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1. Introduction

WVe consider in this paper events of two or more types occurring in a one
dimensional continuum, usually time. The classification of the events may be
by a qualitative variable attached to each event, or by their arising in a common
time scale but in different physical locations. Such multivariate point processes,
or multitype series of events, are to be distinguished from events of one type
occurring in an n dimensional continuum and considered. for example, by
Bartlett [2]. It is of course possible to have multivariate point processes in, say,
two dimensions, for example, the locations of accidents labelled by day of
occurrence, but we do not consider this extension here.

Multivariate series of events arise in many contexts; the following are a few
examples.
EXAMPLE 1.1. Queues are a well-known situation in which bivariate point

processes arise as the input and output, although interest in the joint properties
of the input and output processes is fairly recent (for example, Daley [16] and
Brown [7]). The two processes occur simultaneously in time. Many of the
variants on simple queueing situations which have been considered give rise to
more than two point processes.
EXAMPLE 1.2. An important and rich source of multivariate point processes

is neurophysiology (Perkel. Gerstein, and Moore [41]). Information is carried
along nerve bundles by spikes which occur randomly in time. (The spikes are
extremely narrow and, at least in many situations, their shape and height do not
appear to vary or carry information.) The neuronal spike trains of different
types may be observations at different locations with no definite knowledge of
physical connection, or may be the inputs and outputs to nerve connections
(neurons).
EXAMPLE 1.3. When the events are crossings of a given level by a real valued

stochastic process in continuous time. the up crossings and down crossings of the
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level constitute a very special bivariate point process in which the two types of
events alternate (Leadbetter [27]). However, up crossings of two different levels
produce a general type of bivariate point process which is of interest, for example,
in reliability investigations.
EXAMPLE 1.4. In reliability studies over time, of continuously operating

machines such as computers, the failures are more often than not labelled
according to the part of the system in which they occurred, or according to some
other qualitative characterization of the failure, for example, mechanical or
electrical. One might also be interested in studying interactions between pre-
ventive maintenance points and failures occurring during normal operation.
Again a comparison between failure patterns in separately located computers
(Lewis [29]) might be of interest in determining whether some unknown common
variable, such as temperature and/or humidity, influences reliability.
EXAMPLE 1.5. Cox [11] has considered the problem of analysing events of

two types in textile production. The two types of event may be breakdowns in
the loom and faults in the cloth, or different types of breakdown of the loom.
The continuum is length of thread rather than time.
EXAMPLE 1.6. In the analysis of electrocardiograms the trace is continuous,

but both regular heart beats and various types of ectopic heart beats occur. It is
therefore of interest to analyze electrocardiograms as bivariate event processes,
even though defining the precise time of occurrence of the event (heartbeat) may
present some problems.
EXAMPLE 1.7. Traffic studies are a rich source of multivariate point processes.

Just two possibilities are that the events may be the passage of cars by a point
on a road when the type of event is differentiated by direction of travel, or we
may consider passage of cars past two different positions.
EXAMPLE 1.8. Finally, physical phenomena such as volcanoes or earth-

quakes (Vere-Jones [45], [46], [47]) may have distinguishing features of many
kinds-generally highly compacted attributes of the process, for example, the
general location of the origin of the earthquake.

Multivariate point processes can be regarded as very special cases of univariate
point processes in which a real valued quantity is associated with each point
event, that is, special cases of what Bartlett [3] has called, rather generally, line
processes. In particular, if the real valued quantity takes only two possible
values, we have in effect a bivariate process of events of two types.

Three broad types of problems arise for multivariate point processes. The
first are general theoretical and structural problems of which the most out-
standing is the problem of characterizing the dependence and interaction
between a number of processes. This is the only general theoretical question we
will consider in any detail; it is intimately connected with the statistical analysis
of bivariate point processes.
The second type of problem is the calculation of the properties of special

stochastic models suggested, for example, by physical considerations. This in
general is a formidable task even for quite simple models.
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Thirdly, there are problems of statistical analysis. These include:
(a) comparing rates in independent processes (Cox and Lewis [14], Chapter 9)

from finite samples;
(b) assessing possible dependence between two processes from finite samples;
(c) determining, again from finite samples, the probabilistic structure of a

mechanism which transforms one process into a second quite clearly dependent
process.
The range of the problems will become clear in the main body of the paper.

The topics considered are briefly as follows.
In Section 2, we give some notation and define various types of interevent

sequences and counting processes which occur in bivariate point processes.
Concepts such as independence of the marginal processes and stationarity and
regularity of the complete, bivariate process are defined. The ideas of this
section are illustrated by considering two independent renewal processes and
also the semi-Markov process (Markov renewal process).

In Section 3, we study dependence and correlation in bivariate point pro-
cesses, defining complete intensity functions and second order cross intensity
functions and cross spectra, giving their relationship to covariance time surfaces.
Doubly stochastic bivariate point processes are defined and their cross intensity
function is given. Other simple models of bivariate point processes are defined
through the complete intensity and cross intensity functions. In this way, various
degrees of interaction between events in the bivariate process can be specified.
A class of bivariate Markov interval processes is defined.

In Section 4, a simple delay model with marginal Poisson processes is con-
sidered in some detail. Other special physical models are considered briefly in
Section 5.

General comments on bivariate Poisson processes are given at the end of
Section 5; a bivariate Poisson process is defined simply as a bivariate point
process whose marginal processes are Poisson processes.

Statistical procedures are considered in Section 6, including the estimation of
second order cross intensity functions and cross spectra, as well as covariance
time surfaces. Tests for dependence in general and particular situations are
considered, and statistical procedures for some special processes are given.
Throughout, emphasis is placed on concepts rather than on mathematical

details and a number of open questions are indicated. For the most part we
deal with bivariate processes, that is, with events of two types; the generalization
of more than two types of events is on the whole straightforward.

2. General definitions and ideas

2.1. Regularity. Throughout Section 2, we deal with bivariate processes,
that is, processes of events of two types called type a and type b. The process of,
say, type a events alone is called a marginal process.



404 SIXTH BERKELEY SYMPOSIUM: COX AND LEWIS

In a univariate point process such as a marginal process in a bivariate point
process. regularity is defined by requiring that in any interval of length At

(2.1) Pr{(number events in At) > 1 } = o(At).

Regularity is intuitively the nonoccurrence of multiple events.
For bivariate processes, we say the process is marginally regular if its marginal

processes. considered as univariate point processes. are both regular. The bi-
variate process is said to be regular if the process of superposed marginal events
is regular. that is. if the process of events regardless of type is regular. This type
of regularity. of course, implies marginal regularity.
A simple, rather degenerate, bivariate process is obtained by taking three

Poisson processes, say 1. II, and 111. and superposing processes 1 and 11 to
obtain the events of type a and superposing II and 1II to obtain the events of
type b (Marshall and Olkin [33]). Clearly. the bivariate process is marginally
regular but not regular. However, if the events of type b are made up of process
Ill events superposed with process II events delayed by a fixed amount. the
resulting bivariate process is regular. A commonly used alternative to the word
regular is orderly.

2.2. Independence and stationarity. Independence of the marginal processes
in a bivariate process is intuitively defined as independence of the number of
events (counts) in any two sets of intervals in the marginal processes. The more
difficult problem of specifying dependence (and correlation) in the bivariate
process is central to this paper and will be taken up in the next section.

In the sequel, we will be primarily concerned with transient or stationary
bivariate point processes, as opposed to nonhomogeneous processes. The latter
type of process is defined roughly as one with either an evolutionary or cyclic
trend, whereas a transient process is roughly one whose probabilistic structure
eventually becomes stationary (time invariant). There are a number of types of
stationarity which need to be defined more carefully.

DEFINITION 2.1 (Simple stationarity). Let N(a)(t l) t(l) + T( )) be the number
of events of type a in the interval (t~'1,t~1l + T(1)] and N(b)(t 2.). t(21+ 4.1)) be the
number of events of type b in the interval (t(2'1.t22 42)]. The bivariate point
process is said to have simple stationarity if

(2.2) Pr{N(a)(t(,l). t(l) + T(1)) = n(a). N(b)(t ). t(2 ) + 4(.1) =()}
Pr {N(a)(t(,l) + y, t(1) + T(1 ) + y) =n-(a)

N(b)(t(¶l) + y. t(i) + T(1) + y) = n b)}.

for all tl, t2. T ). 1, y > 0.

In other words, the joint distribution of the number of type a events in a fixed
interval and the number of type b events in another fixed interval is invariant
under translation.

Simple stationarity of the bivariate process implies an analogous property for
the individual marginal processes and for the superposed process.
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In the sequel. we assume that for the marginal processes considered indi-
vidually the probabilities of more than one type a event in T1 and more than one
type b event in ½, are, respectively., paT + o(T1) as T1 -- 0 and PbT2 + 0(z2) as

2 -* 0. where Pa and Pb are finite.
Simple stationarity and these finiteness conditions imply that the univariate

forward recurrence time relationships in the marginal processes and the pooled
processes hold (Lawrance [25]).

If in addition the process is regular. Korolyuk's theorem implies that Pa' Pb.
and Pa + Pb are, respectively, the rates of events of types a. events of types b,
and events regardless of type.

DEFINITION 2.2 (Second order stationarity). By extension, we say that the
bivariate point process has second order stationarity (weak stationarity) if thejoint
distribution of the number of type a events in two fixed intervals and the number of
type b events in another two fixed intervals is invariant under translation.

This type of stationarity is necessary in the sequel for the definition of a time
invariant cross intensity function. Clearly. it implies second order stationarity
for the marginal processes considered individually and for the superposed
marginal processes.

DEFINITION 2.3 (Complete stationarity). By extension. complete station-
arity for a bivariate point process is invariant under translation for the joint
distribution of counts in arbitrary numbers of intervals in each process.

2.3. Asynchronous counts and intervals. In specifying stationarity. we did
not mention the time origin or the method of starting the process. There are
three main possibilities.

(i) The process is started at time t = 0 with initial conditions which produce
stationarity, referred to as stationary initial conditions.

(ii) The process is transient and is considered beyond t = 0 as its start moves
off to the left. The process then becomes stationary as the start moves to minus
infinity. There is generally a specification of the state of the process at t = 0
known as the stationary equilibrium conditions.

Note that in both (i) and (ii) stationarity is defined by invariance under shifts
to the right.

(iii) In a stationary point process, a time is specified without knowledge of the
events and is taken to be the origin, t = 0. The time t = 0 is said to be an
arbitrary time in the (stationary) process. selected by an asynchronous sampling
of the process.
Now there is associated with the stationary bivariate point process a counting

process N(tI , t2) = {N(a)(t 1), N(b)( t2 ) }, where

(N(a)(tl) is the number of type a events in (0. t1].

3N(b)(t2) is the number of type b events in (0. t2],
and a bivariate sequence of intervals {X(a)(i), X(b)(j)}. where, assuming regularity
of the process, X(a)(1) is the forward recurrence time in the process of type a
events (that is, the time from t = 0 to the first type a event). X(a)(2) is the time
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between the first and second type a events, and so forth; and the {X(b)(j)}
sequence is defined similarly.

Note that for asynchronous sampling of a stationary process the indices i
and j can take negative values; in particular, {X(a)(- 1), X(b)(- 1)} are the
bivariate backward recurrence times.

There is a fundamental relationship connecting the bivariate counting pro-
cesses with the bivariate interval processes; this is a direct generalization of the
relationship for the univariate case:

(2.4) N(a)(t1 ) < 8(a) N(b)(t2 ) < n(b),

if and only if

2.5) ~ S(a)(n(a)) = X(a)(1) + + X(a)(nm) > tl,
(2.5) s(b)(n(b)) = X(b)( 1) + + X(b)(n(b)) > t2.

Probability relationships are written down directly from these identities con-
necting the bivariate distribution of counts with the bivariate distribution of the
sums of intervals S(a)(n(a)) and S(b)(n(b) ).

Equations (2.4) and (2.5) can be used, for example, to prove the asymptotic
bivariate normality of {N(a)(t1), N(b)(t2 )} for a broad class of bivariate point
processes.

2.4. Semisynchronous sampling. In a univariate point process, synchronous
sampling of the stationary process refers to the placement of the time origin at
an arbitrary event and the examination of the counts and intervals following
this arbitrary event (Cox and Lewis [14], Chapter 4, and McFadden [35]). In
more precise terms (Leadbetter [27], [28], and Lawrance [24]), the notion of
an arbitrary event in a stationary point process is the event {N(O, T) _ 1} as T

tends to zero, and the distribution function F(t) of the interval between the
arbitrary event and the following event is defined to be

(2.6) 1 - F(t) = lim Pr{N(T, T + t) = OjN(0, r) > 1}.

In bivariate point processes, the situation is more complex. Synchronous
sampling of the marginal process of type a events produces semisynchronous
sampling of the process of b events from an arbitrary a event, and vice versa.
The bivariate counting processes and intervals following these two types of

sampling are denoted as follows:
(a) for semisynchronous sampling of b by a,

Nla)(t1) is the number of type a events following an origin at a type a event;
N()(t, ) is the number of type b events following an origin at a type a event;
{X(')(i)} is, for i = 1, the time from the origin at a type a event to the next

event of type a, and for i = 2, 3, the intervals between subsequent type a
events;
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{Xa?(j)} is, forj = 1, the time from the origin at a type a event to the first
subsequent type b event, and forj = 2, 3, , the intervals between subsequent
type b events;

(b) for semisynchronous sampling of a by b, the subscript becomes b instead
of a, in the above expressions, indicating the nature of the origin.

Note that in general (Slivnyak [44]) the sequences {X~a)(i)} and {X~b)(j)},
being the synchronous interval processes in the marginal point processes, are
stationary, whereas {Xb)(i)} and {X(')(j)}, the semisynchronous intervals, are
in general not stationary. Also for independent processes, the semisynchronous
sequences are identical with the asynchronous sequences {X(a)(i)} and {X(b)(j)}.

2.5. Pooling and superposition of processes. In discussing regularity, we
referred to the superposition of the two marginal processes in the bivariate pro-
cess. This is the univariate process of events of both types considered without
specification of the event type and is referred to simply as the superposed process.
Study of the superposed process of rate Pa + Pb is an intimate part of the
analysis of the bivariate process. Asynchronous sampling of the superimposed
process gives counts and intervals denoted by N")(t1) and {X(')(i)}, whereas
synchronous sampling, that is, the process considered conditionally (in the
Khinchin sense) on the existence of an event of an unspecified type at the origin,
gives N" (t1) and {X( )(i)}.

Semisynchronous sampling of the superposed process by events of type a or
type b is also possible and the notation should be clear.
We call the superposed process with specification of the event type the pooled

process. The original bivariate process can then be respecified in terms of the
process

(2.7) {X( )(i), T.(i)},
where T.(i) is a binary valued process indicating the type of the ith event after
the origin in the superposed process with synchronous sampling. Clearly, the
marginal processes of event types, that is, {T(i)}, {T.(i)}, {Ta(i)} and {Tb(i)}
are themselves of interest. Note that they are in general not stationary processes
for all types of sampling and are related to the processes defined in Sections
2.3 and 2.4. Thus, for example,

(2.8) {X")(1) _ x; Ta(1) = a} {X~a < Xabl; X(a) < X

with much more complicated statements relating events of higher index i. The
binary sequence of event types has no counterpart in univariate point process.

Thus, there are many possible representations of a bivariate point process.
Which is the most fruitful is likely to depend on the particular application.
As a very simple practical example of these representations, consider a

generalization of the alternating renewal process. We have a sequence of
positive random variables W(1), Z(1), W(2), Z(2), ... , representing operating
and repair intervals in a machine. It is natural to assume that W(i) and Z(i) are



408 SIXTH BERKELEY SYMPOSIUM: COX AND LEWIS

mutually correlated but independent of other pairs of operating and repair times.
Type a events, occurring at the end of the W(i) variables, are machine failures.
Type b events occur at the end of Z(i) variables and represent times at which the
machine goes back into service.

Specification of' the process is straightforward and simple in terms of the
pooled process variables {X('(i), T.(i)}, {X()(i), Ta(i)}, and so forth. However,
marginally the type b events are a renewal process, whereas the type a events are
a nonrenewal, non-Markovian point process and the dependency structure
expressed through the intervals in the marginals is complex.

2.6. Successive semisynchronous sampling. Finally. we mention the possibility
of successive semisynchronous samples of the marginal process of type b events
by a events. The origin is at an a event, as in ordinary semisynchronous
sampling and connected with this a event is the time forward (or backward) to
the next b event. Subsequent a events are associated with the times forward (or
backward) to the next b event. It is not c.lear how generally useful this procedure
is in studying bivariate point processes. It has been used, however, by Brown [7]
in studying identifiability problems in MI/IG>I1 queues: see also Section 6.4.

2.7. Palm-Khinchinformulae. In the theory of univariate point processes,
there are relations connecting the distributions of' sums of synchronous intervals
and sums of asynchronous intervals. Similar relationships connect the syn-
chronous and asynchronous counting processes. These relationships are some-
times called the Palm-Khinchin formulae and are given. for example. by Cox
and Lewis ([14]. Chapter 4).
The best known of these relations connects the distributions of the syn-

chronous an(l asynchronous forward recurrence times in a stationary point
process wiith finite rate p (Lawrance [2S]). In the context of the marginal process
of type a events.
(2.9) pa{l - Pxp.(t)} = WFp.)(t)
where D,+ denotes a right derivative. For moments when the relevant moments
exist wve have

(2.10) E{D(X(a))r} aPaE{(Xt )) 1

Palm-Khinchin type formulae for bivariate point processes have been
develope(l by Wisniewski [50]. [51]. They are far more complex than those for
univariate processes, both in terms of the number of relationships involved and
in the analytical problems encountered. rThus on the first point there are not
only interval relationships, but also relationships between the probabilistic
structures ofthe binary sequences {T(i)} and {T. (i)} and between the probabilistic
structures of the binary sequence {T(i)} and the binary sequences {7' (i)} and
{Tb( )}.
On the second point. the analytical problems are illustrated by the following

argument. It is easily shown that an arbitrarily selecte(l point in the (univariate)
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superposed process is of type a with probability pa/(pa + Pb). Thus, any proba-
bilistic statement about the variables {X(')(i), T.(i)}. say g(X(¶'(1), T.(1)...
is expressible in terms of'the same probabilistic statement for {X()(i), T'a(i)} and
{X'b) (i) - TbiW}.

P.a X0) Pb 9X.()
Pa Pb Pa+ Pb

Now if a relationship between g(X(')(1), T(1), .), and g(X~i(1), T.(1), )
exists. we can relate the asynchronous sequence to the two semisynchronous
sequences through (2.11). But the usual univariate Palm-Khinchin formulae
relate univariate distributions of sums of asynchronous intervals to univariate
distributions of sums of synchronous intervals. Clearly, formulae relating joint
properties ofasynchronous intervals and types to joint properties ofsynchronous
intervals X. (i) and types T. (i) are needed if one is, for example, to relate, through
(2.11) and generalizations of (2.8), bivariate distributions of asynchronous
forward recurrence times {X(a)(l), X(b)(1)} to the bivariate distributions of the
semisynchronous forward recurrence times {Xaa)(1), Xab)(1 )} and {Xba)(1), Xb!(b1 )},

Lawrance [26] has noted this need for extended Palm-Khinchin formulae
and conjectured results in the univariate case.
Of Wisniewski's results [50], [51], we cite here only two moment formulae.

These relate the moments of the joint asynchronous forward recurrence times
{X(a)(1). X(b)(1)} with the moments of both of the semisynchronous forward
recurrence times, {X~a)(j), Xb)(1)} and {Xba)()., X~b)(1)}. The feature that proba-
bilistic properties of both semisynchronous sequences are needed to determine
probabilistic properties of the asynchronous sequence is characteristic of all
these relationships, and follows from (2.1 1).
We have for the bivariate analogues to (2.10). for r = 1.

(2.12) PAE[{Xza)(1)}2] + 2PbE[{X~b(1)}2]
= E {X(a)} + E {X(b)}

= PaE{X a)(1) X'b)(1)} ± PbE{Xb (I) Xb)(l )}

and

(2.13) 12E{X(a)(1) X(b)(1)}
=PE[X?(1) {X~b)(1)}2 + {X~a)(1)}2 X~b)(1) {Xa- l3=PaE [3Xa (1){a (1)}+ 3 {a ) a (1)-{a (1)}]

+ PbE[3Xb (1) {Xba)(1)}2 + 3{X~b)(1)}2 Xba)(l) - {X~b)(1)}3].

The interesting feature of' (2.12) is that the correlation between semi-
synchronous forward recurrence times is a function only of the properties of the
marginal processes and not of the dependency structure of' the bivariate point
process. Moreover, (2.13) shows that if we use correlation between the
asynchronous forward recurrence times as a measure of' dependence in the
bivariate point process. this dependence only affects the third order joint
moments of the semisynchronous forward recurrence times.



410 SIXTH BERKELEY SYMPOSIUM: COX AND LEWIS

2.8. Examples. To illustrate the definitions and concepts introduced above,
we consider two very simple bivariate point processes. The analytical details
developed here will be used in Section 6 in considering the statistical analysis of
bivariate point processes.
EXAMPLE 2.1. Independent renewal processes. Consider two delayed renewal

processes {x(a)(l); X(")(i), i = 2, 3, * } and {X(b)(l); Xbb)(j),j = 2, 3, }, where
using a shortened notation,

fb{x _ a)(u)} du

(2.14) G(a)(x) = Pr{X(a)(1) . X} = J pa() d
E.a(X)

(2.15) Pr{X(')(i) < x} = F(a)(x), Ea(X) = x dF(a)(X),

with similar definitions for the process of type b events. The distribution of the
variable X(a)(1) in (2.14) and the analogous distribution for X(b)(1) are the
stationary initial conditions for the marginal renewal processes, and clearly the
independence of the processes implies that these distributions (jointly) give
stationarity to the bivariate process. Because of independence there is no
difference between semisynchronous and asynchronous sampling; the process
is defined completely in terms of the properties of the asynchronous and
synchronous intervals.

Properties of intervals in the superposed process, and properties of successive
intervals and event types in the pooled process, that is, {X(')(i). T(i)} are very
difficult to obtain explicitly. The sequences X() (i) and T(i) are neither stationary
nor independent, but contain transient effects. We have for example

(2.16) Pr{X(°)(1) > x; T(1) = a} = Pr{X(b)(1) > X(a)(1) > x}

x {1 G(b)(y)} dG(a)(y)
and, marginally.

(2.17) Pr{T(1) = a} = X {1 - G(b)(y)} dG(a)(y).

The only simple case is where the two renewal processes are Poisson processes
with parameters Pa and Pb. Then, of course, {X(' (i)} is a Poisson process of rate
Pa + Pb and T(i) is an independent binomial sequence

(2.18) Pr{T(1) = a} = Pr{T(1) = aIX0) > x} = Pa
Pa + Pb

EXAMPLE 2.2. Semi-Markov processes (Markov renewal processes). The two
state semi-Markov process is the simplest bivariate process with dependent
structure and plays, in bivariate process theory, a role similar to that played in
univariate process theory by the renewal process. It is, in a sense, the closest one
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gets in bivariate processes to a regenerative process. The process is defined in
terms of the sequences {X")(i), Ta(i)}, and {X()(i), Tb(i)}., the type processes
{Ta(i)} and {Tb(i)} being Markov chains with transition matrix

(Paa Pab'\(2.19) P a
bPba Pbb/ \1 2 022

while the distributions of the random variables Xa"(i), X( )(i), and Xb)(i) depend
only on the type of events at i and (i - 1). Thus, illustrating the regenerative
nature of the process, we define Faa(x) to be, for i > 2,

(2.20) Faa(x) = Pr{X")(i) _ XiT.(i) = a, Ta(i - 1) = a}
= Pr{X(') (i) . x|T.(i) = a, T.(i- 1) = a}
= Pr{X(')(i) < xiT(i) = a, T(i- 1) = a}

with equivalent definitions for Fab(x), Fba(x), Fbb(x). Thus, the effect of the
initial sampling disappears when the type of the first subsequent events is known.
The joint distributions of the time from the origin to the first event and the

type of the first event (i = 1) are either quite arbitrary initial conditions, or
initial conditions established by the kind of sampling involved at the origin and
denoted by the subscript on the interval random variable. Thus for asynchronous
sampling, we get stationary initial conditions which are specified by the joint
distribution of X(') (i) and T(1).
These stationary equilibrium conditions (Pyke and Schaufele [43]) are that

T (1) = a and T (1) = b have probabilitiespa and Pb, where

(2.21) {PaPb} = {P.Pb} p = { -2
1-2-aa -a2 2-al -a2

the equilibrium probabilities of the Markov chain, and the time from the origin
to an event of type a has distribution function

Pha X Rba(u) du Paa f Raa(u) du

(2.22)E(Xb )(1) E(X(a)(1))

with a similar definition for the time to an event of type b.
Cinlar [9] has reviewed the properties of semi-Markov processes. Our view

of these processes, being related to statistical problems arising in the analysis of
bivariate point processes, will be somewhat different from the usual one. Thus,
note that in the marginal processes the regenerative property ofthe semi-Markov
process implies that the times between events of type a, X(a)(i), i = 1, 2, *
are independent and identically distributed, as are the X(b) (j), j = 1, 2,
Therefore, the marginal processes are renewal processes and we say that the
semi-Markov process is a bivariate renewal process. Since the types of successive
renewals (events) form a Markov chain, the process is also called a Markov
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renewal process ([9]. p. 130). However, the two marginal renewal processes
together with the Markov chain of event types do not determine the process.
The dependency structure of this bivariate renewal process can also be

examined through joint properties of forward recurrence times in the process.
The joint forward recurrence times {Xaa)(l). Xb)(1 )} for semisynchronous
sampling of b by a are. in the terminology of semi-Markov process theory, the
first passage times from state a to state a and from state a to state b, with similar
definitions for {Xba)(1), X0')(1)}. Denoting the marginal distributions of these
random variables by F(a)(x) and so forth. we have the equations

(2.23) a (x) = PaaFaa (X) + PabFab (X) * Fb (X),

(2.24) Fa(b)(X) = PabFab(X) + Pa~a (X) *Fa (x).

(2.25) F(a)(X) = PbaFba(X) + pbbFbb(x) *Fb (X).
(2.26) F(b)(x) = PbbFbb(x) + Pba.ba(X) *Fb (X),

where * denotes Stieltjes convolution and Faa (x) and so forth. are defined in
(2.20).
These equations can be solved using Laplace-Stieltjes transforms. Thus., if

ta)(8) is the Laplace-Stieltjes transform of Faa)(x). and so forth. we get

(2.27)
,ia) 1~aa (s) ± (1 -

1
) (1 - 0C2)d'ab(S) Pba(S)

a ~~~~~~1-C Y.bb(8)

( 2 .28)7(b) ^ (1 - 1)(X1 - 2) .b(S)Yba(S)(2.28) yb)) =X1~,7b(8~) + 1 -C1Ya 8

From these results. we can write down joint forward recurrence time distribu-
tions using the regenerative properties of the process. For example.

(2.29) RX(a)(l),X(b)(Xl, x2)
Pr{Xa (1 ) > X1* >X2b }

taRaa(Xl ) + (1 -al ) Rab(Xl ) + FbaX1 F2(x U1dFab(U)
if Xl _ X2'

l( 1 -aol) Rahb(X2) + a 1 lR~a(X2 ) + ([ 1 -Fab) (X2 - u1) dFaa(U)}

ifX2 _ X1.

It is actually much simpler, because of the regenerative nature of the process,
to express results in terms of the order statistics and order types associated with

R(Xl. x2). These aspects of the process are worked out in greater detail by
Wisniewski [50].
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Note that the process derived previously as two independent Poisson processes
is a very particular form of semi-Markov process. The question then arises
whether there are any other semi-Markov processes with Poisson marginals
and the answer is clearly yes. For example, when l.= a2 = 0 we have the
special case of an alternating renewal process and choosing Fab(x) and Fba(x) to
be distributions of random variables proportional to chi square variables with
one degree of freedom gives Poisson marginals. The example shows in fact that
one can produce any desired marginal renewal processes in a semi-Markov
process, as is also clear from (2.27) and (2.28).
From equations such as (2.14) and (2.15), it can be shown that no bivariate

process of independent renewal marginals is a semi-Markov process unless the
marginals are also Poisson processes. The dependency structure in a semi-
Markov process is actually better characterized by the second order cross
intensity function, which we introduce in the next section, rather than by joint
moments of forward recurrence times. This cross intensity function together
with the two distributions of intervals in the marginal renewal processes (or
equivalently the intensity functions of the marginal renewal processes) com-
pletely specifies the semi-Markov process.

3. Dependence and correlation in bivariate point processes

3.1. Specification. We now consider in more detail the specification of the
structure of bivariate point processes. It is common in the study of particular
stochastic processes to find that physically the same process can be specified in
several equivalent but superficially different ways. A simple and familiar
example is the stationary univariate Poisson process which can be specified as:

(a) a process in which the numbers of events in disjoint sets have independent
Poisson distributions with means proportional to the measures of the sets:

(b) a renewal process with exponentially distributed intervals;
(c) a process in which the probability of an event in (t, t + At] has an

especially simple form, as At -~0.
We call these three specifications, respectively, the counting. the interval, and

the intensity specifications. Univariate point processes can in general be specified
in these three ways? if the initial conditions are properly chosen.
While the counting specification (a) for bivariate point processes is in

principle fundamental, it is often too complicated to be very fruitful. If the
joint characteristic functional of the process, defined by an obvious generaliza-
tion of the univariate case, can be obtained in a useful form, this does give a
concise representation of all the joint distributions of counts; even then, such a
characteristic functional would usually give little insight into the physical
mechanism generating the process.

Often, special processes are most conveniently handled through some kind
of interval specification, especially when this corresponds rather closely to the
physical origin of the process. In particular, the two state semi-Markov process
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is most simply specified in this way, as shown in Section 2.8. The. two main types
of interval specifications discussed in Section 2 were the specifications in terms
of the intervals in the marginal processes, or the intervals and event types in the
pooled process. The latter is the basic specification for the semi-Markov process.
Other processes, such as various kinds of inhibited processes and the bivariate
Poisson process of Section 4.1 are specified rather less directly in terms of
relations between intervals and event types.
However, in some ways the most convenient general specification is through

the intensity. Denote by A), the history of the process at time t, that is, a com-
plete specification of the occurrences in (- o, t] measured backwards from an
origin at t, then two time points t', t" have the same history if and only if the
observed sequences {x(a) (-1), x(a) (-2), * * }, {xb(-1 ), x(b) (2), } are iden-
tical if measured from origins at t' and at t".
Then a marginally regular process is specified by

(3.1) ,A(a)(t; Ad) = lim P t + At) _ 1
At-O+ At

(3.2) A b)(t; Apt;) = lim Pr{N(b)(t. t + At) _ 1 |I$}
At-O+ At

(3 3) )(ab)(t; _ye) = lim Pr{NPa (t, t + At)N(b)(t, t + At) > 1 _,}
At-o+ At

We call these functions the complete intensity functions of the process. If the
process is regular 2(ab)(t; )t) = 0. Given the functions (3.1) through (3.3) and
some initial conditions, we can construct a discretized realization of the process,
although this is, of course, a clumsy method of simulation if the interval
specification is at all simple.
One advantage of the complete intensity specification is that one can generate

families of models of increasing complexity by allowing more and more complex
dependency on AC, This may be useful, for instance, in testing consistency of
data with a given type of model, for example, a semi-Markov process. Further,
if the main features of Z, that determine the intensity functions can be found,
an appropriate type of model may be indicated.

As an example of a complete intensity specification, consider the two state
semi-Markov process. Here the only aspects of X, that are relevant, if at least
one event has occurred before t, are the backward recurrence time to the pre-
vious event and the type of that event {x' ( - 1), t ( - 1 )}. Any initial conditions
disappear once one event has occurred. For convenience, we write the partial
history as (u, a), if the preceding event is of type a and (u, b) if it is of type b. Then
assuming that the process is regular, that is, that none ofthe interval distributions
has an atom at zero, we have

(3.4) A (u){t;(, a)} = A(") (u) p R ( +Paafaa(U)
(3.4)~ ja){; (ua)} ~ a)U =PaaRaa(u) + PabRiab(U
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(3.5) )(b){t; (u, a)} -a)(U) - Pabfab(U)

PaaRaa(U) + PabRab(U)

with similar expressions defining A a)(u) and A4b)(u) when the partial history is
(u, b). These complete intensities are analogues of the hazard function, or age
specific failure rate, which can be used to specify a univariate renewal process.
The semi-Markov process is characterized by the dependence on at being

only on u and the type ofthe preceding event. We can generalize the semi-Markov
process in many ways, for instance by allowing a dependence on both of the
backward recurrence times X(a) ( - ) and x(b) ( 1); see Section 3.8.

3.2. Properties of complete intensity functions. We now consider briefly
some properties of complete intensity functions. It is supposed for simplicity that
the process is regular and that it is observed for a time long enough to allow
initial conditions to be disregarded. For the semi-Markov process "long
enough" is the occurrence of at least one event.

(i) If the process is completely stationary, as defined in Section 2.3, the
intensity functions depend only on A, and not on t.

(ii) Nonstationary generalizations of a given stationary process can be pro-
duced by inserting into the intensity a function either of t, for example, eyt,
exp {y cos (coot + 0)}, or of the numbers of events that have occurred since
the start of the process.

(iii) The intensity specification of a stationary process is unique in the sense
that ifwe have two different intensity specifications and can find a set of histories
ofnonzero probability such that, say, the first intensity specification gives greater
intensity of events of type a than the second, then the two processes are distin-
guishable from suitable data. Note that this is not the same question as whether
two different specifications containing unknown parameters are distinguishable.

(iv) The events of different types are independent if and only if i(a) and i(b)
involve at only through the histories ofthe separate processes of events oftype a
and type b, denoted, respectively, by at(') and tb)*

(v) We can call the process purely a dependent if both A(a) and A)(b) depend on
Ye, only through ,('a). In many ways the simplest example of such a process is
obtained when both intensities depend only on the backward recurrence time in
the process of events of type a, that is, on the time u(a) measured back to the
previous event of type a. Denote the intensities by 2(a)(u(a)) and A(b)(u(a)). Then
the events of type a form a renewal process; if in particular A(a) (. ) is constant, the
events of type a form a Poisson process. If simple functional forms are assumed
for the intensities, the likelihood of data can be obtained in a fairly simple form
and hence an efficient statistical analysis derived.

(vi) A different kind ofpurelya dependent process is derived from a shot noise
process based on the a events, that is, by considering a stochastic process Z(a) (t)
defined by

(3.6) Z(a)(t) = `0 g(u) dN(a)(t - U).
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We then take A(b)(t) and possibly also A(a)(t) to depend only on Z(a)(t). In
particular if g(u) = 1(u < A) and g(u) = O(u > A), the intensities depend only
on the number of events of type a in (t - A, t). Hawkes [22] has considered
some processes of this type.

(vii) The intensity functions look in one direction in time. This approach is
therefore rather less suitable for processes in a spatial continuum, where there
may be no reason for picking out one spatial direction rather than another.

(viii) Some simple processes, for example, the bivariate Poisson process of
Section 4.1, have intensity specifications that appear quite difficult to obtain.

3.3. Second order cross intensity functions. In Section 3.2. we considered
the complete intensity functions which specify probabilities of occurrence given
the entire history X. For some purposes, it is useful with stationary (second
order) processes to be less ambitious and to consider probabilities of occurrence
conditionally on much less information than the entire history X°,. We then
call the functions corresponding to (3.1) through (3.3) incomplete intensity
functions. For example. using the notation of (3.4) and (3.5). both

(3.7) lim Pr {N (t, t + At) _ 1 (u. a)}
At-o+ lAt

and the corresponding function when the last event is of type b are defined for
any regular stationary process, even though they specify the process completely
only for semi-Markov processes.
A particularly important incomplete intensity function is obtained when one

conditions on the information that an event of specified type occurs at the time
origin. Again for simplicity, we consider stationary regular processes. Write

(3.8) h~a)(t) = lim Pr {N(a)(t. t + At) _ 1 |type a event at 0}
At-O+ At

(3.9) hb)(t) = lim Pr {N(b)(t, t + At) > 1 type a event at 0}a At-O+ At

with similar definitions for hba)(t), h~bl(t) if an event of type b occurs at 0. We
call the function (3.9) a second order cross intensity function. For nonregular
processes, it may be helpful to introduce intensities conditionally on events of
both types occurring at 0.

Note that the cross intensity functions h?)(t) and hM)(t) will contain Dirac
delta functions as components if., for example, there is a nonzero probability
that an event of type b will occur exactly z away from a type a event. For the
process to be regular. rather than merely marginally regular. the cross intensity
functions must not contain delta functions at the origin.

Note too that hIb)(t) is well defined near t = 0 and will typically be continuous
there.
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If following an event of type a at the origin., subsequent events of type a are
at times Sa)(1). Saa)(2). and those of type b at SI)(1), S(b)(2). we can
write

(3.10) h(a) (t) = E
r 1

(3.11) hab)(t) - Z fsib)(r)(l).
r 1

wheref'u(*) is the probability density function of the random variable U.
If the process of type a events is a renewal process. (3.10) is a function familiar

as the renewal density. For small t the contribution from r I is likely to be
dominant in all these functions.
The intensities are defined for all t. However, h(a)(t) and h(b) (t) are even

functions of t. Further, it follows from the definition of conditional probability
that
(3.12) h(`)(t)pb = haw(t)pa
where Pa and Pb are the rates of the two processes. For processes without long
term effects, we have that as t -- c or t --

(3.13) ha Pa bh)(t) Pa!h.1(t)*b Pb.

Sometimes it may be required to calculate the intensity function of the super-
posed process, that is, the process in which the type of event is disregarded.
Given an event at the time origin, it has probability Pa/(Pa + Pb) of' being a
type a. and hence the intensity of the superposed process is

(3.14) h))(t) = {h a)(t) + hab)(t)} + Pb {h a)(t) + h b)(t)}.
Pa±+Pb Pa +Pb

This is a general formula for the intensity function of the superposition of two.
possibly dependent, processes.

3.4. Covariance densities. For some purposes. it is slightly more convenient
to work with covariance densities rather than with the second order intensity
functions: see. for example. Bartlett [4]. To define the cross covariance density,
we consider the random variables N(a)(0, lY1t) and N (b)(t, t + A"t) and define

Coy {N(a)(0. At). N(b)(t, t + aSt)}
(3.15) y~~(b)(t) = lim

A't,A"t- 0+ St A,"t

Pa ha?( I) - PaPb.

It follows directly from (3.14) or from (3.12) and (3.15), that ?a)(t) b
Note that an autocovariance density such as yaa)(t) can be written

(3.16) /a )(t) = Pa((t) + Ya)ont(t) = Pa(t) + Pa{hb )(t) - Pa}

where the second terms are continuous at t = 0 and 3(t) denotes the Dirac delta
function.
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We denote by V(ab)(tl, t2) the covariance between N(a)(t1) and N(')(t2) in the
stationary bivariate process. This is called the covariance time surface. Then

(3.17) V(ab)(t1, t2) = Cov {N(a)(t), N(b)(t2)}

= Cov dN(a)(U), | dN(b)(V)}

2= I| J|
y(u

- v) du dv.

In the special case t, = t2 =t, we write V(ab)(t, t) = V(ab)(t). It follows from
(3.17) that

(3.18) V(ab)(t) = { (t - v) {y(a)(V) + /b) (v)} dv.

Note that in (3.18) a delta function component at the origin can enter one but
not both of the cross covariance densities. If, in (3.18), we take the special highly
degenerate case when the type b and type a processes coincide point for point,
we obtain the well-known variance time formula

(3.19) p(aa)(t) = Var {N(a)(t)}

= Pat + 2 f (t - V)y a)(v) dv.O+a
An interesting question concerns the conditions under which a set of functions

ayaa(t), yba(t),yba(t), yb,"(1)} can be the covariance densities of a bivariate point
process. Now for all a and Pi
(3.20) Var {ocN(a)(t,) + /3N(b)(t2 )}

=-2 V(aa)(t ) + 2fl V(ab)(t 1t2) + fl2 V(bb)(t2j)
. 0.

Thus for all t1 and t2.

(3.21) V(aa)(t) > 0, {V(A)(t1, t2)} < V(aa)(t1 )V(bb)(2), V(bb)(2) _ 0.

The conditions (3.21) can be used to show that certain proposed functions cannot

be covariance densities. It would be interesting to know whether corresponding
to any functions satisfying (3.21) there always exists a corresponding stationary
bivariate point process.

Nothing special is learned by letting t1 and t2 -- 0 in (3.21). If, however, we

let t, = t2 °° o, we have under weak conditions that

(3.22) V(aa)(1) t {Pa + 2 Y a)(v) dv} = PatI(aa),

(3.23) V(A)(t) t
{c {y(a)(V) + b))(v)} dv =(PaPb) 1I tIjab),Joa
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(3.24) V(bb)(t) t{Pb + 2 X ,b (v) dv} = pOtI,

where the right sides of these equations define three asymptotic measures of
dispersion I. The conditions

(3.25) I(aa) > O {Iab)}2 < J(aa)I(bb) (bb) > o

must, of course, be satisfied, in virtue of (3.21).
3.5. Some special processes. The second order intensity functions, or

equivalently the covariance densities, are not the most natural means of repre-
senting the dependencies in a point process, if these dependencies take special
account of the nearest events of either or both types. Thus for the semi-Markov
process, the second order intensity functions satisfy integral equations; see, for
example, Cox and Miller [15], pp. 352-356. The relation with the defining
functions of the process is therefore indirect. Thus, while in principle the
distributions defining the process could be estimated from data via the second
order intensity functions, this would be a roundabout approach, and probably
very inefficient.
We now discuss briefly two processes for which the second order intensity

functions are more directly related to the underlying mechanism of the process.
Consider an arbitrary regular stationary process of events of type a. Let each

event of type a be displaced by a random amount to form a corresponding event
of type b; the displacements of different points are independent and identically
distributed random variables with probability density function p( ). Denote the
probability density function ofthe difference between two such random variables
by q (* ). Then a direct probability calculation for the limiting, stationary, process
shows that (Cox [12])

(3.26) h1b)(t) = p (t) + f hab)(v)p(t - v) dv,

(3.27) h(b) (t) = { ha)(v)q(t - v) dv.

In particular, if the type a events form a Poisson process, ha)(V) = Pa, so that

(3.28) ha)(t) = p(t) + Parh, (t) = Pa

The constancy of h(b)(t) is an immediate consequence of the easily proved fact
that the type b events on their own form a Poisson process. The results (3.28)
lead to quite direct methods of estimating p(.) from data and to tests of the
adequacy of the model. For positive displacements the type a events could be
the inputs to an M/G/ce queue, the type b events being the outputs. Generaliza-
tions of this delay process are considered in Sections 4 and 5.

As a second example, consider a bivariate doubly stochastic Poisson process.
That is, we have an unobservable real valued (nonnegative) stationary bivariate
process {A(t)} = {Aa(t), Ab(t)}. Conditionally on the realized value of this
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process.vwe observe two independent nonstationary Poisson processes with
rates. respectively. Aa(t) for the type a events and Ab(t) for the type b events.
Then. by first arguing conditionally on the realized value of {A(t)}. we have a
stationary bivariate point process with

(:3.29)(atu) = Pa6 (t) ± CAa)(t) <,(a)(tb)=Cb(tl).
b) = Pb6(t) + c( b)(t).

whereE{A(t)} = (Pa' Pb) and the CA are the auto and cross covariance functions
of {A(t)}

Again there is a quite direct connection between the covariance densities and
the underlying mechanism of the process. Two special cases are of interest. One
is when Aa(t) = Ab(t) Pa/Pb. leading to some simplification of (3.29). Another
special case is

(:,a(t)Pa + Ra ('OS(W0,t + 0 + (D).
kb(t) =Pb + Rb (OS(ot +O' ).

In this

(3.31) E(Ra) = E(Rb) =
E(R ) = Uaa. E(Rab) = Cab- E(Rbb) = Ubb

and the random variable (D is uniformly distributed over (0. 2n) independently
of Ra and Rb. Further, Pa' Pb. coo. and 0 are constants and, to keep the A non-

negative. IRaI Pa IRbi _ Pb. This defines a stationary although nonergo(lie
process {A(t)}.

Specifications (3.30) and (3.31) yield

(a)(t) = pa(t) + O'aa cos(w0t), ya) (t) = Cab cos {wo(t ± 0)},
(3.32 ) /(b) (t) = Pb(t) + Cbb os(WO0t).

Of course this process is extremely special. Note. however. that fairly general
processes with a sinusoidal component in the intensity can be produced by
starting from the complete intensity functions of a stationary process and either
adding a sinusoidal component or multiplying by the exponential of a sinusoidal
component: the latter has the advantage of ensuring automatically a nonnegative
complete intensity function.

3.6. Spectral analysis of the counting process. For Gaussian stationary
stochastic processes, study of spectral properties is useful for three rather
different reasons:

(a) the spectral representation of the process itself may be helpful;
(b) the spectral representation of the covariance matrix may be helpful;
(c) the effect on the process of a stationary linear operator is neatly expressed.
For point processes a general representation analogous to (a) has been dis-

cussed by Brillinger [6]. Bartlett [1] has given some interesting second order
theory and applications in the univariate case. For doubly stochastic Poisson
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processes, which are of course very special, we can often use a full spectral
representation for the defining {A(t)} process; indeed the {A(t)} process may
be nearly Gaussian.

If we are content with a spectral analysis of the covariance density, we can
write, in particular for the complex valued cross spectral density function

(a)( ifot (a)(t gt(b)((3.33) gb,)O) e'- '7b(t) dt a~)w

Because of the mathematical equivalence between the covariance density and
the spectral density, the previous general and particular results for covariance
densities can all be expressed in terms of the spectral properties. While these
will not be given in full here, note first that the measures of dispersion in (3.22)
through (3.24) are given by

PaI(aa) (22tgaa)(0), (Pa
2 (ab) - 2g(a)(O),

p(bb) = 97rgbb)(0).

All the results (3.26) through (3.32) can be expressed simply in terms of the
spectral properties. Thus, from (3.29), the spectral analysis of the bivariate
doubly stochastic Poisson process leads directly to the spectral properties of the
process {A(t)} on subtracting the "white'- Poisson spectra. Thus. spectral
analysis of a doubly stochastic Poisson process is likely to be useful whenever the
process {A(t)} has an enlightening spectral form. In the special case (3.32) where
{A(t)} is sinusoidal,

(3.35) ga)(a) = 2+ 2a ( - w0).

(3.36) g~~~~,a) (w) eio (CO w00).(3 .36 ) 27r

The complex valued cross spectral density can be split in the usual way into
real and imaginary components, which indicate the relative phases of the
fluctuations in the processes of events of type a and type b. We can also define
the coherency as a b for the doubly stochastic process
driven by proportional intensities, Ab(t) cc Aa(t), and the coherency is one for
all co, provided that the "white" Poisson component is removed from the
denominator.
The natural analogue for point processes of the stationary linear operators on

a real valued process is random translation. summarized in (3.26) and (3.27).
It follows directly from these equations and from the relation between covariance
densities and intensity functions that

(3.37) ga(w) a
paPt(co) + ga)(w)pt(w).
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{(b) _ __ (a,) Pa~
(3.38) b(CO) -2 2ia

where pt(co), qt(co) are the Fourier transforms of p(t) and q(t). A more general
type of random translation for bivariate processes is discussed in Section 5.

3.7. Variance and covariance time functions. For univariate point processes
the covariance density or spectral functions are mathematically equivalent to
the variance time function V(aa)(t) of (3.19), which gives as a function of t the
variance of the number of events in an interval of length t. This function is useful
for some kinds of statistical analysis; examination of its behavior for large t is
equivalent analytically to looking at the low frequency part of the spectrum.

For bivariate point processes, it might be thought that the variance time
function V(aa)(t), V(bb)(t), and the covariance time function V(ab)(t) of (3.18) are
equivalent to the other second order specifications. This is not the case, however,
because it is clear from (3.18) that only the combinations yba)co) + yb)(CO) can
be found from V(ab)(t) and this is not enough to fix the cross covariance function
of the process.
The cross covariance density can, however, be found from the covariance

time surface, V(ab)(t1, t2) of (3.17).
The covariance time function and surface are useful for some rather special

statistical purposes.
The variance time function of the superposed process is

(3.39) V(-(t) = V(aa)(t) + 2V(ab) (t) + V(bb) (t);

this is equivalent to the relation (3.14) for intensity functions.
3.8. Bivariate interval specifications; bivariate Markov interval processes. As

has been mentioned several times in this section, the second order intensity
functions and their equivalents are most likely to be useful when the dependencies
in the underlying mechanism do not specifically involve nearest neighbors, or
other features of the process that are most naturally expressed serially, that is,
through event number either in the pooled process or in the marginal processes
rather than through real time.
For processes in which an interval specification is more appropriate, there are

many ways of introducing functions wholly or partially specifying the depen-
dency structure of the process. For a stationary univariate process we can
consider the sequence of intervals between successive events as a stochastic
process, indexed by serial number, that is, as a real valued process in discrete
time. The second order properties are described by an autocovariance sequence
which, say for events of type a, is

(aa)(j) = COV {X~a)(k), Xa)(k + j)}, j = 0, -
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McFadden [35] has shown that the autocovariance sequence is related to the
distribution of counts by the simple, although indirect. formula

(3.41) y(aa)(j) =-[ Pr{N(a)(t) = ,} dt -
Pa Li0aj

Stationarity of the Xaa)(i) sequence is discussed in Slivnyak [44].
If the distribution of N(a)(t) is given by the probability generating function

(3.42) ¢f(a)(z t) = ziPr{N(a)(t) = j}
j=0

with Laplace transform 1,(a)*(Z, s), it will be convenient to substitute in (3.41) the
result

(3.43) i Pr{N(a)(t) = j} dt = [I aJa)*(z,Z s)1Jo Li! aZ j=,S=+
The sequence (3.40) and the analogous one for events of type b summarize

the second order marginal properties. To study the joint properties of various
kinds of intervals between events, the following are some of the possibilities.

(i) The two sets of intervals {Xaa)(r), Xb)(r)} may be considered as a bivariate
process in discrete time, that is, we may use serial number in each process as a
common discrete time scale. Cross covariances and cross spectra can then be
defined in the usual way. While this may occasionally be fruitful, it is not a useful
general approach, because for almost all physical models events in the two
processes with a common serial number will be far apart in real time. Another
problem is that if the process is sampled semisynchronously, say on a type a
event, the sequence Xb) (r) is not a stationary sequence, although it will generally
"converge" to the sequence Xb)(r). Again, sufficiently far out from the sampling
point, events in the two processes with common serial number will be far apart
in real time.

(ii) We may consider the intervals between successive events in the process
taken regardless of type, that is, the superposed process. This gives a third
covariance sequence, namely, y( )(j). For particular processes this can be calcu-
lated from (3.41) applied to the pooled process, particularly if the joint distribu-
tion of the count N(a)(t) and N(b)(t) are available.

In fact, if the joint distribution of {N(a)(t), N(b)(t)} is specified by the
joint probability generating function k(ab)(Za, Zb, t) with Laplace transform
4(ab)*(Za Zb, S), we have from (3.41) and (3.43) that

(3.44) y )(i) = }1 { ajo(ab)*(Z, z, s) 1(3.44) YX ~ Pa + Pb tj! P.a±Pbj

the derivative being evaluated at z = 0, s = 0+.
A limitation of this approach is, however, that independence of the type a and

type b events is not reflected in any simple general relation between the three
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covariance sequences: this is clear from (3.44). Consider also the process of two
independent renewal processes of Section 2.3: the covariance sequence for the
superposed sequence is complex and not directly informative.

(iii) The discussion of (i) and (ii) suggests that we consider some properties of
the intervals in the pooled sequence. that is. the superposed process with the
type of each event being distinguished. Possibilities and questions that arise
include the following.

(a) The sequence of event types can be considered as a binary time series. In
particular. it might be useful to construct a simple test of dependence of the two
series based on the nonrandomness of the sequence of event types. Such a test
would. however. at least in its simplest form. require the assumption that the
marginal processes are Poisson processes.

(b) WVe can examine the distributions and in particular the means of the
backwardl recurrence tines from events of one type to those of the opposite
type. that is. X') (-1) and X(' (-1 ). If the two types of events are independently
distributed. the two -mixed-- recurrence times should have marginal distribu-
tions corresponding to the equilibrium recurrence time distributions in the
marginal process of events of types a and b.

(c) A more symmetrical possibility similar in spirit to (b) is to examine the
joint distribution of the two backward recurrence times measured from an
arbitrary time origin. that is, of X(a) (-1) and X(b) (_ 1); the marginal distribu-
tions are. of course, the usual ones from univariate theory. If the events of the
two types are independent. the two recurrence times are independently distri-
buted with the distribution of the equilibrium recurrence times. Note, however,
the discussion following (2.13). It would be possible to adapt (b) and (c) to take
account of forward as well as of backward recurrence times.

(d) Probably the most useful general procedure for examining dependence in a
bivariate process through intervals is to consider intensities conditional on the
two separate asynchronous backward recurrence times. This is not quite
analogous to the use of second order intensities of Section 3.3. Denote the
realized backward recurrence times from an arbitrary time origin in the stationary
process by ua Ub. that is. ua = X(a) ( - ), Ub = x(b) ( - ). We then define the serial
intensity functions for a stationary regular process by

(3.45) (a)(u. Ub) = lim Pr{N(At) >- ] Ua = Ua. Ub = Ub}
At 80+ At

with an analogous definition for )(b)(Ua. Ub). These are. in a sense. third order
rather than second order functions, since they involve occurrences at three
points.
Now these two serial intensities are defined for all regular stationary processes,

but they are complete intensity functions in the sense of Section 3.1 only for a
very special class of process that we shall call bivariate Markov interval processes.
These processes include semi-Markov processes and independent renewal pro-
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cesses; note, however, that in general the marginal processes associated with a
bivariate Markov interval process are not univariate renewal processes (as with
semi-Markov processes) and this is why we have not called the processes
bivariate renewal processes.

As an example of this type of process, consider the alternating process of
Section 2.5 with disjoint pairwise dependence. Denote the marginal distribution
ofthe W(i) by G(x), and the conditional distribution ofthe Z(i), given W(i) = w,

by F(zlw). If 0(x) = 1 - G(x), F(zlw) = 1 - F(zlw), and the probability
densities g(x) and f(zlw) exist, then

(3.46) V(a)(U Ub) =g(u.) (b) (Ua, Ub) =faIUb - Ua)

G(U.) ff(UaI1Ub - Ua)

These are essentially hazard (failure rate) functions.
Thorough study of bivariate Markov interval processes would be of interest.

The main properties can be obtained in principle because of the fairly simple
Markov structure of the process. In particular if p (u, v) denotes the bivariate
probability density function of the backward recurrence times from an arbitrary
time, that is, of (Ua, Ub) or (X(a)( 1), X(b)( -1)), then

(3.47) a + , = -{2(a)(U, v) + A(b)(u, v)}p(u, v),au a~v

and

(3.48) p(O, v) = r p(u, v),(a)(U, v) du, p(u, 0) = p(u, v)A(b)(u, v) dv.

From the normalized solution of these equations, some of the simpler properties
of the process can be deduced.
More generally, (3.45) may be a useful semiqualitative summary of the local

serial properties of a bivariate point process. It does not seem possible to deduce
the properties of the marginal processes given just A(a)(Ua, Ub) and A(b)(Ua, Ub),
except for very particular processes such as the Markov interval process. For the
alternating process with pairwise disjoint dependence, we indicated this difficulty
in Section 2.5.

4. A bivariate delayed Poisson process model with Poisson noise

In previous sections, we defined bivariate Poisson processes to be those
processes whose marginal processes (processes of type a events and type b events)
are Poisson processes. Bivariate Poisson processes with a dependency structure
which is completely specified by the second order intensity function arise from
semi-Markov (Markov renewal) processes. The complete intensity function is
also particularly simple.
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Other bivariate Poisson processes can be constructed and in the present
section we examine in some detail one such process. Its physical specification is
very simple, although the specification of its dependency structure via a complete
intensity function is difficult. The details of the model also illustrate the defini-
tions introduced in Section 2.

General considerations on bivariate Poisson processes will be given in the
next section.

4.1. Construction of the model. Suppose we have an unobservable main or
generating Poisson process of rate Mu. Events from the main process are delayed
(independently) by random amounts Ya with common distribution Fa(t) and
superposed on a "noise" process which is Poisson with rate 2a, The resulting
process is the observed marginal process of type a events. Similarly, the events
in the main process are delayed (independently) by random amounts with
common distribution Fb(t) and superposed with another independent noise
process which is Poisson with rate 2b. The resulting process is then the marginal
process of type b events. It is not observed which type a and which type b events
originate from common main events.

In what follows, we assume for simplicity that the two delays associated with
each main point are independent and positive random variables. The process
has a number of possible interpretations. One is as an immigration death process
with immigration consisting of couples "arriving" and type a events being deaths
of men and type b events being deaths of women. Other queueing or service
situations should be evident. The Poisson noise processes are added for generality
and because they lead to interesting complications in inference procedures. In
particular applications, it might be known that one or both noise processes are
absent.

Various special cases are of interest. Thus, if delays of both types are equal
with probability one, we have the Marshall-Olkin process [34] mentioned in
Section 2. Without the added noise and ifdelays on one side (say. the a event side)
are zero with probability one, we have the delay process of Section 3.5 or,
equivalently, an M/G/x queue, where type a events are arrivals and type b events
are departures. The noise process on the a event side would correspond to inde-
pendent balking in the arrival process.

4.2. Some simple properties of the model. If we consider the transient process
from its initiation, it is well known (for example, Cox and Lewis [14], p.. 209)
that the processes are nonhomogeneous Poisson processes with rates that are,
respectively,

(4.1) p.(t1) =1 + jlFa(ti )

(4.2) Pb(t2) = Ab + MFb(t2).
Furthermore, the superposed process is a generalized branching Poisson process
whose properties are given by Lewis [30] and Vere-Jones [47]. Thus, at each
point in the main or generating process there are, with probability (A, + 'Ab)/
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(Aa + )b + p), no subsidiary events, and, with probability MI/(Ra + Ab + au),
two subsidiary events. In the second case, the two subsidiary events are inde-
pendently displaced from the main or parent event by amounts having distribu-
tions Fa( ) and Fb( ).

It is also known (Doob [17]) that as t -- c, or the origin moves off to the
right, the marginal processes become simple stationary Poisson processes ofrates

(4.3) Pa = Aa +± , Pb =~ b + 1

respectively, for any distributions Fa(u) and Fb(u). The superposed process is
then a stationary generalized branching Poisson process of rate ,a + Ab + 2Mu.
The bivariate process is unusual in this respect, since there are very few
dependent point processes whose superposition has a simple structure. The
properties of the process of event types {T(i)} or {T.(i)} are, however, by no
means simple to obtain, as will be evident when we consider bivariate properties
below. Note too that stationarity of the marginal and superposed process does
not imply stationarity of the bivariate process. A counterexample will be given
later when initial conditions are discussed.

Asymptotic results for the bivariate counting process {N(a)(t1), N(b)(t2 )} can
be obtained by a simple generalization of the methods of Lewis [30]. If, for
simplicity, t1 = t2 = t, the intuitive basis of the method is that when t is very
large, the proportion of events that are delayed from the generating process
until after t goes (in some sense) to zero and the process behaves as though all
events are concentrated at their generating event, that is, like the Marshall-Olkin
process. Thus,

(4.4) E{N(a)(t)} = Var {N(a)(t)} = V(aa)(t) _ pat,

(4.5) E{N(b)(t)} = Var {N(b)(t)} = V(bb)(t) - Pbt,

(4.6) Var {NI)(t)} - (Pa + Pb + 2p)t,

and therefore

(4.7) Cov {N(a)(t), N(b)(t)} = V(ab)(t) _ pt.

The asymptotic measures of dispersion j(aa), 1(ab), and j(bb) defined in equations
(3.22) to (3.24) are therefore 1, MI/(PaPb )12, and 1. Result (4.7) will be useful in a
statistical analysis of the process. By similar methods (Lewis, [30]), one can
establish the joint asymptotic normality of the bivariate counting process.

Another property of the process which is simple to derive is the second order
cross intensity function (3.8) or the covariance density function (3.14). In fact
because of the Poisson nature of the main process and the independence of the
noise processes from the main process, there is a contribution to the covariance
density only if the type b event is a delayed event and the event at T is the same
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event appearing in the type a event process with its delay of Ya, Thus using
(3.10), we get the cross covariance function

(4.8) yb,(1) = JMfy._yb (I) = yb)( I)

if Fy ( ) and Fyb (*) are absolutely continuous.
If Fya( ) and Fyb(-) have jumps, there will be delta function components in

the cross intensity. In particular, when Ya and Yb are zero with probability one,
there is a delta function component at zero and the process is marginally regular
but not regular.

Result (4.8) will be verified from the more detailed results we derive next for
the asynchronously sampled, stationary bivariate process. For this we must first
consider detailed results for the transient process.

4.3. The transient counting process. The number of events of type a in an
interval (0, t1] following the start of the process is denoted by N(o)(t1 ) and the
number of events of type b in (0, t2] by NgO'(t2).
Assume first that t2 . t1 > 0.
Now if a main event occurs at time v in the interval (0, t1 ], then it contributes

either one or no events to the type a event process in (0, t1] and one or no events
to the type b event process in (0. t2]. This bivariate binomial random variable
has generating function

(4.9) 1 + (1 - z1)(1 - Z2)Fa(tl - V)Fb(t2 - V)
+ (Z2 1)Fb(t2 V) + (Z1 1)Fa(tl V).

Since we will be using the conditional properties of Poisson processes in our
derivation, we require the time v to be uniformly distributed over (0, t1] and the
resulting generating function for the contribution of each main point is obtained
by integrating (4.9) with respect to v from 0 to t1 and dividing by t1. After
some manipulation, this gives

(4.10) l±+ (- Z1 - Z2 + Z1Z2) F.a()Fb(t2 - tl + v) dv
tl

+ t Fb(t2 - tl + v) dv + l Fa(v) dv

= Q(Z1 . Z2, t2, tl).
Now assume that there are k1 events from the main Poisson process of rate p

in (0, t1], and k2 main events in (t1, t2]. Then using the conditional properties
of the Poisson process and the independence of the number of main events in
(0, t1] and (t1, t2], we get for the conditional generating function of NM)(t1)
and NgO (t2)

(4.11) exp {atiizi - 1) + iAbt2(Z2 - 1)}{Q(Z1, Z2, t2, tl)}kl
(Z2 - 1) J1o*1 + Fb(u)dU.

{ (2 tlt) J
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Removing the conditioning on the independently Poisson distributed number
of events k, and k2, we have for the logarithm of the joint generating function
of N() (t1) and N( ) (t2)

(4.12) h0 (z1, Z2; t1 22)
= log O(Zl1. Z2; tl. t2)

- Pati(Z1 1) + Pbt2(Z2 - )

- - 1J)
2

Rb)d -d- 1 )J Ra(u) dii

+ /1(1 - Z1 - Z2 + Z1Z2) f Fa(U1)Fb(t2 - tl + u) du.

where Pb = Aa + 9- Pb = AI + pe Rb(U) = 1 - Fb(U), and we still have 12 _ 11.
A similar derivation gives the result for 1 >- t2 and we can write for the

general case

(4.13) i0(Z1 z2: tl -t2)
= Patl (Z1 - 1) + Pbt2 (Z2 - 1)

- Z(Z2 - 1)
f

Rb(M) dr - p(z, - 1) J' Ra(Ov) dv

+ p (1 - Z1 )(1 - Z2 )f F.(t - Fb (1 2 - v) dc.

The expected numbers of events (4.1) and (4.2) in the marginal processes also
come out of (4.13), as do the properties of the transient, generalized branching
Poisson process obtained by superposing events of type a and type b. Moreover.
when the random variables Ya and Yb have fixed values. 0 0(0. 0; t1 . t2) gives the
logarithm of the survivor function of the bivariate exponential distribution of
Marshall and Olkin [33]. [34].
Note that 0(z1. Z2:.tl, t2) is the generating function of a bivariate Poisson

variate, that is, a bivariate distribution with Poisson marginals. It is. in fact.
the bivariate form of the multivariate distribution which Dwass and Teicher [18]
showed to be the only infinitely divisible Poisson distribution:

n

(4.14) 0(z) = exp {Z ai(zi- 1) + L ai(zi- l)(z - 1) +
i<j

n

+ al,2,...,nH(zi-)}

However, since the coefficients in (4.13) depend on t, and t2, the joint distri-
bution of events of type a in two disjoint intervals and events of type b in another
two disjoint intervals will not have the form (4.14). This is clearly only true for
the highly degenerate Marshall-Olkin process of Section 2.

4.4. The stationary asynchronous counting process. To derive the properties
of the generating function of counts in the stationary limiting process, or
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equivalently the asynchronously sampled stationary process, we consider first
the number of events of type a in (t, t1] and of type b in (t, t2]. Because of the
independent interval properties of the main and noise Poisson processes of rates
2a Ab, and jM, respectively, this is made up independently from noise and main
events occurring in (t, max (tl, t2)], whose generating function is given by (4.13),
and by main events occurring in (0, t] and delayed into (t, t1] or (t, t2].

Consider, therefore, the generating function of the latter type of events. A
main event at v in (0. t] generates either one or no type a events in (t. ti] and
either one or no events of type b in (t. t21. The generating function of this
bivariate binomial random variable is

(4.15) 1 + (z1 - ')Pa + (Z2 - 1)Pb + (Z- 1)(Z2 - 1)PaPb.

where

(4.16) p. = Pa(l t1t; v) = Ra(t - v) - Ra(t + t1 - v)
and

(4.17) Pb = Pb(l; t2; t; v) = Rb(t - v) - Rb(t + t2 - v).
If the start time v is assumed to be uniformly distributed over (0, t], then the

generating function becomes

(4.18) 1 + (z1 - 1)Pa + (Z2 - 1) + (Z1 1)(z2 1 t

where

(4.19) Pa = jf {Ra(V) - Ra(V + t1)} dv,

(4.20) Pb = f {Rb(V) - Rb(v + t2)} dv,

(4.21) ja-pb = f{ {Ra(V) - Ra(v + tl)} {Rb(v) - Rb(v + t2)} dv.

It follows from (4.19) and (4.20) that if t1 and t2 are finite, we have, even if
E (Ya) and E (Yb) are infinite.

(4.22) lim Pa = IRa(v) dv, (Rv) dv;
t~o-. o ,_r o

and since Pa-h _ Pb for all t, tl, t2, we have that

(4.23) limPaPb = Jf {Ra(V) - Ra(v + tl)} {Rb(V) - Rb(V + t2)} dv

exists for finite t1 and t2.
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The results (4.19) through (4.23) are used, as in the derivation of (4.12), to
obtain the cumulant generating function of the contribution of delayed events
of type a and type b to (t, t1] and (t, t2] when t -+ o. This is

(4.24) /+(zl, Z2; tl, t2)

= -(l 1) Xf Ra(v) dv + i(Z2 - 1) I Rb(v) dv,g(
o o

+ Z1 - 1)(z2 - 1)jJ {Ra(v) -R1(v + t)} {Rb(v)- Rb(v + t2)} dv.

Combined with (4.13), we have for the stationary bivariate process the result

(4.25) (Zz1, Z2; tl, t2)

Pat1(Z1 - 1) + Pbt2(Z2 - 1) + JU(Z1 - 1)(z2 - 1)
- min(tl,t2)

NotiJ a(t - v)Wb(t2 - v) dv
+ {R.(v) - Ra(v + tl)}{Rb(V) -Rb(V + t2)}d

Note that this is the cumulant generating function of a bivariate Poisson
distribution and that the covariance time function (3.17) is the term in (4.25)
multiplying (zl -)(Z2 -1);

(4.26) V(ab)(t 1(ht= Ra(t vl)Rb(t2 -v)dv

+ II{ {Ra(v) - a(v + tl)}{Rb(v) - Rb(v + t2)} dv.

Differentiation of this expression with respect to 11 and t2 gives, after some
manipulation, the covariance density (4.8), as predicted by the general formula
(3.17).

Thus, if the densities associated with Ra( ) and Rb( *) exist, we can express
(4.25) as

(4.27) /(zl, Z2; tl, 12)

= Patl(Z1 1) + Pbt2(Z2 - 1)

+ (Z1 - 1)(z2 - 1), f12f._yb(u - v) du dv.

There are a number ofalternative forms forand derivations ofthis distribution.
The behavior of V(ab)(t1, t2), although it is clearly a monotone nondecreasing

function of both t1 and t2, is complex and will not be studied further here. In
(4.7), we saw that along the line t1 = t2 = t it is asymptotically pt.
We have also not established the complete stationarity ofthe limiting bivariate

process; this follows from the fact that the delay depends only on the distance
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from the Poisson generating event. and can be established rigorously using
bivariate characteristic functionals.
The complete intensity functions for this process (3.1) cannot be written down

and although the second order intensity function is simple it does not specify the
dependency structure of the process completely. as it does for the bivariate
semi-Markov process. Note too that the cross covariance function (4.8) is always
positive, so that there is in effect no inhibition of type a events by b events. In
fact from the construction of the process, it is clear that just the opposite effect
takes place. We examine the dependency structure of the delay process in more
detail here by looking at the joint asynchronous forward recurrence time
distribution. This distribution is of some interest in itself.

4.5. The joint asynchronous forward recurrence times. In the asynchronous
process of the previous section, the time to the kth event of type a, S(a)(k), has a
gamma distribution with parameter k and S(b)(h) has a gamma distribution
with parameter h. Thus, the joint distribution of these random variables is a
bivariate gamma distribution of mixed marginal parameters k and h which is
obtained from the generating function (4.25) via the fundamental relationship
(2.5). We consider only the joint forward recurrence times S(a)(l) = X(a)(1) and
(b) (1) = Xib)(1) which have a bivariate exponential distribution:

(4.28) Rab(tl . t2) Pr fX~ (1) > tl, Xeb )(1) > t2}
=exp M#0, °. tI, t2 )}
= exp {-at - Pbt2 V(ab)(t1. 12)f

Clearly, this bivariate exponential distribution reduces to the distribution
discussed by Marshall and 01kin [33] in the degenerate case when there are no
delays (or fixed delays [34]). For no delays

(4.29) Rab(tl. t2) = -Patl - Pbt2 + p min (tl, t2).

The bivariate exponential distribution (4.27) is not the same as the infinitely
divisible exponential distribution discussed by Gaver [20], Moran and Vere-
Jones [38], and others. Whenever the delay distributions Ra() and Rb(-) have
jumps, Rab(tl, t2) will have singularities.

For the correlation coefficient, we have

(4.30) PaPb Cori {X( )(1), X ())} Rab(tl. t2) dt1 dt2 -
P.Pb

It is not possible to integrate this expression explicitly except in special cases.
However. since V(,b)(t1, t2) _ 0, we clearly have that the correlation coefficient
is greater than zero.
For the special case (4.29) the correlation (4.30) is 1/{(1 + (A. + Ab)/I)}
We do not pursue further here the properties of the process obtainable from

the joint distribution of counts (4.25) of the synchronous counting process
{N(a) (1) N, (b)(t2)}. However, it is useful to summarize what useful properties
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can be derived for this or any other bivariate process such as those given in the
next section. from this bivariate distribution.

(i) The marginal generating functions (z1 = 0 or Z2 = 0) give the correlation
structure of the marginal interval process through equation (3.43). This is trivial
for the delay process.

(ii) The generating function with z, = Z2 gives the correlation structure of
the intervals in the superposed process through (3.44). For the delay process
this is the interval correlation structure of' a clustering (branching) Poisson
process.

(iii) The covariance time surface and cross intensity and marginal intensity
functions can be obtained. Again for the delay process this is trivial.

(iv) The joint distribution of the asynchronous forward recurrence times
{X(a)(l), X(b)(l)} can be calculated. Other functions of interest are the smaller
and larger of X(a)I(I) and X(b) (1). and the conditional distributions and expecta-
tions. for example. E {X(a) (1) 1 X(b) (1) = x}. The latter is difficult to obtain for the
delay process. the regression being highly nonlinear.

(v) In principle. one can obtain not only the distributions of the smaller and
larger of X(a)(l) and X(b)(l ). but also the order type (jointly or marginally) since

(4.31) Pr{T(I) = a} = Pl.{X(a)(l) < X(b)(I)}.
(vi) It is not possible to obtain the complete distributions of types. for

example. Pr{T(I) = a: T(2) = a} from the bivariate distribution of asyn-
chronous counts, since these counts are related to the sums of intervals by (2.5).
For this information, we need more complete probability relationships, that is,
for the pooled process {X(')(l), T(1): X(')(2). }. Note too that {T(i)} is not a
stationary binary sequence.

It is possible to obtain distributions of semisynchronous counting processes
for the delay processes although we do not do this here. One reason for doing
this is to obtain information on the distribution of the stationary sequences T. (i).
Thus.

(4.32) Pr{T.(O) = a. T.(1) = b} = Pa Pb{Xab)(1) < XP(a)}a

and so forth. from which the correlation coefficient of lag one is obtained. It is
not possible to carry the argument to lags of greater than one solely with joint
distributions of sums of semisynchronous intervals.

4.6. Stationary initial conditions. We discuss here briefly the problem of
obtaining stationary initial conditions for the delay process. since this has some
bearing on the problems considered in this paper.

Note that for the marginal processes in the delayed Poisson process the
numbers of events generated before t which are delayed beyond t have. if
E(Ya) < cc and E(Yb) < b. Poisson distributions with parameters IIE(Ya) and
gE(Yb). respectively. when t -'> . Denote these random variables by Z(a) and
Z(b). If the transient process of Section 4.3 is started with an additional number
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Za of type a events which occur independently at distances Ya(1), ... , Y.(ZA)
from the origin, where

(4.33) Pr {,Ya (i) < t}
R
,{ (u) }

and with an additional number Zb of type b events which occur independently
at distances Yb(M), , Yb(Zb) from the origin, where the common distribution
of the Yb(j) is directly analogous to that of the Ya(i), then the marginal processes
are stationary Poisson processes (Lewis [30]). However, the bivariate process is
not stationary. This can be verified, for instance, by obtaining the covariance
density from the resulting generating function and noting that it depends on t
and t2 separately, and not just on their difference.

In obtaining stationary initial conditions, the joint distribution of Za and Zb
is needed. Without going into the details of the limiting process, the generating
function for these random variables is clearly (4.24) when t, cc and t2 °-.>
Thus,

(4.34) oz,,,z,(zl 7 Z2 )
(Z1 - 1)ME(Ya) + (Z2 - 1)IE(Yb) + (Z1 - 1)(Z2 - ')P

.E{min (Ya, Yb)},

where E{min (Ya, Yb)} = fo Ra(v)Rb(v) dv. This is the generating function
(4.14) of a bivariate Poisson distribution.

Further details of this model, including the complete stationary initial con-
ditions, will be given in another paper.

5. Some other special processes

We discuss here briefly several important models for bivariate point processes.
The specification of the models is through the structure of intervals and is based
on direct physical considerations, unlike, say, the bivariate Markov process
with its specification of degree of dependence through the complete intensity
functions. At the end of the section we consider the general problem of specifying
the form of bivariate Poisson processes.

5.1. Single process subject to bivariate delays. The bivariate delayed Poisson
process of the previous section can be generalized in several ways. First, the
delays Ya and Yb might be correlated since, for instance, in the example of a man
and wife in a bivariate immigration death process, their residual lifetimes would
be correlated. Again Ya and Yb may take both positive and negative values. The
stationary analysis of the previous section goes through essentially unchanged
although specifying initial conditions is difficult. The covariance function (4.8)
is the same except thatfy. yb(t) is, of course, no longer a simple convolution.
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Another extension is to consider main processes which are, say, regular
stationary point processes with rate pu and intensity function h,,(t). Then the
cross intensity function for the bivariate process. h(b)(t), becomes

(5.1) A,, + pLP A + {Ab +
f (t) ±F h (U)fYA-Yb(t - u) du4

with a similar expression for h(a)(t). These should be compared with (3.26).
Except when the main process is a renewal process, explicit results beyond the
intensity function are difficult to obtain. For the renewal case an integral equation
can be written down, as also for branching renewal processes (Lewis, [32]);
from the integral equation higher moments of the bivariate counting process can
be derived.

5.2. Bivariate point process subject to delays. Instead of having a univariate
point process in which each point (say the ith) is delayed by two different
amounts Ya(i) and Yb(i) to form the bivariate process, one can have a main
bivariate point process in which the ith type a event is delayed by Ya(i) and the
jth type b event is delayed by Yb(j), thus forming a new bivariate point process.
This does not reduce to the bivariate delay process of Section 5.1 although it is
conceptually similar.
The simplest illustration is where there is error (jitter) in recording the

positions of the points. Usually the errors are taken to be independently distri-
buted, although Ya and Yb may have different distributions. Another situation
is an immigration death process with two different types of immigrants.

If the main process has cross intensities kab)(t) and kb4a)(t), then the delayed
bivariate process (with no added Poisson noise) has cross intensity

(5.2) hab)(t) - J ha )(t - v)fyayb(V) dv.

It will not be possible from data to separate properties of the jitter process
from those of the underlying main process, unless strong special assumptions
are made.
An interesting situation occurs when the main process is a semi-Markov

process with marginal processes which are Poisson processes as, for example, in
Section 2. Then the delayed bivariate point process is, in equilibrium, a bivariate
Poisson process.

5.3. Clustering processes. Univariate clustering processes (Neyman and
Scott [39], Vere-Jones [47], and Lewis [30]) are important. Each main event
generates one subsidiary sequence of events and the subsidiary sequences have a
finite number of points with probability one. The subsidiary processes are
independent of one another but can be of quite general structure. When the
subsidiary processes are finite renewal processes, the clustering process is known
as a Bartlett-Lewis process; when the events are generated by independent
delays from the initiating main event, the process is known as a Neyman-Scott
cluster process.
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The bivariate delay process and delayed bivariate process described in the
previous two subsections are special cases of bivariate cluster processes and
clearly both types of main process are possible for these cluster processes. As
an example of a bivariate main process generating two different types of sub-
sidiary process, Lewis [29] considered computer failure patterns and discussed
the possibility of two types of subsidiary sequences, one generated by permanent
component failures and the other by intermittent component failures.

There are many possibilities that will not be discussed here. Some general
points of interest are, however, the following.

(i) When the main process is a univariate Poisson process, producing a
bivariate clustering Poisson process, bivariate superposition of such processes
again produces a bivariate clustering Poisson process. The process is thus
infinitely divisible.

(ii) Both the marginal processes and the superposed processes are (generalized)
cluster processes. Thus, we can use known results for these processes and
expressions such as (3.39) and (3.14) to find variance time curves and cross
intensities for the bivariate process. When the main process is a semi-Markov
process, the marginal processes are clustering (or branching) renewal processes
(Lewis, [32]).

(iii) The analysis in Section 4 can be used for these processes when the main
process is a univariate Poisson process. Bivariate characteristic functionals are
probably also useful.

5.4. Selective inhibition. A simple, realistic and analytically interesting
model arises in neurophysiological contexts. We have two series of events, the
first called the inhibitory series of events and the second the excitatory series of
events, occurring on a common time scale. Each event in the inhibitory series
blocks only the next excitatory event (and blocks it only if no following
inhibitory event occurs before the excitatory event). This is the simplest of many
possibilities.

Although only the sequence of noninhibited excitatory events (the responses)
is usually studied, Lawrance has pointed out that there are a number of bivariate
processes generated by this mechanism, in particular the inhibitory events and
the responses [24], [25]. These may constitute the input and output to a neuron,
and are the only pair we consider here. In particular, we take the excitatory
process to be a Poisson process with rate Pa and the inhibiting process to be a
renewal process with interevent probability distribution function Fb(x). The
response process has dependent intervals unless the inhibitory process also is a
Poisson process.
When the excitatory process is a renewal process with interevent probability

distribution function Fa(x) and the inhibitory process is Poisson with rate Pb,
the process of responses is a renewal process. This follows because the original
renewal process is in effect being thinned at a rate depending only on the time
since the last recorded response and such an operation preserves the renewal
property. This bivariate renewal process is not a semi-Markov process, as can
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be seen by attempting to write down the complete intensity functions (3.4) and
(3.5). The complete intensity functions become simple only for the trivariate
process of inhibitory events. responses. and nonresponses.

Coleman and Gastwirth [10] have shown that it is possible to pick F0(x) so
that the responses also form a Poisson process. The covariance density of this
bivariate Poisson process can be obtained: it is always negative (personal
communication. T. K. M. XWisniewski).

Other forms of selective inhibition can be postulated: some have been dis-
cussed by Coleman and Gastwirth [10]. Another possibility is the simultaneous
inhibition. as above, of two excitatory processes by a single, unobservable
inhibitory process. When the inhibitory process is Poisson and the excitatory
processes are renewal processes. the two response processes are a bivariate
renewal process.
There are. of course. many other neurophysiological models. generally more

complicated than the selective inhibition models and many times involving the
doubly stochastic mechanism discussed in Section 3.5. An interesting example
is given by Walloe, Jansen. and Nygaard [48].

5.5. General remarks on bivariate Poisson processes. In this and previous
sections. we have encountered several examples of bivariate Poisson processes.
defined as bivariate point processes in which the marginal processes are Poisson
processes.

(i) The degenerate Poisson process of Marshall and Olkin was discussed in
Section 2.

(ii) The process in (i) is a special case of a broad family of bivariate Poisson
processes generated by bivariate delays on univariate Poisson processes. Several
other examples arise in considering delays on bivariate Poisson processes.

(iii) Semi-Markov processes have renewal marginals and a broad class of
bivariate Poisson processes is obtained by choosing the marginal processes to
be Poisson processes. Delays added to these particular semi-Markov processes
again produce bivariate Poisson processes.

(iv) A rather special case arises when a Poisson process inhibits a renewal
process.

Another example is mentioned because it illustrates the problem considered
in Section 3.8 of specifying dependency structure in terms of the bivariate.
discrete time sequence of marginal intervals. Thus, we can start the process and
require that the intervals in the marginals with the same serial index be bivariate
exponentials. Any bivariate exponential distribution may be used. such as (4.28)
or those of Gaver [20], Plackett [42], Freund [19]. and Griffiths [21]. The
interval structure is stationary, as is the counting process of the marginals, which
are Poisson processes. The bivariate counting process is. however, not stationary.
It is not clear whether one gets the counting process to be stationary, as defined
in Section 2. when moving away from the origin. but since the time lag between
the dependent intervals increases indefinitely as n --+ the process is degenerate
and tends to almost independent Poisson processes a long time from the origin.
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No general structure is known for bivariate Poisson processes. There follow
some general comments and some open questions.

(i) The bivariate Poisson process as defined is infinitely divisible in that
bivariate superposition produces bivariate Poisson processes. However, of the
above models of bivariate Poisson processes, only the bivariate delayed Poisson
process keeps the same dependency structure under bivariate superposition.

(ii) Does unlimited bivariate superposition produce two independent Poisson
processes? The answer is, generally, yes (Cinlar [8]).

(iii) It can be shown that successive independent delays on bivariate Poisson
processes (and most bivariate processes) produces in the limit a process of
independent Poisson processes. This can be seen from (5.2) and (5.3). but needs
bivariate characteristic functionals for a complete proof.

(iv) The numbers of events of the two types in an interval (0, t] in a bivariate
Poisson process have a bivariate Poisson distribution. Some general properties
of such distributions are known (Dwass and Teicher [18]); the bivariate Poisson
distribution (4.33) is the only infinitely divisible bivariate Poisson distribution.
An open question of interest in investigating bivariate Poisson processes is
whether, when Z1, Z2, and Z1 + Z2 have marginally Poisson distributions of
means u1, P2. and p,1 + 2, Z1 and Z2 are independent. If this is so, a bivariate
Poisson process in which the superposed marginal process is a Poisson process
must have the events of two types independent.

(v) The broad class of stationary bivariate Poisson processes arising from
delay mechanisms have positive cross covariance densities, that is, no "inhibitory
effect." For the semi-Markov process with Poisson marginals, it is an open
question as to whether cross covariance densities which take on negative values
exist. In particular, for the alternating renewal process with identical gamma
distributions of index one for up and down times, the cross covariance is strictly
positive. The only model which is known to produce a bivariate Poisson process
with strictly negative covariance density is the Poisson inhibited renewal process
described earlier in this section.

6. Statistical analysis

6.1. General discussion. We now consider in outline some of the statistical
problems that arise in analyzing data from a bivariate point process. If a par-
ticular type of model is suggested by physical considerations, it will be required
to estimate the parameters and test goodness of fit. In some applications, a fairly
simple test of dependence between events of different types will be the primary
requirement. In yet other cases, the estimation of such functions as the covariance
densities will be required to give a general indication of the nature of the process,
possibly leading to the suggestion of a more specific model. In all cases, the
detection and elimination of nonstationarity may be required.

There is one important general distinction to be drawn, parallel to that
between correlation and regression in the analysis of quantitative data. It may
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be that both types of event are to be treated symmetrically, and that in particular
the stochastic character of both types needs analysis. This is broadly the attitude
implicit in the previous sections. Alternatively one type of event, say b, may be
causally dependent on previous a events, or it may be required to predict events
of type b given information about the previous occurrences of events of both
types. Then it will be sensible to examine the occurrence of the b's conditionally
on the observed sequence of a's and not to consider the stochastic mechanism
generating the a's; this is analogous to the treatment of the independent variable
in regression analysis as "fixed." Note in particular that the pattern of the a's
might be very nonstationary and yet if the mechanism generating the b's is stable,
simple "stationary" analyses may be available.

In the rest of this section, we sketch a few of the statistical ideas required in
analyzing this sort of data.

6.2. Likelihood analyses. If a particular probability model is indicated as
the basis of the analysis when the model is specified except for unknown para-
meters, in principle it will be a good thing to obtain the likelihood of the data
from which exactly or asymptotically optimum procedures of analysis can be
derived, for example, by the method of maximum likelihood; of course, this
presupposes that the usual theorems of maximum likelihood theory can be
extended to cover such applications. Unfortunately. even for univariate point
processes, there are relatively few models for which the likelihood can be
obtained in a useful form. Thus, one is often driven to rather ad hoc procedures.
Here we note a few very particular processes for which the likelihood can be

calculated.
In a semi-Markov process, the likelihood can be obtained as a product of a

factor associated with the two state Markov chain and factors associated with the
four distributions of duration; if sampling is for a fixed time there will be one
"censored" duration. Moore and Pyke [36] have examined this in detail with
particular reference to the asymptotic distributions obtained when sampling is
for a fixed time, so that the numbers of intervals of various types are random
variables.
A rather similar analysis can be applied to the bivariate Markov process of

intervals of Section 3.8. although a more complex notation is necessary. Let

(6.1) L(a)(X; v, w) = exp { ..%a(z + v. z + w) dz},

(6.2) L(b)(x; v, w) = exp )(z + v, z + w) dz}

We can summarize the observations as a sequence of intervals between succes-

sive events in the pooled process, where the intervals are of type aa, ab, ba, or bb.
We characterize each interval by its length x and by the backward recurrence
time at the start of the interval measured to the event of opposite type. Denote
this by v if measured to a type a event and by w if measured to a type b event.
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Then the contribution to the likelihood of the length of the interval and the type
of the event at the end of the interval is

(6.3) )Ja)(x w + x) L(a)(x 0, w) L(b(x; 0, w) for an aa interval.

(6.4) A(b)(x, w + x) L(a)(x; 0, w) L(b)(X: 0, w) for an ab interval,

(6.5) t(a)(v + x, x) L(a)(x; v, 0) L(b)(X; V, 0) for a ba interval,

(6.6) A(b)(v + x, x) L(a)(x; v, 0) L(b)(X. v. 0) for a bb interval.

Thus, once the intensities are specified parametrically the likelihood can be
written down and, for example, maximized numerically.
Now the above discussion is for the "'correlational' approach in which the

two types of event are treated symmetrically. If. however, we treat the events of
type b as the dependent process and argue conditionally on the observed
sequence of events of type a, the analysis is simplified, in effect by replacing
A(a)(., .) and L(a)(. . .) by unity.
A particular case of interest is when the intensities are linear functions of their

arguments. This, of course, precludes having the semi-Markov process as a
special case.
A further example of' when a likelihood analysis is feasible is provided by the

bivariate sinusoidal Poisson process of (3.30) with Ra, Rb, and (D regarded as
unknown parameters. An analysis in terms of exponential family likelihoods is
obtained by taking (3.20) to refer to the log intensity; for the univariate analysis
see Lewis [31].

In the bivariate case. we reparametrize and have

(6.7) Aa~~~() Pa exp {Ra cos((ot + 0 + ttD)}
(6.7) 2a(t) io(R.)

and

(6.8) b(t) = Pbexp {Rb boS (cot + ())}
Io(Rb)

where Io(Rb) is a zero order modified Bessel function of' the first kind. It is
convenient to assume that observation on both processes is for a common fixed
period to, where cooto is an integral multiple of 2n, say 27rp. Then J° A,(u) du =

PatO and I0 Ab(u) du = PbtO.
If n(a) type a events are observed in (0. to] at timest~., . t, and n(b) type b

events at times t(b), . t)(b then, using the likelihood for the nonhomogeneous
bivariate Poisson process

n(b)

(6.9) HI a(t5U)) H ib(tj( ) exp {-patO - PbtO}.
i=1 j=1
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we find that the set of sufficient statistics for {Pa. Pb. Ra. cS(0 + (). R sinfl(0 + D),
Rb COS(D, Rb sin (d} are {n(a) nfb),tWa(wo). Xa(at)o), tb(coo). Ab(co)}. where

n-) n
(b)

(6.10) 5a(W0) = E COS(W0t( )). Ya(69) = E sin(cootj()).
i=1 j=1

with similar definitions for dbb(co) and Ab(coo).
Typically, if Ra = Rb = R. maximum likelihood estimates of R and tests of

R = 0 are based on monotone functions of sYa(co). XA((w0). -4b(coo), and
.Ab(o)o). The estimation and testing procedures are formally equivalent to tests
for directionality on a circle from two independent samples when the direction
vector has a von Mises distribution (Watson and Williams, [49]).

Other trend analyses can be carried out with a similar type of likelihood
analysis if the model is a nonhomogeneous bivariate Poisson process.
For most other special models. including quite simple ones such as the delayed

Poisson process of Section 4. it does not seem possible to obtain the likelihood
in usable form: it would be helpful to have ways of obtaining useful pseudo-
likelihoods for such processes.
For testing goodness of fit, it may sometimes be possible to imbed the model

under test in some richer family; for instance, agreement with a parametric
semi-Markov model could be tested by fitting some more general bivariate
Markov interval process and comparing the maximum likelihoods achieved.
More usually, however, it will be a case of finding relatively ad hoc test statistics
to examine various aspects of the model.

In situations in which the model of independent renewal processes or the
semi-Markov model may be relevant, the following procedures are likely to be
useful. To test consistency with an independent renewal process model. we may:

(a) examine for possible nonstationarity,
(b) test the marginal processes for consistency with a univariate renewal

model (Cox and Lewis [14], Chapter 6).
(c) test for dependence using the estimates of the cross intensity given in the

next section. or test that the event types do not have the first order Markov
property.

If dependence is present, it may be natural to see whether the data are con-
sistent with a semi-Markov process. (Note, however, that the family of inde-
pendent renewal models is not contained in the family of semi-Markov models.)
To test for the adequacy of an assumed parametric semi-Markov model, we

may. for example. proceed as follows:
(a) examine for possible nonstationarity.
(b) test the sequence of event types for the first order Markov property

(Billingsley [5]),
(c) examine the distributional form of the four separate types of interval,
(d) examine the dependence of intervals on the preceding interval and the

preceding event type.
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6.3. Estimation of intensities and associated functions. If a likelihood based
analysis is not feasible, we must use the more empirical approach of choosing
aspects of the process thought to be particularly indicative of its structure and
estimating these aspects from the data. In this way we may be able to obtain
estimates ofunknown parameters and tests of the adequacy ofa proposed model.

In the following discussion, we assume that the process is stationary. With
extensive data, it will be wise first to analyze the data in separate sections,
pooling the results only if the sections are reasonably consistent.
The main aspects of the process likely to be useful as a basis for such pro-

cedures are the frequency distributions of intervals of various kinds, the second
order functions of Section 3.3 through 3.7 and, the bivariate interval properties,
in particular the serial intensity functions (3.42). As stressed in Section 3, it will
often happen that one or other of the above aspects is directly related to the
underlying mechanism of the process and hence is suitable for statistical analysis.

Estimation of the univariate second order functions does not need special
discussion here. We therefore merely comment briefly on the estimation of the
serial intensity functions and the cross properties; for the latter the procedures
closely parallel the corresponding univariate estimation procedures.

6.3.1. Cross intensity function. To obtain a smoothed estimate of the cross
intensity function h?)(t), choose a grouping interval A and count the total
number of times a type b event occurs a distance between t and t + A to the
right of a type a event; let the random variable corresponding to this number be
R b)(t, t + A). In practice, we form a histogram from all possible intervals
between events of type a and events of type b. We now follow closely the
argument of Cox and Lewis ([14], p. 122) writing, for observations over (0, to),

0-t-A t+ A to-t oo-XU

(6.11) Rab)(t, t + A) = {fj'| + | T dN(a)(u) dN(b)(U + x).a ~~t~=0 x=t J=to-t-' J=t)

Now for a stationary process

(6.12) E{dN(a)(u) dN(b)(U + X)} = Pah? (x) du dx.

and a direct calculation. plus the assumption that hb(x) varies little over
(t, t + A), gives

(6.13) E{Ra?(t, t ± A)} = (to - t - 2A)Pa J, ha?(x) dx

thus leading to a nearly unbiased estimate of the integral of the cross intensity
over (t, t + A).

If the type b events are distributed in a Poisson process independently of the
type a events, we can find the exact moments of Rb)(t, t + A), by arguing con-

ditionally both on the number of type b events and on the whole observed
process of type a events (see Section 6.4). To a first approximation R(b)(t. t + A)
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has (conditionally) a Poisson distribution of mean n(a)fn(b)A/to provided that A
is small and, in particular, that few type a events occur within A of one another.
This provides the basis for a test of the strong null hypothesis that the type b
events follow an independent Poisson process; it would be interesting to study
the extent to which the test is distorted if the type b events are distributed
independently of the type a events, although not in a Poisson process.

6.3.2. Cross spectrum. Estimation of the cross spectrum is based on the
cross periodogram. defined as follows. For each marginal process, we define the
finite Fourier-Stieltjes transforms of N(a)(t) and N(b)(t) (Cox and Lewis [14],
p. 124) to be

nha)
(6.14) H,(a)(wo) = (27r0)-1/2 exp {iwta)}= (27rto)- 2{ito(w) + i'to(o)},

((b)
(6.15) H,0(w) - (27tt0) / E exp {iwt( )} - (27r1t) 1I{o(b)(w) + ito(w)}

j= 1

The cross periodogram is then

(6.16) =pab)(w) - H)(c) fto (w)

(Jenkins [23]). Thus, the estimates of the amplitude and phase of harmonic
components of fixed frequencies in a nonhomogeneous bivariate Poisson model
considered in the previous section are functions of the empirical spectral com-
ponents. It can also be shown, as for the univariate case (Lewis [31]), that
.f(ab)(W,) is the Fourier transform of the unsmoothed estimator of the cross
intensity function obtained from all possible intervals between events of type a
and events of type b.
The distribution theory of j-~ab)(w) for independent Poisson processes follows

simply from the conditional properties of the Poisson processes. Thus, we find
that A,(`)(co) and B(,')(co) have the (conditional) joint generating function

(6.17) [ ao{(': + b2)1}]
if coto = 27tp. from which it can be shown, for example, that sY,(wal(co) and

'(Ob) (CO) go rapidly to independent normal random variables with means 0 and
standard deviations 2to Pa as n(a) becomes large. Consequently, the real and
imaginary components of the cross periodogram have double exponential
distributions centered at zero with a variance which does not decrease as to
increases.

At two frequencies c1 and Cw2 such that coto = 2ICPi and Cw2to = 27CP2, the
real components of .f~b)(w1) and .o(b)(2) are asymptotically uncorrelated, as
are the imaginary components. Consequently, smoothing of the periodogram
is required to get consistent estimates of the in phase and out of phase com-
ponents of the cross spectrum. The problems of bias, smoothing, and computa-
tion of the spectral estimates are similar to those for the univariate case discussed
in detail by Lewis [31].
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Note that the smoothed intensity function or the smoothed spectral estimates
can be used to estimate the delay probability density function in the one sided
Poisson delay model (see equations (3.26) and (3.27)) and the difference of the
delays in the two sided (bivariate) Poisson delay model. In the first case. the
estimation procedure is probably much more efficient. in some sense. than the
procedure discussed by Brown [7] unless the mean delay is much shorter than
the mean time between events in the main Poisson process.

6.3.3. Covariance time function. Another problem that arises with the
bivariate Poisson delay process is to test for the presence of the Poisson noise
and to estimate the rate jp of the unobservable main process. Since the covariance
time curve [,'ab)(t) - ut. we can estimate pi by estimating l'(ab)(t) and also test for
Poisson noise by comparing the estimated measures of' dispersion p(aa). I(bb). and
1(ab), defined in (3.22), (3.23), and (3.24). Care will be needed over possible
nonstationarity.
The simplest method for estimating ['(ab)(t) is to estimate the variance time

curves V(`aa)(t). [l(bb)(1). and V(- )(t) with the procedures given by Cox and Lewis
([14]. Chapter 5) and to use (3.39) to give an estimate of V'(ab)(t).

There is no evident reason for estimating the covariance time surface C(t1 t2)
along any line except t1 = t2.

6.3.4. Serial intensity function. Estimation of the serial intensity functions
raises new problems, somewhat analogous to the analysis of life tables. Consider
the estimation of A(a)(Ua, Ub) of (3.42). One approach is to pass to discrete time.
dividing the time axis into small intervals of length A. Each such interval is
characterized by the values of (ua, Ub) measured from the ('enter of the interval if'
no type a event occurs within the interval. and by the values of (Ua. Ub) at the
type a event in question if one such event occurs: we assume for simplicity of'
exposition that the occurrence of multiple type a events can be ignored. Thus.
each time interval contributes a binary response plus the values of two explana-
tory variables (Ka, Ub): the procedure extends to the case of more than two
explanatory variables. and to the situation in which multiple type a events occur
within the intervals A.
We can now do one or both of the following:
(a) assume a simple functional form for the dependence on (ua. Ub) of the

probability A(G)(ua. ub)A of a type a event and fit by weighted least squares or
maximum likelihood (Cox [13]);

(b) group into fairly coarse "cells" in the (Ua, Ub) plane and find the propor-
tion of' 'successes" in each cell.

It is likely that standard methods based on an assumption of independent
binomial trials are approximately applicable to such data and. if so. specific
assumptions about the form of the serial intensities ('an be tested. In particular.
we can test the hypothesis that the process is. say. purely a dependent. making
the further assumption to begin with that the dependence is only on u,
By extensions of this method, that is, by bringing in dependencies on more

aspects of the history at time t than merely ua and Ub. it may be possible to build
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up empirically a fairly simple model for the process.
6.4. Simple tests for dependence. As noted previously, it may sometimes be

required to construct simple tests of the null hypothesis that the type a and
type b events are independent, as defined in Section 2.2. This may be done in
various ways. Much the simplest situation arises when we consider the depend-
ence of. say, the type b events on the type a events, argue conditionally on the
observed type a process, and consider the strong null hypothesis that the type b
events form an independent Poisson process. Then, conditionally on the total
number of events of type b, the positions of the type b events, tlb), , t(b), are
independently and uniformly distributed over the period of observation. Thus
in principle, the exact distribution of any test statistic can be obtained free of
nuisance parameters.
The two simplest of the many possible test statistics are probably:
(a) particular ordinates of the cross intensity function, usually that near the

origin. equivalently we can use the statistic Rab)(0, A) of Section 6.3, directly;
(b) the sample mean recurrence time backwards from a type b event to the

nearest preceding type a event.
The null distribution of Rb)((0, A) can be found as follows. Place an interval

of length A to the right of each type a event. (It is assumed for convenience that
either there is a type a event at the origin, or that the position of the last type a
event before the origin is available.) Let to0. i1.2 . tn,(a) be the proportion
of the observed interval (0, to) covered jointly by 0. 1, 2, n(a) of these
intervals A. Then, if there are nf(b) events of type b in all, the null distribution of
Rb(, A) is that of the sum of n(b) independent random variables each taking
the value i with probability ni, i = 1, , n(a)

Similarly, for the second test statistic, we can find the null distribution as
follows. Regard the sequence of intervals between successive type a events as a
finite population x = {x1, ., XN}, say. This includes the intervals from 0 to
the first type a event and from the last type a event to to. If to is preassigned,
N = n(a) + 1. Note that E xi = to. Then the null distribution of the test statistic
is that ofthe mean of nb independent and identically distributed random variables
each with probability density function

N

(6.18) ± E U(X:Xi),
o i=l

where

(6.19) I(x: xL)= 0 . X . xi,
O. otherwise.

Thus, in particular, the null mean and variance of the test statistic are

(6.20) flb{jX. Z22
A strongcentrllimiteffe2to n(b e3to E4t2
A strong central limit effect may be expected.
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The tests derived here may be compared with similar ones in which the null
distribution is derived by computer simulation, permuting at random the
observed sequences of intervals (Perkel [40]; Moore, Perkel, and Segundo [37];
Perkel, Gerstein, and Moore [41]). In both types of procedure, it is not clear
how satisfactory the tests are in practice as general tests of independence, when
the type b process is not marginally Poisson. Note, however, that in order to
obtain a null distribution for (a) and (b) above it is necessary to assume only
that one of the marginal processes is a Poisson process.

If it is required to treat the two processes symmetrically, taking the null
hypothesis that there are two mutually independent Poisson processes, there
are many possibilities, including the use of the estimated cross spectral or cross
intensity functions or of a two sample test based on the idea that, conditionally
on n(a) and n(b) the times to events in the two processes are the order statistics
from two independent populations of uniformly distributed random variables.
Again, in the symmetrical case when both marginal processes are clearly not
Poisson processes, tests of independence based on the cross spectrum are
probably the best broad tests. For this purpose, investigation of the robustness of
the distribution theory given in Section 6.3 would be worthwhile.

0 O O O O
We are indebted to Mr. T. K. M. Wisniewski, Dr. A. J. Lawrance, and Professor

D. P. Gaver for helpful discussions during the growth of this paper.
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