper, we would count 6, 3, 1, 1,
respectively. But if we adopt a nondiagonal system of scoring, we would count
4,2, 1, 0. Again, only the specification of an alternate hypothesis would make a
decision possible as to which was the optimum procedure.

Ficure 1
Sets of four cells

14. Previous work

As mentioned in the last paragraph, the basic work on one aspect of spatial ran-
domization tests was given in [1]. A suggestion of gridding and counting joins
will be found in Pielou [4], although not the scoring system. The first of these
present papers was done independently of Dr. Pielou’s work which leads one to
the hope that we may be on the right lines. A paper by Mandel and [6] concerned
with the clustering of cases of a disease, also using “joins,” appeared in a recent
journal, but seems different from the present approach.

o R ¢

The material discussed here arose from problems presented to the writer by
the scientific staff of the Pacific-Southwest Range and Experiment Station,

US.DA.
N A

APPENDIX

Table AI gives the products of all separates of weight for the k-functions in
terms of the AFMSF’s.

Table AII gives the K-functions in terms of the AFMSF’s and vice versa.
Equations (A.1) and (A.2) illustrate the notation:
(A.l) [kskzkl] = Z kgs)klgz)kél),

ab>c

(A.2) K, =X k.
a
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To express K-functions in terms of the AFMSF’s, read horizontally up to and
including the heavy type diagonal; for example,

(A3) (Ks(K;— 6) — 6K4)(Ky — 5) = [ke] + [kska] + [kaks] + [k3] + [kskoker].

To express the AFMSF’s in terms of the K-functions, read vertically downward
including the heavy type diagonal; for example,

(A4)
[kskzkl] = 2Ks - Ks(K), - 5) - [K4(K2 hand 12) - 8.K5]
— [Ks(Ks — 6) — 9(Ks + 2K,)] + [Ks(K: — 6) — 6K][K: — 5].
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