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1. Introduction

Let {X,, n > 1 } be a sequence of independent identically distributed random
variables, defined on a probability space (Q, 5, P), which take values in the d
dimensional integer lattice Ed. The sequence {So,, n _ 0} defined by SO = 0 and
8n = Ek= 1 Xk is called a random walk. The range of the random walk, denoted
by Rn, is the cardinality of the set {S0,, S-'.*. , S."}; it is the number of distinct
points visited by the random walk up to time n. Our object here is to study the
asymptotic behavior of Rn. Two specific problems are considered:

(i) Does Rn/ERn -~ 1 a.s.? If so, this will be called the strong law for Rn.
(ii) Does (Rn - ERn) (Var Rn) - 112 converge in distribution? If so, this will

be called the central limit theorem for Rn.
The random walk may take place on a proper subgroup of Ed. In this case,

the subgroup is isomorphic to some Ek for k _ d; if k < d, then the trans-
formation should be made and the problem considered in k dimensions. We
will assume throughout the paper that this reduction has been made, ifnecessary,
and that d is the genuine dimension of the random walk.

Dvoretzky and Erdos [2] proved the strong law for the range of simple
random walk for d _ 2. (Simple random walk is one for which the distribution
of X1 assigns probability (2d) - 1 to each of the 2d neighbors of the origin.) Their
method was to obtain a somewhat crude estimate of Var Rn and then use the
Chebyshev inequality. While this worked fairly easily for d _ 3, they had to
work much harder for d = 2. By a rather sophisticated technique, they managed
to improve the required probability estimate enough to obtain the proof.
Letp = P[S1 6 0, 82 # 0, .]. The random walk is called transient ifp > 0

and recurrent otherwise. Using a very elegant technique Kesten, Spitzer, and
Whitman ([12], p. 38) proved that for all random walks R/n/--- p a.s. For
transient random walks ERn ppn, so that their result includes the strong law
for all transient random walks.

There are recurrent random walks only if the dimension is one or two. In
[7], we attempted to prove the strong law for Rn for the general recurrent random
walk in two dimensions, but we succeeded only partially. Our method there
was to imitate the proof of Dvoretzky and Erdbs, that is, to obtain an estimate
for Var Rn and then to improve the probability estimate by their methods. In
Section 3, we will prove the strong law for Rn for all two dimensional recurrent
random walks by an essentially different technique. We use a very delicate
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method for estimating Var R1, and the estimate is good enough so that once it
is available the strong law follows in a fairly straightforward manner. In Section
4, we will show that if EX1 = 0, E1X112 < oo, and d = 2, then VarR, -

cn2/log4n for some positive constant c. This should be compared with the
Dvoretzky-Erdos bound which was 0(n2 log log n/log3n).
The second problem was first considered by Jain and Orey [6] who showed

that if the random walk is strongly transient with p < 1, then Var R, - cn and
the central limit theorem applies with the limit law normal. (The random walk is
strongly transient if En'-1 n,, P[Sj = 0] < cc.) Note that the case p = 1 is
not interesting, since then R, = n + 1 a.s. Thus, criteria for strong transience
are of interest, since they will also imply the central limit theorem. All random
walks with d > 5 are strongly transient and if EX1 = 0 and EIX1 12 < oo, the
random walk is strongly transient if and only if d _ 5. In Section 5, we give
two additional sufficient conditions for strong transience. The first is that the
random walk is aperiodic and not irreducible and the second is that EX1 # 0
and E1X1 2 < oo. These are both valid regardless of the dimension.

In [8], we considered the central limit theorem for random walks which were
transient but not strongly transient. We proved that if d = 4, then Var /in, cn
and the central limit theorem applies with a normal limit law. The growth of
the variance should be compared with the Dvoretzky-Erdos bound which was
0(n log n). For d = 3, we proved that Var R, = 0(n log n) in general. Under
the additional assumption that EX1 = 0 and EIX1 12 < o, we proved that
Var R. - cn log n and that the central limit theorem still is valid with a normal
limit law. The Dvoretzky-Erdos bound in three dimensions was 0(n312).
The case of one dimension is rather unique. If Var X1 < oc, the random

walk is either strongly transient ifEX1 + 0, or recurrent ifEX1 = 0. In the first
case, the strong law and central limit theorem are both kncwn for R. as we have
mentioned above. However, when EX1 = 0 the situation is quite different and
we shall prove in Section 6 that n - 112R. converges in distribution to a proper
law. This implies that it is impossible to have a strong law, for (R,,-
cannot converge even in probability to a nonzero constant for any sequences
{a,} {fj} except in the trivial case that Rj/fi& already converges to zero in
probability.

It would be interesting to know whether the central limit theorem is valid for
R. when d = 2, at least when EX1 = 0 and E1X112 < oc, in which case the
behavior of Var R& is known. Another question is whether there is a limit law
in general for R. when d = 3. It is known that there is a limit law when EX1 = 0
and E|X1 12 < oc, or when the random walk is strongly transient. We have also
said nothing about random walk on the line with Var X1 = cc. Of course, it is
known that the strong law holds if the random walk is transient and the -central
limit theorem holds if it is strongly transient but it would be nice to have more
information than this. One can also ask more delicate questions about the growth
of R& in general, that is, to obtain better upper and lower envelopes for R, than
are given by the strong law. Some results of this type are mentioned in [2].
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2. Preliminaries

It will be convenient to think of the random walk as a Markov chain and we
will use some of the terminology of general Markov chains. For x e Ed, the
random walk starting at x will refer to the random walk with S0 = x and S =
X + Z = 1 Xk. The notation P.[.] will be used to denote probabilities of events
related to this random walk; when x = 0, we will simply use P[.]. Thus, for
n _ Oand x, yeEd, we let

(2.1) P (x, y) = PAS. = y] = P[S. = y - x],
and note that P'(x, y) = P'(0, y - x). For transient random walk the Green
function is defined by G(x, y) = 0,0 Pk(X, y). For an arbitrary set H of lattice
points, TH will denote the first hitting time of H, that is,

(2.2) TH= min {k > 1: SkE H};
if there are no positive integers k with Sk E H, then TH = o. If H consists of a
single point x, we will write Tx instead of T{X,. The taboo probabilities are defined
by

(2.3) P'(X, Y) = PxlS,, = Y, TH _ n]

for n _ 1. We will use u, for P'(0, 0), f, for PO(0, 0), and

(2.4) r. = P[To> n] = p + E fk.
k=n+1

Another equation which is satisfied is Ek=0 Ukr,-k = 1; since r,, is monotone,
it follows that

(2.5) rn _ YE Uk)
k=0

Kesten and Spitzer [10] proved that for any two dimensional random walk, r,,
is slowly varying and this will be quite useful. We will need the following simple
observation about slowly varying functions that decrease.
LEMMA 2.1. Let {K"} be slowly varying and decreasing. Then there is a positive

constant c such that ifj _ n, then jtj < cnt. In particular, this implies for any
two dimensional random walk there is a c such that jrj4 < cnr"4 for j < n:
PROOF. Since 1' is slowly varying, there exists an integer N such that for

n > N. 124/42n+. < 2. Let 2N < j _ n; then there are integers fi, y with P3 _ y
such that 20 < j < 2f6+ and 2Y < n < 2Y+1. Since 4n is decreasing,

(2.6) jej _ 2, + l {2p < 2 2Y + ' e2, +,l 4nt,.
To cover the cases with j < 2N, we replace the 4 by a possibly larger constant c.
For any random walk in two dimensions with p < 1, there is a positive con-

stant A such that
(2.7) P"(0,x) _ An
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for all x E E2 and n > 1. This is a standard estimate; it is proved under these
conditions in [8]. Another standard result which we shall use is that for any
n > landxeEd,

(2.8) P0(0, x) = PX(0, x).

This is proved by considering the dual or reversed random walk.
Lemma 2.2 is proved in [8] for y = 0, 1. Although the general proof is the

same, we shall give it since it is short and we will need some of the intermediate
steps in Section 4.
LEMMA 2.2. For y _ 0,

m m

(2.9) E Pk(O x)r- k < E Pk(0, x)rv+k
k=l k=l

Equality holds for y = 0.
PROOF. By considering the first return to zero,

k-1
(2.10) pk(0, x) = Pk(O, x) + E fjpki(0 X),

j=l
so that

m m m-k

(2.11) E P(0, x)r k = p(0 x)r-k - m-k-j
k=l k=l _ j=

The proof is completed by observing that
mr-k m-k

(2.12) rrnk -k fjr.-k-J = r-k + m - rmk-j
j=1 ~~~~j=1

and then using the monotonicity of r,.

3. The strong law for R., in the plane

The result that we will prove in this section is
THEOREM 3.1. For any recurrent random walk in two dimensions, R"/ER, -. 1

a.s. as n -* ox.
The main part of the proof is to find an estimate of the form Var R, =

O(qo(n)), where p is a function with the property that for every given a > 1
there is a sequence of positive integers {nk} such that nk+l/nk -a o and
E' 1 (p(nk)n 2r-k2 < 00. Once we have such an estimate for the variance the
proof ofTheorem 3.1 can be finished as in [2] by the following argument. Since
ER, - nra, we have by Chebyshev's inequality, for every c > 0,

(3.1) P[IRX- ERII _ eERJ] = O(qo(n)n 2r-2).
Let a > 1 and {nk} be as above. Then by the Borel-Cantelli lemma, RJ/ER. + 1
a.s. along this subsequence. To fill in between, by the monotonicity of Ri, for
nk _ n < nk+1,
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(3.2) Rnk ERnk < R. < Rnk+1 ERnk +
I

ERnk ERnk + ER- ERnk+l ERnk

and we know that the lower and upper bounds converge to a1 and a, respec-
tively, since ER, nrn and r. is slowly varying. But a can be chosen as close to 1
as we please, so this is sufficient.
The remainder of this section will be devoted to obtaining the desired estimate

for Var R..
THEOREM 3.2. For any recurrent random walk in two dimensions, Var R. =

O(.p(8n)) where

(3.3) (p(n) = n + nr, E kuk log
kl

REMARK 3.1. Since kUk is bounded, it follows from the theorem that
Var R. = O(n2r'). This is a very good bound for the case of simple random
walk, but it is very poor in general.

PROOF. Let ZO = 1 and for k > 1 let

(3.4) Zk = I[Sk# Sk-1,*,Sk # SO].

Then R& = S=o Zk and so
n 13 1

(3.5) VarRn =& Var Zk + 2 Cov (Zi, Zj).
k=1 i=1 j=i+1

The first sum is 0(n), so we will concentrate on the second one. By reversing
the time parameter, it is easy to see that EZi = ri and that for i <j

(3.6) EZiZj = E P0-i(0, x)PE[T, > i, TO > i]

Hence, we can write

(3.7) Cov (Zi, Zj) = EZiZj -rir = E Pg-'(0, x)bi(x),

where

(3.8) bi(x) = PX[Tx > i, To > i] - Px[TX > i]Px[To > i]
= PX[TX < i, To _ i] - PX[TX _ i]Px[TO _ i].

Using the last expression for bi(x), we will find a more useful form for it. We
have

(3.9) P[T. < To _ i]=2 P[V = TX < To _ i]

i i-v

= E E P0(xx, x)PO(x, 0)
v=1 4=1

i i-4
= E Pxo(x,x)P,(x, O).

4=1 v=i
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Similarly,
i i-v

(3.10) PX[TO < T _ i] = Z Z PXO(X, 0)PV(0, x).
v=1 4=1

Considering the first visit to x,
i-v i-v i-v <-1

(3.11) Y Po(x, 0) = E P.0(x, 0) + E E P0o(x,x)P~o'(x,0)
4=1 4=1 4=~~~~~1=17

i-v i-v i-v-p

=EP.(X, 0) + 1 1 P."0(x, x)POP(x, 0).

Substituting in (3.10) for XE1v2 Px0(x, 0) from this expression, we get
i i-v r i-v-c 1

(3.12) PX[TO < T, i] = TOPX(07x)PO(x, 0) 1- PPTO(xx) .
v=l =1 1=1 J

Changing the order of summation and combining with (3.9), we have

(3.13) PjTX < i, To . i]

-Z Z P0(x, 0) [Po(X, x) + PO(0, x) {1 - E PTIO(x x)}].
4=1 v=1 q=1

By considering the first visit to zero,
i-e i-e i-e i-4-P

(3.14) 1 P.V(x,x) = 1 PVO(xx) + E 1 P0(X,0)P.P(0,X).
v=l v=1 p=l =1

We substitute the expression this gives for E'-- P0o(x, x) in the last expression.
Since for x =6 0,

(3.15) 1 - E {P0 (x, x) + PTO(X, 0)}

= Px[Tx > i - v -, To > i - v-

we have

(3.16) PX[TX _ i, To-i'i]

= Z Z PO(x,0°{fv + Pxv(0, x)P.[T, > i - v To > i - v -
v=1vl

But since

(3.17) P .TO_ i]P.[T. . i] = E PO(x, 0) Z fv
v=1
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we obtain the cancellation we need in the expression for bi(x):
i i

(3.18) bi(x) = )(,, 0) f
4=1 ~~v=i-4+ 1

+ Pv(O, x)P.[T. > i - v TO > i - v-

At this point, we can afford to be somewhat crude and use the bound
i i-4

(3.19) bi(x) _ 1 Y Po(x,0)Pv(O,x)ri-,-.
4=1 v=1

Using (2.8) and Lemma 2.2, we obtain
i i-e

(3.20) bi(x)_< P4(x, O)P'(0, x)r,3?_
4=1 v=1

Letting A = j - i in (3.7), we see that
n n

(3.21) C. = j j Cov (Zi, Zi)
i=1 j=i+l

n n-i i i-4

< Po'(0, x)PI(x, O)P'(0, x)r,3_v
il A1 =1 v=1 x:i O

n n-i i i-4

= Z Z ZZE Z PA(0, x)P4(x, o)Pv(o, x)r?, _r. -,k
i=l A=1 4=1 v=l x~tO

where Lemma 2.2 has again been used at the last step. We want to sum first on
i; the relevant part is

(3.22) ri3 _r-i-
i=4+ v

This is a convolution and since r. is slowly varying and decreasing this is
dominated by a constant times (n - A -- - which in turn is
dominated by cnr,4 by Lemma 2.1. Thus, we have C, < cnr,4D", say, where

n n-A n-A-4

(3.23) D,= PA(0, x)P4(x, O)PV(0, x).
A1= 1 v=1 xtO

Since this expression is symmetric in A and v, we need only consider v _ A.
Using the uniform estimate (2.7) on PV(0, x), we see that
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n [(n-)/21 n- -A
(3.24) D- < 2A E E PEI(O, x)P(x, O)V-1

4=1 A=1 v=A x+O

n [(n- )/2]
< 2A Ei u.Z+j5log e(n- A)log A]

. 2A Y y u + [log en - log).]
=1A=1

n -

. 2A E E up [log en - log A].
p=1 k=1

Next we use the inequality

(3.25) E log A > logydY = filog(#)

to obtain

(3.26) D, < 2A E ()uplog < 2A E flu# log (8B )Zfu=lo f P=1

Recalling that C_ < cnr'D", this completes the proof of the theorem.
In order to complete the proof of Theorem 3.1, we must show that (p has the

desired summability property. To do this, let f(n) = 9 2(n)n2r2, nk = [ak] for
k> 0 and nk = 84n. We need only show that Ek f(nk) < Ao. We note first that
since n-1 < n- 112 for large n, this is trivial for the contribution of the term n
to (p(n), so we need only consider the second term in (p(n). From this point on
the term n in (p(n) will be ignored. Define an increasing sequence of integers by

(3.27) mj = min {k: uo + * * * + Uk i}

forj _ 1. Since Ek'=0 Uk diverges and Uk -+0, we havethatthemj are defined for
all j and

mj + I

(3.28) E Uk l as j--- oo.
k = mj +1

Define
nj + I

(3.29) v= Uk;
k=nj+ 1

by (2.7),

(3.30) v _ Anj- 1(nj+ - nj) - A( - 1),

so that the v; are bounded. For mj < n <mj+ 1, we have by (2.5),
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ni

(3.31) 1k(ni) _ n 1j~ E log2-k1
k=1Cl kk

i1-2
p+l n

=-nj-2 E E kuk log10 + O(n log ni)
p=O k=np+1 (

2- n#+ pln
:~P=Ok=P+l( fi))Uk (nl ) + O(in-1)

Yi
< c92 vp(i-,f) + O(in7l),

where the error term is to take care of the sum for k = 1, * , 8. Since this
error term is summable, we will drop it. Now let

(3.32) I; = {i:mj < nj _ mj+1}.
Then

(3.33) Z *(ni) cj-2 L E (p+l vp(i a)
iEIJ ielj P= n

and so it will suffice to show that the double sum is bounded uniformly in j.
We change the order of summation and write (3 < Ij means c-E {i: n* < mj})
(3.34)

n
E (P+l\vp(i-13) + X, , ( p+i -

0 < lJ icj i Pelvjiv(j, i > P
)

Since vp is bounded and nj = 8[ct'], this is bounded by

(3.35) C E E aP+ 1 - i(i ) + C E VP.
ieNI P< Ij PeIj

By (3.28) and (3.30), the second sum is dominated for large j by
mj + I

(3.36) E Uk + A(o-1) < 2 + A(- 1).
k=mj+ 1

Hence, it remains to look at the double sum. This is of the form
v A-1 0

(3.37) E E (i-)P+ <i_ E 21-k < M'
i=A p=O k=l

independent of A and v and hence ofj. This proves that p has the desired sum-
mability property and therefore completes the proof of Theorem 3.1.

4. The variance of R. in the plane

We start this section with a theorem which gives the asymptotic behavior of
fn for all strongly aperiodic random walks in two dimensions with EX1 = 0
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and EjX112 < so. The result will be used to establish the asymptotic behavior
of Var R. in this case, but it is also of some independent interest since it estab-
lishes for this special case Kesten's conjecture [11] that

(4.1) limf1 AfA-k = 2
n-00 k=0

for all strongly aperiodic recurrent random walks. In his paper, Kesten found
the asymptotic behavior of f, and thereby verified (4.1) for one dimensional
recurrent random walks with X, in the domain of attraction of a symmetric
stable law. Some of the other results of [11] are also valid for the two dimen-
sional random walks we are considering since they follow from (4.1).
THEOREM 4.1. For a strongly aperiodic, two dimensional random walk with

EX1 = OandEIXI12 < ,

(4.2)
C

lnog2 n'

where cl = 2iX1 QI 12 and Q is the covariance matrix of X1.
REMARK 4.1. The asymptotic behavior of r. and also of Y2i1jfM can be

obtained directly from Tauberian theorems, but this method does not give
information about f, since this sequence is not known to be monotone.

PROOF. Let y = [n/log3 n] and P3 = n - 2y, and write

(4.3) fn = E E PO(0, x)Pg(x, y)PU(y, 0).
x~o y+O

First we shall show that the error made by neglecting the taboo on the middle
factor is small. Consider

(4.4) 0 _ PO(x, y) - Pg(x, y) = PX[TO _ AdS, = y]
[0/2J 6 - 1

< EPo(X, 0)pP-i(o y) +
Z Pi(x, o)Pg-i(o y),

i= 1 i=[0/2J

where the terms are classified according to the first time zero is hit if that is
prior to /3/2, but the last time if it occurs after /3/2. This distinction is important.
The estimate fn = 0(l/n log2 n) which follows from (4.3) with v = [n/3] will
be needed below; this is in Kesten and Spitzer [10]. Then

(4.5) If - E E PO(0, x)PT(x, Y)PA(y, 0)|
x*O pykO

[t/2J

_~~~Z E E PoO )Ox ~P-(0, x)P'(x, 0)P 0,)P(,)
[0121

<= EE+E EomE)oix0poi(°Z)ni(y, )PoiO)o

i=[01/2] xj10 ytO
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[p/2] -i1
= Z Z fy+iP -(O, Y)Po(y, 0) + Y 1 P0(0, x)Pi(x, O)fg-i+y

i =1 y~t o i =1P12 x$ O

[p/2] al-i
_ A Z f7+s(f i)-i'r + A 1 riClfp-j+,

[p/2]i=[P12J

[P121 PrlgVO ,B r i y =OP 1r.,(logy)-, (7 + i)-1

0n log n

With cl as in the statement of the theorem, the local limit theorem ([12], p. 77)
gives

(4.6) P(xf - -< + O(fi-2jy _ x2)cifi f
uniformly in x, y for ,B sufficiently large. Now

43-2 Y Y po(0, x)Iy - X12Po(y, 0)
xtO ytO

< fl-2 Z pY(O x){vEIX1I2 + Ix12}
x$0

_ 2yB-32EIX1 2 = °(n log3fn)
The proof is now complete for

(4.8) POPo(0, x) 1P(y, 0) = __r2 C1cx~tOy~tO C1f3 c1P3 nlogn

the last step being a consequence of the known limit r, c-/log n. (See Lemma
2.3 of [7].)
THEOREM 4.2. For two dimensional random walk with EX1 = 0 and

EIXiI2<co,
C2n

(4.9) Var Rn log4 n'

where c2 = 8 2KIQI, the covariance matrix of X1 is Q, and

logW 1 ir2
(4.10) K= _ | dw + - -- = 0 84948659 ...

Note, however, that if the random walk takes place on a proper subgroup of E2,
then a transformation should be made so that it will take place on all ofE2 and Q
should be the covariance matrix for this transformed random walk.



42 SIXTH BERKELEY SYMPOSIUM: JAIN AND PRUITT

PROOF. The first step is to make a transformation, if necessary, so that the
random walk does not take place on a proper subgroup. This does not change
R, and the fact that Q may change has been allowed for in the statement of the
theorem. We shall assume for now that the random walk is strongly aperiodic
and show at the end how to remove this assumption. From (3.5) and (3.7), we
have that

(4.11) VarR. = 2 S E E Po(O,x)bi(x) + 0(n).
i=1 A=1 x+tO

The expression we will use for bi(x) is given in (3.18). The contribution to the
variance from the negative part of bi(x) will be considered first. This part will be
denoted - V,, and the positive part U,, so that Var R,, = U. - V,, + 0(n). Now

(4.12) V. = 2 1 E S S 2 Po(0, x)Po4(x, )fv
i=1 A=1 xtO 4=1 v=i-4+1

n n-i i i

= 2 E E _ fAk+jv
i=1 A=1 g=1 v=i-4+1

n i-2 log (n-i+/c4) log (i/i-c)
- 2c2'i'<E log(n - i + ()log logilog(i-

where Theorem 4.1 has been used at the last step. Since the summands are
bounded by 1, the contribution for 4 < n/log5 n is 0(n2/log5 n), while for
4 > n/log5 n, one can replace log 4 with log n. The same method applies to the
other log terms in the denominator by considering where i, i -, and n - i + 4
are respectively _ n/logs n. Thus,

(4.13) V. - 2 1(log n)4 AElgn
- Z log log.

i=2 4=2

- 2c2n2(log n)V4 flog - Z + Y log _ dydz

= 2C2in(log n)4(-6 -1

since the double integral can be evaluated. Now we must consider the positive
contribution. In (3.18), write

(4.14) P,[Tx > i- V-[ To > i [-v i
= ri-vePx[T, > i - v- TO<i - v-

the next step will be to show that using the last of these probabilities in (3.18)
will lead to a term of smaller order. To obtain a bound, note that by thinking of n
as the last time zero is hit prior to i- v -,

i-v-1

(4.15) Px[Tx > i - v- To _ i vA < P'.x(x, 0)ri -v--
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Substituting this bound in (3.18) and (4.11), we see that this contribution to the
variance is of order

n n-i

(4.16) 3 E E E E E P0(O, x)PO(x, 0)P,(0, x)P.(x, O)r.--<--
i=l Ak=1 x:O 4+v+11<i

n n-i

_< Y Y _ Y P.'(0, X)P4(x, O)Pv(O, X)P"(x, 0)rn-i-_kr4_v-_, ,
i=l A=1 x:PO 4+v+#jSi
n\

= °(nrs E Y E E E PA(O, x)P1(x, O)PV(O, x)P1(x, O)
A1=1 x:PO 4+v+S:n-A /

where Lemma 2.2 has been applied four times at the second step and the i sum
has been moved inside and Lemma 2.1 used at the last step. We will now show
that the multiple sum is of order n. Since it is symmetric in A and v, in 4 and tq,
a bound is

n n n n

(4.17) 4 Z Z Pi(0,X)P4(x,0)v-q-A1 =1 xt v=A

nn l~en en
< 4A2 Z Z ua+,log -log e

A=2n k-1 en en
4A3 E E k log k ,log y

= OC 1 (log k0)2)= O(n).

Thus, we have for the positive contribution to the variance
n n-i i i-4

(4.18) Un = 2 E S E E E Po'(, x)PO(x, O)Pxv(O, x)ri-v1, + 0(n2rr).
i=l A=1 x~t 01=1vl

We will now apply Lemma 2.2 three times to the main term here to obtain
n n-i i i-g

(4.19) 2 'E PA(0, X)P4(x, O)Pv(O, x)rn-irv-.
i=l A=1 x~tO 4=1 v=l1

But since this is now the leading term, we need to examine the error made in the
application of the lemma. To this end, note that for y _ 1,

m-k m-k

(4.20) 0 _ S fj(r-k- - rm-k) < v Z fjrj-.-j(rk-j - rmk)-
j=1 j=i

Now, for 1 _ j _ (m - k)/2, by Theorem 4.1,
m-k

(4.21) rm-k-j -rm -k p=m-k-j+ 1 k rm-k
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and so
m-k

(4.22) Zfj(rm j r- rrnk)
j= 1

(m-k)/2 m-k

= O(X, jfj(m -k)kY' -k + fj
j =1 j= (m-k)/2

= O(r±m-k rm-k) mO(rY+k).
Utilizing this in (2.12) and (2.11) yields

m m

(4.23) Pk(0, x)rm-k = Ep (0, x)[r7+k + 0(rm-k)].
k=1 k=1

Thus, the error introduced by Lemma 2.2 will always lead to an extra factor of
an r and this will ultimately give a term of order n2/log5 n. We now return to the
estimation of the main term (4.19). By summing first on i, we obtain

(4.24) U, = 2 E akbn-k + 0

where

(4.25) ak =
E P(0, X)P(X, 0)PV(0, X),

4+v+A=k x+tO
k

(4.26) bk = E rjr _j - kr'
j=o

We will prove next that ak -+ a; this will imply that
n c4n2

(4.27) U. - 2a b.k an2rn4 1.(4.27) Z~~~~~lo
-n g4 n

To show that ak -> a, the local limit theorem ([12], pp. 77 and 79) will again
be used. Write

(4.28) PO(0, x) = Q0(x) + o(Eo(x)),
uniformly in x as /3 x , where

(4.29) Qp(x) = (27rfl)-1IQ1-2 exp 2° '

(4.30) Ep(x) = min {l-1, IxK-2}.
Since it is clear that Qp(x) = O(Ep(x)), the sum of all the error terms will go
to zero if

(4.31 ) EE EEA (x)E (x)Ev (X)
4+v+A=k x+O

is bounded. Since this is symmetric in 4, v, i, we may as well assume that
4 < v . A. This means that A _ k/3, and so (4.31) is bounded by a constant
times
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k k

(4.32) k' EY E E,(x)E,(x) + k2 E |xK-6
-= Y logI~ 2X2 1l

. k' E(log1C(§) + 0(1)

= O[k-1 j2 log ) 0(1).

Now we must examine the leading terms. Letting

(4.33)~~~~~8 - + V-' + (k 4 v)-, Y= X1/2,
we can write

(4.34) ak = YE E QA(X)Q4(X)Qv(X) + o(1)
4+v+A=k x*O

k-2 k-4-1

= (27r)-21QK-1 E E E {v(k - -v)}`Ql(y) + o(l)
4=1 v=1 y

k-2 k-4-1

C2l E1 {dv(k --v)M}1 2c 2K1,
4=1 v=1

where (see [5], p. 533)
lrlrlz 1lo1gW(4.35) K1 = J J 2 2 dydz= - 1 2 d
2 zo -z + y _ YZ_y 1w + W2

= 1.17195361935 .

Recalling (4.13) and (4.27),

(4.36) Var Rn - 2cl (K1 + - n2(log n)4.

Thus, the proof of the theorem is complete for the case when the random walk
is strongly aperiodic. To make the transition to the general case, let 8n denote
the original random walk which has been made aperiodic by a transformation
and let P(x, y) denote its transition function. Then the random walk Sn' with
transition function

(4.37) P'(x, y) = 2,-(x, y) + 2P(x, y)

will be strongly aperiodic. One can describe the paths of the new random walk
by flipping a coin and each time remaining stationary if the coin falls heads and
moving according to the original transition function if it falls tails. The range of
the 8,', random walk will be denoted by RM. By conditioning on the sequence of
heads and tails, it is clear that

(4.38) ER' = () ER, E(R') = k (k) 2 ER2
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For even n,

(4.39) IERn12 - ERkI YE EZiZJ - E EZiZi
Oij5n12 Oij~k

. nn - 2k.

Thus, by (4.38),

(4.40) IE(R')2 - ER2I21 - ()2'lnn - 2k1
In-2kj Sn2/3

+ E ()2-nIER 2-ER 22
In-2k > n2/3 k

<513 + 2p[|Y_n > 1 n2/32. ns1 + n2P -
2
~n2]

where Y is a binomial random variable. By Chebyshev's inequality this prob-
ability is 0(n113). Thus, we have

(4.41) E(R')2 = ER 22 + 0(n513).
The same estimate can be obtained for (ER')2 and (ER,,2)2 in essentially the
same way. Therefore,

(4.42) Var R. - Var R'2- 82K 4Q'I4n2
log4 n

by the strongly aperiodic case. But since Q' = Q/2, it follows that QI = I QI/4
and the constant has the right form.

5. Sufficient conditions for strong transience

The following theorems give simple sufficient conditions for a random walk
to be strongly transient. As we already mentioned in the introduction, the
results of [6] apply to the range of such random walks.

First we need to introduce some terminology. A nonempty set F c Ed is said
to be closed if EyeF P(X, y) = 1 for every x e F. The random walk is called
irreducible if the only closed set is Ed. This is equivalent to saying that every
lattice point can be reached from every other lattice point. The assumption that
the random walk is aperiodic (that is, does not take place on a proper subgroup
of Ed) which we have made without any real loss of generality is equivalent in
the present terminology to the assumption that no two closed sets are disjoint.
THEOREM 5.1. Every aperiodic random walk that is not irreducible is strongly

transient.
PROOF. Let F, = {x: G(O, x) > 0} and Fo = {x: G(x, 0) = 0}. Since the

random walk is not irreducible, F1 is a proper subset of Ed and hence Fo is non-
empty. The sets FP and Fo are both closed and by the aperiodicity must have a
common element x. Then there is a k such that
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(5.1) pk(o, X) = E > 0, G(x, 0) = 0.

We may also assume that e < 1, for ifE = 1, thenu = for n _ k by (5. 1) and
the random walk is clearly strongly transient. Since pk(o, y) _ 1 - E for y HE x,

(5.2) pk(oyy) _ a = max (e, 1 - e) for all y e Ed.

Now suppose that z e F1. Since G(x + z, z) = G(x, 0) = 0 and G(O, z) > 0, it
follows that G(x + z, 0) = 0 or x + z E F0. Thus, for z Ec F1,

(5.3) Epk(z y) < 1 _ pk1(Z X + Z) = 1- .
y0Fo

Now suppose for all z E F1 n F' that P`k(z, 0) _ xc; this is true for n = 1 by
(5.2). For z E F1 niPO, then

(5.4) p(n+1)k(z 0) = E pk(Z y)pnk(y, 0) < Cn E pk(z, y) < an+
yeFIAnFo y*Fo

by the induction hypothesis and (5.3). If 0 e Fo, the random walk is trivially
strongly transient so we may assume that 0 E F1 n Po . Thus, we have Unk < at"
and for 0 < r < k

(5.5) Unk+r = E pr(0y)pn(y0) _ a
yc-FInFo'

this is clearly sufficient for strong transience.
THEOREM 5.2. A random walk with EX1 7# 0 and E1X112-< oo is strongly

transient regardless of the dimension.
PROOF. Since EX1 #E 0, there must be at least one component of X1 with

nonzero expectation. Furthermore, whenever the original random walk visits 0,
so will the component ones so that u% < u' where ut refers to one of the com-
ponent random walks. Thus, ifthe component random walk is strongly transient,
the original random walk will be as well. This reduces the problem to the one
dimensional case. Let Sn be a random walk withEX1 =k 0,EX' < oo, and d = 1.
If Var X1 = 0, the random walk is degenerate and EX1 #E 0 implies u. = 0 for
all n > 0. We may then assume that 0 < Var X1 < m and by considering -Sn,
if necessary, that ,u = EX1 > 0. Now

00 00 00 w
(5.6) E Un+k = E E P"(0, X)Pk(X, 0) = E G(0, X)G(X, 0)

n=0 k=0 n=0 k=0 x x

= G2(0, 0) + 2 E G(0, X)G(x, 0).
x> 0

Thus, the random walk is strongly transient if and only if the last sum con-
verges. If the random walk is aperiodic, the renewal theorem asserts that
limxO, G(O, x) = I- 1 > 0. If it is not aperiodic, the limit will still be positive
if we restrict x to, the subgroup. In either case, the random walk is strongly
transient if and only if Ex2> G(x, 0) converges. But
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(5.7) G(X, O) = G(O, X) = E E P"(O, X)
x>O x<O x<0n=o

= E P[Sn < 0] _ E P[In1(S8 - nu)l _ p].
n=o n=o

This series converges provided Var X1 < so by a result of Erdds [3]. (Also,
see [9].)
REMARK 5.1. The condition E X,12 < oo is essential in Theorem 5.2 even

though the random walk is transient once EX1 exists and is nonzero. To see
that it is essential, note that the proof shows that a necessary and sufficient
condition for strong transience in one dimension when EX1 = p > 0 is the
convergence of the series E, P[Sn < 0]. It is easy to construct examples for
which this series diverges once the requirement EXj2 < x is dropped.

6. The range of one dimensional random walk

Let {S8} be a one dimensional random walk with EX2 < xc. If EX1. + 0,
then by Theorem 5.2 the random walk is strongly transient. The results of [6]
then apply and the central limit theorem is valid provided only that the range
R, does not grow deterministically. The case of EX1 = 0 is somewhat different
and we shall deal with it now.
THEOREM 6.1. Let {Sj} be a one dimensional random walk with EX1 = 0

and 0 < Var X1 = a2 < co. Then R,/ERn converges in distribution to a proper
law. The limit law is that of

(6.1) (8) Y(t) - min Y(t)

where Y(t) is standard one dimensional Brownian motion.
PROOF. By making a transformation, if necessary, we may assume that the

random walk is aperiodic since the transformation does not change R, Now
r a- u(2/7tn) 12 (see [12], p. 381), and

n Q\ 1/212
(6.2) ER, kr a(-)a l/2

Let

(6.3) M, = max Sj, m, = min S.
O<j~n Oj:n

It follows readily from the results in [4] (see also [12], p. 232) that EMn
a(2/)'1/2n'1/2 and so

(6.4) EMn - Emn - - n12 ERn.

Since Mn - m + 1 - R, Oand

(6.5) P[Mn - m, + 1 -RI > ERn1 1 EM -Em -ER 0
c ER,,
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as n -x cc. it follows that

(6.6)
M-, - RPp0

ERn
Thus, Rn/ERn and (Mn - m)/ERn have the same asymptotic distribution, and
the limit behavior of the latter quantity follows from Donsker's invariance
principle [1].
Theorem 6.1 is different from the other limit theorems for the range in that

the limit law is not normal. We are also using a different scheme of normalization,
but this difference is only apparent as we can now show that the standard devi-
ation of R, grows at the same rate as ERn. Thus, using the usual normalization
will only effect a scale change and translation on the limit law.
THEOREM 6.2. Let {Sn} be a one dimensional random walk with EX1 = 0

and 0 < Var X1 < xc. Then there is a positive constant c such that Var R, - cn.
PROOF. We know from the last theorem that n`"2R, converges in distri-

bution and we will show that {n `R 2} is uniformly integrable. This will prove
the theorem with c being the variance of the limit law for n - /2Rn. Note that if
<j < k.

(6.7) EZiZjZk . P[Sk + Sk-1 Sk : Sj; Sj + Sj-11,
sj =+ si; i :+ 8i-l, - - ,Si 0]

= rkjrj-iri,
and so

Pin n

(6.8) ER 3 < 6 E E k = 0(n312).
i=O j=i k=j

Thus,

(6.9) l n-RRM2 dP < M-112 {n-3/2R 3 dP = O(M-1/2)

uniformly in n.
REMARK 6.1. In the same way, one can show that nk/2ERkn converges to the

kth moment of the limit law, which exists for each k > 1.

Added in proof. W. Feller (Ann. Math. Statist., Vol. 22 (1951), pp. 427-432)
considered the asymptotic distribution of (Mn -mn)- 1/2 for d = 1. He also
obtained a series expansion for the density of the random variable in (6.1).

REFERENCES

[1] M. D. DONSKER. '-An invariance principle for certain probability limit theorems,- Mem.
Amer. Math. Soc., No. 6 (1951), pp. 1-12.

[2] A. DVORETZKY and P. ERDOS, "Some problems on random walk in space.- Proceedings of the
Second Berkeley Symposium on Mathematical Statistics and Probability, Berkeley and Los
Angeles, University of California Press, 1951, pp. 353-367.



50 SIXTH BERKELEY SYMPOSIUM: JAIN AND PRUITT

[3] P. ERDOS, "On a theorem of Hsu and Robbins," Ann. Math. Statist., Vol. 20 (1949), pp.
286-291.

[4] P. ERD6S and M. KAC, "On certain limit theorems of the theory of probability," Bull. Amer.
Math. Soc., Vol. 52 (1946), pp. 292-302.

[5] I. S. GRADSHTEYN and 1. M. RYZHIK, Table of Integrals, Series, and Products, New York and
London, Academic Press, 1965.

[6] N. C. JAIN and S. OREY, "On the range of random walk," Israel J. Math., Vol. 6 (1968),
pp. 373-380.

[7] N. C. JAIN and W. E. PRUITT, "The range of recurrent random walk in the plane," Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete, Vol. 16 (1970), pp. 279-292.

[8] ,"The range of transient random walk," J. Analyse Math., Vol. 24 (1971), pp. 369-393.
[9] M. L. KATZ, "The probability in the tail of a distribution," Ann. Math. Statist., Vol. 34 (1963),

pp. 312-318.
[10] H. KESTEN and F. SPITZER, "Ratio theorems for random walks I," J. Analyse Math., Vol. 11

(1963), pp. 285-322.
[11] H. KESTEN, "Ratio theorems for random walks II." J. Analyse Math., Vol. 11 (1963), pp.

323-379.
[12] F. SPITZER, Principles of Random Walk, Princeton, Van Nostrand, 1964.


