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1. Introduction

The present paper is intimately related to the two preceding papers [1], [2],
and is the outcome of collaboration which was broader than a mere reference
would indicate. It is appropriate, then, for us to begin with acknowledging our
indebtedness to the authors of the other papers, particularly to Michael B.
Shimkin. Our familiarity with the problem and, more specifically, our knowl-
edge of cancer as a biological phenomenon (which we readily admit to be of
negligible extent) originate from conversations that one of us had with Shimkin,
and from reading his papers written jointly with Milton Polissar. Subsequently,
in the process of planning and execution of the experiments described in the
two earlier papers, the present authors benefited greatly from discussion with
our biological colleagues on both sides of this continent, in Philadelphia with
Shimkin, and in Berkeley with White, Grendon, and Jones.

2. Different scales of study

A study of any natural phenomenon may be conducted on a variety of levels,
or scales. The choice of the scale contributes considerably to the nature of
questions asked and to the general character of answers attempted. In par-
ticular, in the currently conducted studies of carcinogenesis there are discernible
scales that might be classified roughly as follows.

(1) Somatic scale. This label, the appropriateness of which we are not pre-
pared to defend, is used to describe the studies conducted on the broadest
possible level, concerned with age specific death rates from cancer, with the
problem of cancer and smoking, and so forth. The characteristic feature of this
scale is the absence of a closely considered mechanism which originates cancer.

(2) Clone and cell scale. Under this heading we include studies, like the pres-
ent, in which the happenings within cells or within clones of cells, the happenings
that are observed or hypothesized, are coming under explicit consideration.

(3) Molecular biology, which, of course, is the finest scale.
As we see it, the purposes of studies, both empirical and statistical, conducted
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on different levels are frequently different. It seems to us that most of the studies
on a very broad level are characterized by practical purposes, not to say, necessi-
ties. It is, then, not so much the desire to understand the true mechanism of
the given phenomenon as the need for guidance in some practical situations
that is the prime motive of the study. In our understanding, this is the case in
the computation of age specific death rates from cancer. As a result, when some
postulates are adopted regarding the possible mechanism behind the computed
death rates, little effort is expended on an empirical verification as to whether
the hypothetical postulates have any empirical counterparts. The important
point is to have realistic death rates. These are obtained, essentially, through
fitting an interpolatory formula.
With the studies conducted on a finer scale, the situation is different. Here

the primary purpose is to find something about the actual mechanism of the
phenomenon and a step by step comparison between the postulates and reality
is essential. The underlying formulas refer to entities that, hopefully, are identi-
fiable in the empirical material and reflect hypothetical properties that these
entities are expected to possess. The set of hypotheses determining these formulas
is described as a structural model of the phenomenon. Ordinarily, each struc-
tural model will involve some interpolatory elements, p)erhaps some unspecified
functions or at least constants that must be estimated from the observations.
For example, in Newtonian mechanics the square in the inverse square law is
an interpolatory element.
The three levels of the phenomenon of carcinogenesis just enumerated are

obviously interconnected. However, there are wide gaps between them and it
must be obvious that the actual happenings on one particular level, say the
cellular, will be found consistent with a great variety of hypotheses as to the
mechanisms operating on the molecular level. Also, because of the multiplicity
of factors intervening between any two given levels, it seems to us quite prob-
able that a given mechanism on a specified level does not determine uiliquely
the happenings on the next, less refined, level. Thus, it seems to us that a com-
prehensive picture of the phenomenon of cancer can be obtained through a
combination or harmonization of findings on several levels on which experi-
mental or observational studies are or may be conducted. However, any effort
at a harmonization of findings at different levels must be preceded by careful
studies conducted on each particular level treated in isolation.
The present paper is limited to the cellular-clone level. Broadly, the purpose

of the paper is to construct a model of carcinogenesis, representing a combina-
tion of several birth and death stochastic processes, such that the consequences
of the model agree, at least qualitatively, with certain empirical findings. The
model constructed postulates several different categories of cells and clones, and
involves several parameters and, even, unspecified functions. The degree to
which the model may be considered realistic depends on further experiments. In
particular, this degree depends on the possibility of identifying real cells and
real clones that correspond to those postulated. Further, it is important to have
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independent new experiments leading to direct estimates of the unspecified
parameters and unspecified functions involved in the model. Hopefully, with
such independent estimates, the consequences of the model will harmonize with
the relevant empirical findings. If not, the differences may suggest changes in
the model bringing it closer to the real mechanism of carcinogenesis.

3. Some early stochastic models of carcinogenesis

A review of the theoretical statistical studies of carcinogenesis was given at
the Fourth Berkeley Symposium by Armitage and Doll [3]. From this review
we learn that the credit for the first attempt to construct a probabilistic model
of carcinogenesis on the cellular-clone level is due to Arley and Iversen [4],
who, from 1950 on, published a series of papers fitting their model to the results
of a number of experiments. The second attempt in the same direction is due
to Armitage and Doll [5] (1957). Our own efforts are concerned with the de-
velopments of the ideas formulated by these authors and with the choice be-
tween two basic assumptions in which the two models differ radically.
The Arley and Iversen model is based on the one stage mutation hypothesis.

Briefly: a contact (or "hit") between an element of the carcinogen and a normal
cell causes this cell to "mutate." This event is followed by a variable "induction
period," the length of which is assumed to have a specified distribution. After
the induction period a tumor is identifiable. The observable variables are the
number of tumors and the induction time. The experiments for which Arley
and Iversen found excellent fit of their theory are characterized by the dose of
the carcinogen as an experimental factor, this dose being administered following
some fixed time pattern. This is an important point. The experiments of Harold
Blum [6] included series where the time pattern of ultraviolet irradiation was
changed. Arley and Iversen found that the dose-response relation in any one
series characterized by a fixed time pattern could be fitted excellently by their
model. However, the constants of the model computed for one time pattern
would not fit the data resulting from another time pattern. Thus, as readily
admitted by Arley and Iversen, the mechanism of carcinogenesis involves an
element not included in their model.

In considering alternative possibilities we make a conceptual distinction not
specifically considered by Armitage and Doll [3]. The distinction is between
multihit and multistage mechanisms. The term multihit is used to describe the
mechanism in which a cancer initiating mutation requires not just one hit but
a certain minimum number k > 1 hits on the same cell. The term multistage
mutation mechanism is used to describe a mechanism involving several succes-
sive mutations, each generating a clone of mutant cells. Thus, the first mutation
(whether induced by a single hit or by k > 1 successive hits on the same cell)
leads to a benign clone of cells described as first order mutants. Each of the
first order mutant cells is subject to the risk of a second mutation. This second
mutation generates a growth of what are called second order mutants. If second
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order mutaint cells are canicer cells, the mechaniism is a two stage mutation
mechanism. However, it is conceivable that the growth of second order mutants
is again benign, with each cell being exposed to the risk of another mutation
leading to a growth of third order mutant cells, and so forth.
Each of the contemplated successive mutations may or may niot delpend upon

a carcinogenic factor (the same or a new factor, perhal)s cosmic radiationi).
Also, each of these mutations may well reqjuire its ownl minimum number of hits.
Thus, we contemplate a double hierarchy of hypothetical mechanisms of carcino-
genesis, determined by the number of stages (that is the nllmber of successive
mutations each generating a specific growth of cells) and by the number of hits
of the carcinogen required to produce each particular mutation.

It is natural to begin by studying the simplest possible models. The original
Arley and Iversen model is a one hit, one stage mutation model. The subject of
studies of Nordling [7] and by Stocks [8], whom we quote after Armitage and
Doll [3], is a k hit, one stage mutation mechainism. IIn the present study we
consider alternatively a one hit, one stage and one hit, two stage model. Both
were studied earlier by Arley and Iversen and by Armitage and Doll. Our work
incorporates a number of structural elements, some involved in earlier studies
[9], [10], [11].
As mentioned, the first onie hit, two stage mutation model of carcinogeniesis

is due to Armitage and Doll (1957). This model is characterized by a determini-
istic assumption that the clone of first order mutants grows exponentially. In
the framework of the present study this assumption is not tenable because it
would imply that the first order mutant clone is "malignant" and, in due course,
would kill the animal. The roots of our ideas are elsewhere.
A series of papers by Shimkin and Polissar, appearing since 1955 [12], are

the only papers known to the present authors in which the possibility of a
multistage mechanism of carcinogenesis was investigated seriously. This appears
to be the case even though Shimkin and Polissar never expressed this idea
explicitly. As described briefly in Shimkin's paper [1], a persistent effort was
made to see what, if any, changes occur in the cell population of mice's lungs
following an injection of urethane. It was noted that some kind of modified
cells do appear, that their number begins by growing, reaches a maximum and
then declines. Tumor nodules appear concurrently but with a very noticeable
delay.
The question arises: (i) are these somehow modified cells real precursors Of

cancer, that is, first order mutants, each subject to the risk of a second mutation
like event turning it into cancer? Or, alternatively, (ii) should one suppose that
the hypercellularity observed by Shimkin and Polissar is a phenomenon occur-
ring, so to speak, in parallel with carcinogenesis, but having no connection
with it?

This is precisely the question that has preoccupied us over the last several
years. Limited as this question may appear, we were and still are interested in
the subquestioii: how can (i) and (ii) be answered authoritatively?
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The first possibility which occurred to us had to be abandoned for observa-
tional reasons. This possibility is connected with the expectation that, if the
Shimkin and Polissar modified cells are really predecessors of cancer tumors,
then there should be a calculable theoretical correlation between the number of
tumors and the number of the Shimkin and Polissar cells, a correlation that
could be compared with the empirical correlation obtained from actual counts.
With this motivation, Klonecki developed [13] a method of numerical calcula-
tion of the joint distribution considered. Unfortunately, the original counts of
modified cells, on the one hand, and of tumors on the other, were made inde-
pendently from each other. Thus, the empirical data contain information on
marginal distributions of the two variables of interest, not on their joint distri-
bution. Also discussions revealed that the counting of the supposed first order
mutants is difficult and we could not induce our biological friends to attempt it.
As a result, other possible avenues had to be investigated, all based on counts
of tumor nodules only.

4. Basic assumptions

The models considered below are all based on the following assumptionis.
4.1. Action of carcinogen. As postulated by Arley and Iversen, the action of

a carcinogen on cells of a given tissue consists in randomly distributed "hits"
on particular cells. Each normal cell hit by the carcinogen undergoes a mutation
like change which is the initial event in the process of carcinogenesis. For an
experiment beginning at time t = 0 we visualize a functionf(t), nonnegative
for all t _ 0, with its integral from zero to infinity equal to one, and a positive
number D. The specific assumption is that to any time interval [t, t + T) with
r > 0, there corresponds a probability
(4.1) Df(t) r + o(T)
that in [t, t + T) there will be exactly one normal cell of the tissue "hit" by
the carcinogen, irrespective of the number of cells hit earlier. Also it is assumed
that the probability of two or more hits in time [t, t + r) is o(r).
As is well known, the above hypothesis implies that the total number of cells

hit in any time interval (tl, t2) is a Poisson variable with expectation given by

(4.2) D fit f(t) dt.

Thus, D is the expectation of the total number of mutations produced by the
carcinogen used in the experiment. Ordinarily it is assumed that this number
is proportional to the dose of carcinogen administered. For this reason the con-
stant D will be described as the total dose of the carcinogen. The function f,
determining the time pattern of the application of the carcinogen will be called
alternatively the "time pattern function" or the "feeding function."

In the above form, the hypothesis about the action of the carcinogen is fairly
general and is not likely to be seriously questioned. This situation changes just
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as soon as one tries to interpret the total dose and the time pattern function in
terms of a particular experiment. In order to clarify this point consider two
mice M1 and M2. Assume that the first mouse is given just one injection of
urethane at t = 0, amounting to 1 milligram per gram of body weight (1 mg/gm
BW). Assume next that the second mouse M2 is given two injections of urethane,
the first 0.5 mg/gm body weight at t = 0 and the second, also amounting to
0.5 mg/gm body weight, at some later time ti. The question arises as to whether
the two mice receive the same total dose D of the carcinogen. One point is that,
if M2 is fairly young and t1 fairly large, the body of M2 must have grown be-
tween t = 0 and tl. Thus, the total amount of carcinogen administered at t1
would be larger than that administered at t = 0 and it is not immediately clear
that the expected number of fresh hits on normal cells in the lungs of M2 re-
sulting from the second injection must be equal to that resulting from the first.

This one point of doubt is reinforced by the following. It is known [14] that
with very young mice the speed of elimination of urethane is slower than with
older mice. Thus, if mouse M2 used in the above hypothetical experiment is
relatively young, then the carcinogenic action of the urethane administered at
t = 0 is likely to be greater than that administered at time t, even if the initial
concentration of urethane in the blood stream in the two cases is the same.
The relationship of the conclusions reached to the results of some particular

experiments, in which amounts of the carcinogen actually administered and the
time pattern of actual administration are varied in some specified way, is a
separate question subject to hypothetical judgment and, hopefully, to separate
empirical verification. The following theoretical developments are based only
on the hypothesis of the action of the carcinogen as stated above. The purpose
of this theory is to deduce effects on the ultimate yield of cancer tumors to be
expected from specified changes in the value of D and, separately, in the time
pattern function f.

4.2. Nature of cellular growth. The growth of a clone of abnormal cells,
whether benign or malignant, originates from a single mutant cell and its devel-
opment represents a realization of a birth and death stochastic process, inde-
pendent of other similar processes.

This is the basic "structural" assumption. It is accompanied by another, of
an interpolatory character, namely: the birth and death processes representing
the growths of abnormal clones are time homogeneous, so that the unit time
rates of births and of deaths, X and u, respectively, are absolute constants.
Also it is assumed that benign growths correspond to subcritical and malignant
growths to supercritical processes, with X < A in the first case and X > u. in
the second.

In terms of the above two basic assumptions, the Arley and Iversen one
stage mutation theory of carcinogenesis amounts to the assumption that the
mutation of the normal cell, which is caused by the initial hits of the carcinogen,
results in clones of malignant cells, that is, realizations of supercritical birth and
death processes. The two stage mutation theory amounts to the assumption
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that the initial hits of the carcinogen result in benign clones of cells, each of
which is exposed to the risk of a second mutation like change. It is only these
second mutations that lead to cancer clones.

Before studying the consequences of these two alternative possibilities, it will
be useful to reproduce certain known formulas relating to birth and death
processes, most of them deduced by D. G. Kendall and presented systematically
by Harris [15].

Let Pn(t) stand for the probability that a noncritical clone of cells (that is,
a birth and death process with X 'd u), originating at time t = 0 from a single
cell, will have exactly n live cells at time t. The formula for Pn(t) may be written
conveniently in terms of two functions of time, say

(4.3) ,*'(t) = 1 2t t)X(l - e q)A- Xe-at
and

(1e-qt) q(4.4) R (t =XleQ= q < 1

with q = -X. Namely, we have

(4.5) Po(t) = 1-R(t)[1 +R (t)]

and, for n > 0,
(4.6) P.(t) = s(t)R11(t).
It will be seen that, whether the process is suberitical (q > 0) or supercritical
(q < 0), the two functions 4, and R are never negative and are monotone in t,
the first decreasing and tending to zero, and the second increasing. For a sub-
critical clone we have
(4.7) lim R(t) = X/IA < 1.

t-3

For the supercritical clone
(4.8) lim R(t) = 1.

t-o

The above notation is convenient for use with reference to both subcritical
and supercritical clones. However, in some cases when it is desired to emphasize
the malignant character of a growth of cells, the corresponding unit time rates
of birth and death will be denoted by capital letters A and M with A > M.

5. Probability that an isolated tumor will be counted

The experimental data considered in this paper all refer to counts of cancer
tumors either on the surface or within the lungs of mice. Obviously, a tumor
composed of only a small number of cells may easily be overlooked. Therefore,
in order to be able to compare the theory with the results of observation, it
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will be necessary to consider the probabilities, say Tr, that a tumor composed
of exactly n cells will be counted. The dependence of 7rn on n _ 1 is not known,
but it is plausible that, as n grows, 7rn never decreases and eventually tends to
unity. Assuming this to be the case, we shall write, for n > 1,

n-1

(5S.1) =n E 1
i=o

where the numbers ai are arbitrary but nonnegative with _O ai = 1. Also, we
shall introduce the generating function of these numbers, say,

(5.2) g(u) = E aiui.
i=O

Obviously g(u) is a strictly increasing function of its argument, with g(l) = 1.
In the early period of study of the two stage mutation theory of carcinogenesis,

an interpolatory formula f7rn = 1 - pn with 0 < p < 1 was considered. Actually,
this formula was adopted in his study by D. G. Kendall [10]. For this particular
choice,

(5.3) g(u) = 1 - pu

With a great variety of experimental conditions, ranging from the use of
microscope in the search for minute cancer tumors in thin slices of the lungs,
to naked eye inspection of the surface of the lungs, to search for vaguely identi-
fiable hyperplastic foci, it is difficult to foresee what kind of interpolatory for-
mula for 7rn might be adequate and, if (5.3) is found not to be sufficiently flexible,
some other function might be used. One possibility is the familiar negative
binomial

(5.4) g(u) = (1 + tQ - au)-a
with a, a > 0.
The choice of an appropriate function g(u) is important in studies concerned

with sequences of counts of tumors made at varying times since the beginning
of the experiment, occasionally quite early times. The present study is con-
cerned principally with the ultimate numbers of tumors, under varying condi-
tions, counted at a reasonably distant time T. As will be shown below, the
expectation of this ultimate number of tumors is independent of the exact
form of the function g(u). Therefore, it will be left unspecified.
Now let II(t) denote the probability that an isolated clone of cells of age t

(that is, a clone generated by a single cell t units of time ago) will be counted.
We have

n-i
(5.5) II(t) = E P.(t)7rn = ,6(t) R(t) L Rn-I(t) L ak.

n=1 n=1 k=O
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On changing the order of summation, this yields

(5.6) H (t) =AR E ak E Rn
k=O n=k

1-R ilkRk = 1- g(R),1 R k=O 1- R_

where, for the sake of compactness, the argument t of the functions 46 and R
is omitted. This formula for H(t) can be used for benign as well as for malignant
tumors. In particular, for malignant tumors we have

(5.7) 11(t) = e(A-M)t -M g[R(t)].

Because of the properties of R(t) established earlier, it is seen that, as t -o ,

the probability 11(t) tends to 1 - M/A, which is known to be the probability
that a supercritical clone will grow without limit. Tumors of this kind will be
called killer tumors.

6. Probability that a double tumor will be counted

In this section we consider the possibility that the mutation like change (of
any given order, the first or the second, and so forth) resulting from the hit of a
specified cell Co does not manifest itself in this cell but only in its two daughter
cells, C11 and C12, and their progeny. This makes it necessary to introduce
special terms, namely, the primary nth order mutant to designate the cell C0
and the secondary nth order mutants, Cil and C12. If the mutation considered
is cancer creating then the two daughter cells, C1l and C12, will generate two
independent malignant clones, which, because of their proximity, could hardly
be counted as separate tumors. It will be convenient to use the term double
tumor to describe the combination of the two.

In connection with the possibility that the tumors counted are in reality
double tumors, it will be necessary for us to consider the probability, say 11*(t),
that a double tumor resulting at t = 0 from the division of a primary mutant,
will be counted at time t _ 0.
The evaluation of H*(t) follows the lines of the preceding section. We have

(6.1) 11*(t) = 2Po(t)1H(t) + E Z Pm(t)Pn(t)rm+n.-
m=1 n=1

Using (4.6) and (5.11) and omitting the argument t, the double sum in the
right side can be written as

m+n-1
(6.2) R Rm+n2 E ak,

m=1 n=1 k=O
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or in the form

(6.3) 2(sR -1)Rs-2 ak
S=2 k=O

= 2R2 Eak E (s-1)RS2
k=O a-k+1

d Rk-k dRR1 R

= kO, ak [ kR R + (1R)2l

Finally, this yields

(6.4) H*(t) = 2Po(t)l(t) + (1 -RR) [(1 - R)g'(R) + g(R)],
where g' stands for the derivative of the function g. In order to evaluate the
limit of H*(t) as t is increased, we refer to figure 1. Here the continuous curve

g (R)

0 R 1

FIGURE 1

Interpretation of the expression (1 - R)g'(R) + g(R).

represents the graph of the function g. Because of the convexity of the function
g, with g(1) = 1, it is seen that the term in square brackets increases with R
and tends to unity, irrespective of the details of the nature of g. Using the
expressions for Po(t), R(t) and A(t) it is easily found that

(6.5) lim H*(t) = 2 ^(1-A + (1-

=1(2
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7. Expected number of killer tumors under the one stage mutation theory

In this section we consider two slightly different versions of the one stage
mutation theory of carcinogenesis. For each, we evaluate the limit of the expec-
tation, say ¢(T), of the random variable Z(T) defined as the number of tumors
counted at time T, generated at some time between t = 0 and t = T. It will
be seen that, no matter what the time pattern function may be, the limit of
t(T) as T -+oo is always the same. It is proportional to the total dose D with
the coefficient of proportionality depending upon the rates of birth and death
of the relevant cells. The practical conclusion from these results is that, if in a
reliable experiment, the counts of tumors performed at a rather distant time T
are either not proportional to D or depend upon the time pattern in which the
same dose of carcinogen is administered, then either our basic hypotheses are
not realistic or the number of stages in the mutation theory must be more
than one.
The two versions of the one stage mutation mechanism are as follows. First

we consider version A assuming that the hit on a normal cell turns this cell
into a malignant cell with rates of birth and death equal to A and M with A > M.
Second we consider the possibility B, envisioiied in section 6, that the mutation
of a cell Co induced by a hit at time t = 0, manifests itself not in Co but in
each of the two daughter cells C1l and C12. Here, then it will be necessary to
assume that, following a hit at t = 0, the cell CO continues to function normally,
with probabilities Ar + o(r) and 7(T) + O(r) that in the time interval [t, t + r)
it will either divide into C11 and C12, or will die. Then, in the case of division,
the two daughter cells C11 and C12 will jointly generate what we called a double
tumor. At time T this double tumor may or may not be counted.

Version A. For arbitrary 0 < t < T denote by Z(t, T) the number of tumors
generated in [0, t) and counted at T. Let

(7.1) Pn(t) = P{Z(t, T) = n}.

Following the usual procedure, we write

(7.2) Pn(t + r) = P._1(t)Df(t)l(T - t)r
+ Pn(t)[1 - Df(t)ll(T - t)T] + O(T).

By a familiar reasoning, this equation implies that Z(t, T) is a Poisson variable
with expectation, say,

(7.3) t(t, T) = D jtf(x)H(T - x) dx.

In particular, putting t = T, we have

(7.4) t(T) = D fT f(x)ll(T - x) dx.

Using the fact that f is nonnegative and that, its integral from zero to infinity
is equal to one, and also using (5.5) it is easily found that

(7.5) lim f(T) = D(1 - M/A) = P(+o), say.
T x*.
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Version B. In studyinig version B it will be necessary to consider simultane-
ously two random variables Y(t), the number of normal cells that were hit
before time t > 0, still alive at t and not yet divided (these cells are the primary
mutants), and Z*(t, T), defined as the number of double tumors generated
some time before the moment t and counted at 7T _ t. Let

(7.6) Pm,n(t) = P{Y(t) = m, Z(t, T) = n.

Proceeding as formerly, we have for T > 0,

(7.7) Pmfn(t + T) = Pm-.n(t)Df(t)r
+ Pm+,,n(t)(m + 1){3[1 - H*(T - t)] + y}T
+ Pm+i,n._(t)(mn + 1)31*(T - t)T

+ Pm,n(t) {1 - Df(t)r - m(f + -y)T- + o(t).
Let G(u, v, t) stand for the joiInt probability generatinig function of the two
variables Y(t) and Z(t, T). The letter G with subscripts t or u will denote the
partial derivatives of G(u, v, t) with respect to t or u. Applying the usual pro-
cedure to equation (7.7), anid omitting the obvious argumejits of the various
functionis, we find

(7.8) (G = (it - 1)I)fG +±((1 - u)(3 + y) + (t! 1),BII - t)} UG1.
This partial differenitial e(uation can be solved. However, sinice we are inter-
ested oinly in the exl)ectation of Z*(t, Y'), we omit the process of solution. Differ-
entiating (7.8) with respect to u, settinig i = 1J = 1, denotinig the expectation
of Y(t) by 'q(t), we obtain

(7.9) ?'(t) = Df(t) -A(t),
where A = d + -y and the prime indicates differenitiation with respect to t.
Also, differentiatinig (7.8) with respect to v and setting u = v = 1, we have

(7.10) D'(t, T) = OII*(7' - t>7(t).
The last two e(quations yield

(7.11) (t, T) = DO ft eAxf(x) Lt cAyll*(T' - y) dy dx.

After substituting t = T, this formula gives the expectation (T) which is the
subject of our interest. Noticing that the factor of f(x) is bounded by

1 C-e(T-x) 1
(7.12) <-

it is easily found that, as 7' w,we have

(7.13) lim t(T) = D [1 - (M/A)2] =
T-A

which completes the proof of the assertion stated at the outset.
In an effort to use the assertions just proved to obtain empirical evidence

either in favor of or against the one stage mutation theory, a difficulty must
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be anticipated. This is the problem of deciding how large the value of 1' must
be in order to represent a "rather distant time" since the beginning of the
experiment so that the averages of counts of tumors could be reliably consid-
ered as em)irical counterparts of the limits (7.5) or (7.13). Presumably, the
solution lies in arranging the experiment so that sacrifices of animals and counits
of tumors are made for a substantially long sequence of times since the begin-
ninig of the experiment. Then the plot of the average count of tumors against
time is likely to indicate an approach to an asymptote and, even, the actual
asymptotic value of the mean count. The conclusionis (7.5) and (7.13) apply
to these asymptotic values.
There is another circumstance that must be bornie in minid in studies of the

above kind. As is well known, luntg tumors in mice occur from time to time
even if these mice are not intentionially exposed to the action of a carcinogen.
Thus, it is reasoniable to sup)l)osc that, if a dose D of carcinogeni is intentioinally
administered to mice, the total dose of carciniogeni to vhich the mice react is
niot D but somewhat more, say Do + D, where Do0 may represent the effect of
"'eniviroiimeiital carcinogeni," p)erhal)s radiation. rTlherefore, on the one stage
mutation theory, the average inumber of "killer tumors" must be expected to
be proportional not to D but to Do + D. In effect, this means that the counlts
of tumors made at a reasonable time T plotted against D should align them-
selves along a straight linie with a noninegative intercept, not necessarily equal
to zero. This intercept would be e(ual to Do multiplied by the factor of D in
(7.5) or in (7.13), depending upon the version of the theory that is closer to
reality.

8. Some empirical results

At this time it is appropriate to reproduce some empirical results illustratinig
certain poinits of the above theory and leading to the theoretical developments
given in subsequent sections. It will be seen that, if one admits that in the
experiments described the amount of urethanie inijected at any time, in mg/gm
body weight of mice is l)roportional to what was described as the dose D of
carcinogeni, then the experimental results contradict the one stage mutationi
theory. In fact, the contradictioni is on two counits: the average number of killer
tumors per mouse, corresl)onding to a fixed time pJattern, is not a linear function
of D and, when D is fixed, the average niumber of killer tumors depends upon
the time l)attern of adminiisterilng the fixed dose D. The theory developed below
is intemmded to examine whether the emlpirical results (juoted in the l)resent
section are consistenit with a versioni of the two stel) mutationi mechanism.

8.1. Shimkin and l'olissar data. Table I alld figure 2 represent the experi-
menital results of Shimkiin and Polissar [12]. For purposes of the present sec-
tioni, onily the last column of the table is nieeded. This gives the estimated
average iiumber '(T) of tumor nodules in the lunigs of mice all giveni tlme same
dose of urethane 1 mg/gm 13W, and sacrificed at varying times after the iiljCc-
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TABLE I

COUNTS OF CELLS, OF HYPERPLASTIC Foci, AND OF TUMORS IN LUNGS OF MICE
After Shimkin and Polissar [12].

Estimated Mean Number of:
Days Presumed Foci Tumors
after Cells per First Mutants per per

Urethane Square per Square Lung Lung
(106.3 sq. micra)

0 0.73 0.00 - -
1 0.85 0.12 - -
3 0.92 0.19 - -
7 1.11 0.38 - -
14 1.02 0.29 294 -
21 1.35 0.62 450 -
28 1.57 0.84 390 15.5
38 - - 610 -
49 1.33 0.60 450 37.3
84 1.20 0.47 260 34.8
105 - - 200 35.2
133 - - 83 35.7
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FIGURE 2

Estimated mean number of tumor nodules per lung.
Each mouse received same dose of urethane 1 mg/gm BW,

sacrificed at varying times T after injection.
Data from Shimkin and Polissar [7].

tion specified in the first column (other columns of table I will be used later).
Figure 2 shows a plot of P(T) against T. It is seen that, while the unavoidable
random fluctuation of D(T) are quite noticeable, the convergence of t(T) to an
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asymptotic value is pronounced. Inspection of figure 2 suggests strongly that,
if more than one series of mice were available, each series with a different dose D
of urethane administered in a single injection, then counts of tumors made after
some 20 weeks might reasonably be considered as empirical counterparts of
r(+oo), and used for the verification of the one stage mutation hypothesis.
Naturally, this would apply to the kind of mice and to the method of counting
tumors used by Shimkin and Polissar (microscopic examination of slices of the
lungs). With a different method of counting and/or a different experimenter,
the probabilities rn might well be different, leading to the requirement of a
different time period T. In particular, this applies to counting tumors through
a naked eye inspection of the surface of the lungs. In this case, in order that a
tumor be counted, it must consist of a very large number of cells and, as a
consequence, the convergence of r(T) to its asymptotic value must be much
slower than in the experiment of Shimkin and Polissar.

8.2. Three experiments of Gubareff. The results of three experiments per-
formed by Gubareff in consultation with Shimkin are given in their joint
paper [1]. The carcinogen used was urethane administered in several different
time patterns and with varying total doses. Figure 3 illustrates all the results
of the three experiments that refer to the same total dose of urethane, namely,
1 mg/gm BW. The Roman numerals I, II and III refer to the particular experi-
ments. The subscripts 1, 2, or 12 indicate the number of subdoses in which

30
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- TWELVE INJECTIONS

0
20D20...X

Ui.
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I, 11J,

2~~~~~~~~~~~~~~~~~~~H1
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TIME AFTER FIRST INJECTION (WEEKS)

FIGURE 3

Counts of tumors on the surface of the lung
in three experiments by Gubareff (see [1]).
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the total dose was administered. As inidicated the two subdoses, of 0.5 mg/gm
BW each, were administered six days apart. The twelve subdoses were injected
over four weeks, on Mondays, Wednesdays and Fridays, approximately two
days apart. In experiments I and III only two time patterns were used and
mice were sacrificed at varying times. Figure 3 illustrates the dependence of
the average number of tumors on time after urethane. In experiment II all
the mice were sacrificed at the same time, 22 weeks after urethane started.

Gubareff's counts of tumors were restricted to the surface of the lungs and
were made by naked eye. Presumably because of this technique the counts of
tumors are not stabilized even after 30 weeks.

Experiments I and III complement each other very nicely even though I
was a small pretrial involving only a few mice. They strongly suggest that
with many subdoses administered at relatively short intervals the ultimate
number of lung tumors per mouse must be substantially less than that following
a single injection of the same total dose of urethane.

Experiment II does not appear to be consistent with the other two. However,
even in experiment II the twelve subdoses resulted in a smaller number of
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FIGUIRE 4

Counts of tumors on the surface of the lunig
in mice receiving dose 1 mg/gm BW;

Three time patterns: single injection, two injections week apart,
and sixteen injections two days apart (after White [2]).
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tumors than did a single dose. The interesting feature is an increase in the
number of tumors resulting from the division of the total dose into two subdoses
administered six days apart. This increase is quite large and occurs not only
with the basic dose of 1 mg/gm BW, but also when the basic dose is half as
large (see table II in [1]).

8.3. Experiment of White, Grendon and Jones. Out of many tabulations given
in [2], we reproduce only one, illustrating the effect of the time pattern in
administering the same basic dose of urethane, namely, 1 mg/gm BW. These
results, giving the numbers of tumors counted oni the surface of the lungs, are
illustrated in figures 4 and 5.
The time patterns considered are three: single injectioin; two injections one

week apart; and 16 injections two days apart. A glance at figure 4 indicates
that White's experiment confirms the existence of one of the two effects noted
in Gubareff's experiment, but not the other. Oine mg/gm BW administered in
small subdoses over a month produced a substantially smaller crop of tumors
than the same dose injected at once. On the other hand, there is no noticeable
difference between two subdoses injected one week apart and a single injection.
White's mice were adult females averaging some 23 gm initial weight. Gubareff's
mice were younger and of both sexes, weighing between 11 gm and 17 gm at

30
A- SINGLE INJECTION
* SIXTEEN INJECTIONS } WHITE
V-- SINGLE INJECTION \ GUBAREFF
o-- TWELVE INJECTIONS
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FIGURE 5

Comparison of the counts by Gubareff and by White.
Total dose of urethane, 1 mg/gm BW.
Two time patterns: single injection and

fine fractionationi over a month.
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the start of the experiment. Can this explain the difference in the results of
dividing the basic dose into two subdoses?

Figure 5 combines the results of Gubareff's experiments I and III with those
of White referring to the same basic dose of urethane, 1 mg/gm BW, and to
two similar time patterns, single injection and many small subdoses adminis-
tered at short time intervals. It is seen that, while supporting each other quali-
tatively, the two sets of data differ considerably in numerical values. In neither
case has the final count leveled to its asymptotic value. However, White's
counts at 24 weeks seem to foreshadow this approach. Also, her counts are
generally much higher than Gubareff's. Is this a difference in mice and/or
environment or a difference in technique of counting?

8.4. Experiments at the Fels Research Institute. Two more experiments are
described in [1], listed as experiments IV and V, both performed by Mrs.
Dianne Marzi and Mr. Ronald Wieder.
Experiment IV, somewhat smaller than that of Miss White, dealt with mice

of the same strain and approximately the same age. Its results are in perfect
agreement with those of Miss White. The subdivision of the basic dose into a
large number, namely ten, equal subdoses of the urethane leads to a decrease
in tumors counted at approximately 20 weeks after the first injection. On the
other hand, the division of the basic dose of urethane into two subdoses admin-
istered one week apart has no noticeable effect. Here again the reaction of adult
mice appears to be different from that of the young mice used in experiment II
by Gubareff.
The purpose of experiment V was to investigate one effect suggested by

Gubareff's experiment II, namely, the increase in tumors due to the subdivision
of the basic dose of urethane into two equal subdoses. Only one basic dose was
used in experiment V, 1 mg/gm BW. The interval between subdoses was varied:
1; 2; 4; and 7 weeks. The effect was studied separately for two considerably
different ages of mice, 16 to 18 gm at the start of the experiment and 23 to
25 gm. Observations were made separately for males and for females. All mice
were sacrificed at 20 weeks after the only or the second injection of urethane.

This very interesting experiment suggested a number of effects: (a) adult
females behaved just as they did in the White experiment, with no apparent
effect of subdivision of the basic dose; (b) young females indicated two sub-
stantial increases in tumors corresponding to the intervals between subdoses
of 1 and of 7 weeks; (c) with adult males the 7 week interval between the two
subdoses doubled the number of tumors obtained with a single injection; (d)
young males responded spottily and indistinctly.

Unfortunately, the mice used in experiment V were not of the same strain
as those in all the other experiments. They were Swiss mice characterized by a
very strong variability of response to urethane. Thus, in experiment V the
coefficient of variation of the number of tumors is 63 per cent, compared to
only 22 per cent in experiment IV. In other words, in conditions at the Fels
Research Institute, in order that experiment V with Swiss mice yield the same
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precision as experiment IV with strain A mice, the number of Swiss mice would
have to be multiplied by a factor of about nine. In consequence of this vari-
ability, the results of experiment V are very blurred. Because of the obvious
interest in the possibility of increasing the number of tumors by a subdivision
of the basic dose into two doses administered at an appropriate interval, perhaps
depending on the age and the sex of the mice, it appears desirable to repeat
experiment V using more homogeneous mice.

In summary, the experiments conducted seem to have established one effect
of fractionation quite firmly. This is a decrease in the number of tumors counted
up to some 30 weeks after urethane, due to a subdivision of the basic dose into
a relatively large number of subdoses administered over a long period of time.
This effect was observed in all the experiments in which the particular time
pattern was studied, whether with young mice or with adults, to wit in the
three experiments of Gubareff, in the experiment of White, and in experiment IV
of Marzi and Wieder. In addition, there is a suggestion of another effect: in-
crease in the number of tumors counted some 20 weeks after urethane due to
the subdivision of the basic dose into two subdoses administered one week
apart. This effect appears distinct in Gubareff's experiment II performed with
young mice of both sexes. On the other hand, the adult females used by White
show no such effect. A hypothetical mechanism, labeled the two stage mutation
model, consistent with both of the above effects, perhaps age and sex dependent,
is described in the following sections.

9. Confrontation of the one stage mutation theory with empirical findings

The answer to the question whether the one stage mutation theory is or is
not consistent with the available empirical findings depends very much on the
attitude one wishes to adopt towards the results described in section 8. The
experiments of Gubareff and of White do suggest that the subdivision of a
single dose of urethane into a large number of small subdoses administered at
short time intervals decreases the crop of tumors considerably. This is obvious
for counts made up to 34 weeks in one case and up to 24 weeks in the other.
However, it is not quite clear that the decrease will persist if the counts are
made much later, when they approach stabilization. If one accepts that this is
probably the case, then we have a contradiction with one stage mutation theory.
Another apparent contradiction is to be noted, again depending upon the

possibility of using the available data to estimate the asymptotic counts of
tumors. Using White's counts of tumors resulting from single injections of in-
creasing doses of urethane, Table II was constructed. It lists the ultimate actual
counts of tumors, made after 24 weeks, and also the estimated asymptotic
values of these counts, against the total dose of the urethane administered in
a single injection. Figure 6 gives the corresponding plots. It is seen that the
indicated relation of tumor to dose is far from linear. Indeed this relation is
fitted excellently by a parabola. Referring to section 7 it is seen that these



764 FIFTH BERKELEY SYMPOSIUM: NEYMAN AND SCOTT

TABLE II

ASYMPTOTIC VALUE OF MEAN NUMBER OF TUMORS PER MOUSE
FOR VARYING DOSE D GIVEN AS ONE INJECTION

COMPARISON OF OBSERVATION AND LEAST SQUARES FIT
Data of White, Grendon, and Jones [2].

Last Observed Estimated
Dose D Value (24 weeks) Asymptotic Value

(mg/gm BW) Observed Computed Ob-erved Computed

0.0625 1.2 1.07 1.4 1.40
0.125 2.0 1.99 2.3 2.19
0.250 3.8 4.10 4 4.20
0.500 9.5 9.31 10 9.9(
1.000 23.7 23.73 28 28.01

findiings appear to contradict the deductions from one stage mutation mecha-
nism.

Finally, if the results of Gubareff's experimenit II, indicatiing an increase in
tumors due to the division of a single dose into two subdoses are accepted as
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FIGURE 6

Ultimate tumor counts versus dose.
Single injection (Data from White [2]).

Solid curve: last observed number of tumors (24 weeks)
fitted by least squares;

Dashed curve: estimated asymptotic valie.

applying to asymptotic values of the counts, this would be the third poilnt of
contradiction.

Tentative as the above interpretations of the experimental results are, it
appears justifiable to investigate whether they are consistent with a version of
the two stage mutation mechanism. This is done in the followinig sections.
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10. Revision of the original two stage mutation model of carcinogenesis

In the original version of the two stage mutation mechanism of carcino-
genesis [9], it was assumed that a hit on a normal cell turns this cell immedi-
ately into a first order mutant subject to three time indepenidenit risks: the risk
of division at rate A; of death at rate A > X; arid of second order mutation at
rate v. In addition, all cells and clones involved were assumed mutually inde-
pendent. Apart from second order mutants, all the cells descending from the
original first order mutants were assumed to have the same properties, forming
a suberitical birth and death process "with emigration." The second order
mutant cells were considered cancer cells, each generating a supercritical birth
and death process.

In his reexamination of this model, D. G. Kendall [10], suggested that second
order mutations might also be induced by hits of the carcinogen. If these hits
are governed by a dose D of carcinogen administered with the time pattern f,
then, with the above notation, v should be replaced by the product vDf(t).

In the present revision of the two stage mutation mechanism we will general-
ize this assumption somewhat by setting

(10.1) v = vo + viDf(t),
where Po and vi are nonnegative constants not both equal to zero.
The adoption of formula (10.1) represents no more than a natural general-

ization of the models considered earlier. However, the empirical findings de-
scribed in section 8 dictate a change in the model which goes a little farther.
Denote by Y(t) the number of first order mutant cells alive at time t > 0.

We shall consider the expectation of Y(t) within the framework of the original
model generalized by assuming (10.1). The system of random variables Y(t) is
what is sometimes called a birth and death process "with immigration" at time
dependent rate Df(t). The rate of birth is X and the rate of death is
A + vo + viDf(t). For the sake of compactness, now let q = u + vo-X and

(10.2) F(x) = J f(t) dt.

Let 71(t) stand for the expectation of Y(t). Easy and familiar calculations yield

(10.3) i1(t) = De-qt-iDF(t) f f(X)eqx+PiDF(x) dx.

This formula is valid for any time pattern function f. Our preseiit interest
in this formula is motivated by experimental result of Shimkin and Polissar
and by the tentative assumption that the hypercellularity they observed fol-
lowing a single injection of urethane represents the growth of first order mu-
tants. As will be seen from the third column of table I, the average number of
these mutants begins to grow immediately after the injectioin, reaches a maxi-
mum at about 28 days, and then declines. The question arises as to whether
this behavior is consistent with formula (10.3).

Obviously, formula (10.3) depends on the properties of the time pattern
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function f. With reference to injections of urethane it is empirically established
that within a very short time, certainly within 24 hours, all the urethane in-
jected is eliminated from the bodies of the mice. Barring the possibility that
the carcinogenic effect is due not to urethane itself, but to some other chemical
originating from the urethane, the above finding implies that the time pattern
function f(t) is equal to zero for all t > to where to may be as small as one day.
If this be so, then for t > to, formula (10.3) reduces to

(10.4) q(t) = De-qt-PiD f f(X)eqx+v1DF(x) dxt t > to,
implying that, for t > to, the average number of first order mutants must de-
crease in proportion to a negative exponential. It follows that, if the hyper-
cellularity observed by Shimkin and Polissar is indeed due to first order mutants
-predecessors of cancer, then the original model is inconsistent with the ob-
servation and must somehow be revised. Our choice is the assumption already
discussed in section 6 in a different connection.
We assume that a normal cell, say Co, hit by the carcinogen changes into

what we call a primary first order mutant subject to two risks only: the risk of
division at a constant rate ,B, and the risk of death at a constant rate -y = A-B.
Thus, the primary first order mutant is not subject to the risk of secondary
mutation. However, if and when Co divides, the two daughter cells, say C1l and
C12, called secondary first order mutants, have properties different from those
of C0. Namely, Cil and C12 each generate an independent clone of cells identical
with C1l and C12, exposed to three risks: of division at a constant rate X; of
death at a constant rate ,u > X; and of secondary mutation at a possibly carcin-
ogen dependent rate v = vo + v,Df(t). The rates /3 and y of the division and
of death of the primary first order mutants might be those of normal cells.
However, presumably both X and A are much larger.
The postulated distinction between primary and secondary first order mutants

is suggested by the fact that mutations in irradiated flies manifest themselves
not in these same flies but in their progeny and further descendants.

In summary, the revised hypothetical two stage mutation mechanism of
carcinogenesis is as follows:

(a) Normal cells are hit by carcinogen at an instantaneous rate Df(t), start-
ing at t = 0.

(b) Each normal cell that is hit turns into a primary first order mutant
subject to risks of division and of death at constant rates ,B and -y, respectively.

(c) Each of the daughter cells resulting from a division of a primary first
order mutant, called secondary first order mutant, generates a suberitical birth
and death clone with emigration, independent of all others, with rates X and
,u > X of birth and death, and with rate v = Po + viDf(t) of secondary mutation.

(d) Each secondary mutant is a cancer cell, generating a supercritical birth
and death clone of identical cells, with constant rates A and M < A, respectively.
The above hypotheses are supplemented by the usual assumptions of inde-

pendence of particular cells and clones.
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Within this model, we let X(t), Y(t), and Z(t, T) denote three random vari-
ables defined as follows:

X(t) is the number of primary first order mutants alive at time t _ 0;
Y(t) is the number of secondary first order mutants alive at t;
Z(t, T) denotes the number of second order mutant clones generated before

time t > 0 and counted at a subsequent time T _ t. Also, for t = T we shall
write Z(T, T) = Z(T).

In the next section we study the distribution of the variables enumerated
and, in particular, the expectations EX(t) = t(t), EY(t) = 7(t) and EZ(t, T) =
D(t, T). Here again t(T, T) will be written simply as ~(T). In particular, it will
be seen that, with an appropriate adjustment of the various rates, the behavior
of 1(t) is consistent with the gradual increase and the subsequent decrease of
hypercellularity observed by Shimkin and Polissar [12].

11. Some implications of the revised one hit, two stage mutation model of
carcinogenesis

For t > 0, let

(11.1) Pt,m,n(t) = P{X(t) = 4,Y(t) = m,Z(t, T) = n}.

Proceeding in the customary manner, we now deduce a relation between the
probability Pe,m,n(t + r), with r > 0, and similar probabilities relating to time t.
For the sake of compactness, the arguments t are omitted. We have
(11.2) Pe,m,n(t + T)

= PI-1,m,nDfr + (t + l)P4+l,-243Tr + (4 + 1)P4+i,mnYtr
+ (m - 1)Pl,m-l,nXr
+ (m + 1)P4,m+1,n{f + v[l - 7r(T -t)]}
+ (m + 1)P4,m+i,n-1jlv(T - t)T
+ P,m,n{1 - [Df + MA + m(X + I. + V)]T} + 0(T).

This equation leads to a partial differential equation for the probability gener-
ating function G = G(u, v, w, t) of the three variables considered. Using sub-
scripts to denote partial derivatives, we have

(11.3) G6 = (u - 1)DfG + (1v2 + y -Au)G
+ [(Xv - - v)(v - 1) + vH(T - t)(w - 1)]G,

Differentiating this equation in turn with respect to u, v and w and equating
these arguments to unity, we obtain a system of three ordinary differential
equations for the unknown functions t(t), a(t) and ¢(t, T),

i'(t) = Df -At(t),
(11.4) 7'(t) = 2It(t) - (q + viDf)n(t),

D'(t, T) = (vo + v1Df)I(7T-t)(t),
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where q = ,u + vo - X and the primes designiate differenitiation with respect
to t. Solutionis of the system (11.4) are easily obtained yielding

(11.5) t(t) = D)e-At fo eAxj(x) dx,

(11.6) rl(t) = 23e-qt-0-iI' (t) Jt eqx+vlDF'(x)t(x) dx,

where F(t) = fo f(x) dx, and

(11.7) P(t, T) = o 'o IJ(T - xj,j(x) dlx + vil) Jftf(x)1l(T - x)fl(x) dx.

12. Qualitative consistency of the revised one hit, two stage mutation model of
carcinogenesis with the hypercellularity observed by Shimkin and Polissar

Before proceeding anly further it is necessary to verify whether the distinietionl
between the primary and the secondary first order mutants, introduced in the
above revision of two stage mutationi model, provides the possibility of adjust-
ment to the behavior of hypercellularity noticed by Shimkin and Polissar.
Following a single injection of urethane, this hypercellularity grows, reaches a
maximum at about four weeks, and then declines to zero. The question is
whether, with an appropriate time pattern funietioni f and with appropriately
adjusted conistant parameters A, q, anid vP, the functioni -(t) of formula (11.6)
will behave in the manner indicated.

In order to answer this question we use a modification of the method of
section 10 that indicated the necessity of a revision of the original two stage
mutationi model. Namely, we shall assume that the time pattern function f(t)
vanishes for all t exceedinig a limit to. Next, after some tranisformation of formula
(11.6), we shall make to tend to zero. The limit so obtainied will represellt an
al)p)roximation to n(t) in cases where the carcinogen inijected at t = 0 is rapidly
eliminated from the body of the experimenital animal.

Using (11.5) aind (11.6), anld assuming t > to, we have

(12.1) J(t) = 2ODe-qt{f e(q-A)x-1D[L-F(z)] eeuf(it) dti (lx

+ e(q-A)x
to

eAuf(it,) (lit dx}

As to - 0, the first term ini curly brackets tends to zero. The limit of the
second term is

(12.2) A (I-A) (Ix = ' l
o (1q-A

and it follows that
(12.3) lim O(t) = 2jD A = (),

to-0O

say. It is easy to see that, with ap)propriate choice of A anid q, the qualitative
behavior of the fuiletioin qo(t) is the same as that of the hypereellularity in-
vestigated by Shimkin anld Polissar. In fact, 110(t) vaniishes at t = 0 anld at
infiinity aild has a unique maximum at
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(12.4) t* = log q - log A
q - A

which may be just as close to zero or just as large as desired. Thus, qualitatively
at least, the consequences of the revised model agree with the changes in hyper-
cellularity observed by Shimkin and Polissar.

13. Two general properties of the expected number of tumors counted at time T

In this section we turn to formula (11.7) evaluated at t = T, giving the
expectation of the number of tumors induced by the experimental carcinogen
counted at time T. We prove two interestinig properties of this function. First
we give two easy lemmas.
LEMMA 1. Within the framework of the revised two stage mutation model, if

v, = 0 then

(13.1) f 71(t) dt =
q

-

Unider coniditions of the lemma, the formula for -q(t) can be written in the
form

(13.2) r7(t) = 2flDe-1t J'(x)elx e(fq-)u du
o x

Jt e(q-)t -e(q-A)x
= 23DeQt f(e)etx A du

= q13D, {eAt f f(x)eAx dx-e-qt f(x)ex dx}
However, for aniy positive number A,

(13.3) f e-At f f(x)e-z dx = A f(x) dx = A-

It follows that, whatever the time pattern function f,

(13.4) 7(t) dt = 213 -1 _ -) D

LEMMA 2. Within the framework of the revised two stage mutation model, the
integral of q (t) taken from zero to infinity is always finite.
The assertion of lemma 2 follows from the obvious fact that, with vi > 0,

the value of r7(t) is always less than that corresponiding to vi = 0.
THEOREM 1. Within the framework of the revised two stage mutation model of

carcinogenesis, the ultimate number of killer tumors has the expression

(13.5) ¢ = lim+ ) vO 7(t) dt + v1D Jf(t)r/(t) dt} (I - M).
This theorem is a simple conisequence of lemma 2.
THEOREM 2. Within the framework of the revised two stage mutation model of
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carcinogenesis, if vi = 0, so that the rate of the second order mutation does not
depend upon the presence of the carcinogen that caused the first order mutation,
then the ultimate number of killer tumors does not depend upon the time pattern
function and is proportional to the total dose D of the carcinogen.

(13.6) P I - M) 23D.

Theorem 2 is a simple consequence of lemma 1 and formula (13.5).
As a result of theorem 2, if figure 6 is accepted as an indication that the

ultimate number of killer tumors is not a linear function of D, then this is
evidence not only against the one stage mutation mechanism, but also against
the hypothesis that v1 = 0. Similarly, the apparent decrease in the ultimate
number of killer tumors due to fractionation of the basic dose D into a large
number of subdoses administered every second day or so, is also evidence in
favor of the assumption that vi > 0. In fact, any dependence of the ultimate
number of killer tumors on the time pattern, in which the carcinogen is admin-
istered, is evidence that VI > 0.
REMARK. One of the conclusions reached in [11] is contrary to theorem 2.

This conclusion is a consequence of an error. We are indebted to Dr. Witold
Klonecki for pointing out this error to us.

14. Source of parabolic like dependence of the expected ultimate number of
killer tumors on the total dose of carcinogen

The result of substituting (11.6) into (11.7) and, then, of (11.5) into the
results of the first substitution yields

(14-1) ¢(t, T)
= vo2fD 0'II(T -x)e,--LDF(z) f0 '(q-&)u+v.DF(u) f e f(v) dv du dx

+ v12fD2 f I(T -x)f(x)e-.2x-QDF(z)f' e(q-A)u+nDF(u) f0euVf(v) dv du dx

The subject of discussion in this section is the result of substituting T = +oo
into (14.1). This yields the expected number of killer tumors generated between
the beginning of the experiment and some preassigned time t. We have
(14.2) P(t, +X) = AI(t, D)D + BJ(t, D)D2
with

A = 21vo(1 --

(14.3) B = 2A)v(1-

I(t, D) = Jt e-q-vDF(z) e(q-A)u+PIDF(u) f|u eA"f(v) dv du dx,

J(t, D) = ftf(x)e-q-F(z) | e(q-A)u+,nDF(u) f|u eAvf(v) dv du dx.
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It is plausible that, with appropriate values of the constants involved, the
dependence on D of the integrals I(t, D) and J(t, D) is only slight. If this be the
case, then formula (14.2) indicates that, with a fixed t and with varying D, the
expected number of killer tumors generated before t will depend on D in a
manner close to parabolic. This, then, is a heuristic explanation of the parabolic
change in White's counts of tumors generated by single injections of varying
doses of urethane as illustrated in figure 6. However, the same conclusion
applies to any fixed time pattern in the application of the carcinogen as is
noticeable in figure 2 in paper [2].

15. Numerical illustration of the various functions involved in the revised two
stage mutation model of carcinogenesis

We are indebted to Mrs. Jeanne Lovasich of the Statistical Laboratory for
programming and for performing the calculations that led to the plots exhibited
in figures 7 and 8. The purpose of these graphs is to illustrate the several func-
tions involved in the model, namely, the time pattern function f(t), the expected
number t(t) of primary first order mutants, the expected number 11(t) of sec-
ondary first order mutants, and the expected number t(t, +coc) of killer tumors
generated before time t.

In figure 7 only two time pattern functions are considered. The upper panel
corresponds to a single injection of urethane, supposed to be eliminated from
the bodies of the mice exponentially at a unit time rate a. The lower panel is
intended to represent an experiment with the same total dose of urethane
administered in two equal subdoses one week apart. Here again it is assumed
that the elimination of urethane follows the same exponential law. The intention
is to show that, with appropriately selected values of the constants involved,
the number of killer tumors generated by two equal subdoses can either be
smaller than or larger than that obtained by administering the same amount of
urethane in a single injection, depending on the time when the second subdose
is administered.

Figure 7 exhibits all the functions involved, the upper panel corresponding
to a single injection and the lower to two injections. The assumed values of vo
and Vi are very unequal, the first being small and the second very large. Since
the carcinogen is eliminated very quickly, and the production of secondary
first order mutants requires some time, the bulk of the tumors resulting from a
single injection are produced at the slow rate Po. With two injections, each
amounting to half of the total dose, the initial number of primary and of sec-
ondary first order mutants is about half of what is obtained by a single injection.
This also applies to the initial number of tumors. However, immediately after
the second injection, administered at the time when the number q of expected
secondary first order mutants is already substantial, the formation of tumors
receives a large boost due to the presence of the carcinogen and the high value
of vP. As a result, the value of ¢ increases rapidly and overshoots that correspond-
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FIGURE 7

Comparison of effects of single injection and two injections.
Expectations t(t), 1(t), and ¢(t) of the number

of primary and of secondary first order mutants
and of killer tumors, respectively.

ing to a single injection. It is intuitively clear that, if v, were substantially
smaller or if the second injection were applied at a time when the number 7 of
secondary first order mutants is small, then two injections of a half dose each
would result in a decrease in the number of tumors.
The possibility of either an increase or a decrease in killer tumors by frac-

tionation is illustrated in figure 8, which shows two sets of three curves, cor-
responding to three different time patterns in the application of the same total
dose of carcinogen: a single injection, two injections and sixteen injections
administered at short time intervals, somewhat as in the experiment of White.
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Short dash curve: Sixteen injections of D/16, two days apart.

It is seen that a change in values of one of the constants involved leads to an
interchange in the location of the curves indicating the expected number of
killer tumors.

16. Concluding remarks

The results obtained may be summarized as follows.
16.1. Revision of the original two stage model. It was shown that the implica-
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tions of the original two stage mutation model of carcinogenesis are not consist-
ent with the behavior of hyperplasia observed by Shimkin and Polissar. The
modification adopted to remove this difficulty consists in the assumption that
the first order mutation induced by a hit of the carcinogen manifests itself not
in the cell that incurred the hit, but in its two daughter cells and in their descend-
ants. Another modification of the original model was adopted. This consists in
the assumption that the rate of second order mutations, leading to cancer cells,
may be written as v = vO + viDf(t), where vo and vi are adjustable nonnegative
constants not both equal to zero, and Df(t) stands for the rate of hits by the
carcinogen at time t.

16.2. Cases where the total expected number of killer tumors is independent of
the time patterns of the application of the carcinogen. The one stage mutation
mechanism of carcinogenesis (actually two slightly different versions of this
mechanism) and also the two stage mutation mechanism, with the additional
assumption that v, = 0, imply that the expected ultimate number of killer
tumors is a linear function of the total dose D of the carcinogen applied in the
experiment, and that it is independent of the time pattern f(t) in which this
dose is administered.

16.3. Cases where the expected number of killer tumors depends upon the time
pattern of the application of the carcinogen. Numerical calculations, performed
on the two stage mechanism with vi > 0, show that the fractionation of the
basic dose D of the carcinogen can decrease, and also that it can increase, the
expected number of tumors, depending upon the values of the various parame-
ters involved in the model, which may depend on the age of the experimental
animals.

16.4. Reference to experimental data. With a degree of interpretation, and
within the framework of the basic assumptions (see section 4), the experimental
data favor the two stage mechanism with vi > 0. In fact, the experiments by
Gubareff and by White strongly suggest that fractionation of the total dose of
urethane into many subdoses decreases the ultimate yield of tumors considerably.
Also, in White's experiment the estimated ultimate yield of tumors plotted
against the total dose of urethane indicates a parabolic rather than a linear
relation. Finally, Gubareff's experiment II performed with young mice indicates
an increase in tumors due to the division of the basic dose of urethane into two
subdoses administered six days apart. (However, White's experiment with adult
mice shows no such effect.) Within the framework of our basic assumptions
these effects are possible only on the two stage mutation model with vi > 0.
In other words, these effects are possible only if the first cancer cells result
from a urethane induced mutation occurring not in a normal cell but in a cell
of a predecessor benign growth, also induced by urethane.

16.5. Qualifications. The above tentative conclusions are subject to a number
of qualifications of which we emphasize the following.

(i) The interpretation of experimental results depends upon the assumption
that a single injection of a dose D mg/gm body weight of urethane produces
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the same number of hits as s successive injections, each of (D/s) mg/gm BW.
The process of elimination of the urethane from the bodies of mice does not
seem to have been fully investigated and there is no certainty that the above
assumption is realistic.

(ii) With the possible exception of the experiment of Shimkin and Polissar,
the counts of tumors are not the "ultimate" counts corresponding to the asymp-
totic values. Thus, suggestive as Gubareff's and White's experiments are, it is
not impossible that counts of tumors made some 50 or 60 weeks after urethane
would have shown no difference between a single and a fractionated injection
of the same total dose of the carcinogen.

In this connection it is appropriate to mention that a prolonged duration
of the experiment may produce new difficulties. For example, tumors formed
deep in the lungs might become visible on the surface.

16.6. Possibility of validating the model. The validation of the revised two
stage mutation model of carcinogenesis depends upon the possibility of identify-
ing the several different kinds of cells postulated and on independent experi-
ments leading to direct estimates of the unspecified functions f(t) and 7rn, and
of the several constants involved. The validation would consist in substituting
the estimates into the relevant formulas and in verifying whether the results
agree with the actual counts of tumors.
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