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1. Summary and introduction

A gambler with initial fortune x (a positive integer number of dollars) plays
a sequence of identical games in which he loses one dollar with probability 7a,
0 < n < 1, and doubles his fortune with probability 1 - 7t. Playing continues
until, if ever, the gambler is ruined (his fortune drops to zero). Let qx denote
the probability that the gambler starting with initial fortune x will eventually
be ruined. Then, q, satisfies the difference equation

(1.1) q,= 7tq.-1 + (1 - 7t)q2x. x = 1, 2,
with boundary conditions qO = 1 and limpe q, = 0. In Section 2, a solution
to this difference equation subject to these boundary conditions is explicitly
exhibited, and it is shown that there is only one such solution. In Section 3, the
equation is extended to allow arbitrary noninteger values for the fortune, and
again a solution is found. Section 4 contains several other extensions.

Equation (1.1) arises in connection with the following more general gambling
problem described in [2]. A gambler is confronted with a sequence of games
affording him even money bets at varying probabilities of success, P1, P2. ,
chosen independently from a distribution function F known to the gambler.
The probability of winning the jth game pj is told to the gambler after he plays
game j - 1 and before he plays gamej. The gambler must decide how much to
bet in the jth game as a function of the past history, his present fortune, and the
win probability pp. He may bet any amount not exceeding his present fortune;
however, he must bet at least one dollar on each game (called Model 2 in [2]).
The problem of the gambler is to choose a betting system (a sequence of
functions b1, b2, *.., where bj is the amount bet in game j) that minimizes the
probability of eventual ruin. Theorems relating to the dynamic programming
solution of this problem may be found in Truelove [4].

Let q, denote the infimum, over all betting systems, of the probability of ruin
given the initial fortune x. It was shown in [2] that qx tends to zero exponentially
as x tends to infinity, and it was conjectured that, for some 0 < r < 1 and c > 0.

(1.2) q - c as x - o.
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Under this conjecture, the asymptotic (for large x) form of the optimal betting
system was found to be

(1.3) b(p) = max 1, log (1 p)g-log p

where r is the unique root between zero and one of the equation

(1.4) f~1 [pr (p) + (1 - p)rb(p)] dF(p) = 1.

In [1], Breiman proved conjecture (1.2) to be valid under the condition that
F give no mass to some neighborhood of 1, that is, that there exists an 8 > 0
such that F(I - a) = 1.
There remains the question of the validity of the conjecture (1.2), or more

generally the validity of the asymptotic form of the optimal betting function
(1.3), when F gives mass to all neighborhoods of 1.

In this paper, the simplest such F is considered, namely, the F that gives mass
n to O and mass 1 - n to 1, where 0 < X < 1. Under this F, the form of the
optimal betting function for all x is obvious: bet the minimum value 1 when the
probability of win p is 0 and bet the maximum value x when p is 1. Ifp is 0, you
lose a dollar; if p is 1, you double your fortune.

This leads to the recurrence equation (1.1) for q., with the boundary condition
qO = 1. As noted before, it is known that q, tends to zero exponentially. We
add as a boundary condition the weaker assertion lim._o q, = 0, that together
with qO = 1 is sufficient to insure the unicity of the solution to (1.1), for integer
values of x. However, it is of interest, in connection with the gambling system
problem from which equation (1.1) originally arose, to investigate (1.1) for
noninteger values of x. This investigation leads to a useful solution for rational
x. If the initial boundary conditions on q. for 0. x < 1 are continuous in x,
then approximations may be found for qx for x irrational. Furthermore, it is
observed that the conjecture (1.2) is not valid for the boundary condition
qx = 1 for 0 _ x < 1.

2. A solution of difference equation (1.1)

We present in Theorem 1, the unique solution to the difference equation
(1.1) subject to the boundary conditions qO = 1 and lim., -, qX = 0, as a series in
7r2i j = 0, 1, 2, * * *, with coefficients depending on 7t.
The systems of equations (1.1), even with qO fixed equal to one, is vastly

underdetermined. In fact, the values of qx for x odd, x = 1, 3, 5, ... , may be
chosen arbitrarily and the system (1.1) will serve only to determine the values
of qx for x even. However, the addition of the single boundary condition
lim,. qx = 0 determines all the qx uniquely as follows.
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THEOREM 1. Let 0 < it < 1. There exists a unique solution to the difference
equation q, = itq, 1 + (1 - n)q2x, X = 1, 2, 3,*, subject to the boundary
conditions

(2.1) qo = 1

and

(2.2) lim qx = 0.
x-o o

That solution is

(2-3) qx =a ECj22}X X = O.1, 2, 3,-** ,

j=O

where the c; are defined inductively by

(2.4) CO = 1, cX = 1 - i1-2J CJ-1

and where

(2.5) = Cj
j=0

PROOF. The following proof of unicity is taken from Theorem 1 of
MacQueen and Redheffer [3].

If qx and qx both satisfy (1. 1), (2.1), and (2.2), then the difference d. = qx-q
satisfies (1.1), do = 0, and (2.2). Suppose that qx :E qx for some x, and assume,
without loss of generality, that qx > q' for some x. Let xo > 1 be the largest
value of x at which dx achieves its maximum value, assumed to be positive.
Then qx0 -1 _ qxO, and q2xo < qxO. This contradicts (1.1), thus proving unicity.
To see that (2.3) is a solution, note first from (2.4) that |cji _ |cjc-1 so that

(2.3) converges absolutely for 0 <i < 1. Thus, (2.2) is obviously satisfied and
(2.1) is satisfied from (2.5). Using (2.3), we compute the right side of (1.1):

(2.6) tqx-1 + (1 - t)q2x
00 00

= it E cjX2J(x-1) + (17-i)0 cji2J2x
j=0 j=1

= a E c1(7t1-2J)i2ix + a E Cj_11(1 - i)r2Jx
j=0 j=1

= accO7x + aC E (Cj1i-2t + Cj1(1 _ i))t2ix.
j=1

From the recurrence relation (2.4), this is equal to qx, thus showing that (1.1) is
satisfied and completing the proof.
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The solution (2.3) is quite suitable for computational purposes, provided 7t is
not too close to one. Table I, for which I am greatly indebted to David Cantor,
gives an indication of the behavior of q, for moderate values of 7t. As it tends
to one, q.,(1_,) tends to H(z) = a' Y cj exp {-2jz}, where c'o = 1, cj
H1(1 - 2)' and a' = (E cj)'. In Section 4.5, it is seen that 1 - H(z) is the
cumulative distribution function of Z = E- 2-i Yp, where YO, Y, Y,, are
independent identically distributed exponential variables.
A simple asymptotic approximation to qxas t tends to zero is q, - tX(1 + it),

x-1, 2,

TABLE 1

TABLE OF q,

..5 .6 .7 .8 .9

1 .7044 .8436 .942 1 .9895 .9997
2 .4087 .6089 .807 1 .9477 .9974
3 .2188 .4043 .6446 .8740 .9901
4 .1131 .2569 .4921 .7802 .9760
5 .0574 .1593 .3649 .6788 .9541
10 .0(18 .0129 .0681 .2734 .7577
15 1 .(001( .0116 .0952 .5248
20 .0001 .0020 .0318 .3380
25 .0003 .(10.5 .2096
30 .003.5 .1272
35 .0012 .0763
40 .0004 .0455
45 .0001 .0270
50 .0160

3. Fractional fortunes

The problem of the preceding section may be extended to the case in which
the initial fortune x may be any nonnegative number. The difference equation
to be considered is thus

(3.1) qx = rq.-1 + (1 - 7t)q2., x > 1.

If the gambler is declared ruined when his fortune falls below one, then the
boundary condition (2.1) is replaced by q, = 1 if 0 . x < 1. We consider in
this section an arbitrary bounded q, for 0 _ x < 1.
We first note that if q, satisfies (3.1) and (2.2), then q, is bounded for x _ 0.

Since lim q.e = 0, there exists an integer N such that lqxj < 1 if x _ N.
From (3.1),

(3.2) q- 1 = 7r 1 Iq. - 71 )q2xl _ 7r-11 q.1 + 7r- 1(1 - 7r)1q2.1,
so that lq.,1 < i-'(2 - it) for x N - 1. By induction therefore, Hqxl <
(a ' (2 -_ r))N for x . 0.
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We next note that probabilistic considerations alone allow us to infer the
existence of a solution to (3.1) and (2.2) subject to an arbitrary initial condition
on q, for 0 _ x < 1, provided 0 _ q(x) < 1. Then, since the product of a
solution to (3.1) and (2.2) by a scalar, and the sum of two solutions to (3.1) and
(2.2) are also solutions to (3.1) and (2.2), we may achieve any bounded initial
condition on qx for 0 _ x < 1.

Finally, we note that an extension of the argument of the previous section
allows us to conclude that there exists a unique solution to (3.1) and (2.2) subject
to an arbitrary bounded initial condition on q, for 0 < x < 1. For if q' represents
the difference of any two solutions, then 4,, satisfies (3.1) and (2.2) and the
boundary condition q. = 0 for 0 _ x < 1. We must show that 4x vanishes for
all x _ 1. Since qx must be bounded, let ,B = sup. 2 0 4, suppose, without loss
of generality, that ,B > 0, and let xo be the largest number for which there exists
a sequence x, -. xo and 4,X,, -+ ,B. Then equation (3.1) shows that 42x, 1,
contradicting the assertion that xo was the largest number with this property,
and completing the proof of unicity.
The following theorem presents a class of solutions to (3.1) and (2.2), but it

is not known whether an arbitrary bounded initial condition on q,, 0 _ x < 1,
can be achieved as one of them.
THEOREM 2. Let a(x) be a bounded periodic function of period one, and let,

forO < 7r < 1,

(3.3) q= E cjx(2ix) t2ix, x > 0,
j=o

where co = 1 and cj = (1 - 7)(1 - nl-2i)-lcj-l for j = 1, 2, *-- Then qx
satisfies (3.1) and (2.2).
The proof, being similar to the corresponding part of Theorem 1, is omitted.

The hypothesis that a be bounded is equivalent to (2.2).
This theorem may be used to find qx for all x with dyadic fractional part for

an arbitrary boundary condition on qx for 0 < x < 1. Such a solution depends
only on qx, 0 < x < 1, through the dyadic rational values of x. To accomplish
this, it is sufficient to find a(f), a(), a(), . As in Theorem 1, equation (3.3)
with x = 0 enables us to find a(0). For x = 2, equation (3.3) becomes

( * ) ql/2 = COa(2)zl~/2 E CjX(0)7r2(3.4) q12= C0a(2j)7t12+
j= 1

from which a(2) may be found. For x = 1, equation (3.3) becomes

(3.5) q1/4 = Co0(1)ir"4 + C1O(-j)7rl/2 + E Cja(0)X2i2
j=2

from which ax() may be found. It is clear that a(x) may be found for all dyadic
rational x by this method.
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In addition, one can find a(x), and thus q(x) for rational x directly. We
illustrate for x = 3. Evaluating (3.3) at x = 3 and x = 2 yields

=(3) E Cj7C2113 + a(2) E Cir213
j even j odd

(3.6) 1=a(3) ECj72JZ +3 (2j) E Ct2J1B/3
j odd j even

from which one can solve for a(3) and a(j) provided the determinant of this
system of equations does not vanish. In this case, it is clear that the determinant
is not zero, since in each row the summation over j even is larger than the
absolute value of the summation over j odd.
The general problem of finding q. for x irrational seems more difficult. If the

boundary condition on qx for 0 < x < 1 specifies a bounded continuous
function of x, in particular, if it is assumed that qx = 1 for 0 _ x < 1, then qxfor
x _ 1 has discontinuities only at the dyadic rationals, and hence can be approxi-
mated as closely as desired by qx for x dyadic rational.
To see that if the boundary condition specifies a bounded continuous function

of x, then qx is continuous at all x for which x is not dyadic rational, we may
argue as follows. Let qx be a solution to (3.1) and (2.2), suppose that qx is con-
tinuous for 0 < x < 1, and let qx+ = lim sup,-_, q and q- lim inf-., q% for
x > 0. Then, for x > 0,

q j < rq+1 + (1 - 2x

(3.7) q- > 7rqj + (1 i)q-qx _ Xx-l + 1- 2x,

Hence, letting dx =q+ - q-, we see that

(3.8) ° < dx -zdx -1 + (1 -it) d2x, X > 0,

(3-9) dx = °, 0 < x < 1,

(3.10) lim dx = 0.
X b0

If we consider this equation on the set of all positive x not dyadic rational, then
the argument used to prove the unicity of (3.1) may be used here again to show
d = 0 for all x not dyadic rational even though there is an inequality in (3.8)
(as in MacQueen and Redheffer [3]) instead of equality. Hence, qx is continuous
at all x not dyadic rational.

Finally, we note that the conjecture (1.2) is false in the present case. In fact

(3.11) = a(X) + oa(2 x)C2jx-2x
~ (x)

which is not constant in x, but periodic of period one. However, the trivially
optimal betting system is still of the (asymptotic) form (1.3).
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4. Other extensions

The method of expanding qx, as a series in V2ix appears to be quite useful. We
mention several other related difference equations that can be solved by the
use of such an expansion.

4.1. Given ,r1 > 0, iri > 0 for i = 0, * * *, 2t,+, > 0, and X'L+l1i = 1,
find q. to satisfy

n

(4.1) qx= iqx+i + nn+1q2x, x = 1, 2, **
i-1

subject to

(4.2) qO = 1, lim qx = 0.

The unicity of the solution follows as before. We attempt a series for qx of the
form

00

(4.3) qx= Ecjri, x = 0, 1, 2,
j=O

Formal substitution of this series into (4.1) yields
oo 00 n X0

(4.4) E cjr2ix = E cj E 1ir2ji r2Jx + ltn+1 E cj lr2ix.
j=O j=0 i=- / j=1

We equate the coefficients of r2ix. For j = 0, we obtain
n

(4.5) CO = CO 7rirri.

This equation in r has a unique root between zero and one, since the right side
is convex in r, tends to + oo as r tends to zero, and to cO En 1 ir < CO as r tends
to one. For arbitrary j _ 1, we obtain

n

(4.6) Cj = cj 7rir2 i + cj-17n+i.

Thus, the solution of (4.1) subject to (4.2) is (4.3), where r satisfies (4.5) and the
c; are defined recursively by (4.6), and where cO is chosen to satisfy qO = 1.

4.2. The model called Model I in [2] leads in the present context to the
equation

(4.7) qx = 7rqx1 + (1 -r)q2x-1, x = 1, 2, * ,

subject to qO = 1 and limx -m qx = 0. Since no new ideas are involved, we omit
the details.

4.3. Analogous methods can be used to treat difference equations involving
more terms of the form qx-. and correspondingly more boundary conditions.
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As an example, consider the equation (t1 > 0, ic2 > 0, 7i1 + 7r2 < 1)

(4.8) q. = zlq.-1 + n2q.-2 + (1 - - 72)q2., x = 1,2,

subject to specified values of qO and q-1 and subject to lim.,,, q, = 0. The
unicity of the solution follows as before. Again we try a solution of the form
(4.2). Formal substitution into (4.8) yields

(4.9) E cjr2jX = E cj(7r~r-2 + 72r-2j+ )r2ix + (1 - -2-2) E cj1r2x.
j=o j=o j 1

Again, we equate coefficients of r2jX. Forj = 0, we obtain 1 = itr'+±r2r2
There are two roots to this equation,

(4.10) r, = 4[7r1 + (Xr1 + 47r2)1/2] r2 = -1- (7r2 + 47r2)12].

For j > 0, we obtain for each ri a recursion formula for the Cj. denoted by Cj,i:

(4.11) Cji = cj,i(7rir2r + r2r7 2 1) + Cj_ ,i(l - 7r1 -2)

forj = 1, 2, * and i = 1, 2. Hence, the general solution of (4.8) subject to
limx-, qx = 0 is

Z +2ix

(4.12) q= CirlJX + ec,2r2
j=O j=O

The values of cO 1 and c0,2 may be chosen to obtain specified values of qO and
q_1.
4.4. Finally, we note that in expanding qx in terms of r2JX, the "2" appears

because we are concerned with the doubling of the fortune. To solve an equation
of the type qx = nqx-1 + (1 - r)q3x an expansion as a series in 7r3ix works.
The details involve no new ideas. However, it might be worthwhile to give an
explicit solution to the equation

(4.13) qx = 7r1qx1 + 72q2x + 7t3q3x, x = 1, 2,

where 7r, > 0. 7r2 > 0, 7r3 > 0, and it1 + 7t2 + it3 = 1 subject to the con-
dition lim. qx = 0. This equation requires an expansion of the form

(4.14) qx= Z Z citj72i3x, x = 0, 1, 2,
i=o j=O
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By substituting this expansion into (4.13) and equating coefficients of 7r23,
we find the following recurrence relations for the ci j,

C11,1j7t2 + CiJ-,7t3 i 1, 2,cij- 1 1-2i~j j = 1, 2,

(4.15) c Ci-1,072 i = 1, 2.1

C = o - 1i- 3i j = 1, 2,

The value of c0o, may be chosen to obtain a specified value of qO.
4.5. Let Y0, Y1, Y2, ... be independent identically distributed random vari-

ables with exponential densities

(4.16) f(y) = {° Y < 0
0 ~ y < 0.

Let 0 < p3 < 1, and let Z = fJiYj. We find the distribution function of Z.
G(z) = P(Z _ z), as follows. Note that Z may be written as Z = Y0 + f3Z1,
where Z1 = Y1 + 13Y2 + ... has the same distribution as Z, and is independent
of Y0. Therefore, for z > 0,

(4.17) G(z) = J e-YG(Z y) dy

= fl e'O'G(x) dx.

Multiplying both sides by ez and differentiating with respect to z. yields

(4.18) G(z) + G'(z) = G f)

We solve this equation subject to the boundary conditions

(4.19) G(0) = 0, lim G(z) = 1,
z _ 00

and subject to the existence of one continuous derivative of G. (In the present
case G, being the convolution of an infinite number of absolutely continuous
random variables, must be C'.) The unicity of the solution to (4.18) subject to
(4.19) and the continuity of G' follows as in the previous problems. It is then a
straightforward matter to check that the expansion

(4.20) G(z) = 1 - a cj exp {-,jz},
j=o
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where

(4.21) cO = 1, cj= (a Cj>,
i= 1j=0

satisfies (4.18) and (4.19), and thus represents the distribution function of Z.

The author gratefully acknowledges useful discussions on this problem with
David Cantor and James B. MacQueen.
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