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1. Statement of the problem

We are given, on a probability space (C), Y, P), a random sequence (St,0),

(1-) ot = (O 1(t), X Ok(t)), (t = (4lI(t), * * *, 4{(t)),
for t = 0, 1, * , defined by the system of recursive equations

0t+j = ao(t, co) + al(t, cc)O, + b(t, cc)A1(t + 1),
(1.2) (t+ = A0(t, co) + A1(t, co)0, + B(t, cO)A2(t + 1),

where AI (t) and A2 (t) are Gaussian and, in general, mutually dependent random
vectors; while the vectors ai(t, co) and Ai(t, co) and the matrices b(t, co) and
B(t, co) are, for each t, JF, = u{co: ,0, * * * } measurable. The system (1.2) is
to be solved for the initial conditions (00, '0), which are assumed to be inde-
pendent of the processes A1(t) and A2(t), t = 0, 1, * - - .

In the sequel, O will be treated as a vector with unobservable components,
and c, as a vector with observable components. The statistical problems we
wish to consider involve the construction of optimal (in the mean square sense)
estimates of the unobservable process 0, in terms of observations on the process
Xt.
One can distinguish the following three basic problems of estimation, which

will be called the problems of filtering, interpolation, and extrapolation.
Filtering. By filtering is understood the problem of estimating the unobserv-

able vector 0, by means of observations on the values of 4' = (40, 4I, * * *, (,).
We put Ha(t) = P{QI aYotI} (where for vectors x = (x1, ... ,Xk), y =
(YI, * , Yk) the inequality x _ y is taken to mean that xi _ yi for all i =
1, , k), let m(t) = M(tI|JYW4), and
(1.3) y(t) = Cov (Ot IJt4) = M{(06 - m(t))(' -m(t))*
It is well known that m(t) = M(6, I .F4) is the optimal (in the mean square sense)
estimate of Ot by means of (t = (cO, 4 , * * *, (,), and that

k

(1.4) tr My(t) = y M[01(t) -Mi(t)]2,
i=1

where m(t) = (ml(t), * , mk(t)) is the error corresponding to this estimate.
389
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In the general case the problem of finding the form of the distribution nl (t)
and its parameters m(t) and y(t) is a very difficult one. However, if one assumes
in addition that the conditional distribution Hf(°) = P{0O _ a I X0} is normal,
X(m, y), then it turns out that the a posteriori distribution Hr(t) =
P{I0ta I it4} is also normal, for each t = 1, 2, * - - .

(It is assumed that conditions are imposed upon the coefficients of the system
(1.2) which guarantee the existence of second moments for 0, and Xt, t = 1, 2,.*-
(see Section 2).)
Moreover, under this assumption the distribution P{0o _ oo, Ol _ a1,*

ot . at I iF41 is also normal, t = 1, 2, * , which is the justification for calling
the process (0t, (), t = 0, 1, * * , conditionally Gaussian.
For conditionally Gaussian processes the solution of the filtering problem

reduces to finding the parameters m(t) and y(t) of the normal distribution
P{0t _ a In Theorem 3.2 recursion relations are found for these para-
meters which generalize the familiar equations of Kalman and Bucy, [6], [7]
obtained in a similar but substantially simpler framework (see equations (3.31)
and (3.32)).

In recent years a considerable number of papers have been devoted to de-
riving recursion relations for m(t) and y(t) under various assumptions on the
coefficients of the system (1.2), particularly in connection with problems of
optimal control. The appropriate bibliography can be found, for example, in
Nahi's book [11] and in proceedings of conferences on automatic control [12].
A systematic investigation of the problem of estimating the unobservable com-
ponents 0, of a Markov process (0S, 5) by means of certain values of the observ-
able process X,, t = 0, 1, * * *, was carried out in [2], [3], many results of which
will be used in this paper.

Interpolation. By interpolation is understood the construction of the best (in
the mean square sense) estimates of the vector O by means of observations of
= (4oS * **r), where T _ t. We put ra(t, T) = P{0, _ a l 41,

m (t, T) =M (0, 1 94),
(1.5) y(t, T) = COV (Ot | ).

In Sections 4 and 5, once again under the assumption that the conditional distri-
bution P(00 . aO '0) is normal, we will derive for the system (1.2) direct (in
terms of T for fixed t _ T) and inverse (in terms of t for fixed T _ t) inter-
polation equations for the parameters m(t, T) and y(t, T) of the conditionally
Gaussian distribution f, (t, T).

Extrapolation. By extrapolation is understood the problem of estimating the
vectors o, Xr by means of observations of (' = (4O, * * *, (,), where T > t. As
in the case of interpolation, one can derive equations in T (direct equations) as
well as equations in t (inverse equations) for the optimal extrapolative estimates

(1.6) n1(T, t) = M(0,I.t) n2(T, t) = M(/:rI )-
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In Section 7, we consider cases in which it is possible to obtain recursion re-
lations for the estimates nl(T, t) and n2(T, t). Examples of the use of these
relations are given in Section 8.
The contents of this paper, section by section, are as follows. Section 2 con-

tains a theorem on normal correlation which we need. In Section 3, we state
assumptions concerning the coefficients of system (1.2) and the initial conditions
(00, '0). The normality of the conditional distribution f1,(t) is proved for all
t = 1, 2, * * *, recursion relations are derived for m(t) and y(t), and their proper-
ties are studied. Section 4 is devoted to the application of the recursion relations
to the derivation of estimates for the unknown parameters. In Sections 5 and 6,
respectively, we derive direct and inverse equations for interpolation. An
application of them is given in Section 7. The derivation of the equations for
extrapolation is carried out in Section 8.

In this paper only the case of discrete time is considered. For the case of
continuous time, the analog of system (1.2) is Ito's system of equations

(1.7) dO, = [ao(t, co) + al(t, co)O,] dt + b(t, co) dW1(t),
*dlX = [A0(t, co) + A1(t, co)O] dt + B(t, co) dW2(t),

where WI(t) = (Wl,1(t), * *- , W1,k(t)) and W2(t) = (W2,I(t), -- , W2, .(t)) are,
in general, mutually dependent Wiener processes. Many results for this case
can be obtained from the results discussed in this paper by a formal passage to
the limit. Without dwelling on the details involved in the consideration of con-
tinuous time, we shall merely note here the papers [4], [5], [8], [9], [10], and
[13], which are devoted to the study of the problems of filtering, interpolation,
and extrapolation for systems of the type (1.7).

2. A theorem on normal correlation

THEOREM 2.1. Let 0, ,, where 0 = (01, * * , Sk), 4 = ('1, * * , 4.), be jointly
Gaussian vectors with means MO, ME, and covariances dl 1 = CoV (0, 0), d1,2 =
Cov (0, (), d2,2 = COV (4, 0).

Then the vector of conditional expectations M(0| ) and the conditional co-
variance matrix Cov (0 4) are given by

(2.1) M(0I4) = MO + dj,2dl,2(c - W
(2.2) Cov (OIc ) = d1, 1 - d, 1,2,

where dL+ 2 is the pseudo-inverse of the matrix d2,2.
PROOF. We turn first of all to the definition and properties of the pseudo-

inverse matrix d'2,2.
IfA is a symmetric nonnegative definite matrix, then, as is known (Gantmacher,

[1], p. 34) there exists a (possibly nonunique) matrix T such that T*T = A.
The matrix

(2.3) A+ = T*(TT* )-2T
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is called the pseudo-inverse of A. If A = 0, then by definition we put A + = 0.
It is not hard to verify that the pseudo-inverse matrix, as defined here, has

the following properties:

AA+A = A, A+AA+ =A',
(2.4) (A+)* = (A*)+, A+A(A+)* - (A+)*, (A+)+ = A,

and there exists a matrix W such that A + A *WA *.
It follows from the first and last properties that the pseudo-inverse matrix

A+ = T*(TT* )-2T is defined uniquely, independent of the method of repre-
senting A in the form A = T*T.

If the symmetric matrix A is positive definite and hence nonsingular, the
pseudo-inverse matrix A + coincides with the inverse A - ', that is, A + = A -.

Thus, the pseudo-inverse d2+j2 can be defined as follows:

(2.5) |~
= Jd-1l if d2,2 is nonsingular,

2, 2 )T*(TT* )2T, if d2,2 is singular,

where T*T = d2,2
We now proceed directly to the proof of the theorem. Putting i1 = (0- MO) -

C( - M), we shall show that the matrix C = C(k x e) can be so chosen
that Mq (c - M4)* = 0. Then by virtue of the lack of correlation between, and
hence the independence of the jointly Gaussian vectors t1 and -M4,

(2.6) 0 = Mi1 = M(n|c) = [M(O )- MO] - C[R -WI
and therefore

(2.7) M(oIc) = MO + C(c - Mc).

If the matrix d2,2 is nonsingular, then to satisfy the equality Mi7(c - M4)* =
o it suffices to put C = d 2,2d,L.
Suppose now that d2,2 is singular and d2,2 = T*T, where T = T(r x t),

and r is the rank of the matrix d2, 2, r _ 1. (Note that in contrast with the
matrix d2,2 = T*T which is an t' x t' matrix, TT* is a nonsingular r x r
matrix.) Obviously, there exists a Gaussian vector 4 = (Cl, * * *, C,) with
independent components satisfying MCi = 0, M4C = 1, such that the com-
ponents of 4 = (4, *- , 4) are linear combinations of the (i. Since d2,2 =
T*T, it follows that 4 = MX + T*C.

Let d1, 2 = M[(O -MO)*]. Then d1,2 = dT,2T; and putting C = d, 2d,2,
we find that by virtue of (2.5)

(2.8) Cd2,2 = d1,2T*(TT*)2T d2,2
= dl,2TT*(TT* 2T d2,2
= dl,2(TT*)(TT* 2(TT*)T = d1,2T =dl,2

This completes the proof of formula (2.1).
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To prove the representation (2.2), we note that since O= - MO) -
,2d + 2(- Mc), we have

(2.9) Cov(OI ) = M{[O - M(O )][O - M(O I )]*I }
= M(n* =M)= ( )
= M{([O -MO] - d1,2d2,2[R -WI)

([0- MO] - dj1,2d2+,2[ -Mf)*}
dl,I - dl,2dL+2dt2 -d,2dL+2dt,2

+ d1,2[dL+2d2,2dL+2] d*,2.

But by the second property in (2.4) d2+,2d2,2d2+,2 = d2+L2; therefore, Cov (0 |) =
d1,11-d1,2d2+,2d*

COROLLARY 2.1. It follows from (2.1) that the regression function of 0 =
(01, Ok* Ok) on 4 = (4,, * *,- ), that is, M(O I 1, - - *, (t), is a linear function of

.1, , t, and Cov (0 I 4) does not depend upon the value of 4.
COROLLARY 2.2. If k = e = 1 and DX > 0, then

(2.10) M(OI|) = MO + CDD-M4)W

(2.11) D(OI|) = DO - Co__2___

Putting ce = + D/O, a4 = + /Dc and introducing the correlation coefficient

(2.12) p = Coy (0, )

formulas (2.10) and (2.11) can also be expressed in the following form, which is
frequently used in statistics:

(2.13) M(oI4) = MO + p-(O - ,

(2.14) D(OI<) = o0(1 _ p2)

COROLLARY 2.3. If 0 = b1e, + b2e2,andc = B1E1 + B2E2,whereEl, 82 are
independent Gaussian random variables, with Mci = 0, DEi = 1, i = 1, 2 and
B2 + B2 > 0, then12

b~~MOI)bB1 + b2B2

(2.15) D(OI ) - (B1b2 - b1B2)

REMARK 2.1. Let (0, 4), 0 = (01, * , Ok), 4 = (4,, * - ct) be a random
vector and let 9 be some a-subalgebra of .F, 9 c F. Let us assume that the
conditional (with respect to 9) distribution of the vector (0, c) is Gaussian with
means M(O I ), M( I ) and covariances d1,I = Cov (0, 0j ), d1,2 = Cov
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(0, 4 C), and d2,2 = Cov (', I C). Then the vector of conditional expectations
M(O | 9t) and the conditional covariance matrix Cov (0 I , C) are given by

m(o | ,) = m(o I 1) + d l, 2d2,22[ - M( l )],
(2.16) Cov (0I, C) = dl,M1 - d1,d 1,2[-
We shall use this result, whose proof is like that of (2.1) and (2.2), repeatedly

in the sequel.

3. Recursion relations for filtering in the conditional Gaussian case

Instead of the system (1.2), which describes the evolution of the process
(ot, 4), t = 0, 1, * * *, we shall consider the equivalent system

0t+, = ao(t, cv) + al(t, cv)0, + bl(t, cv)sj(t + 1) + b2(t, cv)92(t + 1),
(3.1) (t+1 = A0(t, co) + AI(t, cv)0t + BI(t, co) 1(t + 1) + B2(t, c0)82(t + 1),
where

(3.2) 81(t) = (91,1(t), * £,k(0)), £2(t) = (82,1(t), , 81 (0))
are independent Gaussian random variables with Msi, j(t) = 0 and

(3.3) M8i1 j(8)£i2j2(t) = 5(il, i2)3(j1, j2)6(t, s),

where 6(x, y) is the Kronecker symbol:

(3.4) 6(x, Y)={0 X =
{, x y.

The vector functions

aO (t, ov) = (aO, 1 (t, cv), ao, kk(, cv)),
(3.5) A0(t, co) = (A0, I(t, c)), A* , A,.(t, c))),
and the matrices

bI(t, co) = IIb l)(t, co)||, b2(t, co) = IIbW2)(t, co)||, B, (t, co) = |JBil](t, a))II,
(3.6) B2 (, c0) = IIB2)(t, c)) 11, a1(t, co) = IIa(i(t, c))II, A ('(t, c) = IIA ,(t, co)11,
in (3.1) have orders, respectively, k x k, k x e, e x k, e x e, k x k and e x k.
The functions aO,i(t, c)), Ao,j(t, a)), aV1)(t, co), A(1)(t, co), bM')(t, co), b,2)(t, co),

Bi1)(t, co) and B()(t, co) are assumed, for each value of t, to be F4 measurable,
where F4 = a {co: 40 * , X} is the a-algebra generated by the random vari-
ables 40, * , X,. For notational simplicity, we will omit the symbol co, and
sometimes the symbol t, when we write down these functions.
The system (3.1) is to be solved under the initial conditions (00, 40), where

the random vector (00, '0) is assumed to be independent of the processes El(t),
82(t), t = O, 1, * - - .



CONDITIONALLY GAUSSIAN SEQUENCES 395

Throughout this paper, as concerns the coefficients in the system (3.1) and
the distributions of the initial values (00, o0), we assume the following:

(a) if g(t, c) is any one of the functions ao,j, Ao j, b1j), b(2), B(1), Bk23, then
M|g(t,co0)12 < oo;

(b) with probability 1, Ia(1)(t, co))I _ C, IA 1i(t, c) _ C;
(c) M(11OI112 + IIc:oII2) < cx, where X2X112-=ixi;
(d) the conditional distribution nla(O) = P(0o < a 'o) is, with probability 1,

normal with parameters m and y (which depend upon 40).
It follows from assumptions (a) through (c) that M(IIO,112 + jjktI12) < oo for

every t < oo.
THEOREM 3.1. Suppose that the assumptions (a) through (d) are fulfilled. Then

for every t > 0 the conditional distribution rI,,(t) is (with probability 1) normal.
PROOF. We will carry out the proof by induction. Let us assume that the

distribution [I,,(t) is normal, X(m(t), y(t)). We put

(3.7) I-,BX,. (T, t) = P{I . 1 , , < x IYF", 6, = ax}.

By virtue of (3.1), the distribution rp ,(t + 1, t) is Gaussian, with the vector
of mathematical expectations

(3.8) (Ao+ Si, = a: ++
and mathematical covariance

bbob bo-B(3.9) (b B)* BZB)
where

(3.10) bob = blbe + b2b2, boB = b,Bl + b2B2
B°B = B1Bl + B2B2

Let vt = (0, Xt) and z = (z1, , k+). Then the conditional characteristic
function of the vector v, +1 is given by

(3.11) M[exp {i<z, v,+1>}I|4, Ot] = exp {i<z, slo + 410,> -2<.4z, z>};

therefore

(3.12) M[exp {i<z, v,+1>}Il]
= exp {i<z, slo> - I<z, z>}M[exp {i<z, 410,>l

By the induction hypothesis J,,(t) - X(m(t), y(t)). Therefore,

M [exp {i<z, s1' 0,>} |IZ
(3.13) = exp {i<z, d41m(t)> <-S1y(t)S1*z, Z>}

M[exp {i<z, v,+1>}|l ] = exp [i<z, slo + .d1m(t)>]
*exp [-2!<K4z, Z> - 2<4J1y(t)M41Z' z>].
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Thus, each of the conditional distributions

(3-14) P{O,+, < f,t+_,j<x197,11 P{0t+l <- #kF1t1 PRI1t+l _XkFt4
is Gaussian. Further let

(3.15) ?I = [0-+I -M(OM +1 |It4)] -c[RI+ I - M(4t+ 1 I t4)]-
We may find an Ft4-measurable matrix C (see the demonstration of Theorem
1) such that

(3.16) M{1[R,+ I - M(4t+1II t4)]* 13.4} = 0 (a.s.)

From this we obtain that the vectors tj and ct+ I are conditionally independent
(under the conditions Ft4) and

(3.17) M[expi<z, Ot+1>1| s,t+1]
= M[exp (i<z, M(t+t I J.Ft4)
+ C(4t+ - M(4t+ 1 1 t4)> + i<z,t >) IY4t+i ]

= exp [i<z, M(O,+ 1 | gt4)
+ C('t+ I - M(,t+ 1 |I.F,))>]M [exp i<z, i> I Ft4, t+ 1]

= exp [i<z, M(Ot+1
+ C(Qt+ 1 - M(4t+1 1t))>]M[exp i<z, 6> .t4] (a.s.)

But P(71 _ y 4) is Gaussian and therefore the distribution P(O,+I < y SFt4)
is Gaussian also.
The parameters of this distribution can be found from the recursive equations

(3.18) and (3.19) which follow.
THEOREM 3.2. Suppose that assumptions (a) through (d) are fulfilled. Then

the parameters m(t) and y(t) of the normal distribution nl(t) can be determined
from the recursive equations

(3.18) m(t + 1) = [ao(t) + a1(t)m(t)] + [boB(t) + a1(t)y(t)A*'(t)]
[BoB(t) + A1(t)y(t)A"(t)]+[4t+I - A0(t) -A(t)m(t)]

(3.19) y(t + 1) = [a1(t)y(t)ae(t) + bob(t)]
-[boB(t) + aj(t)y(t)A*(t)][BoB(t) + AI(t)y(t)A*(t)]+

[boB(t) + al(t)y(t)A*(t)]*
uith the initial conditions m(O) = m, Y(O) = y.

PROOF. Let us first determine the parameters of the distribution

(3.20) HIpX(t + 1, t) = P t+ /< , <

Since

(3.21) Hl,.(t + 1, t) = M(OlpX,e(t + 1, t) |
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by virtue of (3.8) we have

M(0,E1 = ao(t) + aI(t)mn(t),
(3.22) M(4, |1 = A0(t) + AI(t)m(t).
To find the covariance matrix, we use the fact that according to (3.1) and (3.8),

Ot+ 1-mI(0+ I | s4) = al(t) [0- m(t)] + b1(t)s1(t + 1)
+ b2(t)£2(t + 1),

(t+3- M(t+,1 | = A 1(t) [Ot -m(t)] + B1(t)BI(t + 1)
Then + B2(t)M2(t + 1).

dl, = Cov(Ot+iIEt4) = a (t)y(t)a*(t) + bob(t),
(3.24) d1,2 = Cov (Ot + 1,Xt + 1|It') = a1(t)y(t)A* (t) + boB (t),

d2,2 = Cov (t+1 |II4) = A1(t)y(t)A*(t) + BoB(t).
Since under conditioning by At4 the distribution of the vector (0t+ ' t+ 1) is
normal, we have by virtue of the remark following Theorem 2.1,

(3.25) M(0 +1|t+) = M(Ot+1II|4) + d,2d2[4+1 -(
2

and

(3.26) Cov (0t+ I | t+ 1) = d, - dl,2d+2d*,2-
Inserting the expressions for M(Ot+ 1| 14), M(Wt+ 1 j4), and d1,, d1,2, d2,2 in
the right sides of these formulae, we obtain (3.18) and (3.19).
COROLLARY 3.1. Let ao(t, co) = ao(t) + a2(t)ct, A0(t, co) = A0(t) + A2(t)Mt,

al(t, co) = al(t), Al(t, co) = Al(t), bi(t, co) = bi(t), BA(t, co) = Bi(t), i = 1, 2, where
the functions aj(t), Aj(t), bi(t), Bi(t), for j = 0, 1, 2, and i = 1, 2, are functions
of t only (not depending upon co). Then if the vector (00, 40) is Gaussian, the
process (0t, t), t = 0, 1, * - *, will also be Gaussian. In this case, the covariance
y(t) does not depend upon "chance", and thus tr y(t) yields the mean square
error in filtering the vector Ot by means of observations on (4o, * * *, X,).
COROLLARY 3.2. Suppose that the sequence (0t, t), where St = (01(t), * -

Ok(t)), (41(t), . . , (t)), It = O, 1, . .. , satisfies the system of equations

0,+1 = ao(t, w) + al(t, w)0 + bl(t, w)c1(t + 1) + b2(t, c0)c2(t + 1),

(3.27) (t = Ao(t - 1, co) + A1(t - 1, co)O0 + RI(t - 1, cv))I1(t)
+ B2 (t - 1, c)*2 (t), t > 1

where ao(t, co) and A0(t - 1, co) as well as the coefficients of O, 1I(t), s2(t),
e1(t + 1), and g2(t + 1) are the same as in (3.1), and P{01 _a.F141
X(m1, Yi).
Although this system of equations for (6k, X'), t = 0, 1, *--, does not

formally fit into the scheme (3.1), nevertheless in seeking equations for m(t) =
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M(Ot It4) and y(t) = Cov (0|, ), one can make use of results obtained for the
system (3.1).

In fact, we find from (3.27) that

(3.28) ,t+1 AO(t, cc) + A1(t, )[ao(t, cc) + al(t, cc)O,
+ bl(t, co)El(t + 1) + b2(t, cc)92(t + 1)]
+ Bl(t, cc)81(t + 1) + B2(t, cc)82(t + 1).

Putting

Ao(t, co) = Ao(t, co) + A1(t, co)ao(t, co),
AI(t, c)) = A1(t, ac)al(t, co),

(3.29) Bl(t, cc) = A1(t, co)bl(t, cc) + Bl(t, cc),
B2(t, cc) = A1(t, Co)b2(t, cc) + B2(t, C)),

we find that (0s, (,) satisfies the system (3.1), and consequently m(t) and y(t)
satisfy the equations (3.18), (3.19).
COROLLARY 3.3. (Kalman-Bucy filter). Suppose that the Gaussian se-

quence (06, (), 6, = (01(t), * * *, Ok(t)), It= (4(t), *, (t)), for t = 0, 1,
satisfies the system of equations

of+, = ao(t) + al(t)Ot + bj(t)sj(t + 1) + b2(t)e2(t + 1),
(3.30) Xt = AO(t) + A1(t)Ot + B1(t)ej(t) + B2(t)s2(t),
where the coefficients are vector functions and matrix functions depending only
on t. Then equations (3.31) and (3.32) below determine the evolution of the
optimal estimate m(t) and the conditional covariance y(t).
By Corollary 3.3, m(t) and y(t) satisfy the system of equations

(3.31) m(t + 1) = [ao(t) + aj(t)m(t)]Py(t)Q+(t)[4t+j - AO(t + 1)
-AI(t + I)ao(t) - A1(t + I)aj(t)m(t)],

(3.32) y(t + 1) = [a1(t)y(t)a*(t) + bob(t)] - Py(t)Q+(t)Py*(t),
where

(3.33) Py(t) = b1(t)[AI(t + I)b1(t) + B1(t + 1)]*
+ b2(t)[Al(t + I)b2(t) + B2(t + 1)],

(3.34) Qy(t) = [A1(t + I)b1(t) + B1(t + 1)] [A1(t + I)b1(t) + B1(t + 1)]*
+ [A1(t + I)b2(t) + B2(t + 1)][AI(t + I)b2(t)

+ B2(t + 1)]* + AI(t + 1)a1(t)y(t)ad*(t)A*'(t + 1).

By means of the theorem on normal correlation, we obtain the following ex-
pressions for the initial conditions m(O) = M(0o 4O) and y(O) = Cov (00 cO):
(3.35) m(0) = MO0O + Cov 00-A*(0)[AI(0) Cov OOA* (0) + B°B(0)]+

[o- Ao(O) - A1(0)M0O],
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y(O) = Cov 00 - Cov 00 *A* (0) [A 1 (0) Cov 0OA* (0)
+ BoB (0)]+A I(0) Cov 00.

Equations (3.31) and (3.32) are called the Kalman-Bucy equations.
We shall now point out a number of properties of the processes m(t) and

y(t) which are, respectively, the optimal estimate in the mean square sense, and
the conditional covariance.
PROPERTY 3.1. For every t, the variables m(t) and Ot- m(t) are uncorrelated,

that is,

(3.36) M{m*(t)[0t- m(t)]} = M{[0t- m(t)]*m(t)} = O,

and so

(3.37) M6?*0' = Mm"*m, + M{(0t- m(t))*(Ot -m(t))}.

PROPERTY 3.2. The conditional covariance y(t) does not depend explicitly upon
the values of the coefficients ao(t, co) and AO(t, co).
PROPERTY 3.3. Suppose that with the exception of ao(t, co) and AO(t, co), all

the coefficients in the system (3.1) as well as y(O) do not depend upon co. Then the
conditional covariance y(t) is a function of t only (not depending upon co) and

(3.38) y(t) = M{(0t- m(t))(Ot - m(t))*}.
The distribution of the filtering error At = t- m(t) is normal, X(O, y(t)).

PROPERTY 3.4. For every t = 0, 1, 2, - * *, m(t) = M(0, I FI4) is the optimal,
in the mean square sense, unbiased (Mm(t) = M0O) estimate, that is,

(3.39) tr M{(0, - m(t))(0t - m(t))*} = inf M{(0,- O)(0, -

where A, = {1t: MO, = Mot, MIIOtII2 < , ,iS .t measurable}.
PROPERTY 3.5. Let G(t) = 11G0ij(t)Il be a symmetric nonnegative definite

matrix, depending upon t, and of order k x k. Put

(3.40) 9t(xi,*X *, Xk) = E G,i (t)xixi.
i,j

Then the estimate m(t) is also optimal in the class At in the sense that

(3.41) Mg,(0, - m(t)) = inf Mg,(6 -It).

In fact, for all x = (xl , Xk) and a = (al,*, ak)
k og k

(3.42) gt(x) = g,(a) + E (xi- ai) a- + E (xi- ai)(xj - aj)GO,j(t)
i=1 Oxi xi=a i j1=

k k\

= g, (a) + 2 E (xi -ai) E oil i(t)aj)
i=l j=l

k

+ Ea (Xi+-xai)x(xj2-(aj)aGi,Gja(t)i=1 + - a~~~)(x,j -
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But the matrix G(t) is nonnegative definite. Therefore,
k k

(3.43) g,(x) _ g,(a) + 2 Y (xi- __Ga,)(t)aj(t))
i=l j=l

We choose x = Ot- t, a =O -m(t). Then

(3.44) gt(Ot - 00) > g(t- m(t))
k k

+ 2 E- (mi(t) -oi(t)) E 0j, i(t)(oj(t) mj(0)
i=1 j=1

and Mgt(Ot- ot) _ Mgt(Ot- m(t)), since for all i,j = 1, * k,

(3.45) M[mi(t) - i(t)] [oi(t) - MM)]
= M{[mi(t) - oi(t)]M[(i(t) - m(t)) I.t]} = o

PROPERTY 3.6. Let us assume that y(O) and all the coefficients in (6.1), with
the exception of ao(t, ow) and AO(t, co), do not depend upon co. In this case, the
preceeding property can be substantially generalized, as follows.

Let gt(x), x E Rk, be a continuous nonnegative function which is convex from
below, that is, for all x e Rk, a E Rk

k

(3.46) g,(x) _ gt(a) + E (xi - ai)A(t)(aI, *-* , ak).
i= 1

We put

(3.47) At= {Ot MO = Mot, Mgt(Ot -t) < cmt MMt)(0t- ot) < cX,
i=1l, ,k},

a class of EtX measurable estimates 0 of the vector O. Then if m(t) E At, the
estimate m(t) is optimal in the class At, that is

(3.48) Mgt(o' - m(t)) = inf Mg,(Ot - 0k).

For the proof, we put x = t- 0t, a = t- m(t) in (3.46). Then
k

(3.49) gt(0t- 0t) > gt((0t -m(t)) + E [mi(t) - oi(t)]jAt)(ot - m(t)).
i= 1

We shall show that under the stated hypotheses we have, for all i,

(3.50) M[mi(t) - o(t)])At)(6t- m(t)) = 0.

According to Theorem 3.1, the conditional distribution P{o' - m(t) < y
is normal, X(O, y(t)). But if y(O) and all the coefficients in the system (3.1),
with the exception of ao(t, co) and AO(t, co), do not depend upon co, then y(t)
depends only upon t. Hence,

(3.51) P{O' - m(t) . yI.} = P{01 - m(t) < y}.

It follows that
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(3.52) M[mj(t) -D(t)][(t)(0 - m(t))]
= M[mj(t) - 6j(t)]M[A0t)(0t- m(t))] = 0,

since Mmi(t) = MWj(t) = M0i(t).
REMARK 3.1. Let us put

n,a(T, t) = P{fr < PI| Et X0, = a}
(3.53) m (T, t) = M(0? IOt = a, I

Y,(T, t) = COV (0,IOt = a, 34),
where T _ t. Then under the assumptions (a) through (d), the conditional distri-
bution tII, (T, t) is also normal, X.(m.(T, t), y.(T, t)), and its parameters satisfy
the system of equations relative to T (compare with (3.18), (3.19)):

(3.54) M,(T + 1, t) = [ao(T) + al(T)Ma(T, t)] + [boB(T) + a1(T)y,(T, t)A*'(T)]
* [BoB(T) + A 1(T)Y(T, t)A' (T)] [ 1t+i - A0(T) - A I(T)m(, t)],

(3.55) Y.(T + 1, t) = [a1(T)y.(T, t)ael(T) + bob(T)]
-[boB(T) + al(z)y.(T, t)At*(r)]

* [B°B(Ir) + AI(T)Y.(T, t)A1*(T)]
* [boB(z) + a1(r)y.(r, t)A*(T)]*,

with initial conditions m,(t, t) = a, yj(t, t) = 0.
From equation (3.55), solved for the initial condition.y,(t, t) = 0, it follows

that y(lr, t), T _ t, does not depend upon a. We will therefore put y('r, t)
y.(T, t) for X _ t.

Although under assumptions (a) through (d) the process (0t, t), t = 0, 1,**,
is not Gaussian, nevertheless it will be conditionally Gaussian in the following
sense.
THEOREM 3.3. -Suppose that assumptions (a) through (b) are fulfilled. Then

the process (0t, t), t = 0, 1, - * *, is conditionally Gaussian, that is, for every t
the conditional distribution P{00 < ao, 01 al, * 0, < a, | F,41 is Gaussian
with probability 1.
We defer the proof of this theorem to Section 5.
In Theorem 3.4, established below, we give a special representation for the

process X,, t = 0, 1, * * *, which will be used in the sequel.
THEOREM 3.4. Suppose that assumptions (a) through (d) are fulfilled. Then for

every t, there exists a Gaussian vector E(t) = (El(t), * * *, E(t)) with Me(t) = 0,
ME(t)E*(s) = b(t, s)E(t x e), such that the following representation of the vector

Xt+I is valid with probability 1:

(3.56) (t+1 = A0(t, co) + A1(t, o)m(t)
+ [BoB(t, co) + Al(t, cO)y(t)A* (t, Co)] 2E(t + 1).

If, moreover, the matrix BoB(t, co) + AI(t, co)yv(t)A (t, cv) is nonsingular (with
probability 1), t = 0, 1, * * , then

(3.57) ,F = Ji(S' )



402 SIETH BERKELEY SYMPOSIUM: LIPTSER AND SHIRYAYEV

PROOF. We first assume that for all t = 0, 1, * * the matrix B °B (t) is positive
definite. Then since the matrix Al (t)y(t)A*(t) is at least nonnegative definite,
the matrix [B°B + A,y(t)A*]1/2 is positive definite, and therefore the random
variable

(3.58) E(t + 1) = [BoB(t, (1) + A1(t, co)y(t)A (t, w0)]-1/2
[AI(t, co) (0, - m (t)) + B I+(t,B)(w(t+ 1)

can be defined. + B2(t, CO)82(t + 1)]
Under conditioning by Ft the distribution of the vector °t is by Theorem 3.1

Gaussian, and the random vectors el (t + 1) and 82 (t + 1) do not depend upon
V = (4o, - -, X.). Therefore, the conditional (conditioned by ) distribution
of the vector E(t + 1) is likewise Gaussian, and it is not hard to calculate that

M[g(t + ')IEF4] = O,

(3.59) Cov [E(t + 1) I.4] = E(t X e).

Hence, it is evident that the parameters of the conditional distribution of the
vector E(t + 1) do not depend upon the condition. Consequently, the (uncon-
ditional) distribution of the vector 8(t + 1) is also Gaussian, with ME(t + 1) = 0,
CovE(t + 1) = E(t x {).

Similarly, using Theorem 3.3, one can show that for any t the joint distri-
bution of the vectors (E(1), * * *, E(t)) is Gaussian, with Cov (W(U), E(V)) =
6(u - v)E. From this follows the independence of all the coordinates of the
vectors (E(1), * * *, E().
The representation (3.56) follows from (3.58) and (3.1) in an obvious way.
To prove the assertion (3.57), we note that by virtue of (3.56) tF'4

If the matrix B°B + AIy(t)A* is nonsingular, then by (3.56)

(3.60) E(t) = (BoB(t - 1, a)) + Al(t - 1, o)y(t - I)A*(t- 1, _))-1/2
-AO(t - 1,w) - A1(t 1, o)m(t- 1)).

It follows that YF D 4(). Hence, Ft = Ft(t' 40)
Let us now assume that for some t the matrix BoB is singular. The assertion

of the theorem obviously remains valid for this case, so long as the matrix
BoB + A 1y(t)A1l is nonsingular.

Thus, suppose that this matrix is singular. We construct a sequence of
independent Gaussian random vectors z(t) = (zl(t), * * - ze(t)), Mz(t) = 0,
Mz(t)z*(t) = E({ x e), which are also independent of the processes E1(t), B2(t),
t > 0, and of 00, 4O. (Such a construction is always possible, though admittedly
it may require extension of the basic probability space.) Put

(3.61) E(t + 1) = D+[A1(0, - m(t)) + B181(t + 1) + B282(t + 1)]
+ (E - D+D)z(t + 1),

where D(t) = [BoB(t) + A1(t)y(t)A* (t)]1"2. It is not hard to convince oneself
that this sequence of random vectors has the properties stated in the theorem.
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To verify the representation (3.56) it is obviously sufficient to show that

(3.62) D(t)E(t + 1) = Al(t)[0- m(t)] + Bj(t)sj(t + 1) + B2(t)82(t + 1).

Multiplying the left and right side of (3.61) by D, we obtain

(3.63) DZ(t + 1) = [A1(0, - m(t)) + B,F1(t + 1) + B2E2(t + 1)]
+ (E - DD+)[A (,- m(t)) + Blse(t + 1) + B2E2(t + 1)]

+ D[E - D+D]z(t + 1).

But by the first property in (2.4) of the pseudo-inverse, D[E - D+D] = D -

DD+D = 0; consequently, with probability 1

(3.64) D[E - D+D]z(t + 1) = 0.

Let us put

(3.65) C(t + 1) = (E - DD+)[A1(O, - m(t)) + Blsl(t + 1) + B282(t + 1)].

Then

(3.66) MC(t + I)C*(t + 1) = M{MC(t + I)C*(t + I)jIF4}
= M[(E - DD+)DD*(E - DD+)]
= M[(DD* - DD+DD*)(E - DD+)]
= M[(DD* - DD*)(E - DD+)] = 0.

Thus, C(t + 1) = 0 with probability 1, which together with (3.64) proves (3.62).
REMARK 3.2. If the matrix B°B + AIy(t)A* is singular, then t t

4. Estimation of the parameters

In this section, we shall consider various examples of parameter estimation
which illustrate Theorems 3.1 and 3.2.

Let 0 = (01, * * *, ok) be a Gaussian random vector with MO = m, Cov 0 = y.
We assume that 0 is unobservable, and that observations are made on a sequence
of 1' dimensional vectors (t, t > 0, such that

(4.1) (t+I = A0(t, co) + A1(t, a)0 + B(t, a)8(t + 1), 4 = 0.

(It is further assumed that M tr A 1 (t, co)A l(t, )) < oo, t = 0, 1, .)
The sequence (0, (t) being considered is obviously a special case of (3.1), with

aO = 0, a, = E(k x k), b, = 0, b2 = 0, B1 = B, B2 = 0.
From (3.5) and (3.6), we find that

(4.2) m(t + 1) = m(t) + y(t)A*[BoB + A1y(t)A]+[4+1 - AO -Am(t)],
(4.3) y(t + 1) = y(t) - y(t)A*[BoB + Aiy(t)A*] A,y(t)
with m(O) = m, y(O) = Iy.
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THEOREM 4.1. Sup0ose that assumptions (a) through (c) are fulfilled and that
for all t the matrix BB"'(t) is nonsingular. Then

- t-I -1

(4.4) y(t) = E + y y A* (s, co) (BB*) -l(s, w))A (s, c1) Y,
s=O

- t-I - 1

(4.5) m (t) = E + y A (s, co) (BB*) -l(s, c)A (s, co)
s=O

+ y ZA*(s,co)(BB*)V(s, co)(Es+l - AO(s, co))1.
s=O

PROOF. From the obvious identity

(4.6) (BB*)-'BB* = (BB* + A1YA*)-(BB* + A1yA1),
it follows that

(4.7) (BB*)-1 = (BB* + A1yA*)-1 + (BB* + A1yA*)-A1yA*(BB*)-y.
Multiplying both sides of (4.7) from the left by yA*, and from the right by A1,
we find that

(4.8) yA*(BB*)-1A1 = YA*1(BB* + A1A*)-1A1
+yA*(BB* + AyA*vl-AiyA*1(BB* )-1A1.

Let us assume that the matrix y(t) is nonsingular. Then from (4.8) we obtain

(4.9) YYI + yA*(BB*)1Aj1 - yA*(BB* + A1yA)- yy- 1
-yA*1(BB* + AjyA*)-'AjyA*(BB*)-1Aj = E.

Hence,

(4.10) y[y-1 + A*(BB*)-lAl]
-YA1[BB* + A1yA*-1A1y[y-' + A*1(BB*)-1Al] = E

or

(4.11) [Y - yA1(BB* + A1yA*)-1A1y][y-1 + A*(BB*)-'A1] = E.

The first factor in (4.11) equals y(t + 1). Therefore, the matrix y1(t + 1) is
defined and

(4.12) y-1(t + 1) = y 1(t) + A*1(BB*) 1A1
From the foregoing it follows that if the matrix y(O) = y is nonsingular, then

for every t the matrix y(t) is likewise nonsingular and

(4.13) y(t + 1) = y-1 + s A* (s, co) (BB*)1(s, co)AI(s, )
s=a

We at once obtain formula (4.4).
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If the matrix y(O) = y is singular, then putting y'(O) = y + &E, e > 0, we
find from the preceding that

(4.14) y8(t + 1) = E + y6(0) ZA*1(BB*)V1Al Yv(0).
s=O

From (4.3), it follows that y(t + 1) = lim,4o y((t + 1). Therefore, (4.4) can be
obtained from (4.14) by passing to the limit c I 0.
To prove the representation (4.5), we first assume that the matrix y(O) = y is

nonsingular. As was shown above, in this case the matrix y(t) is nonsingular for
all t _ 0, and from (4.2) and (4.3) we find that

(4.15) m(t + 1)
= [y(t)y-'(t) - y(t)A*(BB* + A,y(t)A*)-'Ay(t)y-'(t)]m(t)

+ y(t)A*"(BB* + A,y(t)A*)'-V[, -Ao]
= y(t + l)y-'(t)m(t) + y(t)A*[BB* + Ajy(t)A*]-'[ct+i - AO].

We shall show that

(4.16) y(t)A*[BB* + Ajy(t)A*]-1 = y(t + l)A*(t)(BB*)-l(t).
To this end, we multiply both sides of (4.7) from the left by y(t)A*'(t). Then

(4.17) y(t)A*[BB* + Ajy(t)A*]-1
= y(t)A*(BB*)-1 - y(t)A*'[(BB*)-y + A,y(t)A*]-'Ajy(t)A*(BB*)- .

By virtue of (4.3), the right side of (4.17) can be transformed to the following
form:

(4.18) y(t)A*(BB*)l - y(t)A*[BB* + Ajy(t)A*']-'Ajy(t)A*(BB*)-
= [y(t)y-f(t) - y(t)A*(BB* + Aly(t)A*)-'Aly(t)y-l(t)]y(t)A*(BB*)-
= y(t + 1)yf-(t)y(t)At(BB*V)- = y(t + 1)AI!(BB*)-1.

This establishes (4.16).
It follows from (4.15) and (4.16) that

(4.19) m(t + 1)
= y(t + 1)y-'(t)m(t) + y(t + 1)A*(t)(BB*)-'(t)[4,+j - Ao(t)].

Thus,
(4.20) y-'(t + I)m(t + 1) = y-'(t)m(t) ± A*(t)(BB*)-l(t)[,t+, -AO(t)],
and so

(4.21) y'(t + 1)m(t + 1) = y-m + E A*(s)(BB*)l(s)[ 5+I - Ao(s)].
s=0

Consequently,

(4.22) m(t + 1) = y(t + 1) y-lm + Z A*(s)(BB*)-l(s)[4s+j -Ao(s)]
s=O



406 SIXTH BERKELEY SYMPOSIUM: LIPTSER AND SHIRYAYEV

which together with (4.4) leads to the required representation (4.5), for the case
in which the matrix y(O) = y is nonsingular. If this matrix is singular, then the
proof of the representation (4.5) can be carried out in the same way as the proof
of (4.4).
REMARK 4.1. Let m"(t) and y"(t) be the parameters of the a posteriori distri-

butions P{6 _ o .¢} corresponding to normalX (mn, Yn) apriori distributions,
where lim,,_ O Yn t = 0, and the vector m has bounded coordinates. If the matrix
it= A* (s) (BB*) - 1(s)A 1 (s) is nonsingular, then it is not hard to prove that the
limits m(t) = limn_oo mn(t) and y(t) = iMn y (t) exist (with probability 1) and

y(t + 1) = [± A* (s) (BB*) - 1(s)A (s)],
s=O

(4.23) - st B * -s1
m(t + 1) = y A*(s)(BB*)- (s)A (s)

e r r A(8s)(BB*)-1(s)(4+1 - AO(s)1
We remark that the estimate of the vector 0 given by (4.23) coincides with the

estimate obtained by the maximum likelihood method.

5. Direct equations for interpolation

As was mentioned in Section 1, by interpolation is understood the problem of
constructing the best estimates (in the mean square sense) of the vector 0, in
terms of observations on (t = (40, * * *, {r), where T _ t. We suppose that the
process (Os, t,) satisfies the system (3.1) and the assumptions (a) through (d).
We put rn,(t, T) = P{6t _ a | r1 and

(5.1) m(t, T) = M(0, I.'), y(t, T) = COV (Ot1J4).
In this section, we shall deduce direct equations (in terms of T for fixed t . T)

for the optimal (in the mean square sense) estimate of m(t, T) and for the con-
ditional covariance y(t, T).
From these equations, in particular, it will be evident how the estimate of the

vector Ot improves as the "datum" grows, that is, as T - t -+ cc. The derivation
of inverse equations (in terms of t for fixed T) will be carried out in Section 6.
THEOREM 5.1. Suppose that the distribution n,,(t) = P{6o < oa | } is

Gaussian with probability 1. Then for all X > t the distribution nI,,(t, T) will be
Gaussian with probability 1.
To prove this theorem we need the following.
LEMMA 5.1. Under the assumptions of Theorem 5.1, the conditional expectation

ma(z, t) = M(O, I| Jrt4 = oc) admits the representation
(5.2) m,,(T, t) = (p4Cx + q/i/
for matrices pT and vectors tt which do not depend on oe.
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The matrices qt are given by

(Pt' = E(k x k)
(5.3) t- I

( = H {aa(8) - [boB(s) + a1(s)j(s, t)A*(8)]
S=t

[B°B(s) + A1(s)y(s, t)A*(s)]+Al(s)},
where H'- 1 As represents the matrix product A, ... At. The vectors t' are
given by

= O

r-1
(5.4) t = Z tPt{ao(s) + [boB(s) + a1(s)j (s, t)A* (s)]

s=t

*[B°B(s) + A1(s)y(s, t)A*(s)]+(8s+j - Ao(8)}, T > t.

The matrices y(s, t), s _ t, are determined from the equations

(5.5) y(s, t) = [a1(s- 1)y(s - 1, t)ael(s - 1) + bob(s - 1)]
-[boB(s - 1) + a1(s - 1)(s -1, t)A*(s - 1)]

*[B°B(s - 1) + A1(s- 1)y(s- 1, t)A1(s- 1)]+
[boB(s - 1) + al(s- 1)(s- 1, t)A*(s -1)]*

with the initial condition y(t, t) = 0.
PROOF. By the remark to Theorem 3.2, ma(T, t) and y (r, t) = Cov (0|

ot = a) satisfy equations (3.54) and (3.55) with the initial conditions m" (t, t) =a,
y,(t, t) = 0. It follows from (3.55) and the condition ya(t, t) = 0 that Y,(T, t)
does not depend upon a. Put Y(T, t) = y(Tr, t). By induction we obtain from
(3.54) the representation (5.2), where p' and 0" are defined by (5.3) and (5.4).
PROOF OF THEOREM 5.1. We first show that the conditional distribution

P{Ot _ a, t < x | Ft4 II, T > t, is Gaussian. To do this, we calculate the con-
ditional characteristic function

(5.6) M{exp i[<Z1, 0Q> + <Z2, cTA>]| }1}
= M{exp i [<Z1, O0>]M[exp i<Z2, t> | .t- lOt] 3tA- 1 }-

Obviously,

(5.7) M{exp i<Z2, 1r>|0,-lt- I

= exp {i(Z2,Ao(T - 1) + A1(T - 1)0-1> - j<BoB(r - 1)Z2,Z2>}.

By the remark to Theorem 3.2,

(5.8) P{.T< fi1. tot} X {meO(T - 1,t),(t - 1, t),
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and hence by virtue of (5.7)

(5.9) M{M[exp i<Z2, Xt> | or,S- 1] I T4 llt
= exp [iPZ2, Ao(Q - 1)> - '<BoB(z - 1)Z2, Z2>]

M{exp i<Z2, A1(T - 1)0 I> ;1_1Ot}
= exp [i(Z2, AO(T- 1)> - 4<BoB(z - 1)Z2, Z2>]

*exp [i<Z2, A1(T - I)moe(T - 1, t)>
-RAl(T - 1)7(T - 1, t)A1*(T - 1)Z2, Z2>]-

By Lemma 5.1, m0(T- 1, t) = pt'Ot + ifrt-. Therefore,

(5.10) M[exp i<Z2, 9 1_ I OJ]
= exp [iPZ2, AO(T - 1) + A1(T -I)ql >

- R<(BoB(T - 1) + A1(T - 1)y(T - 1, t)A1(T - 1))Z2, Z2>
+ i<Z2, Aj1(T-1)(

which together with (5.6) leads to the equality

(5.11) M{expi[<Zl,O0> + <Z2, g>]ir.-11
= exp [i<Z2,AO(T - 1) + A1(T - 1)0rt >

- R((BOB(T - 1) + A1(T - 1)j(T - 1, t)A1(T - 1))Z2, Z2>]
*M{expi[<Zl,Ot> + <Z2,A((T-1)0 Ot>]I.>4i}

Let T = t + 1. Since rl. (t, t) - -A(m(t), y(t)), it follows from (5.11) that the
distribution P{0 < aI, + I _ x I.f} is normal. From this it is not hard to
deduce the normality ofthe distribution Hll(t, t + 1). The normality ofthe distri-
bution Hl (t, Tr) for all T > t can be carried out, making use of (5.11), by induction.
REMARK 5.1. Suppose that s < t . T. Then by the same methods which

were used in the proof of Theorem 5.1, one can establish that the a posteriori
distribution P{O,, _ a I .4, 0, = 6} is normal with probability 1.

According to Theorem 5.1 the a posteriori distribution rI,,(t, T) = P{fO <

axI.41 is normal, X(m(t, T), y(t, T)). We now turn to the derivation of direct
equations (with respect to r) for the parameters m(t, T) and y(t, T) of this
distribution.
THEOREM 5.2. Suppose that the distribution rIl(t) is Gaussian withprobability

1. Then the parameters m(t, r) and y(t, T) of the conditional distribution J71,(t, T)
satisfy the following equations with respect to T, T > t + 1:

(5.12) m(t, T + 1)
= m(t, T) + y(t, T)((T)*A*(T)[BOB(T) +A1(T)Y(r)A*(T)]

-[4+ - AO(T) - AI(T)M(T)],
(5.13) y(t, T + 1) = Y(t, T) - Y(t, T)(9pt)*A*(T)

.[BoB(T) + A1(T)y(T)A*(r)] AI()(p)qy(t, T),

where m(t, t) = m(t), y(t, t) = y(t), and the matrices qT are defined in (5.3).
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PROOF. As was established in the proof of Theorem 5.1, the conditional
distribution P{f4 _ a, (r- x I I} is normal. Its parameters can be deter-
mined from formula (5.11). However, they can be found more easily by using
the theorem on normal correlation.

Since the conditional distribution P{It _ a, /, < x 1 } is normnal, by the
Remark 2.1 we have

(5.14) M(0OtI| 1) = M(06|I4 1) + d1, 2d2,,2(4 - J|r 1))
where

(5.15) d1, 2 = COV (0t 3r|T 1)
d2,2 = COv(4, IJ- )

= Cov [A1(T - 1)(0,1 - m(T - 1))
+ BI (T - 1)91 (T) + B2 (T - 82 (T) - "r-1

= A1(T - 1)y(T - 1)AQ(T - 1) + B°B(T - 1).

We wish to simplify the expression for d1,2. To this end, we note that by
virtue of Lemma 5.1

(5.16) m(T - 1) = M(0,_1 IE1) = M[M(0,_1 IEr1,Ot)I.3j]
= M[qt' O, + I |01I] = pt m(t, T - 1) + /

Further,

(5.17) M(0r- m(T - 0,)
r-pt0 + ?fr-r - ((Prm(t, T - 1) + Qt )

= -t(0, m(t, T - 1)),
(5.18) M( IYr 1) - A0(T - 1) + A1(T - 1)m(T - 1)
and, once again by Lemma 5.1,

(5.19) M{[4r-M(- r J * 1 Ot}
= M{[Aj(z - 1)(Or_ - m(T - 1))

+ B1(T - 1)E1(T) + B2(T - 1)62(z)] |-l, ot}
= M{[[1(A-(T 1)( - M( - )] I Ot
= [0, - m(t, T - 1)]*(, l)*A*(z - 1).

Thus,

(5.20) d1, 2 = Cov (0t, XI|r-i)
= M{[Ot- m(t, T - 1)][r -
M{[t- m(t, T - 1)][Ot - m(t, T -

(qtl)*A1(T - 1 r1

= y(t, T - 1)(p l)*A *(T - 1).

From (5.14), (5.15), (5.18) and (5.20), we obtain (5.12).
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Let us now establish equation (5.13). By the remark to Theorem 2.1,

(5.21) Y(t, T) = Cov (0t|I 1 ) dl, 1 -dl, 2d2,2dl, 2

where

(5.22) dl, 1 = Cov (0 I -.) = Y(t, T-1).
We obtain the desired equation (5.13) from (5.21), (5.22), (5.20), and (5.15).
THEOREM 5.3. If the matrices BoB(s), s = 0, 1, * * *, are nonsingular, then

the solutions m(t, T) and y(t, T) of equations (5.12) and (5.13) are given by

(5.23) m(t, T)

= [E + y(t) Z (ps)*At(s)(BoB(s) + A1(s)Y(s, t)A*(s))-Ai(s)q4]
s=rt

.m(t) + y(t) E (ps)*A*(s) (BoB(s) + A,(s)jy(s, t)AI*(s))1
s=t

*(4s+ 1 -A (s-(8)A )]

(5.24) y(t, z) = E + y(t) Z ((ps)*A*(s) (BoB(s)
S=t

+ A,(s)Y(s, t)A*(s)) Aj(s)(pt y(t),

where 9p, Os and j(s, t) are defined by formulas (5.3), (5.4) and (5.5).
PROOF. We first show that for all T > t

(5.25) Y(T - 1) = (T- 1, t) + qt-y(t, - (Pt
In fact,

(5.26) y(r - 1)
= CoV(6?lIO r -) = -m(T - 1)][6 - M(T - f }

= m{[(1I- mo,(z- 1, t) + mot(T- 1, t) - m(Tr-1)]
*[O,-l -m0,(T- 1,t) + me,(T- 1,t) -m(T -)]*

=M- M[(0, - (- MO,(T ,t))(0, - mO,(z - l,t)) 0t]|Ir-L}
+ M{[mO,(T- 1, t) -m(T- 1)] [mo, (T- 1, t) - m( - 1)]* | w }

- M{5(T - 1, t)I.Zr1}
+ M{q( (Ot - m(t, T - 1))(0, - m(t,T - 1))*( )*

- 7(z - 1, t) + 5PI1try(t, T - 1)(P"-

where we have made use of the fact that according to (5.16)

(5.27) m(T - 1) = 1'm(t, T - 1) + l 1
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From (5.13) and (5.25) we have

(5.28) y(t, T) = y(t, r - 1) - y(t, T - 1)(Pt -')*A*(z - 1)[B°B(T - 1)
+ A1(T - 1)(T - 1, t)A1(T - 1)
+ A1(T - 1)9V"-1v(t, T - 1)(qpV1)*A1(T - 1)]

-AI (Tr - 1)9 1y(t, T - 1).

Let us put

A1(T -1) = A1( - 1)9'- 1,
(5.29)

BoB (T- 1) = BoB(T- 1) + A1(T- 1) (T- 1, t)A1(T- 1).
Then with respect to r, the function y(t, T) will satisfy the equation

(5.30) Y(t, T) = Y(t, T - 1) - Y(t, T - 1)A1(T - 1)
*[B°B(T - 1) +A1(T - l)y(t,T - 1)AQ(T - 1)]1

(T - l)y(t, T - 1),

which is similar to equation (5.4) for y(T). Taking account of the notation (5.29),
we obtain the required representation (5.24) from (5.5).

Alongwith(5.29),letusputAO(T- 1) = A0(T- 1) + A1(z - 1)i-/1. Then
equation (5.12) assumes the following form (with T replaced by T- 1):

(5.31) m(t, T) = m(t, T - 1) + Y(t, T - 1)A1 (T - 1)[BoB(T - 1)

+ A1( - l)y(t, T - 1)A1(T -1)]1
0AO(T - 1) - A1( - I)m(t, T - 1)].

Comparing this equation with (5.3), whose solution is given by formula (5.6),
we obtain the representation (5.23) for m(t, T).
We now proceed to the consideration of another class of interpolation prob-

lems, consisting in the construction of the best (in the mean sense) estimates of
the vector Ot in terms of observations of 4 = (co, * , r) and the known value
0? = , > t. We put

p, T) = P{I0, _ O I jffl 0t=,
(5.32) mP(t, r) = M(0, I. 0 = /3),

yp(t, T) = COV (0tI,J, 0 =,B)
THEOREM 5.4. If the distribution rIa(t) = P{Ot < Lx I J,} is normal, then the

a posteriori distribution na,p(t, T) is normal for all T _ t.
PROOF. Let us compute the conditional characteristic function

(5.33) M {exp i[<Z, 0,> + <Z, 0,>] I 4}
= M{exp i[<Z, 0,>]M[exp i<Z, ,> 1 I4,Ot]I1,

where Z = (Z1, * , Zk), Z = (Z1, * * * Zk). According to Remark 3.1 to Theorem
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3.2, the distribution P{O, _ f| Q, .F4} is normal, XA((mO,(T, t), Yo,(T, t)), where by
(5.2) mo, (r, t) = PrOt + '/, and the covariance y,Q(T, t) does not depend upon
Ot: y,(T, t) = y(T, t). Therefore,
(5.34) M{exp i<Z, 0,> Ot, .F,} = exp [i<Z, TPOt + t> - {((, t)Z, Z>],

and consequently,

(5.35) M{exp i[<Z, O0> + <Z, 0Q>] |I41 = exp i[<Z, '1> - <(T, t)Z, Z>]
*M{expi[<Z,O0> + <Z, (ptOt>].#}.

But the conditional distribution rIH,(t, T) is normal. Therefore, by virtue of (5.35)
and Theorem 3.1, the distributions P{6t < a, 0? _ p I.F,4} and P{, < a IO, =
,B, .4} are normal.
The method used in the proof of Theorem 5.4 can be applied to establish the

assertion to the effect that the process (0, X,), t = 0,1, * is conditionally
Gaussian (see Theorem 3.3).
PROOF OF THEOREM 3.3. Let us consider the conditional characteristic

function:

(5.36) M{exp i[ ( Zk, Ok>1I .F}

M{[exp i Z <Zk, ok>]M[expi<Zt, 6t> 10 o,- 0-O ]

= M{[exP i <KZk, Ok>] M[exp i<Z,, 0,> Ot->, `t4]I

= M{expi[Z <Zk, Ok> + <Zt-1,61-1>

+ <Zt, '- 10,t- + 0,- 1>] 1.9l}.exp [-2<y(t, t - 1)Z1, ZA>]

= exp [-4<((t, t - 1)Z,, Zt>].M{expi( KZk, Ok>)

*M[expi<Z,1 + (Zq0)*Zt,Ot 1>-I t4, O-2] exp [i<Zt, -1>}

where the conditional characteristic function of the "split off" variable O,- I is
given by

(5.37) M{exp [i(<Z,_1 + ((ptg- )*Zt, 0,-1> + <Zt-1, t-I>)]IF4,0t-2}
= M{exp [i(<Zt, + (<pf- Z, 0,- 1 >] Ft4, ot- 2 exp (i<zt, ot-I >).

The distribution P{O,1I lI.t, O-2} is normal, and by (5.12) and (5.13)
its mean depends linearly upon O- 2, while its covariance does not depend upon
01-2-
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Thus, we have in (5.37) (compare (5.34))

(5.38) M{exp [i(<Z_-1 + (pt'-1)*ZZ, O-1>)]- 4, 0t-2}
= exp [i<Z-1 + (pt- )*Zt, a(t - 1, t - 2)0t_2 + b(t - 1, t - 2)>

-<c(t-1, t - 2)(Z- I1 + (p.1. )*Zt), (Z - 1 + (qT;1 )*Z,)>],
where the explicit form of the functions a, b, and c, which depend only upon c'
and time, is not of importance to us here. What is essential is that 6, enters
linearly in the exponential, and Z,, Z, -I enter quadratically.

Thus,

(5.39) M[exp i 0<Zk, Ok> =- exp [-<y(t, t - 1)Zt, Z,>
-<c(t-1, t - 2)(Z, 1 + (9TI1)*Z,), (Z,.1 + (T-1)*Z,)>]

.M[expi (z <Zk, Ok> + <Z1-1 + ( ) Zt, a(t - 1, t -2)0t-2

+ b(t - 1, t-2)>) "1I,
Continuing this method of "splitting off" the variables, we see that the charac-
teristic function M(exp {i 74 = o<Zk, Ok>} | Y4) has the form of the exponential
of a quadratic form in the variables Zo, * * , Zk, which proves that the process
(Ot, 4,), t = 0, 1, * is conditionally Gaussian.
THEOREM 5.5. If the distribution flI(t) is normal, then theparameters mp(t, t)

and yp(t, T) of the normal distribution [I, p(t, T) are defined for all T > t by

(5.40) mp(t, T) = m(t, z) + y(t, T)(q,')*y+(T)( M-()),
(5.41) yp(t, T) = y(t, T) - y(t, z)(qT)*y+(T)(ty(t, T),
where mp(t, t) = 1, yp(t, t) = 0.
PROOF. The conditional distribution P{Ot < x 0, .< I Y41} is normal.

Therefore, by the Remark 2. 1,

(5.42) mp(t,z) = M(OtI.0,|4, =0 ) = M(0, IO 4) + d1, 2d2+ 2( -M(0, 9I4))
and
(5.43) yp(t, r) = dl,1 - d1, 2d+, 2d1,2
where d1,1 = Cov (Ot | lr4) = y(t, ),
(5.44) d2,2 = Cov (AJ,) = Y(T)

d 2 = COV (t, O, | 3 ).
By Lemma 5.1 and formula (5.16),

(5.45) M[(O, - m(T))* 3r' Ot]
6'O(pt)* + (0')* - [m*(t, T) (Pt')* + (l/r)*]
(0 - m(t, T))*((9)*.
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Therefore,

(5.46) d1,2 = CoV (0, 0,kI.') = M[(O, - m(t, r))(0, -m(T))*J,.F]
= M{(O, - m(t, t))M[(6, - m(T))* e4, Oj] 3r4}
= d1,1(0p)* = y(t, r)(pr)*-

We obtain the required representations (5.40) and (5.41) from (5.42) through
(5.46).
REMARK 5.2. It follows from (5.41) that the covariance yp(t, T) does not

depend upon ,B. We shall denote it by j(t, T).

6. Inverse equations for interpolation

To derive inverse equations (with respect to t for fixed T > t) for m(t, T),
y(t, T), mp(t, T) and 3(t, T), we need the following auxiliary results.
LEMMA 6.1. For the process (6k, (,), t = 0, 1, * defined by the equations

(3.1), we have with probability 1 for all t < s . T

(6.1) P{0' < aL Os, s * * * ojr} = P{O, _ aLIs4 Os}.
The proof follows from the fact that for the process being considered, the

right side of (6.1) satisfies the same relations as does the conditional probability
P{0, _ ax O,0irs W + 1, . or.Ol
LEMMA 6.2. For the process (0, X,), t = 0,1, * *, defined by the equations

(3.1), we have for all t < s _ T

(6.2) fl5 (t, -) = M{H5a05(t, s) | 5 Or = }.

The proof follows at once from (6.1).
THEOREM 6.1. Suppose that assumptions (a) through (d) arefulfilled. Then the

moments mp(t, T) and j(t, T) of the conditional distribution 171,p(t, T) obey, for
fixed T, the inverse equations

(6.3) mp(t, T) = m(t, t + 1)
+ y(t, t + 1)((p+l)*y+(t + 1)[mp(t + 1, T) - m(t + 1)],

(6.4) 7(t, T) = 7(t, t + 1)
+ y(t, t + 1)((Pqt+)*y+(t + 1)i(t + 1, T)y+(t + I)(P1p+y(t, t + 1),

with mp(T, T) = ,3, I(T, T) = 0.
PROOF. From (5.40) and (5.41),

(6.5) mp(t, t + 1) = m(t, t + 1) + y(t, t + 1)(q'+l)*y +(t + 1)( -m(t + 1)),

(6.6) F(t, t + 1) = y(t, t + 1) - y(t, t + 1)(4P'+l)*y+(t + 1)(P,'+y(t, t + 1).

By Lemma 6.2, mp(t, T) = M{me,+ ,(t, t + 1) I JF,4, 0 =,B}, which together with
(6.5) leads to equation (6.3).
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Further, according to (6.1) and (6.2),

(6.7) Vy(t, T) = CoV (0, I A 0 = /)
= M[Cov (0tI ? =0 t+1, +)Ir 6r = /]

+ Cov {M(OtI. 0, = /3, 6t+l)Is = }

= M[Cov (0 |4+ +16 )|,zr =o ]
+ Cov [M(0| + o,t+ 6,)|3]

= M[Y6+ X (t, t + 1) |# = /3]
+ Cov [mo,+1(t, t + 1)Ir QFi = /]

= j(t, t + 1) + M[(me'+ (t, t + 1)- mp(t, -r))(mo'+.(.t t + 1)
- m,(t, z))*IT X o= ]

But from (6.3) and (6.5), we have

(6.8) mO,.+,1(t, t + 1) -mp(t, T)

- y(t, t + 1)(q4'+l)*y+(t + 1)(0+, - mp(t + 1, T)).
Therefore,

(6.9) yp(t, T) = 3(t, t + 1) + y(t, t + 1)(q,'+l)*Y+(t + l)y#(t + 1, z)
*y+(t + 1)t'+1y(t, t + 1),

which establishes equation (6.4), since yq(t, T) does not depend upon fl(y#(t, T) =
I(t, T)).
THEOREM 6.2. Suppose that assumptions (a) through (d) are fulfilled. Then

forfixed T the moments m(t, z) and y(t, T) of the conditional distribution Hl.,(t, Tr)
satisfy the inverse equations

(6.10) m(t, z) = m(t, t + 1)
+ y(t, t + 1)((p,'+l)* y+(t + 1)[m(t + 1, T) -m(t + 1)],

(6.11) oY(t, T) = (t, t + 1)
+ y(t, t + 1)(Pt+ )*y+(t + l)y(t + 1, r)

* + (t + 1)(p" + I Y(t, t + 1),

with m(T, T) = m(T), y(T, T) = Y(T).
PROOF. Equation (6.10) follows from (6.3). To derive equation (6.11), we

note that, by (6.1) and (6.2),

(6.12) y(t, T) = Cov (0, I F4)
= M[Cov (0tr41 o6 +i)I.] + Cov [M(0tI.114 0+1)I.9 ]
= M[Cov (0t 1 4+1,6t+1)I.,] + Cov [M(t'I F4+i, 6t+)MI ]
= 3(t, t + 1) + M{[moe+1(t, t + 1) - m(t, T)]

* [mO,+ 1(t, t + 1) - m(t, T)]*
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From (6.3) and (6.10), we have

(6.13) me9+1,(t, t + 1) - m(t, r)
= y(t, t + 1)(q+l)*y+(t + 1)(0t+, - m(t + 1, T))-

Therefore, by virtue of Lemma 6.2,

(6.14) M{[meo+ (t, t + 1) -m(t,z)] [mot+(t, t + 1) -m(t,T)]*|>041
= y(t, t + 1)(q,+l)*y+(t + 1)y(t + 1, T)Y (t + 1)q4 1y(t, t + 1).

We obtain equation (6.11) from (6.12) and (6.14).

7. Examples of the use of the interpolation equations

EXAMPLE 7.1. Interpolating the values of a Gaussian Markov chain. Let
o0 = (01(t), ... , Ok(t)), t = 0, 1, * , be a Markov chain governed by the re-

cursive equations

(7.1) Ot+1 = ao(t) + al(t)Ot + b(t)e(t + 1),
where the Gaussian vectors s(t + 1), as well as the vector function ao(t) and the
matrices a1(t), b(t), which depend only upon t, are the same as in system (3.1).
The random vector 00 is assumed normal with M0O = m, Cov 00 = y.
We consider the problem of finding the best (in the mean square sense) esti-

mate of the quantity 0, under the assumption that 0 = fi, t < T.
Equation (6.14) can be regarded as a special case of the system (3.32), con-

sisting of two equations with AO = 0, A1 = 0, B1 = 0, B2 = 0, b2 = 0. There-
fore, the quantities m(t, T), y(t, T), mf(t, T) and yf(t, T) introduced above maintain
their meaning. For the case (7.1),

(7.2) m(t, T) = m(t) = MO,, y(t, T) = y(t) = M[(Ot - m(t))(Ot - m(t))*]
and

mp(t, T) = M(O, =O.,
(7.3) Yp(t, T) = M[(Ot - mp(t, T))(0, - mf(t, T))* Ior = i].

By Theorem 3.2 the quantities m(t) and y(t) can be determined from the linear
equations

(7.4) m(t + 1) = ao(t) + al(t)m(t),

(7.5) y(t + 1) = aj(t)y(t)a*(t) + b(t)b*(t).
On the basis of Theorem 6.1,

(7.6) mp(t, T) = m(t) + Y(t)(9D)*y+(T)(f - m(T)),

(7.7) i(t, T) = y(t) - '(t)(q)t)*y+(T)q)"Y(t),
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where
T- 1

(7.8) (p = n al(s) = a,(T- 1) I..
s=t

(t = E, 7(t, T) = Yp(t, T).
Inverse equations for m0(t, T) and 3(t, T) can be determined from (6.3) and

(6.4):

(7.9) mp(t, T) = m(t) + y(t)a*(t)yv(t + 1),

(7.10) y(t, T) = j(t, t + 1) + y(t)at (t)vy+(t + 1)y(t + 1, T)y+(t + l)a1(t)y(t),

where t + 1 _ T and mp(T, T) = ,B, Y(T, T) = 0.
In particular, if

(7.11) Ot+ = O + s(t + 1),
k = 1, m(O) = m, y(0) = y, then from (7.4) and (7.5) we find that m(t) = m,
y(t) = t + y, while from (7.6) and (7.7) we obtain

mp(t, T) =m + r (p m),
(7.12) (t + Y)2

~(t, T) =(t + y) - -__

These explicit formulas are also not difficult to obtain from the inverse equations
(7.9) and (7.10).
EXAMPLE 7.2. Interpolation with a fixed lag. Let T = t + h, where h is some

fixed number. The direct and inverse equations for m(t, T) and y(t, T) obtained
above enable us to find equations (with respect to t) for m(t, t + h) = M(0, I +h)
and y(t, t + h) = Cov (0t|IF4+h). The quantity m(t, t + h) determines the
optimal interpolation of the quantity Ot in the presence of a fixed lag h, that is in
terms of observations of Xt+h.

Let us put Mh(t) = m(t, t + h) and yV(t) = y(t, t + h). Suppose that for all
t = 0, 1, * * *, the matrix y(t, t + 1)((p9'+l)*y1'(t + l) is nonsingular.
From the direct equation (5.12), we have

(7.13) Mh(t + 1) = m(t + 1, t + h) + y(t + 1, t + h)(pT,4++h)*A* (t + h)
.[BoB(t + h) + A1(t + h)y(t + h)A*(t + h)]+

{[4t+h+1- Ao(t + h) - A1(t + h)m(t + h)].
From the inverse equation (7.4), under the assumption that the matrix

y(t, t + 1)(qp+h)*y-1(t + h) is nonsingular, we find that

(7.14) m(t + 1, t + h) = m(t + 1) + [y(t, t + 1)(qp4+h)*y l(t + 1)]1
*[Mh(t) - m(t, t + 1)].
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Thus, from (7.13) and (7.14), we obtain

(7.15) mh(t + 1) = m(t + 1)

+ [y(t, t + l)(q'+l)*Y-(t + l)] -[mh(t) - m(t, t + 1)]
+ y(t + 1, t + h)(9,t+l)*A*(t + h)

.[BoB(t + h) + AI(t + h)y(t + h)Aj (t + h)]+

*[I+h+1 - Ao(t + h) -AI(t + h)m(t + h)].
Let us now consider equation (5.13) for yh(t + 1) = y(t + 1, t + 1 + h):

(7.16) Yh(t + 1) = y(t + 1, t + h) - y(t + 1, t + h)(p,t+h)*Ai(t + h)
.[BoB(t + h) + AI(t + h)y(t + h)A*(t + h)]+

*A1(t + h)qpt+h y(t + 1, t + h).

From the inverse equation (7.5),

(7.17) y(t + 1, t + h) = [y(t, t + 1)(9t+l)*Yl(t + 1)]1[yh(t)- (t, t + 1)]

[y-1(t + 1)qpt+4'y(t, t + 1)]-1.

Inserting the expression (7.17) for y(t + 1, t + h) into (7.15) and (7.16), we
obtain direct equations for mh(t) and yh(t), where mh(O) = m(O, h) and yh(O) =
y(O, h) can be found from equations (5.12) and (5.13).
For the special case h = 1, we find from (7.15) that

(7.18) m1(t + 1) = m(t + 1) + y(t + I)A*(t + 1)
.[BoB(t + 1) + AI(t + l)y(t + I)A*(t + 1)]+

*[t+2- Ao(t + 1) - AI(t + I)m(t + 1)].

8. Extrapolation equations

By extrapolation is understood the problem of estimating the vectors 0, T
by means of observations of (' = (40, * * *, (,), where T > t. As in the case of
interpolation, one can consider equations for the optimal estimates in terms of
T as well as of t. The equations in terms of T make it possible to understand how
the prediction (the extrapolation) deteriorates as T increases, while the equations
in terms of t enable us to ascertain the degree to which the quality of the pre-
diction improves with the amount of data, that is, as t T T.

In contrast with rHp(t), Hl(t, T), and rI,,p(t, z), the distributions

(8.1) lp,x(T, t) = P{0, < Pf, r X l 4}, T > t

forT> t + 1, generally speaking, are not Gaussian. (The distribution 9Tl,(t + 1, t)
is Gaussian, as was established in the proof of Theorem 3.1.) This circumstance
complicates the construction of optimal estimates for extrapolation for the
general case of system (3.1 .). We shall consider below two special cases of system
(3.1) in which we are able, nevertheless, to obtain equations for the optimal esti-
mates of the vectors 0o and ,.
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Before proceeding to the statement of the theorem, let us clarify in what way
one can distinguish those cases in which we are able to construct estimates for
extrapolation.
By virtue of (3.18) and (3.56),

(8.2) m(T + 1) = [ao(T) + al(T)m(T)] + [b°b(T) + a, (T)y(T)Az(T)]
.[BoB(T) + A1 (T)y(T)A (T)]+

*[BoB(T) + Al(T)y(T)A(Tz)] /2 (T + 1)

(8.3) I = [AO(T) + Al(T)m(T)] + [BoB(T) + Al(T)y(T)A*(T)] /2 ±(T 1).

We put n1(T, t) = M((0| 4). n2((T, t) = M(cr|IY ), the optimal (in the mean
square sense) estimates for extrapolation. Then since

(8.4) n(Tz, t) = M{M(OT ) Yt} = M(m(T)
and M(E(T + 1)I 4) = 0, it follows that we can attempt to determine n1(T, t)
and n2(T. t) by applying M( .t4) to both sides of (8.2) and (8.3).

It is not hard to see that joint determination of nI(T, t) and n2(T, t) is possible,
if we assume that

(8.5) ao(t. w) = ao(t) + a2(t)0t, a1(t, co) = al(t),

(8.6) A0(t. co) = A0(t) + A2(t)0t. AI(t, a)) = Al(t),
where a2 is a k x {, and A2 an f x 1 matrix.

If we are only interested in extrapolating Or. then determination of n1(T, t)
becomes possible if we require that (8.5) be fulfilled with a2(t) 0.
THEOREM 8.1. (i) Suppose that assumptions (a) through (d), and (6.3), (6.4)

are fulfilled. Then the moments n1 (T, t) and n2(T, t) satisfy the systems of equations

(8.7) n1(T + 1, t) = ao(T) + al(T)n,(T, t) + a2(T)n2(T, t),

(8.8) n2(T + 1, t) = AO(T) + A1(T)nl(T, t) + A2(T)n2(T, t)

with n1(t, t) = m(t), n2(t, t) = t. (ii) Suppose that assumptions (a) through (d),
and (8.5) with a2(t) 0 are fulfilled. Then

(8.9) n1(T + 1, t) = a,(T) + al(T)n2(T, t), n1(t, t) = m(t).

The proof follows at once by averaging both sides of equations (8.2) and (8.3).
In the theorem just below, we give inverse equations (with respect to t) for

n1(T, t) and n2(T, t).
THEOREM 8.2. (i) Suppose that assumptions (a) through (d), as well as (8.5)

and (8.6), are fulfilled. Then the following equations are valid.

nl(T, t + 1) n 1 t) (uv
(8.10) -1uv

Vn2(T t + 1) (n2 (T t)i E

* [4t + 1 -A O (t) -A 1 (t)m(t) -A 2
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In these relations E = E({ x e). The pair (ut, v) is given by ur = [boB(T) +
ai(T)y(T)A*'(T)] and vr = [B°B(T) + A1(T)y(T)A*1(T)]. The matrix Vtr is determined
from the recursive equation

(8.11) (D,= (a,CT 1) a2(Tz -1)' ,- (D1=E( e k+e
\A1(T 1) A2(T I

and

nI(z, o\ (m(0)' t1 la(s)\(8.12) ( + (-D)(8.12) k~~~~n2(T, 0)~ / s0I08
(ii) Suppose that assumptions (a) through (d), as well as (8.5) with a2(t)- 0, are
fulfilled. Then

(8.13) nl(T, t + 1) = n,(T, t) + l/4T+l uttV[c,t+j - AO(t) -AI(t)m(t)]
where u, = [boB(t) + a1(t)v(t)A*(t)] and v, = [BoB(t) + Al(t)y(t)A*(t)]. The
matrix l/it is determined from the equations l/4 = a,(Tr - 1)iIW1, l = E(k x k)
and

r- 1

(8.14) nI(T, 0) = /4m(0) + ir-'aO(s).
s=O

PROOF. By induction, we obtain from (8.2) and (8.3),

(8.15) (mm(T)) (m(O))'-A (a (s)
s0O

±-r T41I USV + V1 /2),

where us = [boB(s) + a,(s)y(s)A*(s)] and vs = [B°B(s) + A1(s)y(s)A*(s)].
Applying M(-.It4 1) to both sides of (8.15), we find that

(8.16) Knl(T t + 1) m(O) + a0(8)

v1/+21
where us and vs are as in (8.15), since the vector v 112E(S + 1) for s . t is jZt4+
measurable, M(E(s + 1)1 .t+ 1) = 0, s > t, and VD - does not depend upon
"chance".
From (8.10), we obtain

(8.17) (~nl(T, t + 1)) nl(T, t)) (r (tVt Vt /)-t(8.17) noget t+r±w(th( 1),

which together with (3.56) leads to equation (8.10).
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To derive equation (8.13), we note that by (8.2),

(8.18) m(z + 1) = [ao(z) + a,(T)m(T)] + U,VU+Vr/2(t + 1),

Hence, by induction,

(8.19) m(T) = iO/M(O) + E 0/?1ao(8) + E 0i 1U'V+V1/2£(S + 1).

Applying M( I| s4+ 1) to both sides of (8.19), as was done to (8.16), we obtain
r-1 ~~~~~~~~~t

(8.20) nl(T, t + 1) = 1,'l,m(0) + EZ 5'a0(s) + 0/71U,Vs+Vs/2Z(S + 1).
s=O S=0ss=O

Taking account of formula (3.56), we obtain equation (8.13).
We now show how the theory discussed above can be applied to the con-

struction of the optimal linear prediction of a stationary sequence.
Let (,, t = 0, ± 1, +2+ * be a wide sense stationary process with Mc, = 0

and spectral density
leiA+i1|2(8.21) le IA + e +12

The problem consists of constructing the optimal (in the mean square sense)
linear estimates of the random variable Xr in terms of the results of observations
on = (4oX , X), where the process (t admits the spectral representation

itei + 1
(8.22) e 2iA+t I

in which b(D*) is an orthogonal random measure with M(D(dA) = 0, MI D(dA))2 =
dA/2ir.
We construct a Gaussian random process 4t for t = 0, +1, + 2,-- with

spectral representation (8.22). Such a process can be obtained as the solution of
the equation

(8.23) Qt+2 + 2(t+1 + ct) = £(t + 2) + £(t + 1),
where s(t), t = 0, + 1, + 2, is a sequence of independent Gaussian random
variables with M£(t) = 0, Ms2(t) = 1, t = 0, +1, 22 -
Put fl = Xt+I - 8(t + 1). Then we obtain for (0w, (), t = 0, +1, +2,

the system of equations
I= - 2 t + 2£(t + 1),

(8.24)
(t+I = ot + £(t + 1).

By Theorem 8.1, nI(l, t) = M(0, Et4) and n2(T, t) = M( | t4) can be deter-
mined from the equations

nl(T + 1, t) = - ln(T, t) -2n2(T, t),
(8.25) n2(T + 1, t) = nl(T, t),

where n1(t, t) = m(t), n2(t, t) = Xt
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The initial condition m(t) = M(O, FZ4) which enters in (8.25), together with
y(t), can be determined from the equations

{m(t + 1) = Im(t) -
I t + 2( + (t))-[t+i -m(t)],2 2 2~~(I- y(t))

(8.26) 7(t)
v(t + 1) = 1 ± y(t)

(see (3.18) and (3.19)).
We shall show that m(O) = 0, y(O) = 1 in the system (8.26). Indeed, by virtue

of the stationarity of the process (0t, t), the parameters d1 1 = M02, d1, 2 =
N[Ot, and d2,2 = M42 can be found from the following system of equations,
which is easily obtained from (8.24),

d1,1 = 4d1,1 + 4d2,2 + ld1,2 ± 4

(8.27) dl 2 = -22d1,2 + 12,
d2,2 = dl, + 1.

Hence, dl,1 = 1, d1, 2 = 0, d2,2 = 2, and by virtue of the theorem on normal
correlation m(O) = 0, y(O) = 1.
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