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1. Markov chains in continuous time

It is the object of this paper to draw together certain lines of research which
during the last decade have grown out of the problem of characterizing the
functions which can arise as transition probabilities of continuous time Markov
chains. This problem is now solved (see Sections 8 and 9). although as usual its
solution has thrown up further problems which demand attention.
The evolution of a Markov chain X, in continuous time, with stationary tran-

sition probabilities, on a countable state space S. is as usual [2] described by
the functions

(1.1) pi j(t) = P(XS+, =j X, = i)
for i. j E S. t > 0. These necessarily satisfy the conditions

(1.2) pij(t) > 0. pij(t) = 1.
jes

and

(1.3) pii(t + U) = Pi.k(t)Pk.j(U).
keS

to which it is usual to add the continuity condition

(1.4) lim pij(t) = pij(O) = kil
t-0o

Conversely, given any array (pi j; i, j e 8) of functions satisfying (1.2) and (1.3),
a Markov chain X, can be constructed so as to satisfy (1.1).

It is therefore not surprising that a substantial part of the theory of Markov
chains should be concerned with the consequences of (1.2). (1.3). and (1.4) forthe
functions Pi j. It is possible to regard this as a problem in pure analysis. but
those methods that have proved most powerful have had strong probabilistic
motivation. The following list of typical results. taken from [2]. will illustrate
the achievements of this part of the theory (they are arranged in roughly in-
creasing order of difficulty):
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(I) pi,i(t) > Ofor all t > 0:
(II) Pi j is uniformly continuous on [0, 0o);

(III) (Doob) the limit qi = lim.otC1{ - pii(t)} exists in 0 _ qi < oo. and
Pisi(t) > edqit.

(IV) (Kolmogorov) the limit 7itj = lim e, p i j(t) exists (and a good deal is
known about its properties):

(V) (Kolmogorov) the finite limit qi j = limr-0 t-lpi j(t) exists when i
(VI) (Austin-Ornstein) the function Pi j is either identically zero or always

positive on (0, x );
(VII) (Austin-Ornstein-Chung) the function Pj is continuously differentiable

in (0. xf) for i = j and in [0, x) for i :& j.
This last result cannot be substantially improved: Yuskevitch showed that

pi j need not have a second derivative, and Smith showed that pii need not be
continuous at the origin.

In the light of results such as these., the question at once arises [13] of char-
acterizing the functionspij. It is clear from (1.4) that there are two distinct cases
to be considered, according as i = j (the diagonal case) or i :& j (the nondiagonal
case).
The natural first step in approaching such a problem is to ask whether it can

be solved in the usually simpler situation of discrete time, when the variables
t, u in (1.2) and (1.3) take only integer values. (Condition (1.4) then has no
force.) The answer was given long ago by Feller and Chung in terms of the
notion of a renewal sequence. A sequence (un: n _ 0) is called a renewal sequence
if there exists a sequence (fA; n _ 1) satisfying

Xi

(1.5) fn0>° fE . .
n= 1

and such that (Un) is determined recursively by the equations
n

(1.6) Uo = 1, Un E frUn-r, n _ 1.
r= 1

Then the results of Feller and Chung may be summarized as follows.
THEOREM 1.1 [6]. A sequence (an) can be expressed in the form

(1.7) an = pi i(n).
for some discrete Markov chain if and only if (an) is a renewal sequence. A
sequence (bn) can be expressed in the form

(1.8) b. = pi j(n), j,

if and only if there exists a renewal sequence (un) and a sequence (fA) satisfying (1.5)
such that

n

(1.9) bbn = E frun-r.
r= 1
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It should be noted that the solution for the diagonal case is effective in the
sense that, given a sequence (an), we can test whether it is a renewal sequence by
using (1.6) to compute the corresponding fn. This is not however true of the
nondiagonal case; the representation (1.9) is far from unique, and I know of no
sure way of deciding of a sequence (ba) whether it can be expressed in this form.
This feature will persist in the much more difficult solution of the continuous time
problem.

2. Regenerative phenomena

It is a notable feature of some (but not all) of the arguments used in Markov
chain theory that they really only concern one or two states of the set S. Thus if
interest centers on one particular state i, it is often possible to lump all the
remaining states together in a single state "not i." More precisely, it may suffice
to consider, not X,, but the process

(2.1) Z = (°(X,)
where (p(i) = 1, o(j) = O.j #L i.
The process Z, is in general non-Markovian. but it has a simple structure

governed by the function pi i. If Pi denotes probability conditional upon
{XO = i}, then forO = to < t, < t2 < < tn,

(2.2) Pi(Z, = 1; r = 1. 2, * ,n)
= Pi(X, = i; r = 1. 2, *, n)

n

- H Pi,i(tr -tr1).
r= 1

This suggests the following definition.
A regenerative phenomenon with p-function p is a stochastic process (Z,; t > 0)

taking values 0 and 1, such that for 0 = to < t, < t2 < ... < t,,.
n

(2.3) P(Z1 = l;r = 1 n) = H P(tr - tri-).
r= 1

A function p: (0, oo) [0, 1] is called a p-function if there is a regenerative
phenomenon having p as p-function.
The left side of (2.3) is of course equal to

(2.4) E(Z, Z,, . . ZJ.
and thus the p-function p determines the expectation of any linear combination
of products of values of the process Z. In particular, p determines

(2.5) P(Ztr = Otr; r = 1, 2, , n) = (-1)E{ (1 - r - Ztr)}:

whenever ar = 0 or 1, so that the finite dimensional distributions of Z are known
once p has been specified.
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It is of course necessary that when (2.5) is calculated the result should be
nonnegative. This requirement imposes, for each n, 2" inequalities on the
function p, though it turns out that all but 2 of these are consequences of those
for smaller values of n. Thus p satisfies, for each n > 1, a pair of inequalities,
which may be written, for n = 1,

(2.6) 0 _ p(t) _ 1,

for n = 2,

(2.7) p(t)p(u) _ p(t + u) _ 1-p(t) + p(t)p(u),
for n = 3,

(2.8) p(t)p(u + v) + p(t + u)p(v) -p(t)p(u)p(v)
. p(t + u + v)
< 1 - p(t) - p(t + U) + p(t)p(u) + p(t)p(u + v)

+ p(t + u)p(v) - p(t)p(u)p(v),

and so on. Conversely, the Daniell-Kolmogorov theorem establishes the exist-
ence of the process Z whenever this infinite family of functional inequalities is
satisfied, showing that these inequalities are both necessary and sufficient for
p to be a p-function.

For any h > 0, the events En = { Znh = 1 } form a recurrent event in the sense
of Feller [6], since for 0 = ro < r1 < * < rk,

n n

(2.9) p n Erk) = p{(rk- rk l)h}.
k= 1 k= 1

Thus, the sequence (p(nh)) is a renewal sequence. This simple remark is one of
the most powerful tools in the theory of p-functions.

In view of (2.2), we can now say that (2.1) defines a regenerative phenomenon
with p-function pii. Thus, any diagonal Markov transition function pi i is a
p-function. Theorem 1.1 might suggest that the converse ought to be true;
regrettably it is not.

3. Standard p-functions

A p-function is called standard (by analogy with Chung's terminology for
chains satisfying (1.4)) if

(3.1) limp(t) = 1,
t-0

and the class of standard p-functions is denoted by 0?. Then (1.4) shows that the
p-function pi, i is standard, and if Yb# denotes the class of all diagonal Markov
transition functions then

(3.2) JA XA g



TRANSITION PROBABILITIES 245

If we combine (3.1) and (2.7) with the fact that (p(nh)) is a renewal sequence, a
number of the simpler results known for BM- can be proved in the wider class bM.
Thus, the following theorem is proved by quite elementary arguments.
THEOREM 3.1 [13]. If p is any standard p-function. then
(i) p is uniformly continuous and strictly positive on (0, o:),
(ii) the limit

(3.3) p(of) = lim p(t)
t-. c

exists, and
(iii) the limit

(3.4) q = lim t {1 - P(t)}
exists in () < q _ so and

(3.5) p(t) > eg'

Because (p(nh)) is a renewal sequence. there must exist a sequence (f,(h))
with

(3.6) fn(h) . 0. E fn(h) _ 1.
n= 1

such that (1.6) holds with f, = fn(h) u, = p(nh). It follows easily that, for
IZI < 1,

(3.7) E p(nh)z' = - E h)z

Now fix 0 > 0. and set z = e'h in (3.6). If the left side is multiplied by h it
converges, as h 0; to the Laplace transform

(3.8) r(O) = p p(t)eo'tdt

of p. The limiting behavior of the right side may be examined using the Helly
compactness theorem, and a rather technical argument then leads to the follow-
ing basic characterization of the class I.
THEOREM 3.2 [13]. Ifp is any standard p-function. there is a unique measure

u on the Borel subsets of (0. x] with

(3.9) f. (1 - e-x)u(dx) < oc.

such that. for all 0 > 0.

(3.10) p(t)e-t dt = +± (1 -e-"x)u(dx)JO ) (Uoj~0, S0
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Conversely, if /u is any Borel measure on (0, xo] satisfying (3.9), there exists a
unique continuous function p satisfying (3.10), and p is a standard p-function.

Thus, (3.10) sets up a one to one correspondence between BR and the class of
measures p satisfying (3.9). The limits whose existence is asserted in Theorem 3.1
are simply expressed in terms of p;

(3.11) p(c) = {1 + jfxy(dx)}
(3.12) q = p(0, x].
A regenerative phenomenon with q < co is called stable, and one with q = co
instantaneous.
As an example, suppose that p concentrates all its mass q at a single point a,

0 <a < cc. Then

(3.13) r(0) = (0 + q - qe-Oa)-1,
which inverts to give

[tia]

(3.14) p(t) = E t,{q(t -a)},
n =0

where 7Un denotes the Poisson probability
2ne-A

(3.15) 7nn(A) = n !
n!

This is an oscillating p-function, converging to the limit p(cc) (1 + qa)V.
It is differentiable everywhere except at the point t = a, where it has left.and
right derivatives

(3.16) D-p(a) = -qe- " D+p(a) = q -qe a.

In view of the theorem cited as (VII) in Section 1, the p-function (3.14) cannot
therefore come from a Markov chain. Thus, the inclusion (3.2) is strict.
The differentiability behavior of (3.14) is entirely typical of that ofp-functions

for which the corresponding measures p have atoms in (0, o). In fact, let
m(t) = p(t, o], so that m is finite, nonincreasing and right continuous in (0, cc),
and integrable on (0, 1) (because of (3.9)). If mn denotes the n-fold convolution
of m with itself, we have the following result.
THEOREM 3.3 [15]. The series

(3.17) b(t) = E (-1)n- 'm.(t)
n= 1

is uniformly absolutely convergent on compact intervals in (0, cc), and all terms
except possibly the first are continuous. The equation

(3.18) p(t) = 1 - b(u) du
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holds, and shows that p has finite right and left derivatives at all points t in
0 < t < ax, and that

(3.19) D+p(t) - D-p(t) = M{t}.
In particular, p is continuously differentiable in (0, co) if and only if , has no
atoms in (0, cc).

Thus, the (diagonal case of the) Austin-Ornstein differentiability theorem is
equivalent to the statement that, for p in SEX, the measure p has no atoms,
except perhaps at oc. This result will be considerably strengthened in Section 7.
The fundamental formula (3.10) has a number of other important uses. It

can for example be used to examine the rate of convergence of p(t) to p(oo), to
establish the Volterra equation

(3.20) p(t) = 1 - Jp(t - u)p(u, ox] du,

(of which (3.17) and (3.18) describe an iterative solution), and to generalize a
theorem of Kendall [8] by showing that every function in 9 admits a Fourier
representation of the form

(3.21) p(t) = p(cox) + ,f p(co) cos ct dco,

where ap . 0. For these results and others, the reader is referred to [13] and [15].

4. Additive processes

The right side of (3.10) strongly suggests a connection with the theory of
additive processes (processes with stationary independent increments), a con-
nection which in the Markov case was exploited by Levy [25]. If Z is a regener-
ative phenomenon with standard p-function p, it is easy to check that

(4.1) lim P(Zt+h 7# Zt) = 0,
h-0O

so that Z has a measurable version, and it makes sense to consider the process

(4.2) = XZ du.

Since the sample functions of r are continuous and nondecreasing, there exists
an inverse process T defined by

(4.3) T, = inf{s >0; r, _ t}.

Then [13] T is an additive process, with Levy-Khinchin representation

(4.4) log E(e-OTt) = -t{ + (1 - x)}(dx)
0,.0
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The term - tO signifies a constant drift, so that

(4.5) T, = t + ,

where the additive process 4 increases in jumps.
If q = Mu(0. o] < . the jumps of 4 occur at the points of a Poisson process

of rate q, the height of each jump having distribution function

(4.6) F(x) = q' L(O. x].

Translating this back into a description of Z. it shows that the sample functions
of (a separable version of) Z are step functions. The lengths of the intervals of
constancy are independent random variables. those with Z, = 1 having dis-
tribution function 1 -e-q , and those with Z. = 0 having distribution
function F.
When q = cc the jumps of 4 are dense. and the sample function behavior of

Z becomes much more complex. A version can be chosen in which the set
{t; Z, = 0} is a countable union of intervals, but the complement {t; Z. = 1}
can never be so. and instead resembles a Cantor set (though of positive measure).
The measure p determines the lengths of the component intervals of the former
set, in the sense that, for c > 0, the intervals of length greater than c are well
ordered, with distribution function

(4.7) F,(x) =- /( ],i(c. ~

The problem of choosing a suitable version of Z in the instantaneous case has
been considered (in unpublished lectures) by Kendall. who remarks that if T is
a right continuous, strong Markov. additive process satisfying (4.4), then

(4.8) {t; Z. = 1} = {T,; u _ 0}
defines a convenient version of the regenerative phenomenon whose p-function
is given by (3.10). This construction permits the calculation of some useful dis-
tributions. For instance, the backward recurrence time

(4.9) f3,=inf {u> 0; Z. = 1}

has distribution

P{3 = } =(t)
(4.10) P{e,E (u. u + do)} = p(t- u)p(u. o]-du.

In fact, /3 is a Markov process. and

(4.11) {t; Zt = 1} = {t: t (}

defines a version Z of Z. For related work. raising the possibility of a "strong
regenerative property." see [7].
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5. Markov measures

Returning now to the problem of describing the class Bt# of diagonal
Markov transition functions pii. we first exhibit a large subclass of 0.k. Let
(us) be any renewal sequence: then by Theorem 1.1 there exists a discrete time
Markov chain with un = pa a(8) for one state a. If c is any positive constant.
consider the functions

(5.1 ) p~Ai(t) = pij(n)7rn(ct).
n = 0

where En is the Poisson probability (3.15). An elementary computation shows
that these satisfy (1.2), (1.3), and (1.4), so that the function paa belongs to Y~A.
Thus, for any renewal sequence (Un) and any c > 0. 9>'. contains the function

(5.2) p(t) = E u,,t(ct).
n 0

The class of functions of the form (5.2) is denoted by S. Since . contains only
stable p-functions, it cannot exhaust , so that

(5.3) c B,m' c J.

For anyp in .0, and any positive integer k. the sequence (p(nk- 1)) is a renewal
sequence, so that

(5.4) pk(1) = E p(nk1')irn(kt)
n=o

belongs to .S. It is a simple consequence of the weak law of large numbers that,
for all t,

(5.5) p(t) = lim Pk(t).
k -x

so. that every function in C is the pointwise limit of a sequence of functions in S.
It is useful to express this fact in more formal topological language. Every

p-function is a function from (0. cc) into [0, 1], and may therefore be regarded
as an element of the product space

(5.6) 1 = [0, 1](o.0).
whose product topology is compact by Tychonov's theorem. The set of
p-functions (standard or not), being defined by the inequalities (2.6), (2.7), (2.8),

is clearly closed in H1. and thus inherits a compact Hausdorff topology. In
this topology Yh is not closed (consider the sequence p, (t) = e-t), and the sub-
space topology on .9, though Hausdorff and indeed metrizable [5], is not com-

pact. Equation (5.5) shows that 2. and a fortiori .'.t. is dense in B9. It is this fact
that makes the identification of Y1.W as a subset of BY a somewhat delicate
matter.
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In the one to one correspondence set up by Theorem 3.2 between Y0 and the
class of measures satisfying (3.9), the latter class inherits a topology from that
of J14. This topology has been identified by Kendall [10] and Davidson [5]; a
sequence (pa) in 01 converges top in JP if and only if the corresponding measures
p, p satisfy

(5.7) lim Jf (1 - e-x)T(x)p.(dx) = ( (1 - e-x)T(x),g(dx)no oo (0, OD] fo, Do]

for every bounded continuous function D on (0, ox].
In the correspondence (3.10), the subset bDY of Ad corresponds to a proper

(albeit dense in the sense, of (5.7)) subset of the class of measures satisfying (3.9).
It will be convenient to describe the members of this subset simply as Markov
measures, so that Ybow is determined once the Markov measures have been
characterized. In view of the discussion in Section 4, this amounts to the char-
acterization of the possible distributions of lengths of excursions from a
particular state in a Markov chain.
Examples of Markov measures can be obtained by computing the measure p

corresponding top-functions of the form (5.2). It is not difficult to calculate that,
if (fn) is the sequence related to (un) by (1.6), then

,u(dt) = c2 dt Ai .-2(C0,
n 2

(5.8) 0{ fr}
{oo} ct 1 E

n =

The point to note about this measure is that, apart from a possible atom at cc,
it has a density with respect to Lebesgue measure of the form e -cP(t), where P
is a power series with nonnegative coefficients.
More general examples can be constructed by a technique due to Yuskevitch

([26], see also [9]). Consider first a Markov chain of the special type constructed
by Levy [25], on the nonnegative integers, in which any excursion from 0 only
visits one other state. The states i _ 1 must be stable, but 0 may be instantane-
ous. Fix positive integers bi, mi, i = 1, 2, * , and construct a new chain on the
state space,

(5.9) {0}u {(i, a); i = 1, 2, * *, = 0, 1, 2, * * ,

by replacing a sojourn in i by a progress through the states (i, 0), (i, 1), * * , (i, mi)
and return to 0, the time spent in (i, a) having probability density biebit. It is
not difficult to show that, in this new chain, the measure p corresponding to the
p-function poDo has density in (0, co) of the form

(5.10) h(t) = E citmiebie ,
* ~~~~~i=1
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where cj is a nonnegative constant depending on the parameters of the original
chain.
By a suitable choice of these parameters [17], one can obtain any measure

satisfying (3.9) whose density is of the form
X 00

(5.11) h(t) = E E am, t'e-"', am,,, . 0.
m=0 n= 1

Any such measure is therefore a Markov measure, regardless of the value of
x{oo}. It thus becomes urgent to know which functions of a positive variable t

can be expressed in the form (5.11); the answer to a slightly more general question
is given by the following theorem.
THEOREM 5.1 [23]. A function h: (0, xo) -- [0, o], not identically zero, is

expressible in the form

(5.12) h(t) = E Eamte
m=0 n=O

with amn _ 0 if and only if it is lower semicontinuous and satisfies

(5.13) h(t) _ atme-n

for some a > 0 and some nonnegative integers m, n.
Thus, the Yuskevitch construction shows that jM is a Markov measure whenever

it has a density h in (0, ox) which is lower semicontinuous and satisfies (5.13).
We shall see that these sufficient conditions come very close to being necessary.

6. Quasi-Markov chains

The notion of regenerative phenomenon is an abstraction of the process
obtained by lumping together all states of a Markov chain except one. For some
purposes, however, this is too drastic; if for instance one is interested in the
transition probability Pi j, i ¢ j, then both states i and j should retain their
identities. This suggests the following more general definition ([14], [16]).
A quasi-Markov chain of order N is a stochastic process Zt, t > 0, taking

values 0, 1, 2, * *,N, in such a way that, for 0 = to < t1 < t2 < * < t, and
DOO, OCl, 0C2, * * o,an {I, 2, * , N},

(6.1) P{Ztk = ak(k = 1,2, ,n)IZo = aO}
n

17 Pxk-1,2k(tk tk-1).
k= 1

Here the functions p, is, which determine the finite dimensional distributions
of Z so long as ZO :E 0, are the elements of a matrix
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called the p-matrix of the chain. It is important to note that (6.1) is not required
to hold if ak = 0 for any k; the state 0 is anomalous. A quasi-Markov chain of
order 1 is essentially a regenerative phenomenon. A quasi-Markov chain is said
to be standard if

(6.3) lim p(t) = I.
two

the identity matrix of order N.
If X, is a Markov chain, and il, i2, iN are any N distinct states, then it is

immediate that the process

(6.4) Z== (X,),
where

(6.5) f(i2) = a, (j) = 0. j t {il. i2', iN}

is a standard quasi-Markov chain with p-matrix

(6.6) (pi:,- j,(t); a, / = 1. 2, N).
The analysis described in Sections 2 and 3 can be extended to the more general

situation of a quasi-Markov chain; for the details see [14]. For present purposes
it suffices to quote the main characterization theorem which generalizes
Theorem 3.2.
THEOREM 6.1 [14]. In order that a continuous (N x N) matrix valuedfunction

p(t), t > 0, be the p-matrix of a standard quasi-Markov chain, it is necessary and
sufficient that its Laplace transform

(6.7) r(0) = J, p(t)e-' dt

should have, for all 0 > 0, an inverse

(6.8) r(0)'- =(r- 0(0)),
with

(6.9) r2'2(0) = 0 + a, +± (1 - e-'x)p.2dx),

and (for a 7 /3)

(6.10) r'.P(0) - -{, e - xp,12 (dx),

where ju, is a Borel measure on (0. x ) satisfying (3.9), ju, a totally finite Borel
measure on [0. xo), and.for all a.

(6.11) E i2,j0. x) < a_
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It is possible to give probabilistic interpretations of the quantities occurring
in these formulae. Comparing (6.9) with (3.10) it appears that 1/r5' (0) is the
Laplace transform of a p-function pa; this turns out to be a taboo function in
the sense of Chung [2],

(6.12) p.(t) = HP.,.(t), H = {fl 1 < .l_ N, 1 a}.
The measure p, p has the following interpretation, for a suitably regular version
of Z. Scan a sample function of Z for the first times a . r with

(6.13) Z_- = a, Z,+ = , Z = 0, a < t <T.

Then pjip is a multiple of the distribution of (z - a).
The formulae of Theorem 6.1 take on particularly useful forms when N = 2.

Inverting the (2 x 2) matrix r(6)-1 directly, we have

(6.14) r(O) = det [r(O)] r2 (0) -rr1.2(0)
so that

(6.15) = _ r = rl(O) e-Ox1,2(dx).
r2,2(O) r (0)

Using (6.12), this implies that

(6.16) P1,2(t) = fl,2(s)P2,2(t - s)ds,

where

(6.17) f1,2(t) =fo 2p1,1(t -u)M,2(du)
Applying this in particular to the quasi-Markov chain obtained from the

Markov chain by lumping together all states except i and j, we obtain the
equation

(6.18) pi,(t) = f fi,j(s)pj,j(t - s) ds,

where

(6.19) fA,1(t) = o jpii(t - u)ui,j(du).

Equation (6.18) is the celebrated first passage decomposition (usually proved by
quite different methods [2]); the fact that fi j itself has the decomposition (6.19)
is crucial. Condition (6.11) is in this context equivalent to the inequality

(6.20) J'f gij(t) dt = {b jpi;i(t) dt. ,i,j[O, 0o) _ 1.

If in the above argument we had started with r1,2(0)/r1,i(0) instead of
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r, 2()r 20,we should have obtained the last exit decomposition,

(6.21) pi,}(t) = pPi i(t- s)gij(s) ds,

where

(6.22) gi,j(t) = fJ ipjj(t -u)i,j(du).

Such identities are naturally written in convolution notation:

fij = jpii*dpij, Aj = fij*pjj = jpii*dpij*pjj,
(6.23) gij = ipjj*d1ij, pij = gij*pii = ipjj*duij*pii.

7. Properties of Markov measures

The first passage and last exit decompositions can be combined, by an
argument shown to me by Professor Reuter, to give important positive inform-
ation about the measure p associated by Theorem 3.2 with the p-function pi,i in
a Markov chain. By (1.3),

(7.1) pii(t + u) = pAA(t)piA(u) + E pij(t)pji(u),
jt1i

so that, using (6.18) and (6.21),

(7.2) pii(t + u) -pi,i(t)pi,i(u)

- 2 gopi,i(t - s)gi,j(s) ds8 fji(v)pii(u-v) dv.

Multiplying by e -P-U and integrating over t > 0, u > 0, we have

(7.3) rri(,)rai(f) _ rii(c)rii(/3) = 3

where a, /B > 0, at + /B, and ? denotes the Laplace transform of the function p.
Using (3.10) to express rii in terms of the measure j, and simplifying, we have

(7.4) ti(dx) =

It is not difficult to see that this implies that p has a density h in (0, cc), and that

(7.5) h(t + u) = 2 gi j(t)f; i(u),
jt i

for almost all (t, u). That p is absolutely continuous was suggested without
proof by Levy [25]; in view of the remarks following Theorem 3.3, it implies
at once the continuous differentiability of pi i.
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If in (7.5) we replace t by (t -u) and integrate with respect to u E (0, t), we
obtain the formula

(7.6) th(t) = E j'gjj(t-u)fj,i(u)du,

for almost all t. Thus, one version of the density of p is given by

(7.7) h(t) = C-1 Ekj(t)Z
jti

where

(7.8) kj = gij*fJi = ipjj*dyij*dpji*ipjj.
Now for any p-function p, p(2) = p *p is a continuous function on (0, oo) with
limt_0 p(2)(t) = 0. It follows easily that kj = ipj2)*dgi j*duji is continuous,
and hence that the density h in (7.7) is lower semicontinuous in (0, co).
Now suppose that h is not identically zero. Then there must exist j # i for

which ki is not identically zero, and for this j (7.8) shows that neither pij nor
j i can be identically zero. The p-function ipj j satisfies, as a simple consequence
of the left inequality of (2.7), the inequality

(7.9) piPj(t) > e-,
for some ox and all sufficiently large t. If (7.9) is substituted into (7.8) and (7.7),
it follows that, for some fi, and all sufficiently large t, h(t) _ e-Pt.
A further result follows from the Austin-Ornstein positivity theorem cited as

(VI) in Section 1. With the particular value ofj chosen above, (6.18) and (6.19)
show that neitherpi,j norp, i vanishes identically. The theorem then asserts that,
for all t > 0, pij(t) > 0, pj i(t) > 0. Using (6.18) and (6.19) again, it follows
that, for all E > 0,

(7.10) Mij[O, £) > 0, 4uj,i[0, s) > 0.

Substituting (7.10) into (7.8) and (7.7), we have h(t) > 0, t > 0.
Combining all these results, we have a set of necessary conditions for a

measure p to correspond (in (3.10)) to a function in 9A.
THEOREM 7.1. Every Markov measure p has (as well as a possible atom at

infinity) a lower semicontinuous density h on (0, oe) which is either identically
zero or satisfies (for some fi) the inequalities

h(t) > 0 for all t > 0,
(7.11) h(t) _ edit for sufficiently large t.

8. The solution of the Markov characterization problem

If Theorems (5.1) and (7.1) are compared, it will be seen that the gap between
the sufficient and the necessary conditions, for p to be a Markov measure, is just
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the gap between the inequalities (5.13) and (7.11). In fact, the gap is narrower
than might at first appear. since a positive lower semicontinuous function is
bounded away from zero on every compact interval. It follows easily that a lower
semicontinuous function h satisfying (7.11) satisfies (5.12) if and only if, for some
integer m,

(8.1) h(t) _ t-

for all sufficiently small t.
All that remains therefore to complete the characterization of bA.># is to

determine to what extent (8.1) is necessary. In fact, it is not necessary at all, as
was shown in [23] by calculating the measure Mu for an escalator [2], an infinite
string of states through which the process moves in a finite time (that is, a
divergent pure birth process with instantaneous return). For such a chain, it is
easy [21] to see that h(t) -+ 0 as t 0 faster than any monomial. Moreover, it is
possible (and essential) to go much further than this, and to prove the following
result.
THEOREM 8.1 [23]. Let co be any positive continuous function on (0, 1]. Then

there exists an escalator with the property that the probability density h of the
time spent in traversing it satisfies

(8.2) h(t) _ co(t). < t _ 1.

With this as a tool, the solution now proceeds with only technical difficulties.
In the Yuskevitch construction. each finite string of states is replaced by a suit-
ably chosen escalator, and it is then shown to be possible to realize any positive
lower semicontinuous function h satisfying (7.11). In other words, the converse
of Theorem 7.1 is true. Collecting the various results together, we therefore
have the following fundamental theorem.
THEOREM 8.2 [23]. A continuous function p(t) (t > 0) can be expressed in

theform p(t) = pi i(t) in some Markov chain if and only if its Laplace transform
can be expressed in the

(8.3) p(t)e-' dt = 0 + a + { (1 - e-6)h(t) dt}

where a _ 0 and h is a lower semicontinuous function which is either identically
zero or satisfies the inequalities (7.11).

Because of the way the theorem has been proved, one can in fact say rather
more, for it shows that any function in YJO can be realized in a special sort of
chain, a bouquet of escalators. If a person moves through the state space
according to such a chain, his wanderings can be described as follows. Starting
at the distinguished state i, he is presented with a choice of escalators. He chooses
one, ascends it, and on reaching the top after an infinite number ofjumps returns
at once to i, where he again has the opportunity to choose. Notice that in this
chain all the states, except perhaps i, are stable.
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Now suppose the chain is modified by providing each state except i with a
cinema showing a film of a totally instantaneous chain (independent for each
state, and for each visit to a state) which the person is required to watch while
waiting in the state. If the specification is enlarged to include the state of the
film, the result is another chain in which every state, except perhaps i. is
instantaneous.

It follows that the function pi i contains no information about the stability or
otherwise of the other states of the chain. This is in line with the experience of
authors who have constructed pathological Markov chains (for example, [11]),
who have found that extreme sample function irregularity is consistent with
simple functional forms for the individual transition probabilities.

9. The nondiagonal problem

Theorem 8.2 is the complete continuous time analogue of the first half of
Theorem 1.1, and it therefore remains to find the analogue of the second, non-
diagonal, part. The key to this problem lies in equations (6.18) and ((6.19),
which combine to give

(9.1) pij=jPii*d=ij*pjj
In this decomposition, the first and third members clearly belong to b.ow. The
totally finite measure Mij has, as noted in Section 6, a probabilistic inter-
pretation as a multiple of the distribution of (T- a), where (if XO = i),

T = inf {t;X =j}.
(9.2) a =sup{t < T; X= i}.
From this, it is not difficult to show [17] that, apart from a possible atom
b = li j{O}, pu is a Markov measure.

It is shown in [17] that these conditions are sufficient as well as necessary, in
the sense of the following theorem.
THEOREM 9.1 [17]. A function q(t). t > 0. can be expressed in the form

q(t) = pi j(t). i =k j. in some Markov chain if and only if it can be written

(9.3) q = bp1 *P2 +p1 *h *P2
where b is a nonnegative constant. Pi and P2 belong to I'm, h is a lower semi-
continuous function. either identically zero or satisfying (7.11), and

(9.4) {b ± J h(t) dt}{pl(t) dt . 1.

As in the discrete time case. there appears to be no canonical form of the
decomposition (9.3), and no effective way of deciding. of a given function q.
whether it is expressible in the form (9.3). The effective description of the
nondiagonal Markov transition probabilities therefore remains an open prob-
lem, presumably more difficult than the corresponding discrete time problem.
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If this problem can be solved, it will probably be easy to characterize functions
of the form

(9.5) Pi,A(t) = pi,(t), A _
jeA

and to solve the corresponding problem [19] for purely discontinuous Markov
processes on uncountable state spaces.

10. Multiplicative properties of p-functions

If P, and P2 are p-functions, we can construct corresponding regenerative
phenomena Z1 and Z2 on distinct probability spaces Q2, Q2. Then the process
Z defined on the product space £., x £22, with the product probability measure,
by

(10.1) ZM0w1, w2) = Zt t(1)Z (2).

is a regenerative phenomenon with p-function

(10.2) p(t) = P1(t)P2(t).

Thus, the product of two p-functions is itself a p-function.
If p1 and P2 are standard, then so is p = P1P2, so that Y is a commutative

Hausdorff topological semigroup, with identity e given by e(t) _ 1. The arith-
metical properties of this semigroup have been extensively studied by Kendall
[10] and Davidson [5]. In particular, Kendall observed that there is a strong
resemblance between YZ and the convolution semigroup #" of probability
measures on the line, an observation which is the starting point of the theory of
delphic semigroups. This theory, like the classical theory of */, leans heavily on
the concept of an infinitely divisible element of the semigroup, one which can be
expressed in the form

(10.3) p = (Pn)
for every integer n > 2, where p,, belongs to the semigroup.

It was observed in [16] that - contains every continuous function p with
0 < p(t) . p(O) = 1 such that

(10.4) p(t) = -logp(t)

is concave. Such p-functions are clearly infinitely divisible, for we may take

(10.5) p.(t) = exp {-n -'(t)}.
Kendall showed that they are the only infinitely divisible elements of JO.

It is very natural to ask which of the infinitely divisible p-functions belong
to JY,. In principle this question is answered by Theorem 8.2, but this is difficult
to apply since the measure pu depends in a very complicated way on (p (see [22]).
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A more useful answer is given by the following theorem (of which the regrettably
complex proof will be published elsewhere).
THEOREM 10.1. Let p be an infinitely divisible element of JP, and write the

concave function 9 in the form

(10.6) c(t) = f min (t, x)A(dx),

2 being a measure on (0, oo] with

(10.7) f 0, Jmin (1, x)A(dx) < o.

Then p belongs to JP} if 2 has a lower semicontinuous density in (0, co), and
A(0, e) > O for all e > 0 (unless A(0, oc) = 0).
A special class of infinitely divisible p-functions is the class of completely

monotonic functions, that is, those expressible in the form

(10.8) p(t) = &e-txv(dx)
for probability measures v on [0, o). These all belong to YJ(; indeed, it was
proved in [18] that they are exactly the diagonal transition probabilities of
reversible chains. The problem of characterizing the nondiagonal transition
functions of reversible chains remains open.

There are a number of other open problems in the multiplicative theory of 'R,
often motivated by the corresponding problems for the classical semigroup W.
To take just one example, Davidson has conjectured that, if p is any infinitely
divisible element of 41 which is not of the form p(t) = e't, then p has a factor
which is not infinitely divisible.

11. Inequalities for p-functions

Freedman has asked the following question. If in a Markov chain, for some
i e S, t > 0, c > 0, it is known that

(1 1. ) Pi,i(t) _ c,

can one give a lower bound forpip(s) (s < t)? He has given a partial answer to
this question (in joint work with Blackwell [1]; the result was independently
discovered by Davidson [5]) in the form of the inequality

(11.2) pi,i(s) > 2 + (C _ 3)1/2
3as long as c > 4.

The elegant proof of this inequality uses only the right inequality of (2.7); it is
therefore true of all p in JP that, if c > 3, then

(11.3) p(t) _ c impliesp(s) > 2 + (C _ 3)1/2
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for s < t. The result can indeed be extended, since .g9 is not closed in the product
space Hl. to all functions in its closure B7. Now the elements of Jh are p-functions
(since the set ofp-functions is closed in 11) and those in 3P -B might be called
semistandard. The p-functions which are not standard have been studied in [20].
where the following rather deep theorem is proved.
THEOREM 11.1 [20]. Every p-function satisfies one and only one of the

following four conditions:
(i) p is standard;
(ii) there exists a constant a e (0. 1) and a standard p-function such that

p(t) = ap(t);
(iii) p(t) = Ofor almost all t;
(iv) p is not Lebesgue measurable.
The functions of type (ii) are easy to handle, and are all semistandard since

(11.4) ap(t) = lim exp {-min [nt. -log a]} ((t).

Those of type (iv) are sufficiently pathological to ignore, though it is conceivable
that some may perhaps be semistandard. The functions of type (iii) require
however more attention; they include for instance the functions of the form

Jut t integral,(11.5) p(t) == othise.
0 otherwise.

where (Un) is any renewal sequence.
If p is any semistandard p-function of type (iii), then p(t) _ 3 for all t > 0,

since otherwise (11.3) would imply that p(s) > 0 for all s E (0, t). Hence,

(11.6) y = sup {p(t); t > O,p semistandard of type (iii)}

satisfies

(11.7) _ 3

To obtain an inequality in the other direction, consider the standard p-function
(3.14), set a = 1 - b/q, and let q -- o for fixed b. The result is the semistandard
p-function of the form (11.5), with

(11.8) u, = 7r,(nb).
This is greatest when n = b = 1, when it has the value e '. so that

(11.9) y > e-l.

All the evidence suggests that in fact y = e-l, but no proof is known. Any
proof would almost certainly imply a substantial improvement on the Davidson-
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Blackwell-Freedman inequality (11.2), and might even describe the subsets of the
plane defined by

F1 ={(p), p(t)); p E

(11.10) r2 = {(p(s), p(t)); p e
r3 = {(P(8).p(t));pEA} =

12. Approximate regenerative phenomena

It is appropriate to end on a tentative note. The idea of a regenerative pheno-
menon is intended to describe the situation in which a Markov process returns to
its starting point for a set of time points of positive measure. This is natural when
handling countable state spaces, and is sometimes relevant [19] in more general
situations. But many Markov processes on continuous state spaces do not
return to their starting point, or do so only on a set of time instants of zero
measure. For these it is more natural to think in terms of return to small neigh-
borhoods of the starting point. Thus, instead of a single process Z, one has a
family of processes ZN corresponding to neighborhoods N, and a corresponding
family of "approximate p-functions" pN. Whether there is too little structure
here for a valuable theory only time will tell, but any such development would,
in effect, be an abstract version of the theory of local time for diffusion processes.
A very similar situation occurs in the boundary theory of Markov chains

([3], [4]). Here one is led to an equation very like (3.10), but missing the crucial
"drift" term:

(12.1) f e-otp(dt) = { (1 -e-"x)p(dx)

It is no longer possible to assert that P is absolutely continuous, and the com-
plexity of the resulting theory shows very clearly how much reliance is placed
on the drift term 0 in (3.10). For example. even the proper formulation of the
Volterra equation which generalizes (3.20) requires analysis of formidable
depth [12]. The problem is nevertheless mentioned here, in the hope that an
approximate regenerative theory, of comparable scope to the exact one related
in this paper, might one day be found (see the remarks of Professor Chung and
Dr. Williams in the discussion of [16]).
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