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1. Introduction

Let {X,, » = 1} be a sequence of independent identically distributed random
variables, defined on a probability space (Q, &, P), which take values in the d
dimensional integer lattice E,. The sequence {S,, n = 0} defined by S, = 0 and
S, = Z;-, X, is called a random walk. The range of the random walk, denoted
by R,, is the cardinality of the set {Sy, Sy, - -, S,}; it is the number of distinct
points visited by the random walk up to time n. Our object here is to study the
asymptotic behavior of R,. Two specific problems are considered:

(i) Does R,/ER, — 1 a.s.? If so, this will be called the strong law for R,.

(ii) Does (R, — ER,)(Var R,)”'/?> converge in distribution? If so, this will
be called the central limit theorem for R,.

The random walk may take place on a proper subgroup of ;. In this case,
the subgroup is isomorphic to some E; for k < d; if k < d, then the trans-
formation should be made and the problem considered in k¥ dimensions. We
will assume throughout the paper that this reduction has been made, if necessary,
and that d is the genuine dimension of the random walk.

Dvoretzky and Erdés [2] proved the strong law for the range of simple
random walk for d > 2. (Simple random walk is one for which the distribution
of X, assigns probability (2¢) ™! to each of the 2d neighbors of the origin.) Their
method was to obtain a somewhat crude estimate of Var R, and then use the
Chebyshev inequality. While this worked fairly easily for d = 3, they had to
work much harder ford = 2. By a rather sophisticated technique, they managed
to improve the required probability estimate enough to obtain the proof.

Letp = P[S; # 0,8, # 0, - - -]. The random walk is called transient if p > 0
and recurrent otherwise. Using a very elegant technique Kesten, Spitzer, and
Whitman ([12], p. 38) proved that for all random walks R,/n — p a.s. For
transient random walks ER, ~ pn, so that their result includes the strong law
for all transient random walks.

There are recurrent random walks only if the dimension is one or two. In
[7], we attempted to prove the strong law for R, for the general recurrent random
walk in two dimensions, but we succeeded only partially. Our method there
was to imitate the proof of Dvoretzky and Erdos, that is, to obtain an estimate
for Var R, and then to improve the probability estimate by their methods. In
Section 3, we will prove the strong law for R, for all two dimensional recurrent
random walks by an essentially different technique. We use a very delicate
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method for estimating Var R,, and the estimate is good enough so that once it
is available the strong law follows in a fairly straightforward manner. In Section
4, we will show that if EX; = 0, E|X1|2 < o0, and d = 2, then Var R, ~
cn?/log*n for some positive constant c¢. This should be compared with the
Dvoretzky-Erdés bound which was O(rn? log log n/log®n).

The second problem was first considered by Jain and Orey [6] who showed
that if the random walk is strongly transient with p < 1, then Var R, ~ cn and
the central limit theorem applies with the limit law normal. (The random walk is
strongly transient if 2., 2, P[S; = 0] < 0.) Note that the case p = 1 is
not interesting, since then R, = n + 1 a.s. Thus, criteria for strong transience
are of interest, since they will also imply the central limit theorem. All random
walks with d > 5 are strongly transient and if EX; = 0 and E|X,|?> < o0, the
random walk is strongly transient if and only if d = 5. In Section 5, we give
two additional sufficient conditions for strong transience. The first is that the
random walk is aperiodic and not irreducible and the second is that EX; # 0
and E|X,|? < o. These are both valid regardless of the dimension.

In [8], we considered the central limit theorem for random walks which were
transient but not strongly transient. We proved that ifd = 4, then Var B, ~ cn
and the central limit theorem applies with a normal limit law. The growth of
the variance should be compared with the Dvoretzky-Erd6s bound which was
O(n log n). For d = 3, we proved that Var R, = O(n log n) in general. Under
the additional assumption that EX, = 0 and E|X,|?> < o0, we proved that
Var R, ~ cn log n and that the central limit theorem still is valid with a normal
limit law. The Dvoretzky-Erdos bound in three dimensions was O(n%?).

The case of one dimension is rather unique. If Var X, < <o, the random
walk is either strongly transient if EX, # 0, or recurrent if EX; = 0. In the first
case, the strong law and central limit theorem are both knawn for R, as we have
mentioned above. However, when EX, = 0 the situation is quite different and
we shall prove in Section 6 that />R, converges in distribution to a proper
law. This implies that it is impossible to have a strong law, for (R, — a,)/B,
cannot converge even in probability to a nonzero constant for any sequences
{a,}, {B.} except in the trivial case that R,/B, already converges to zero in
probability.

It would be interesting to know whether the central limit theorem is valid for
R, when d = 2, at least when EX, = 0 and E|X,|?> < o, in which case the
behavior of Var R, is known. Another question is whether there is a limit law
in general for R, whend = 3. It is known that there is a limit law when £X; = 0
and E|X,|? < o0, or when the random walk is strongly transient. We have also
said nothing about random walk on the line with Var X; = co. Of course, it is
known that the strong law holds if the random walk is transient and the central
limit theorem holds if it is strongly transient but it would be nice to have more
information than this. One can also ask more delicate questions about the growth
of R, in general, that is, to obtain better upper and lower envelopes for R, than
are given by the strong law. Some results of this type are mentioned in [2].
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2. Preliminaries

It will be convenient to think of the random walk as a Markov chain and we
will use some of the terminology of general Markov chains. For x € E;, the
random walk starting at x will refer to the random walk with §; = xand §, =
x + Zf_; X,. The notation P,[ -] will be used to denote probabilities of events
related to this random walk; when x = 0, we will simply use P[-]. Thus, for
n 2 0andx, y e E,;, we let

2.1) Plx,y) = P[S, =y] = P[S, =y — ],

and note that P'(x, y) = P*0, y — z). For transient random walk the Green
function is defined by G(x, y) = I, P*(x, y). For an arbitrary set H of lattice
points, Ty will denote the first hitting time of H, that is,

(2.2) Ty =min{k = 1: S, € H};

if there are no positive integers k with S, € H, then Ty = oo. If H consists of a
single point &, we will write 7', instead of T',,. The taboo probabilities are defined
by

(23) Py(z,y) = B[S, = y, Ty 2 1]
for n = 1. We will use u, for P"(0, 0), f, for Pg(0, 0), and

(2.4) rn=P[To>n]l=p+ Y fi
k=n+1

Another equation which is satisfied is X}., #,7,-, = 1; since 7, is monotone,
it follows that

n -1
(2.5) 7, < (Z uk> .
k=0
Kesten and Spitzer [10] proved that for any two dimensional random walk, 7,
is slowly varying and this will be quite useful. We will need the following simple
observation about slowly varying functions that decrease.

Lemma 2.1.  Let {¢,} be slowly varying and decreasing. Then there isa positive
constant c such that if j < n, then j£; < cnt,. In particular, this implies for any
two dimensional random walk there is a ¢ such that jr} < cnrf for j < .

Proor. Since 7, is slowly varying, there exists an 1nteger N such that for
n 2 N, Lyn/tpner < 2. Let 2¥ < j < n; then there are integers f, y with f < y
such that 2 < j < 2#*1 and 2" < n < 27*!. Since ¢, is decreasing,

(2.6) ]/J é 2ﬁ+l/2’ é 2'2y+1/2y+1 = 4”/"

To cover the cases with j < 2V, we replace the 4 by a possibly larger constant c.
For any random walk in two dimensions with p < 1, there is a positive con-
stant 4 such that

(2.7) ‘ P0,x) £ An~!
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forallz € £, and » = 1. This is a standard estimate; it is proved under these
conditions in [8]. Another standard result which we shall use is that for any
n=landzek,,

(2.8) 0(0, x) = P(0, x).

This is proved by considering the dual or reversed random walk.

Lemma 2.2 is proved in [8] for y = 0, 1. Although the general proof is the
same, we shall give it since it is short and we will need some of the intermediate
steps in Section 4.

LEMMA 2.2, Fory = 0,

™=

(2.9) P50, 2y S Y PHO, 2)rth.
k=1

k

Equality holds for y = 0.
Proor. By considering the first return to zero,

1

k-1
(2.10) PY0,x) = P§0, z) + Y, fiP*77(0,z),
j=1
so that
m m m—k
(2.11) P§0, 2)rl, = Y, P40, x) [rryn—k -y fjr;yn-k—jjl'
k=1 k=1 j=1

The proof is completed by observing that
m—k +1 m—k

(2.12) Tm—k — -21 Jitm-k-j = Tm—kx + Zl Silth-x — -]
i= =

and then using the monotonicity of r,.

8. The strong law for R, in the plane

The result that we will prove in this section is

TuroreM 3.1.  For any recurrent random walk in two dimensions, R,/ER, — 1
a.8. as n — .

The main part of the proof is to find an estimate of the form Var B, =
O(¢(n)), where ¢ is a function with the property that for every given a > 1
there is a sequence of positive integers {m,} such that n.,/n, = a and
21 @(n)ng 2y 2 < 0. Once we have such an estimate for the variance the
proof of Theorem 3.1 can be finished as in [2] by the following argument. Since
ER, ~ nr,, we have by Chebyshev’s inequality, for every ¢ > 0,

(3.1) P[|R, — ER,| = ¢ER,] = O(p(n)n™?r,"?).

Let a > 1and {n,} be as above. Then by the Borel-Cantelli lemma, R,/ER, — 1
a.s. along this subsequence. To fill in between, by the monotonicity of E,, for
M S0 < My,
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R, ER, _ R, _ R, ER

Mg+ 1 i+ 1
ER, ER,, - ER,~ ER,_,, ER,,

and we know that the lower and upper bounds converge to ™! and a, respec-
tively, since ER, ~ nr,and r, is slowly varying. But « can be chosen as close to 1
as we please, so this is sufficient.

The remainder of this section will be devoted to obtaining the desired estimate
for Var R,.

THEOREM 3.2. For any recurrent random walk in two dimensions, Var R, =
O(¢(8n)) where

(3.3) Q@) =n + nrd i ku, log (ﬁ)
k=1 k

(3.2)

Bk +1

REMARK 3.1. Since ku, is bounded, it follows from the theorem that
Var R, = O(n*r?). This is a very good bound for the case of simple random
walk, but it is very poor in general.

Proor. Let Z, = 1and fork = 1 let

(3.4) Z = I[8 # S-1," ", S8 # 8ol
Then R, = 3} ., Z, and so

fj Cov (Z;, Z,).

j=i+1

(3.5) VarR, = ) VarZ, + 2
k=1

u'M 3

13

The first sum is O(n), so we will concentrate on the second one. By reversing
the time parameter, it is easy to see that £Z; = r; and that for i < j

(3.6) EZ.Z; = Y P{0, x)P,[T, > i, Ty > il.
x¥0
Hence, we can write
(3.7) Cov (Zi’ Zj) = EZ{ZI - Ti'rj = Z Pg_i(o, x)bl(x),
x#0
where
(3.8) bix) = P,[T, > i, Ty > i] — P,[T. > i]P.[T, > ]

= Px[Tx =4, T = z] - Px[Tx = i]Px[TO = 7’]

Using the last expression for b;(x), we will find a more useful form for it. We
have

(3.9) RIT.<Tysil= ¥ Rlv =T, <T <]

i-v

; Y, Prol, z)Pi(w, 0)

) Z Po(x, x)P§(x, 0).

E=1v=1
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Similarly,

i-v

(3.10) P [T, < Z Z Piy(x, 0) PO, x).

Considering the first visit to x,
i-v &—1

3.11) Y Pi(,0) = Z Palz,0) + 5, Z Ply(z, ) P "(x, 0)
=1

i—v i—v—

=1 =1 n=1 )

Substituting in (3.10) for Z{2% Py(x, 0) from this expression, we get

i—v—¢
(312) PTy<T.<i] = Z 2 P(0, x)Pj(x, 0)[1 - Z Plo(x, x)].

v=1§=1

Changing the order of summation and combining with (3.9), we have

(3.13) P[T, <i, Ty < i)

i oi-¢ i-v—¢
=Y Y P, 0) [P;o(x, x) + P}(0, x) {l - Y Pl, x)}]
&=1v=1 n=1

By considering the first visit to zero,

i-¢ i-¢ i-& i—-¢-8B
314) Y Plx,2)= Y Phlx,z)+ 3, 3 Pllx, 0)PX0, ).
v=1 v=1

B=1 n=1

We substitute the expression this gives for Z{24 P}y (x, x) in the last expression.
Since for x # 0,

i-v—4§
(3.15) 1— Y {Plh,x) + Plo(x, 0)}
n=1
=P[T.,>i—v—§&Ty>i—v—¢&]

we have

(8.16) P,[T.<i,T, <1]

i i-¢
= Z Z Pg(x,O){f‘, +P;(07x)Px[Tx >i—v - é,TO >i—v-— c]}

E=1v=1

But since

3.17) P[T, <ilP[T, <i] = 3 Pi@.0) ¥ fi,
s=1 v=1
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we obtain the cancellation we need in the expression for b,(x):

(318) b,(.’L‘) = gzl P(é)(x’ 0) {_ Z fv

v=i-E+1

i-¢
+ Y PO, x)P[T,>i—v—&Tog>i—v— é]}.

v=1
At this point, we can afford to be somewhat crude and use the bound

i i—¢&
(319) bl(x) g z Z Pg(.’l), O)P:(O’ x)ri—v—é’

&=1v=1

Using (2.8) and Lemma 2.2, we obtain
ioi-g
(3.20) biz) < Y Y P, 0)P*(0, z)pri, .

E=1v=1

Letting A = j — i in (3.7), we see that

o8

-
L}
-
;&

321) C, = icov (2., Z,)

—

IIA
™M=
"M
||M-

-~
]

—-

~

i Z P5(0, z)P(x, 0)P(0, z)r}_, _;

- i i-¢
Z z Z Z Pa(o’ x)P':(ac, O)Pv(o’ x)r?—v—ﬁrn—i—b

=1¢=1v=1x%0

I
u[\/J=

where Lemma 2.2 has again been used at the last step. We want to sum first on
i; the relevant part is

(322) . Z 'r?—v—érn—l—).

This is a convolution and since 7, is slowly varying and decreasing this is
dominated by a constant times (n — A — & — v)ri_,_ ¢—v, which in turn is
dominated by cnry by Lemma 2.1. Thus, we have C, < car?D,, say, where

n n—-An—2a-¢&

(3.23) D,=Y% Y Y Y PX0,x)Pix, 0)P0, x).

A=1¢&=1 v=1 x#0

Since this expression is symmetric in A and v, we need only consider v = A.
Using the uniform estimate (2.7) on P*(0, x), we see that
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n [(n=8&)/2} n—
(3.24) D, <24 Y Z Z Y. P40, z)Pé(z, O)v !

=1 A= v=4 x#0

n o [n=-3)/21
24 Y, AZ u;4+e[loge(n — & — 4) — log A]
E=1 =1

1A

||/\
II M x

Z u;4+¢[log en — log ]

n )
<24 ) Y ugllogen — log A].

p=121=1

Next we use the inequality

B [
(3.25) Y logi = j log ydy = Blog (E)
i=1 [} e

to obtain
n 2 8n 8
(3.26) D, <24 Y Puylog (ﬂ> <24 Y Puylog (—”)
=1 ﬂ =1 ﬁ

Recalling that C, < cnriD,, this completes the proof of the theorem.

In order to complete the proof of Theorem 3.1, we must show that ¢ has the
desired summability property. To do this, let Y(n) = @(n)n~?r; % n, = [o*] for
k = 0,and n, = 8n,. We need only show that £, Y(n;) < 0. We note first that
since n~'r; 2 £ n~'/2 for large n, this is trivial for the contribution of the term n
to ¢(n), so we need only consider the second term in ¢(n). From this point on
the term # in @(n) will be ignored. Define an increasing sequence of integers by

(3.27) mj=min{k:u0+"'+uk gj}

forj = 1. Since £, u; diverges and u, — 0, we have that the m; are defined for
all j and

mj+1

(3.28) Y w1 as j— .
k=m;+1
Define
nj+1
(3.29) v = Z Uy
k=nj+1
by (2.7),
(3.30) v; £ Anj H(njyy — ny) ~ A(e — 1),

so that the v; are bounded. For m; < n; < m;,,, we have by (2.5),
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(331)  Y(n) < n; 12 2 Jeuy log (%)

ng+1

= n; Y2 Z Y ku,log <k> + O(n; ! log n;)

B=0 k=ng+1

i-1 ng+1 n
78 8 (M) wtog (%) + 06n
B=0k=ng+1 \ M ng

¢~? Z (n‘;“) vp(i — B) + O(in; 1),

p=0 i

IIA

IIA

where the error term is to take care of the sum for k = 1, -, 8. Since this
error term is summable, we will drop it. Now let
(3.32) = {i:m; < n; < my.,}.
Then
(3.33) YY) S gy Z( )vm'—m
iely iel; p=0 7

and so it will suffice to show that the double sum is bounded uniformly in j.
We change the order of summation and write (8 < I; means f € {i: n; < m;})

(3.34) y ¥ ("’;“)v,,(@ -pH+ Yy ¥ ("“) v — B).

B<I; iely i Bel; iel;,i>p 7

Since vy is bounded and n; = 8[a’], this is bounded by
(3.35) cy Y M1 — )+ c Y v
ielj p<I; Bel;
By (3.28) and (3.30), the second sum is dominated for large j by

mj+1
(3.36) Y w4+ A@—1)<2+ A - 1)
k=mj+1
Hence, it remains to look at the double sum. This is of the form
v A-1

(3.37) y Z(z—ﬁ)a"“'<2k21"<oo

i=A8=0

independent of A and v and hence of j. This proves that ¢ has the desired sum-
mability property and therefore completes the proof of Theorem 3.1.

4. The variance of R, in the plane

We start this section with a theorem which gives the asymptotic behavior of
f, for all strongly aperiodic random walks in two dimensions with £X; = 0
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and E|X,|? < oo. The result will be used to establish the asymptotic behavior
of Var R, in this case, but it is also of some independent interest since it estab-
lishes for this special case Kesten’s conjecture [11] that

n
(4.1) lim f7* Y fifa-x = 2
n— o k=0

for all strongly aperiodic recurrent random walks. In his paper, Kesten found
the asymptotic behavior of f, and thereby verified (4.1) for one dimensional
recurrent random walks with X, in the domain of attraction of a symmetric
stable law. Some of the other results of [11] are also valid for the two dimen-
sional random walks we are considering since they follow from (4.1).

THEOREM 4.1. For a strongly aperiodic, two dimensional random walk with
EX, = Oand E|X,|* < o0,

Cq

(4.2) fn ~ n lOg2 %
where ¢, = 2n|Q|'/? and Q is the covariance matrix of X,.

REMARK 4.1. The asymptotic behavior of r, and also of Z., jf; can be
obtained directly from Tauberian theorems, but this method dces not give
information about f, since this sequence is not known to be monotone.

Proor. Lety = [n/log® n] and B = n — 2y, and write

4.3) =Y S Py0, z)P(x, y)Piy, 0).
x¥0 y#0

First we shall show that the error made by neglecting the taboo on the middle
factor is small. Consider

(4.4) 0= Pﬂ(x, y) — Pg(x’ y) = Px[TO < ﬂa Sﬂ.‘.= y]
21 p-1 . .
< Y Py, 0)PP7i0,y) + Y Pix,00P7(0,y),
i=1 i={p/2]

where the terms are classified according to the first time zero is hit if that is
prior to §/2, but the last time if it occurs after p/2. This distinction is important.
The estimate f, = O(1/n log? n) which follows from (4.3) with y = [#/3] will
be needed below ; this is in Kesten and Spitzer [10]. Then

@5  |fi— X Y PO, z)Px, y)Pi(y, 0)|
x+0 y¥0
18/21 . .
<Y T Y P3O, x)Pi(x, 0)PP7H(0, y)P(y, 0)

i=1 x#+0 y#0

B_l . .
+ Y Y Y P30, x)Pi(x, 0)P§ (0, y)PY(y, 0)

i=[B/2] x+0 y*#0
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/21 _ B-1 '
= Z Z fy+iPﬂ_'(O! y)Pg(yy O) + Z Z Pg(O,x)P‘(x, O)fﬂ—i+y
i=1 y#0 i=[p/2] x#0
[8/2] ) g-1
4y fiuB-0"lr,+4 ) 7y fpiny
i=1 i=[B/2]
[8/2] B
= 0( Ty Z f7+l) = (ﬁ y(log ¥)” _z (y + ":)_1)
_ 0<log lo§ n)
n log® n

With ¢, as in the statement of the theorem, the local limit theorem ([12], p. 77)
gives

1
(4.6) Pz, y) — -+ OB %y — =|?)
aB| = ﬁ
uniformly in x, y for B sufficiently large. Now
(4.7) B2 Y Y P§O,x)|y — x|*Py(y, 0)
x#0 y+0

S8 F POLEIGS + ol

lIA

n log® n
The proof is now complete for

il €1
B! mnlogn

4.8) Y Y Py0,x) —;

Pi(y, 0) =
x#+0 y¥0 ﬂ oty

the last step being a consequence of the known limit 7, ~ ¢,/log n. (See Lemma
2.3 of [7])

TueoreM 4.2. For two dimensional random walk with EX, = 0 and
E|X,|* < oo,

cn2

4-9 ~ —2—
4.9) Var B, log“ w

where ¢, = 8n2K|Q)|, the covariance matrix of X, is Q, and

1 logw 1 =
4.10 = — —d - - — = 4948659 - - -
( ) Jol—w+w2w+2 12 08

Note, however, that if the random walk takes place on a proper subgroup of E,,
then a transformation should be made so that it will take place on all of E, and Q
should be the covariance matrix for this transformed random walk.
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Proor. The first step is to make a transformation, if necessary, so that the
random walk does not take place on a proper subgroup. This does not change
R, and the fact that @ may change has been allowed for in the statement of the
theorem. We shall assume for now that the random walk is strongly aperiodic
and show at the end how to remove this assumption. From (3.5) and (3.7), we
have that

(4.11) VarR, =2 Y Y Y P§0,z)b(x) + O(n).

i=1 A=1x%0 '
The expression we will use for b;(x) is given in (3.18). The contribution to the
variance from the negative part of b;(x) will be considered first. This part will be
denoted — ¥V, and the posmlve part U 80 that Var R, = U, — V, + O(n). Now

4.12) V,=2Y 2 Y 2 Z P§(0, x)P§(x, 0)f,

i=1 A=1 x#0 &=1 v=i—-¢&+1

=2 Z z Z z h) }.+§fv
i=1 1 é=1v=i-¢+1
~22 ¥ ‘i’ log (n —i + ¢/f) log(ifi—¢)
iS22 log(n — i + {)log £ logilog (i — &)

where Theorem 4.1 has been used at the last step. Since the summands are
bounded by 1, the contribution for ¢ < n/log®n is O(n?/log® n), while for
& > nflog® n, one can replace log £ with log n. The same method applies to the
other log terms in the denominator by considering wherei,i — £,andn — i + ¢
are respectively < n/log’® n. Thus,

n—i+élo i
z gi—¢

~ 2c2n?(log n)~ th +ylog z dydz

= 2¢2n®(log n)~* (F - 1)

since the double integra;l can be evaluated. Now we must consider the positive
contribution. In (3.18), write
(4.14) P[T,>i—v—&,Tog>i—v—¢]

=tiyg— B[ >i—v =&, Tosi—v—L];
the next step will be to show that using the last of these probabilities in (3.18)

will lead to a term of smaller order. To obtain a bound, note that by thinking of n
as the last time zero is hit prior toi — v — ¢,

(4.13) V, ~ 2¢3(log n)~ i i

i-v—=¢&
@15) PT.>i-v—§TeSi—-v—E¢1< Y Plx, Orimy_goy

n=1
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Substituting this bound in (3.18) and (4.11), we see that this contribution to the
variance is of order

(16) 3 Y T T T PAO, )Py, 0)PLO, 2)PU, Oy,

1A=1x70E+vtnsi

x#
Z Y XXX PHO, )P, 0)P*(0, ) P'(@, 0)ry—;_ iy,

x#F0 E+v+nsSi

IIA
W M =

O(nr,fzn: Y oyyy P‘(o,x)Pﬁ(x,O)P”(o,x)P"(x,0)>,

=1 xF0 E+vinsn—a

where Lemma 2.2 has been applied four times at the second step and the i sum
has been moved inside and Lemma 2.1 used at the last step. We will now show
that the multiple sum is of order ». Since it is symmetric in A and v, in £ and n,
a bound is

n n n

(4.17) 4A2i X Y Y PXO, x)Pi(x, 0)vn !

A=1¢=1 x#¥0 v=4aAn=¢

< 44? Z Z u“_glog Fl log f

A=1¢&=1
2nkl

<443 ) Zklogk clogf

k=1¢&=1

2n 2
= O(Z (log e_kn_> ) = O(n).
k=1

Thus, we have for the positive contribution to the variance

i

n n-—i i—-¢&
418) U,=2Y Y Y ¥ ¥ PUO, x)P§(x, 0)PUO, 2)ri—,_; + O(nr}).
i=1 2=1x#¥0¢&=1v=1
We will now apply Lemma 2.2 three times to the main term here to obtain
n n-i i i-¢
419) 2Y Y ¥ ¥ ¥ PHO,x)Pi(x, 0)P(0, X)ry_ i 17i s

i=1 A=1x#0&%=1v=1

But since this is now the leading term, we need to examine the error made in the
application of the lemma. To this end, note that fory = 1,

m—k
(420) 0 é Z j:i(r;,n—k—j - rzln—k) Y Z f)ry Tm—k—j — Tm—k)'
j=1

Now, for 1 < j < (m — k)/2, by Theorem 4.1,

m-—k .
4.21) "m—~k—j — Tm-k = Z fﬂ = O( ] "3.—1‘),

B=m—k—j+1 m — k
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and so

m—k
(4.22) Z fj(%—k—j — Th—x)
j=1

(m—k)/2 m—k
= O( Yo fim — k)Tt + Y fjr;’,,_k_j>

j=1 j=(m=-k)/2
= O(r,"% + 7t3) = O(r13).
Utilizing this in (2.12) and (2.11) yields
(4.23) Z PEO, )l = Y. PYO, 2)[rLth + O(rt3)]
K= k=1
Thus, the error introduced by Lemma 2.2 will always lead to an extra factor of

an 7 and this will ultimately give a term of order #n2/log® n. We now return to the
estimation of the main term (4.19). By summing first on ¢, we obtain

n nZ

4.24 =2 b,_ o0 ,
( ) Un kgs ak n—k + <10g5 n)
where
(4.25) o= Yy Y PXO0,x)Px, 0)P"(0, x),

E+v+i=k x#0

k
(4.26) b= Y i~ krg.

j=0

We will prove next that @, — a; this will imply that

actn?

4.27 U ~2 b\ ~ anrt ~ _
( ) n ak§3 n—k an Tn log4n

To show that @, — a, the local limit theorem ([12], pp. 77 and 79) will again
be used. Write

(4.28) PO, ) = Q@) + o(Ey()),
uniformly in x as f — o0, where

—_-O" 1
(4.29) Q) = 2nf)~|Q| 7112 exp {%},
(4.30) Ey(x) = min {71, |z|72}.

Since it is clear that Q,(x) = O(E,,(x)), the sum of all the error terms will go
to zero if
(4.31) XY Y E,®E:x)E,x)

E+tv+i=k x#0

is bounded. Since this is symmetric in &, v, 4, we may as well assume that
¢ < v £ A. This means that 1 = k/3, and so (4.31) is bounded by a constant
times
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k

k
(4.32) k1Y Y Y BB, () + K || 7°

E=1v=1 |x|2=k g |x|22k

Zk. 2
SkTU Y <log|%|—2> + 0(1

Ix[Zsk

e el l12\2
=0|k™" ) jl2log 7 = O(1).
j=1

Now we must examine the leading terms. Letting

~

(4.33) p=Ct vk —E =) y = ap'’?
we can write
(4.34) a = Z z Z Qi (2)Q(x)Q,(x) + o(1)

E+v+ai=k xF0

k—2 k-
(2n)~%Q|™! Z Z Z{évk—é—v}"Ql(yHom

=1

Z

k-2 k-
22 Z {&vik — & — v)u} ™' ~ 2¢7 %K,
where (see [5], p. 533)

1 1 1-z 1 1 1
(435) K, =- .  dydz = — | —2Y
2)oJo z—2"4+y—y —yz ol —w+w

= 1.17195361935 - - -
Recalling (4.13) and (4.27),

2

(4.36) Var R, ~ 2¢2 <K1 n % - %) n*(log n)~*.

Thus, the proof of the theorem is complete for the case when the random walk
is strongly aperiodic. To make the transition to the general case, let S, denote
the original random walk which has been made aperiodic by a transformation
and let P(x, y) denote its transition function. Then the random walk S, with
transition function

(4.37) Pl(a,y) = 30(x, y) + 1Pz, y)

will be strongly aperiodic. One can describe the paths of the new random walk
by flipping a coin and each time remaining stationary if the coin falls heads and
moving according to the original transition function if it falls tails. The range of
the §, random walk will be denoted by R,. By conditioning on the sequence of
heads and tails, it is clear that

4.38)  ER, = Z <Z>2‘"E‘Rk, E(R.)? = Z (:)2"‘ER,%.

k=0 k=0
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For even n,
0<i,j<n/2 0<i,j<k
< n|n - 2k|.

Thus, by (4.38),

(440) |E(R)? - ER%,|< Y (”) 2 "n|n — 2k|
In—2k| sn2/3 k

+ Y (")2-"|ER,3 - ERZ,
|n—2k| > n2/3 k

1
con v ]y -2l Loa]

where Y is a binomial random variable. By Chebyshev’s inequality this prob-
ability is O(n~!/3). Thus, we have

(4.41) E(R,)* = ER%, + O(n°P).

The same estimate can be obtained for (ER;)? and (ER,,)? in essentially the
same way. Therefore,

872K |Q'|dn?

(4.42) Var R, ~ Var R, ~ Tog* 1

by the strongly aperiodic case. But since @ = /2, it follows that |Q’| = |Q|/4
and the constant has the right form.

5. Sufficient conditions for strong transience

The following theorems give simple sufficient conditions for a random walk
to be strongly transient. As we already mentioned in the introduction, the
results of [6] apply to the range of such random walks.

First we need to introduce some terminology. A nonempty set F < E, is said
to be closed if . P(x,y) = 1 for every x € F. The random walk is called
irreducible if the only closed set is E;. This is equivalent to saying that every
lattice point can be reached from every other lattice point. The assumption that
the random walk is aperiodic (that is, does not take place on a proper subgroup
of E,;) which we have made without any real loss of generality is equivalent in
the present terminology to the assumption that no two closed sets are disjoint.

THEOREM 5.1. Every aperiodic random walk that is not irreducible is strongly
transient.

Proor. Let F, = {x: G(0,x) > 0} and F, = {x: G(x, 0) = 0}. Since the
random walk is not irreducible, F, is a proper subset of E, and hence F, is non-
empty. The sets F, and F, are both closed and by the aperiodicity must have a
common element x. Then there is a k such that



RANGE OF RANDOM WALK 47
(6.1) P¥0,x) = ¢ > 0, G(x, 0) = 0.

We may also assume that e < 1, forife = 1,thenw, = Oforn = k by (5.1)and
the random walk is clearly strongly transient. Since P*(0,y) < 1 — efory # «,

(5.2) P¥0,y) £ a = max(¢,1 — &) forall yekE,.

Now suppose that z € F,. Since G(x + 2z, z) = G(x,0) = 0 and G(0, z) > 0, it
follows that G(x + 2,0) = Oor x + z € F,. Thus, for z € F,,

(5.3) Y Pz,y) 1 - Pz,xo+2)=1—-¢eZ a.
y¢Fo

Now suppose for all z € F; n F§ that P™(z, 0) < a"; this is true for n = 1 by
(6.2). For z € F; N Fy, then

(5.4) Pz, 0) = Y Pz y)P™(y,0) S o Y PHzy) < o"*!
yeF1nF§ y¢Fo

by the induction hypothesis and (5.3). If 0 € F,, the random walk is trivially

strongly transient so we may assume that 0 € F; N Fg. Thus, we have u,, < o

andfor0 <r <k

(5.5) Unerr = ), P70, y)P™(y,0) £ o
yeF1nF§
this is clearly sufficient for strong transience.

THEOREM 5.2. A random walk with EX, # 0 and E|X,|? < oo is strongly
transient regardless of the dimension.

Proor. Since EX; # 0, there must be at least one component of X; with
nonzero expectation. Furthermore, whenever the original random walk visits 0,
so will the component ones so that u, < u, where u, refers to one of the com-
ponent random walks. Thus, if the component random walk is strongly transient,
the original random walk will be as well. This reduces the problem to the one
dimensional case. Let 8, be a random walk with EX; # 0, EX} < c0,andd = 1.
If Var X, = 0, the random walk is degenerate and EX, # O implies «, = 0 for
alln > 0. We may then assume that 0 < Var X; < oo and by considering —8,,
if necessary, that ¢ = EX; > 0. Now

(5.6) Y X =Y Y Y PY0,2)PXx, 0) = ) G(0, x)G(x, 0)

n=0 k=0 n=0k=0 x

G*0,0) + 2 Y G0, 2)G(x, 0).

x>0
Thus, the random walk is strongly transient if and only if the last sum con-
verges. If the random walk is aperiodic, the renewal theorem asserts that
lim,_ , G(0,x) = u~! > 0. If it is not aperiodic, the limit will still be positive
if we restrict  to, the subgroup. In either case, the random walk is strongly
transient if and only if X, ; G(x, 0) converges. But
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(5.7) Y G, 0)= )Y GO,x)= ) > P"0,x)

x>0 x<0 x<0 n=0

oc

i P[S, <0] £ Y P[ln" (8, — np)| Z 4]
n=0 0

n=

This series converges provided Var X; < oo by a result of Erdéos [3]. (Also,
see [9].)

REMARK 5.1. The condition E|X,|?> < o0 is essential in Theorem 5.2 even
though the random walk is transient once EX; exists and is nonzero. To see
that it is essential, note that the proof shows that a necessary and sufficient
condition for strong transience in one dimension when EX, = p > 0 is the
convergence of the series £, P[S, < 0]. It is easy to construct examples for
which this series diverges once the requirement EX? < oo is dropped.

6. The range of one dimensional random walk

Let {S,} be a one dimensional random walk with EX? < co. If EX|_# 0,
then by Theorem 5.2 the random walk is strongly transient. The results of [6]
then apply and the central limit theorem is valid provided only that the range
R, does not grow deterministically. The case of EX; = 0 is somewhat different
and we shall deal with it now.

TureoreM 6.1. Let {S,} be a one dimensional random walk with EX; = 0
and 0 < Var X, = 62 < 0. Then R,/ER, converges in distribution to a proper
law. The limit law is that of

T 1/2
(6.1) <§> {Onélgcl Y(t) — min Y(t)},
where Y(t) is standard one dimensional Brownian motion.
Proor. By making a transformation, if necessary, we may assume that the
random walk is aperiodic since the transformation does not change R,. Now
7o ~ 6(2/an)'/? (see [12], p. 381), and

8\1/2

(6.2) ER, = Z Ty ~ a<-> nll2,
k=0 n

Let

(6.3) M, = max §;, m, = min §;.
0jsn 0sjsn’

It follows readily from the results in [4] (see also [12], p. 232) that EM, ~
o(2/m)!?n!? and so

8 1/2
(6.4) EM, — Em, ~ a(—) n''? ~ ER,.
T

Since M, — m, + 1 — R, = 0and

| + EM, — Em, — ER
65) P[M,—m,+1— R, > ¢cER,] < "tn— " LN

0
e ER,
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as n — o0, it follows that

M, — m, — R,
ER,

Thus, R,/ER, and (M, — m,)/ER, have the same asymptotic distribution, and
the limit behavior of the latter quantity follows from Donsker’s invariance
prineiple [1].

Theorem 6.1 is different from the other limit theorems for the range in that
the limit law is not normal. We are also using a different scheme of normalization,
but this difference is only apparent as we can now show that the standard devi-
ation of R, grows at the same rate as ER,. Thus, using the usual normalization
will only effect a scale change and translation on the limit law.

THEOREM 6.2. Let {S,} be a one dimensional random walk with EX; = 0
and 0 < Var X; < oo. Then there is a positive constant ¢ such that Var R, ~ cn.

Proor. We know from the last theorem that n~ /2R, converges in distri-
bution and we will show that {»~'R?} is uniformly integrable. This will prove
the theorem with ¢ being the variance of the limit law for »~'/?R,. Note that if
isjsk

(6.7) EZ,Z;Z, < P[S, # Si—1, - S # 88 # S,
Sj % Si;Si ﬁé Si—ly'“aSi 7& 0]

(6.6) 2o0.

= T-jiTi-ilis
and so
(6.8) ER'? é 6 Z Z Z Tk_jrj_ﬂ‘i = 0(”3/2)
i=0 j=ik=j
Thus,

(6.9) f _ aT'RlP < M—I/an'3/233 dP = O(M~"?)
[n~1R% 2 M}

uniformly in .
REMARK 6.1. In the same way, one can show that n “¥2E R¥ converges to the
kth moment of the limit law, which exists for each &£ = 1.

Added in proof. W. Feller (Ann. Math. Statist., Vol. 22 (1951), pp. 427-432)
considered the asymptotic distribution of (M, — m,)n~'/? for d = 1. He also
obtained a series expansion for the density of the random variable in (6.1).
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