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1. Introduction

The position ofan undirected segment of straight line of length r in a Euclidean
plane is determined by the triple coordinate X = (x, y, (p), where x and y are
the cartesian coordinates of the center of the segment and p is the angle made
by the segment with the zero direction. Let X denote the phase space of segment
coordinates, that is, the layer in the three dimensional Euclidean space defined
by the inequalities -oe < x < oo, -o < y < cc, 0 < (o < 7r.

Let X be a subset of the phase space X and let z be a positive real function
defined for X E A. Assign a length c(X) to the segment which occupies the
position X. This defines a certain set J of segments in the plane. We shall write
J = [i; z(X)].

Call I the set of all those J for which the number of segments which intersects
every bounded subset of the plane is finite. Moreover, ifJE I, then, by definition,
any two segments of J either do not intersect or they intersect at a single point.
Take a Borel set B in the phase space and a Borel set T c (0, x). Each such

pair (B, T) defines a subset of I, namely, the set of those J = [E; c(X)] such
that X rn B contains exactly one point and such that X0 e ErX B implies
-r(X0) e T. Also, for each B, consider the subset of I formed by those J such that
Xt n B = 0. The sets just introduced will be called cylindrical subsets of I.

Let M denote the minimal a-algebra generated by the cylindrical subsets of I
and let (Q. a, ,u) be a probability space.

DEFINITION 1. A (X. a?) measurable map co ~ J(co)Q2 of Qi into I is called a

random field of segments (r.f.s.) in the plane.
If an r.f.s. J(co) is given, then a probability measure P will be induced in M.

which we shall call the distribution of the r.f.s. J(co).
The group of all Euclidean motions of a plane induces a group of trans-

formations of A into itself (the group of motions of X). An r.f.s. is called homo-
geneous and isotropic (h.i.r.f.s.), if its distribution is invariant with respect to
the group of motions of A. Only homogeneous and isotropic random fields of
segments are examined herein.

369



370 SIXTH BERKELEY SYMPOSIUM: AMBARTSUMIAN

An r.f.s. J(cw) is called a random mosaic if, with probability 1, J(co) generates
a mosaic. that is, a partition of the plane into convex, bounded polygons.

Let L be a fixed line on the plane and let J(co) be an h.i.r.f.s. Let {jvi} be the
set of points J(co) n L and let Oi be the angle of intersection at the point 3ki.
The set of pairs {YOihi} defines on L a random labeled sequence of points
(r.l.s.p.) in the sense of K. Matthes [1].
We call a star the common point of two or more closed segments which

intersect at nonzero angles, taken together with the directions of the segments
issuing therefrom.
The definition given above for the r.l.s.p. on the line L is acceptable since it

is easy to show that if J(cw) is an h.i.r.f.s., then with probability 1 no stars enter
into J(cw) n L. With probability 1, none of the free ends of the segments com-
prising J(co) lies on L.

It is also easy to see that in case J(co) is an h.i.r.f.s., the distribution of the
r.l.s.p. {by, Oi} is independent of the selection of line L, and possesses the
property of stationarity.

Let us introduce the probability

(1.1) P(dT do) dT= dTi. dTm, dd ,,dam,
that there will be just one intersection in the r.l.s.p. {h, Hi} in nonintersecting
intervals of length dri, placed arbitrarily on the line L, and that the angle of the
intersection occurring in dTi will lie in some interval of the opening doi,
i= 1, ',m.

Let us present several examples of a homogeneous and isotropic random
field of segments (h.i.r.f.s.).
EXAMPLE 1. As X(Co), let us select a random point field in X which is a

contraction of a homogeneous random field of points having a Poisson distri-
bution with parameter A in the whole space (x, y, 'p). Let us put ',,(X) = a,
where a is a constant. Such an h.i.r.f.s. is called a field of segments of length a,
scattered independently in the plane.
EXAMPLE 2. Let Y be some figure formed by k segments. Let us select a

segment from components ofY and let us call it the leader. For simplicity, we
assume that E is symmetric relative to the leading segment. To a fixed countable
set of leading segments on the plane corresponds a well-defined arrangement of
figures congruent to .7. If the set of leading segments arises from segments
scattered independently over the plane, then the set of segments entering in the
corresponding set of congruent figures will be an h.i.r.f.s.
EXAMPLE 3. Let us give a line on the (x, y) plane by the equation

(1.2) xcosp+ y sin (P = p.

The coordinates (p. p) of all possible lines fill a strip 0 < po < 7r, p > 0.
In this strip let T'(co) be a random field of points which is a contraction of a

homogeneous Poisson random field of points in the whole ('p, p) plane. A set of
lines Y in the (x, y) plane corresponds to each set of points X' in the strip.
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Therefore, a random set (field) of lines f(cw) on the plane corresponds to '(w).
Each set of lines which does not contain parallels can be considered as a set J
of segments; namely, we can consider each line L e Y as the union of segments
into which L is divided by other lines belonging to S. We thus obtain an h.i.r.f.s.
J(w) which is a random mosaic. We call this random mosaic the simplest.
EXAMPLE 4. Let us select a number p, 0 < p < 1. Remove or retain each

of the segments of the simplest random mosaic according to independent trials,
with probabilities p and 1 - p of the outcomes. The set of segments which are
retained forms an h.i.r.f.s.
EXAMPLE 5. Let us select a number a > 0. Let us delete all segments of

length less than E in the simplest random mosaic, and let us shorten the remaining
segments by - at both ends. The set of segments retained and shortened
evidently forms an h.i.r.f.s.

angle knot cross fork

FIGURE 1

Considering the examples presented, we see that the r.f.s. of Example 4 has,
with probability 1, stars of only the first three out of the four so-called simple
kinds of stars (see Figure 1). With probability 1 the r.f.s. of Examples 1 and 3
only have stars of the cross kind, and Example 5 has no stars with probability 1.
As concerns Example 2, by selecting the figure Y in a suitable manner, an r.f.s.
can be obtained with stars of any "complex" kind.

It is also easy to establish that for each r.f.s. of Examples 1, 3, 4, and 5 the
r.l.s.p. {Yv, i} has a distribution of the form

m m

(1.3) P(dT, do) = H )dz1H sinVidoi.
i=1 i=1

In other words, for the r.f.s. J(o) from Examples 1, 3, 4, and 5, the sequence of
points of intersection {pi} with any line L has a Poisson distribution, the
sequence of angles of intersection {pi} is independent of the sequence of points
of intersection {Jpj}, and the angles in the sequence {0i} are independent. The
particular form of the density 2 sin uf results from the homogeneity and
isotropy of J(cw).
The present research was undertaken in order to clarify which kinds of stars are

generally possible for h.i.r.f.s. for which the distribution {lib, Hi} of the random
labeled sequence of points (r.l.s.p.) of intersection with aline has the form (1.3),
which is simplest in some sense. It is shown in Section 2 that compliance with
(1.3) actually imposes strong constraints on the possible kinds of stars in the
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class of so-called regular h.i.r.f.s. Namely, it has been established that it follows
from (1.3) that stars of a regular h.i.r.f.s. can only be of the four simple kinds
(Figure 1) or missing entirely. Other kinds of stars are excluded by condition
(1.3). However, let us note that this result cannot be considered final, since we
have no examples of h.i.r.f.s. for which (1.3) is satisfied and which possess stars
of the fork kind with positive probability.

Indeed, the result mentioned follows from weaker assumptions than (1.3)
relative to the r.l.s.p. {30j, hi}. Thus, according to Lemma 1, for this it is
sufficient to demand that the distribution of points of intersection on L be a
Poisson distribution (independent of the distribution of the sequence of angles
{#i}). Theorem 2 asserts that the same follows just from the fact of factorization

(1.4) P(dT, df) = p(dQ A(d)

without any particular assumptions relative to the form of p and A.
Restriction to the class of regular h.i.r.f.s. is the basic hypothesis for the

validity of the whole theory.
DEFINITION 2. An h.i.rf.s. J(o) is called regular if the following two conditions

are satisfied.
(i) There exists a number E > 0 such that with probability 1, J(co) will not

contain parallel segments not lying on one line, and situated at a distance less than E.
(ii) Let {/3i} be the set of angles between all the pairs of segments of J(wO) (for

fixed co), which have a nonempty intersection with the unit circle centered at the
origin. If two segments lie on the same line, then the angle between them is assumed
to be n. There exists a number £ > 0 such that the mathematical expectation of
the random quantities NE [1 + (71- fi) cot /i] and NE is finite. Here EE denotes
the sum extended over those pairs of segments whose distance does not exceed £,
and NE is the number of nonzero components in this sum.
The distance between segments in (i) and (ii) is understood to be the distance

between sets.
Regular homogeneous and isotropic random mosaics (h.i.r.m.) are examined

in Section 3. In this case the stars are the vertices of the mosaics, whereupon the
possibilities of vertices of angle type and the lack of vertices are at once excluded.
The solution of the problem of the possible kinds of vertices for regular h.i.r.m.
satisfying (1.3) is given somewhat later. It excludes vertices of fork type. Let us
note that this result remains true for some conditions much weaker than (1.3)
on the distribution of the r.l.s.p. {hi, oi}. It is sufficient to require compliance
with

(1.5) P(dd, dV) = p(dc) * n 2 sin Oi dfi
without further specification of the form of p.

Combining this with known results from the theory of random fields of lines
on a plane, one obtains the following uniqueness theorem.
THEOREM 1. Let J(o) be a regular, homogeneous. isotropic random mosaic

which, with probability unity, has no nodes of knot type. Suppose that intersecting
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J(co) with a straight line yields a random labeled sequence of intersections, where
the sequence of angles {0i} is independent of the sequence of intersection points
{Y~}.Assume also that the angles {Vi} are mutually independent. Then J(cO) is a
mixture of the simplest mosaics.
By mixture of simplest random mosaics is understood the random mosaic of

Example 3, where the parameter A of the Poisson field of points in the strip
o < (p < A., p > 0, is itself a random quantity.

2. Random fields of segments

LEMMA 1. Let J(o) be a regular, homogeneous and isotropicfield of segments.
Let pk(Z) be the probability that exactly k intersections with segments belonging to
J(co) will occur in a segment of length T fixed in the plane. Then for each k _ 2
the limit lim, 0 Pk(Z)/T < 00 exists. The equality lim,_o p3()/r = 0 is the
necessary and sufficient condition that, with probability 1, there will be no stars
or only stars of the simplest kinds in J(o).

PROOF. Let dX denote an element of kinematic measure, dX = dx dy dp. Let
us introduce the function bk(X, T. O) which takes value unity if the segment of
length - and position X has exactly k intersections with J(ow) and takes value
zero otherwise.

Let g be a star on the plane. Consider temporarily that the rays issuing from
g are infinite. Let at, cn be the successive angles between rays numbered
serially in the counterclockwise direction around g (Figure 2). Let Zi be the set

FIGURE 2

of positions X such that a segment of length z and coordinate X intersects both
sides of the angle oci. The kinematic measure (denoted mes) of Zi is known
(see [2]) and given by the expression

(2.1) mes Zi = z2[1 + (n _- ci) cot ti].
For k . 2. the set of positions of a moving segment of length c for which
exactly k intersections with rays issuing from g occur, is the set Yk = {X: exactly
k - 1 events among the Zi, i = 1, ... , n, occur}.

According to a known combinatorial formula,

(2.2) mes Yk = (-1) ( )S,
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where

(2.3) Si = E mes Zki Zk2 .Zk.,
the summation extending to all subsets of size i of the set {1, 2, , n}. Since
each of the sets of the form Zk *Zk, . Zk is evidently always a set ofX for which
a segment of length T intersects two sides of some angle., the kinematic measure
of these sets has the form (2.1), that is,

(2.4) mes Zk1Zk2 .Z. = C *2, C . 0.

We thus arrive at the deduction that

(2.5) mes Yk = (' (g) * 2.

where Ck(g) _ 0 is independent of T.
Let K be a circle of radius 2 centered at the origin and let us fix cl e £1 such

that there are no stars from J(co) on the boundary of K. From the homogeneity
and isotropy of the r.f.s. J(cw), it follows that the measure of the set of such co
equals 1. For all z < z(co), where z(c) depends only on the arrangement of the
segments of J(co) in the unit circle, we will have (k > 2)

(2.6) j 6fk(X;Z;W)) dX = z2 E Ck(g),
A ge-K

where A = {X; the center of a segment with coordinate X belongs to the circle
K}, and the summation on the right is over all nodes of the lattice belonging
to K. Therefore, we have for almost every o e U and k > 2

(2.7) lim Ti j6k(X T; w)) dX = ACk(g).
A K

At the same time it is easy to see that for all k _ 2 and T < c (see the definition
of a regular h.i.r.f.s.),

(2.8) Jfk(X T;w) dX _ Miu(r),
A

where Mij(z) is the kinematic measure of a set of segments of length T. which
yield intersections with the ith and jth segments from J(co). The summation is
over all pairs of segments from J(cw), which intersect the unit circle and are
separated by a distance smaller than 8.

Let ,B denote the angle between these two segments, then we obtain

(2.9) Mij(T) < T [1 + (n - 3) cot ]

From (2.8) and (2.9), we obtain

(2.10) T2r bk(X; T; Ct) dX _ E [1 + (n - cot/3z].
A
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Since we have assumed that a summable function of co is on the right side in
(2.10), then by integrating (2.7) with respect to the measure ji, we obtain by
means of the Lebesgue theorem on the passage to the limit under the integral
sign

(2.11) lim 2 ff &k(X; T; o) dX = &E Ck(g).

We denote integration with respect to the measure Iu in Q by the expectation
symbol &.

Because of the homogeneity and isotropy of the r.f.s. J(co), one has
ff6k(X; '; O) = pk(T) identically in X, so that by Fubini's theorem it follows
from (2.11) that

(2.12) mes A lim Epk(z) = & E Ck(g).
t-O T geK

It is clear from (2.12) that lim,- 0p3 (T)/z2 = 0 if and only if the sum Eg.K C3 (g)
vanishes with probability 1. This can occur when there are no stars in the domain
K with probability 1; then it follows from the homogeneity and isotropy of
J(co) that with probability 1 there are no stars in the whole plane. If it is assumed
that with positive probability there are stars in K, then there remains to assume
that for each star g e K we have C3 (g) = 0.
However, it is easy to verify that C3 (g) = 0 if and only if g is a simple star.

If with probability 1 there are only simple stars in K, then because of the homo-
geneity and isotropy of J(co) the same is true for the whole plane. This completes
the proof of Lemma 1.

Let W, denote the event that on a segment of length T fixed on a plane there
are exactly three intersections with segments of the r.f.s. J(c0), and that the
sides intersect the segment T at angles such that their continuations converge at a
point.
LEMMA 2. Let J(co) be a regular, homogeneous, and isotropic random field of

segments. If nonsimple stars are encountered with positive probability in J(co), then

(2.13) lim P(W1) = 1.
T-0 p3(T)

PROOF. Let us introduce the function that 6(X; T:.c) equals one if the event

W, holds for a segment of length T with coordinate X, and b(X; T; co) equals
zero otherwise. Let us fix co e £. There is a number z(co) such that for all
T < z(co) we have

(2.14) [X; T; (w] = 3 (X; T; r0) when Xe A,

and therefore, for all T < T(Ct)

(2.15) 6(X; T; co) dX = 63 (X; T; Ct) dX
A5 A
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from which we conclude that for each cl E i2 there exists a limit equal to

(2.16) lim -2 Jjj 3(X; I; w) dX = lin0 T2 erfff (X; dX.

Let us integrate (2.16) with respect to the measure pu in Q.. Since J(o) is a regular
h.i.r.f.s., the order of integration with respect to pi and the passage to the limit
can be interchanged in both integrals. After reduction by mes zA, and using
Fubini's theorem, this yields

(2.17) lim 2 P(Wr) = lim- Pp3(r).

We have utilized the facts that &6(X; T; W) is independent of X. and

(2.18) &6(X; T; Co) = P(W).

We have therefore found that there exists a finite limit

(2.19) lim P(W) p3() = lim <
rO p3 (T) T = 0 T

It follows that if lim,.Op3(T)/T2 > 0, then lim,0 P(W,)/p3(T) = 1, which
together with Lemma 1 yields the proof of Lemma 2.

Let Xl, X2, X3, 1l, '2, /3, (Xl < X2 < X3) be the abscissas and the corres-

ponding angles of three points of intersection of a segment of length T fixed on
a plane with segments from J(co), under the condition that there are just three
intersections on the fixed segment. Let us select the direction on the segment so
that the inequality X2 -Xl < X3 -X2 will always be satisfied.

Let us put u = (X2 -X1)/(X3 - xl). Let F(u; /1' 2, 12 3) be the joint distri-
bution of the random variables u, 01/, 1/2, 1/13. Then evidently

(2 .20) P(WZ) rr ((2.20) =~~P JJJ dEr(U; 01/, 02i. I/3),
Vt

where the integration is over that portion of the four dimensional space u, 1,

1/2, 1/3 corresponding to the event W,.
The factorization

(2.21) dFz(U; /11, 12' 1203) = dF.(u) d((O/1, 02. /3)

corresponds to the hypothesis of an independent sequence of angles. In this case
we have,

(2.22) (d(F)= d~(u) X d't)(Ol. 2e3

where V(u) is some surface in the space (e1, 02, 03). It is now natural to seek
the limit (- -- 0) of (2.22).
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LEMMA 3. Let J(wo) be a regular, homogeneous, and isotropic random field of
segments possessing, with positive probability, nonsimple stars, and let F,(u) be a
marginal distribution function of the random variable u. Then. F, converges weakly
to some absolutely continuous distribution function F(u) as z -- 0.
PROOF. Let us consider a star g, which is not simple, and let us temporarily

assume that rays issuing from g are continued infinitely. For those positions X
of segments of length T for which just three intersections with the rays issuing
from g occur (we denote the set of such positions by S3 (t: g)), the ratio u =
(x2 - x1)/(x3 - x1) is defined. If it is considered that the coordinate X is
distributed uniformly within S3 (r; g), then u has some distribution function
Fg(u). where as follows from similarity considerations. Fg(u) is independent of r,
and, as is easy to verify, is absolutely continuous.

Let us fix co E Q, thereby, fixing the field of segments J(co). Let us put

(2.23) S3 (T; c)) = {X. 3 (X; T; co) = 0, X E A} .

For X E S3(z; co) the ratio u = (x2 - x)/(x3 - xl) is also defined, and if it
is considered that X is distributed uniformly within S3 (.; co), then u acquires a
distribution function F.(u; z), which for sufficiently small z satisfies the relation

(2.24) F. (u; c) = 1
c C3(g)Fg(u)

>~gc-K C (g) ge-K

Obviously, the right side is an absolutely continuous distribution function
which for all co e Q equals lim,-O F,(u; z) = F,,(u).
In other words, we have shown that for each a) E Ql. there exists limits

(2.25) lim-2 63(U; r; co; X) dX

= F,,(u) lim2Jjf 3 (X:cl) dX.

where

(2.26) 6[u: T: (;);X] = if X E S3(z; co) and (x2 - x)/(x3 - xl) < u,
O otherwise.

Integrating (2.25) with respect to the measure Mu in the space Q and taking into
account that

(2.27) b63(u; z; c); X) = FM(u)P3(z).
we obtain, analogously to the proof of Lemma 1, that

(2.28) limF,(u) = 1£ C3(g)F (u).
T-0 E~~ge-KC'3 (g) gc-K

Since the right side is obviously absolutely continuous, Lemma 3 is proved.
THEOREM 2. Let J(o) be a regular, homogeneous, and isotropic randomfield
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of segments on a plane. If the sequences {Yp} and {#E} are independent in a random
labeled point sequence {pi, fi}, then the stars belonging to J(ow) can only be simple.

PROOF. Let us assume on the contrary that with positive probability J(wO)
contains stars different from the simple ones. Then by Lemma 2

P(W1)(2.29) lim = 1
t-Do p3(z)

At the same time, according to Lemma 3, the same limit can be represented as

(2.30) 1 =
1ff(u) du jw d'D(1, I2' 03).

Hence, it follows that the functions fv(u) d$)(O1, 02, 03) equal one for almost all
u for which f(u) > 0. But this is impossible since there are several such points u
and since the surfaces V(u) do not intersect for different values of u. The con-
tradiction obtained proves Theorem 2.

3. Random mosaics

Theorem 2 can also be considered as a result concerning homogeneous and
isotropic random mosaics (h.i.r.m.). Replacing the words "fields of segments"
by "mosaics" and "stars" by "vertices" in the formulation of Theorem 2, it
should be taken into account that of the simple stars only knots, forks, and
crosses can be vertices.
THEOREM 3. Let J(ow) be a regular, homogeneous, and isotropic random

mosaic. If the sequences {Yi} and {0j} in the random labeled point sequence
{g ig, Oi} of intersections of J(co) with a line fixed on a plane are independent, the
angles Oi are mutually independent, then the vertices of J(wO) can only be of knot
and cross type.

Let us precede the proof of Theorem 3 with still another lemma.
LEMMA 4. Let J(o) be a regular, homogeneous. and isotropic random mosaic

which, with probability 1, possesses only simple vertices, and v1 (V2, v3) the mean
number of vertices of knot (fork, cross, respectively) type per unit area. Let a
segment of length T be fixed on a plane. Let us introduce the random variables:
62(T) equals one, if two intersections of the segment with J(o) occur; and 62(T)
equals zero otherwise. Let 0j, i = 1, 2, be the angles of intersection on the segment
T defined when32(T) = 1. Then

7r limo T2 2(T)[1 + (7r - 1'1 - 21) cot 101 - 0211

= 2v, + 3V2 + 4V3,
(3.1) 1

1 liMO T2 092(T)|1,- V21[1 + (a - 101 - I21) cot 1ii - 211
Z0T2

= 7r(v1 + 2v2 + 2V3)

where g denotes the mathematical expectation.
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PROOF. Let us fix a e Q. Let M1 (co) (M2, M3) denote the number of vertices
of the type knot (fork., cross, respectively) in the circle K.

Let ai and aj be two sides of the mosaic J(co) issuing from the same vertex. Let
us put b(X; z; ai, aj) equal to one if a segment of length z with coordinate X
intersects ai and aj, and put b(X; z; ai, aj) equal to zero otherwise.
We have

(3.2) 62(X; z;w)) = E 6(X; ; ai; aj).
i<j

It follows from (2.1) that for all sufficiently small values of T

(3.3) !Ff3Xta;1d

2 JJJ1 + (7r V10 -i21) cotlqu1 - '21
and

(3.4) 1 01A 216(X; T; ai; aj) dX
*I2f 1 + (n 1- Il - 021) cot 11 - 021 J

where ,1 and V'2 are angles of intersection of a segment of length z with co-
ordinate X and sides in J(cw). Indeed, for all X for which b(X; z; ai, aj) = 1, the
quantity V'1 - V21 is constant and equals the angle aij between the sides
a,, aj E J(co). By summation, we obtain from (3.3) and (3.4) that for all sufficiently
small values of T (cl is fixed)

(3.5) i 62(X; z; c) dX2 JJJ1 + (7 - 11 -V21)cotI 10 -V21
A

= 2M,(co) + 3M2(cw) + 4M3(w0)
and

(3.6) 1 '10 - 21212(X;;c)dX2 jl+((t -11l - 21) cot A1f -f21
= rM,(wo) + 2zM2(C)) + 27CM3(CO).

To clarify matters, let us note that the right side of the second equality
represents the sum of the angles for those vertices of the mosaic J(co) which lie in
K. Indeed, the sum of these angles is equal to X for a vertex of knot type while it is
equal to 27r for forks or cross type vertices.
For almost all cw E £. the limit forms of (3.5) and (3.6) are

(3.7) liml 2(X ; )d(3.7 2JJJ 1 + (n - V'1 - V21) cotl01 - 021
= 2M1(co) + 3M2(Ca) + 4M3(C)
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and

(3.8) Jim 1 Vf - V212(X :zo)dXr-Co T2J 1 + (it - V10 - V21) cot |10 - 21
= n(M,1(c) + 2M2(w) + 2M3(w))

and can be integrated with respect to the measure ju in Q2. Since we assume that
the random mosaic J(co) is regular. and the estimates

(3.9) 1 <( 2 (X O))dX< c

and

(3.10)
1 10~~V1 - 0'2162(X; 'c:oL) dX -<n,(oT JJ 1 + (X- 1V1 - 021)Cot1V1 -V I2

A

are valid for all z < E, then by first applying the Lebesgue theorem on the
passage to the limit under the integral sign to the integrals with respect to the
measure p from the left sides of (3.7) and (3.8), and then Fubini's theorem, we
obtain

(3.11) mes A lim &262(z)[l + (Xt- V'1 - V21) cot V'1 - 021]

= 2M,(co) + 3M2 + 4M3
and

(3.12) mes A lim-&c2( T) V1 - V21[1 + (7t - V'1 - V21) cot V'1 - 021

= n(M1 + 2M2 + 2M3).

The assertion of Lemma 4 is now obtained from the relationship vi = &Mi(CO)
[area of K] - 1 since mes A = it area of K. This proves Lemma 4.
Now. if J(co) is an r.h.i.r.m. for which the sequences {j} and {Vi} are

independent in the r.l.s.p. {0j. Of}. then the result of Lemma 4 becomes

(3.13) i lim 2 &[1 + (it - V1 - 21) cot V'1 - 0211
= 2v1 + 3v2 + 4v3,

and

(3.14) i lim P2 -1 21[1 + (- |1 -21) cot -11 21]
= it(vl + 2V2 + 2v3).
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Let us note that the ratio of the mathematical expectations

(15 a-O1 - f21[1 + (7r - 1f1 - 21) cot h1' - I21] 1
(3.15)

- &[1 + (7t - 101 - c21)cot 101 - 0211
to which the sense of mean value of the angle for an "arbitrary" vertex of the
polygons comprising the mosaic can be ascribed in this case, is easily evaluated
if it is assumed that the angles f1 and uI2 are independent, that is, that (1.5)
holds. For this it is sufficient to consider the simplest random mosaic for which
the angles ir1 and 0f2 are independent, as we have already remarked. Indeed, in
this case we should put v1 = 0, v2 = 0, after which we find by dividing (3.13)
by (3.14), a = 12 . Therefore, if it is assumed that the conditions of Theorem 3
are satisfied, then v1, v2, and V3 satisfy the relationships

(3.16) 2v1 + 3v2 + 4V3 = A, 7v1 + 27rv2 + 27rV3 = PrA.
for some A. Multiplying the first equality by 27 and subtracting this result from
the second, we find that v2 = 0. Hence, the assertion of Theorem 3 evidently
follows.

Finally, let us consider the conditions of Theorem 1. Since as follows from
Theorem 3, the possibility (with probability 1) of the existence of vertices of
cross type in J(co) is all that remains, then we arrive at the conclusion that J(cw),
with probability 1, is formed by (infinite) straight lines. Therefore, there is a
stationary point process on the line L, and through each of its points {Y~}we
draw a random straight line with orientation Oi such that the Oi are mutually
independent for different values of i, are independent of the point process {lii},
and have the common density 2 sin f. These random lines indeed form the
random mosaic J(co). As has been shown in [3] from the condition that on every
other line L' parallel to L the distribution of the point process of intersection
with the random lines agrees with that for {B9E} on L (homogeneity and isotropy
conditions of J(cw)), it results that {B} is a mixture of stationary Poisson point
sequences, in other words, a Poisson point sequence of random intensity.
From this the assertion of Theorem 3 follows in an evident manner.
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