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1. Introduction and summary

The problem considered in this paper is that of obtaining optimal decision
rules when a parametric form of the distribution of the observations is not known
exactly. Thus we assume that the underlying distribution function F of the Xi
in the random sample X = (X ...... X, ) is in a class Q of distribution functions,
and Q is not indexed in a natural way by a parameter 0 in m dimensional
Euclidean space Rm. Let R(F. d) denote the risk of the decision rule d = d(X)
when F is the true distribution. Minimax procedures that minimize the maximum
risk sup {R(F, d); F Ec Q} have been obtained in special cases by Hoeffding [8],
Ruist [14], Huber [9], [10], [11], and Doksum [3]. In particular, Huber was
able to show that if Q is the class of all distributions in a neighborhood of a
normal distribution, then the minimax procedures are based on statistics that
are, approximately, trimmed means. Most stringent procedures that minimize
the maximum shortcoming SUPF {R(F, d) - infd R(F, d)} have been considered
by Schaafsma [15].

Another approach would be to define a probability (weight function) P on Q
and then minimize the average (Bayes) risk fnR(F, d) P(dF), thereby obtaining
what is called the Bayes solution. This approach has been taken by Kraft and
van Eeden [13]. Ferguson [6], and Antoniak [1], who were able to obtain
explicit Bayes solutions for some probabilities P. Their work is closely related
to the work of Fabius [5], who considered properties of posterior distributions
for a class of probability measures P that essentially contains those of Kraft and
van Eeden and of Ferguson. Fabius' work in turn is related to that of Freedman
[7], who considered properties of Bayes procedures in the case where the Xi
are discrete random variables. The relationship between these papers will be
discussed further in Section 5.

In this paper. we introduce a criterion which involves minimizing a quantity
between the maximum risk and the average risk: This criterion is appropriate
when the probability P on Q is not fully specified. but only the distribution
of F(t1). - - - . F(tk) is known for some tI < * < tk Thus past records may
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be available for F(1), F(2), and so on, but not for F(e), F(l) and so on. The
criterion is to minimize the average maximum risk, where the average is com-
puted with respect to the distribution A of F(tj),-.. , F(tk). More precisely,
let tl < ... < tk be fixed and let Q(q, k) be the class of distribution functions in
Q that pass through (tl, ql), (t2, q2 ), * * *, (tk, qk ), 0 - q1 _ < qk _ 1. We
define the average maximum risk (or mixed risk) as IRk [SuPFe(q, k)R(F,d )]2(dq).
The decision rule that minimizes this risk is called the mixed Bayes-minimax
rule, or mixed rule. It will be shown in Sections 2 and 3 that, under certain con-
ditions on the risk function, the mixed rule can be obtained by computing the
posterior distribution of a multinomial parameter p = (PI, * *, Pk-1) having as
prior distribution the distribution A ofF(t2) - F(t ), F(t3) - F(t2), * , F(tk) -
F(tk- 0)
The mixed Bayes-minimax rule dk can be thought of as an approximation to

the Bayes rule. In Section 4, Prohorov's theorem is used to show that if Q is
contained in C[O, 1] or D[O, 1], and if a Bayes solution d exists, then dk converges
to d in the sense of convergence of Bayes risks. Thus in situations where P is
known, but the Bayes rule is hard to compute, one can use the mixed rule as an
approximation. If the limit limk- 0dk can be computed, then it gives a method
of obtaining the Bayes solution. Note that k = 0 corresponds to the minimax
problem.

2. The mixed Bayes-minimax problem

Let X1, * * *, X. be independent, identically distributed random variables
with distribution function F, where F belongs to some specified class Q of distri-
bution functions. It will be convenient to assume that Q is a measurable subset
of some larger class F of functions with a a-field Y. We further assume that there
is a probability P on (F, 9), with P(Qf) = 1.

Let L(F, d) be a real valued function that denotes the loss of the real valued
decision rule d = d(X1, * * *, X.) when F E Q) is the true distribution. Let X =
(X1, * , X"). Then the risk of d is

(2.1) R(F, d) = EFL(F, d(X)).
If there is a rule (procedure) that minimizes the maximum risk

(2.2) R(d) = su3 R(F, d),

then it is called a minimax procedure. Similarly, if there is a d that minimizes
the average risk

(2.3) r(P, d) = Jf R(F, d)P(dF),
then it is a Bayes procedure. Here F is thought of as a random distribution
function with distribution P; that is, F is a stochastic process with sample
paths F(t), t E R. Computing Bayes procedures will involve computing the
posterior distribution of F given X.
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The mixed Bayes-minimax procedure minimizes a function that is between
R(d) and r(P, d). This function is the average maximum risk when a finite
dimensional distribution corresponding to P is known, and the average is taken
with respect to this distribution. We now proceed with the definition. The
carrier of a given distribution is in general the smallest compact set whose
probability under the given distribution is one. Let C(F) denote the carrier of
F E Q; we define the support of Q2 to be S(Q) = UF C0(F). Let tI<. . . < tk
be k points in S(Q). The distribution of F(t1), F, P(tk) under P will be denoted
by A, or A(; P, k). Thus, if we writeq = (ql, qk), ° _ q1 * * _ qk 1,
then
(2.4) A(q; P, k) = P(F: F(tJ) < ql, F(tk) _ qk)-

The class of distributions in Q whose value at ti is qi, i = 1, * , k, will be
denoted by Q(q, k), that is,

(2.5) f(q, k) = {FP Q: F(ti) = qi, i = 1, ,k}.

The average maximum risk of a decision rule d is now defined as

(2.6) rk(P,d) = sup R(F,d)]A(dq;P,k).
FeQ(q, k)

If there is a do that minimizes rk(P, d), do is called a mixed Bayes-minimax (or
mixed) procedure.

As we are dealing with functions ofX E R" and F E Q, we need a joint distribu-
tion for X and a random element F of Ql with distribution P. If X" denotes the
a-field of Borel sets in R', we define the probability P on (RI x F, " x 9) by

(2.7) P(B x S) = J F(B) P(dF), B E MI, S E 9,

where fiF is the probability in R" corresponding to the distribution of X, and it
is assumed that ,F iS 9& measurable. We also assume that a conditional distri-
bution of X given F exists and satisfies

(2.8) P(X1 < X1,*XI Xn _ xnIF) = f7n F(xi).
Furthermore, we assume that F has a conditional distribution given F(ti) =
qi, i = 1, * - *, k; we denote this conditional distribution by Pq. For a further
discussion of these definitions, see Fabius [5]. The assumptions involved in the
definitions are satisfied for the complete, separable metric spaces considered in
Section 4.
The following inequalities follow at once from the definitions. Note that

when more than one set of t1, * *, tk is considered, we will use double subscripts
and write tm,1 * * * I tm, km
LEMMA 2.1. The risks defined above satisfy the following relations:
(i) R(d) = ro(P, d) _ rk(P, d) _ r(P, d), k > 1;
(ii) if {HM: ti,1 < * < tm,km}, m = 1, 2, * * *, is a sequence of partitions

such that each partition is a refinement of the previous one, then

(2.9) rk-(P,d) _ rk, (P,d) form < {.
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We next give a parametric example in which the mixed risk rk equals the
Bayes risk r.
EXAMPLE 2.1. Let F = Q be the class of normal distribution functions F6

with mean 0 and variance unity. Suppose that P is the measure for which 0 has
a normal distribution with mean 4 and variance unity. Let Y be the class of
sets of the form {F,: 0 E B}, where B is a Borel subset of the reals. All the
quantities of this section are now defined. Moreover, since F(t1) determines 0
and 0 determines F(t1 ), then rk(P, d) = r(P, d), k > 1.

Next we consider a "discrete" example in which the mixed risk eventually
equals the Bayes risk.
EXAMPLE 2.2. Let Q = F be a countable class {F1, F2, } and let 99 be

the collection of all subsets of Q. IfQ is discrete (that is, Q has no limit points for
the sup norm), and if {tm,j} of Lemma 2.1 (ii) becomes dense in S(Q) as n oo.
then there exists m1 _ 1 such that rk(P. d) = r(P, d) for all m _ mil. To see
this, note that, by our assumptions. there exists ml such that

(2.10) (Fi(tm 1). - Fi(tm,k-)) # (Fj(tm, I). . Fj(tm km))
form > m1 and alli =ftj.
We now define a decision rule dk that, in some cases. will be the mixed Bayes-

minimax procedure. Let t1 = inf {t: t E S(Q)} and tk = sup {t: t E S(Q)}. It
follows that F(tk) = 1. We will assume that F(tI) = 0 a.s. (P), -oo < t, <
tk < oc, and that k _ 3. Let q = {ql ...... qk} with 0 = q< . _ qk = '.
Let Fq, k be the polygonal distribution function that equals qi at tj. i = 1, * k,
and is linear over each interval [ti, ti + i ], i = 1 kk- 1. Let Fk denote the
random distribution function obtained by letting q in Fq k have distribution
= A(: P. k). We assume that Fk is a measurable function on some measure

space to (1, 9Y). Let Pk denote the distribution of Fk. Finally. dk will denote the
Bayes solution for Fq k when q has prior 2, that is, dk minimizes

(2.11) r(Pk. d) = fR R(Fq.k. d)2(dq).

THEOREM 2.1. IfFq,k E Qfor almost allq in the carrier CA of 2. if dk mininmizing
(2.1 1) exists. and if

(2.12) L(F. dk) = L(G. dk)

for all F. G Ec Q(q. k) and almost all q in CA then dk is the mixed Bayes-minimax
procedure.

PROOF. Let Ni denote the number of X in (ti, ti+ J, i = 1, kk- 1. Then
N = (N1, . Nk 1)iS sufficient for Fq,k, and dk depends on the X only through
N. Thus the distribution of dk as a function of the X is the same for allF in Q(q, kl).
This and (2.12) imply that R(F. dk) = R(G, dk) for all F, G EiQ(q, k). Thus
rk(P, dk) = r(Pk, dk), and since dk is optimal for Pk. then r(Pk, dk) _ r(Pk, d)
for all other rules d. Finally, since Fq,k E Q for almost all q, r(Pk, d) < rk(P, d)
and the results follow.
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REMARK 2.1. From the above proof. it is clear that (2.12) can be replaced
by the condition

(2.13) rk(P, dk) = r(Pk, dk)

and that (2.13) is weaker than (2.12).
EXAMPLE 2.3. If 0 E {tl, tk} and L(F, d) = [d - F(0)]2, then (2.12) is

satisfied. Generalizing this, we have that (2.12) is satisfied for any loss function
depending on F only through F(t1), ... F(tk); that is, the loss is defined through
those points where we have information about F. Such a loss function corres-
ponding to squared error when estimating the mean ofF would be [d - 1(F, k)]2,
where

k-i

(2.14) it(F, k) = 2 E (ti+1 + ti)[F(ti+)- F(ti)]
i= 1

In the next section, we consider a testing problem for which (2.12) is satisfied.

3. A testing problem

Suppose Q = Q u Q1 with Q0 r Q, empty. QO,QQ2 e &' and we want to test
HO:Fe 0 against H1:Fe Q1. p = p(X) will denote a test function, and
L(F, p) will be the usual loss for the testing problem; that is, L(F, qP) = Li, a
positive constant, if Hi is falsely rejected, i = 0, 1, and L(F, p) = 0 otherwise.
The Bayes risk is

(3.1) r(P. p) = Lo EF(p) P(dF) + L1 J [1 - EF()] P(dF)
and the average maximum risk is

(3.2) 1-k(P^) = Lo r I sup EF(p)]i(dq: P. k)
"o Fcin(q, k)

+ L1 f [ Sup [1 EF(p)]A(dq; P. k),
Qit Fcif(q, k)

where Qi = {(F(tl), ,F(tk)): Fe Qi}, i = 1,2; that is, QO and Q, are the
sets in Rk corresponding to QO and Q1. We assume that QO r) Q1 has A proba-
bility zero. This assumption is needed to obtain (3.2) above. For this loss
function it is clear that (2.12) of Theorem 2.1 is satisfied; if in addition Fq, k C Q-
then the result can be applied. If Fq,k 0 Q, then L(Fq,k, p) is not defined. How-
ever, there is a natural way of defining L(Fq,k, p) and making Fq,k a member
of Q2(q, k): for a given q not in Qo rn Q1, L(F, q,) has the same value for each
Fe Q(q, k); define L(Fq,k, p) to be this value.

In what follows, it will be assumed that either Fq, k E Qi or L(Fq,k, q) has
been defined as above. Let f(x|q) denote the density of Fq,k. Then from (3.2)
and Theorem 2.1 we can conclude that the mixed Bayes-minimax procedure
9k rejects Ho when

k-i k-i

(3.3) L1 H (qi+I - qi)Ni2(dq) _ Lo I H (qi+1 - qi)Ni2(dq)e i = 1, 2.
Ql i=1 Qo~~~~~~i=1
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Letpi = qi+1 -qi, i k Iland

(3.4) Ai = {(F(t2) -F(t )), , (F(tk) - F(tk- 1 )): F Qi}i
Then (3.3) becomes

r k-i k-l

(3.5) L1 fl pNi't(dp) _ Lo J I pN' rr(dp).fAl i=1 AO i=1
where 7r is the distribution of (F(t2) -F(t1 ), * * *, F(tk) - F(tk )) when F has
distribution P. Note that (3.5) is the solution to a Bayesian multinomial testing
problem, in which (N1, *.* , Nk1IP) is a multinomial variable with parameters
n and p, and we are testing Ho: p E Ao versus H1: p E A1. The solution is the
test ~Pk that rejects Ho when the ratio of the posterior probability of H1 to the
posterior probability of Ho exceeds the ratio of the losses Lo/L1; that is, if p
has the posterior density g(pIN), N = (N1, , Nk- 1), then the test (Pk rejects
Ho when r

(3.6) >

fA g(pIN) dp
=L

EXAMPLE 3.1. Consider the goodness of fit problem where Q0 contains
only the uniform distribution Fo on (0, 1) and

(3.7) Q, = {F: CF a [0, I], F . Fo} - Q0.

If P assigns probability 2 to Q0, and if t1 = 0, t2 = 2, t3 = 1, then from (3.5)

t1 if -n 1/2-NIp ( -P1)n-N, 7r, (dpl ) _ LI
(3.8) (Ik= if Pi ) Lo

t0 otherwise

where 7T1(p1) = P(F(4) _ p4, so that 7r1(- 0) = 2 and 7t,(2) = 1. Thus 9Pk
is based on a decreasing function of N1 = number ofX less than or equal to 2.
When 27r1 is the beta distribution, then Pk can be obtained from the tables of
the incomplete beta function.
REMARK 3.1. The loss function of this section is not the only one for which

optimal mixed tests can be obtained. For instance, if CI and (1 are as in
Example 3.1, then the loss for deciding Ho when Fe Q, could be defined to be
L1( - F(4)). The conditions of Theorem 2.1 would then still be satisfied and
the optimal test can be obtained from the corresponding multinomial problem.

4. Convergence of the mixed solutions to the Bayes solution

In this section, we will consider classes of distribution functions on [0,1],
that is, Q is such that its support S(Q) is contained in [0, 1]. Then Q is a subset
of the class D[0, 1] of right continuous functions on [0, 1] with limits from the
left. On D[0, 1] we use the Skorohod topology with the modified Skorohod
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metric (see for example [2], p. 113) so that D[O, 1] is a complete separable
metric space. In the notation of Section 2, F = D[O, 1] and 9' is the a-field
generated by the open sets, F is a random function (a measurable function on
some measure space to (F, Y)) with distribution P. We assume that the proba-
bility P on (F, .9) satisfies P(Fe Q2) = 1. If {Fk} is a sequence of random
functions with distributions {Pk}, then Fk is said to converge in distribution to F if

(4.1) f h(F)Pk(dF) -A h(F)P(dF)

for each continuous, bounded, real valued function h on F. If (4.1) holds, then
Pk is also said to converge weakly to P.

IfFk is the polygonal random distribution function of Section 2, then Fk does
not necessarily converge in distribution to F. However, we will show that the
Bayes risk of the Bayes solution for the prior Pk converges to the Bayes risk of
the Bayes solution for the prior P. To do this, we will make use of the random
distribution function 0k that is constant over each interval [ti, ti+i), and for
which the joint distribution of Gk(tl), * * *, Gk(tk) equals that of F(t1 ), * * *, F(tk).
The symbol Qk will denote the distribution of Gk* We will need double subscripts
on the t and again write tm, I , t, km instead of t1, tk. We assume that
{rIm: tm, 1 < ... < tm,k,}, m = 1, - * -, km is a sequence of partitions of [0, 1]
such that rm+1 is a refinement of rm and maxi Itm,(i+ 1) - tm, i 0 as m -+ o.

It is now easy to show using Prohorov's theorem that:
LEMMA 4.1. If Ql c D[O, 1], then ak converges in distribution to F.
PROOF. For each Fo E Q and 6 E (0, 1) define

(4.2) v(FO, 6) = sup min [FO(t) - Fo(s), Fo(u) -FO(t)],
where the sup is over s < t < u, u - s = 6. Similarly, define

(4.3) wo (Fo, 6) = sup [Fo (u) -Fo (s)],
where the sup is over 1 - 6 . s < u < 1. By Prohorov's theorem applied to
D[O, 1] it is enough to show that (i) the finite dimensional distributions of Qk
converge weakly to the finite dimensional distributions of P at points
81, * * *, Sr in the set {t: P[F(t) + F(t-)] = 0} u {0, 1}, and that (ii) for each
£, ta > 0, there exists 6 E (0, 1) and an integer ko such that

(4.4) Qk(v(Gk, 6) < E) > 1 - ' for k _ ko,
and

(4.5) Qk(wo(Gk, 6) < )> 1 -> for k _ ko.

(See for example [2], pp. 125-126.)

The convergence of the indicated finite dimensional distributions follows from
the definition of Gk. The inequalities (4.4) and (4.5) are easy to establish using the
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tightness of P. We omit the first subscript on the t to simplify the notation. Let
ko be such that t(i+1) - ti < , i = 1, , k, for all k . ko. Then since Gk is
constant between points ti.

(4.6) v(Gk. 6) . max min [F(ti) -F(tj). F(tj) - F(t6)].
where the max is over te < ti _ ti, ti - te _ 26. The right side is bounded above
by v(F. 26). Thus

(4.7) v(Gk, 6) < v(F, 26) for k _ ko.
Similarly, wo(Gk, 6) . wo(F, 26). Since P is tight, we can choose 6 so that
P(v(F, 26) < 8) > 1-I and P(wo(F, 26) < E) > 1 - q. This implies the
result.

Let Gq, k denote the distribution function that is constant on [ti, ti+1 ) and
whose value at ti is qi. where 0 = q, _ < qk = 1. Thus Qk is the distribution
of Gq,k when q has distribution i, and Gk is the random distribution function
obtained by letting q in Gq,k have distribution A.

Recall that dk is the decision rule that minimizes the Bayes risk r(Pk, d).
THEOREM 4.1. If Gq,k is an element of Qfor almost all q in C, if the conditions

of Theorem 2.1 are satisfied, if a Bayes solution d exists, and if d has a continuous
(in F) bounded risk R(F. d). then for Q c( D[O. 1]. dk converges to d in the sense
that the Bayes risk r(P, dk) of dk converges to the Bayes risk r(P, d) of d.
PROOF. Consider the Bayes solution dk for the prior Qk. Since Gq, k S

constant between points ti, dk will depend on the X only through S =
(S1,.. .Sk_) where Si = number of X equal to t,+. i = 1 k - 1.
(Recall that F(t1) = F(O) = 0 a.s. (P) by assumption.) Note that S and N have
the same distribution under Gq,k and that this is the distribution N has under
Fq, k. This implies that dk is also a Bayes solution for the prior Qk. We now have

(4.8) rk(P, dk) = r(Pk, dk) = r(Qk, dk) = r(Qk, dk) . r(Qk. d).

By Lemma 4.1,

(4.9) lim r(Qk, d) = r(P, d).

Equations (4.8) and (4.9) yield

(4.10) lim sup rk(P, dk) _ r(P, d).
k-Xo

On the other hand, by Lemma 2.1,

(4.11) rk(P, dk) . r(P. dk)-

Since d is the Bayes solution for P,
(4.12) r(P, dk) _ r(P, d).

Putting these inequalities together, we get
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(4.13) lim rk(P, dk) = r(P, d), lim r(P, dk) = r(P, d).
k-cOO k-o

If Qlis a class of continuous distribution functions on [0, 1], then it is a subset
of the class C[0, 1] of continuous functions on [0, 1]. On C[0, 1] we use the
sup norm and the ar-algebra generated by the open sets.
LEMMA 4.2. If Q) c C[0, 1], then Fk converges in distribution to F.
PROOF. The convergence of finite dimensional distributions follows from

the definition of Fk. For each of Fo E Q and 5 E (0, 1), let

(4.14) w(FO, 6) = sup [Fo(t) -Fo (s)].
t-S=6

Let ko be such that ti+1-ti < 6, i = 1, k, for all k > ko. Now the
tightness of {Pk)} follows from the inequality w(Fk, 6) _ w(F, 36) and the
tightness of P. Thus the result follows from Prohorov's theorem applied to
C[0, 1].
We can now prove that dk converges to d under fewer conditions than when

Q c D[0, 1].
THEOREM 4.2. If Fq,k e Q for almost all q in CA, if dk is a mixed Bayes-

mininax solution, if a Bayes solution d exists, and if d has a continuous bounded
risk R(F, d), then for Q c C[O, 1], limk -40 r(P, dk) = r(P, d).

PROOF. Since dk is Bayes for Pk, then

(4.15) rk(P, dk) = r(Pk, dk) . r(Pk, d).
By Lemma 4.2,

(4.16) lim r(Pk, d) = r(P, d).

The rest of the proof now follows on the lines of the proof of Theorem 4.1.

5. Examples of random distribution functions

In order to obtain the mixed Bayes-minimax solutions, we have to specify a
distribution for the random distribution function Fk which is linear between the
points (t1, ql), * * *, (tk, qk), 0 = q1 _ ... . qk = 1. Equivalently, we have to
define a probability A on

(5.1) Ak =q E R: O = q, _ - qk

or a probability iX on

(5.2) Bk =p Rk: 0 _ Pi

Here qi is thought of as F(ti) and pi as F(ti+1) - F(ti). We say that p =
(P1, *. *, Pk- 1 ) has distribution 7t.
One way to obtain a class of distributions X ofp (Freedman [7], Fabius [5],

Connor and Mosimann [16]), is to let p have the same distribution as the
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vector whose ith coordinate is

(5.3) Zi H (I -Zj) i = 1. .k- 1.
j= I

where Z1..., Z-1 are independent random variables satisfying

(5.4) 0 < Zi < 1. Zk-l= 1.

For eaeh choice of distributions Hl Hk-2 of the Z. we obtain a probability
7r on Bk. For this class of probabilities, it is easy ([7], p. 1401 and [5]. p. 848)
to compute posterior probabilities ir(pIN) of p given N = (N 1. . \k-i)-
Such probabilities i are called tailfree by Freedman [7] and Fabius [5] and
neutral by Connor and Mosimann [16]. If we let each Zi have a beta distribution
B(ri. si) with parameters ri and Si. then ir is called the generalized I)irichlet
distribution [16]. If in addition.

k-i

(5.5) Si = E rj, i = 1. k -2. "Sk- = 0.
j=i+ 1

then i is called the Dirichlet distribution with parameters r1. . -I
Extensions of the definition of ir on Bk to

(5.6) B =PE R: 0< pi _ 1. P= 1

are obtained by replacing (5.4) by

(5.7) 0 < Z. . 1. lim n (1 - Zi) = 0 a.s.
r- i=I

If the Z have beta distributions, then the resulting ir on B. is called the
infinite dimensional generalized Dirichlet distribution (Freedman [7]).

Note that, if p has a Dirichlet distribution, then Cov (pi, pj) < 0. However,
for the generalized Dirichlet distribution, it is possible to have Cov (Pi, p), > 0
(see [16]., p. 198).
EXAMPLE 5.1. Consider the problem of estimating the mean /1(F) = EF(XI)

when p = [F(t2) - F(t1), - F(tk) - F(tk 1)] has a generalized Dirichlet
distribution ir with parameters (r1, s1 ), , (rk- 1. 8k- 1). If we consider the
squared error loss function, then the Bayes estimate of

k-1

(5.8) u(Fk) = I
E [(t+)- F(ti)] (ti+ I + ti)

i= 1

is

(k-1 [ti+ + ti
(5-9) Pk = E.(ju(Fk)|X) = 2 Y til+ i E.(pilN),

i =1
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where (see [5] )

(5.10) E.(pilN) = r + + n - Z N
r,s,+ n=1rg+1 + sg+1 + fl Nj~

j=1

Following Ferguson [6], let oa be a finite, finitely additive measure on R and let

k-I
(5.11) ri = a(ti, ti+1], si = rj, Sk-1 = 0.

j=i+ 1

Assume that a assigns measure zero to the region outside (tl, tk]. Then

k-1

(5.12) E.(y(Fk)IX) = (ax(R) + n)1 YE (ti+1 + ti)(@(ti, ti+1] + Ni)
= oXE(y(Fk)) + (1 - (n)X,

where an = oa(R) [a(R) + n] -1 and X' is the average of the random variables X'
obtained by replacing each X in the interval (ti, ti+1] by the midpoint
2(ti+ 1 + ti). Note that if the t become dense in (t1, tk] as in Section 4, then from
(5.12)

(5.13) lim E,r(yi(Fk)IX) = L(i.O +(1 -

where /to = a(R)1 I xa(dx). This is the estimate obtained by Ferguson [6].
Note that in addition to being the Bayes estimate of '(Fk), the estimate (5.9)
is the mixed Bayes-minimax estimate of u(F) for the loss function [d - y(F, k)]2
of Example 2.3.
EXAMPLE 5.2. Suppose again that p has a generalized Dirichlet distribution

7r. If s E {t1, * * *, tk }, the mixed Bayes-minimax estimate of F(s) using squared
error loss [d - F(s)]2 is

(5.14) F Ei(pj-N),
j=1

where s = ti and E,,(pjlN) is given by (5.10). If in addition (5.11) is satisfied,
then (5.14) becomes

(5.15) o(s) + (1 -

where Lo(s) = a( -oc, s]/a(R) and F.(s) is the empirical distribution function of
the sample. This is exactly the estimate obtained by Ferguson [6].

Next we consider the problem of defining a probability P on a set Q of
distribution functions F in such a way that it is possible to compute the posterior
ofF given X under the prior P. Ferguson [6] shows that for each finite, finitely
additive measure a on R, it is possible to define a Dirichlet process F in such a

way that PF(A 1)' ... , PF(Am) has a Dirichlet distribution with parameters
ot...... am, where di = z(Ai), and A1,*.*, Am is a measurable partition of R.
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He shows that the posterior of F given X is again a Dirichlet process with a

replaced by a + %I= 6(xi). where 6(x) is the measure giving mass one to the
point x. This makes it possible to compute the Bayes procedure for this prior.
The estimate (5.15) in Example 5.2 above is both the Bayes and the mixed
Bayes-minimax estimate for this prior.

Fabius ([5]. p. 853) gives a general construction of probabilities on the set Q
of all distribution functions on [0, 1] that include the Dirichlet process on
[0, 1], the processes of Kraft [12]. Kraft and van Eeden [13]. and those special
cases of the processes of Dubins and Freedman that are contained in [13].
Kraft and van Eeden [13] compute the Bayes estimate for one of these processes
for a problem in bioassay. Ferguson shows that if.F is the Dirichlet process an(d
fl, is the class of discontinuous distribution functions, then P(F E Q1) = l.
Kraft [12] shows that it is possible to hse the construction of Fabius to obtain
a process F such that P(F E KY) = 1. where Q* is the class of absolutely con-
tinuous distribution functions.

Using definitions (2.2) and (2.3) of Fabius [5]. it is possible to check that the
Dirichlet process is tailfree for all trees of partitions. Thus one cati use
expression (2.4) of [5] for the posterior distribution of a tailfree process to
conclude that the posterior of a Dirichlet process is again Dirichlet.

0 0 0 0 0
I am indebted to Lucien LeCam, Thomas Ferguson, Jaap Fabius. and others

for helpful discussions, and to Michael Stuart for a careful reading of the manu-
script that led to many improvements.
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