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1. Introduction

In experimeiital studies of quantal response to infection three factors of
essential interest are (i) the microorganisms, henceforth called particles, (ii) the
host, and (iii) the type of response. The particles are self-reproducing enltities,
usually bacteria or viruses, which are inoculated with differing inteinsities into
groups of hosts, such as animals, egg membranles, or tissue cultures. The response
which the particles elicit from the host during the course of time may be death,
the development of a tumor or a local lesion, or some other detectable symptom.
The phenomenon of particular interest here is observed in the following.
At time t = 0 a certain dose of a suspension of specified virulent particles is

injected into each of n experimental hosts. If n(t) denotes the number of hosts
not responding by time t, the plot, against t of either n(t) itself or of the proportion
q(t) = n(t)/n is kniown as the time depeiident response curve. If the response is
the death of the host, the curve is also called the survival curve. As is well
kn1own, the responise curves differ with the dose anid with the type of particles
inijected. Generally, the larger the injected dose, the sooiner the host responds,
that is, the steeper is the decrease in q(t). The purpose of the present paper is
to examine a class of stochastic models for the time depeildent responlse curves
with the hope that some of these will be useful in certain situatioils to be dis-
cussed later. It is to be emphasized, however, that we will inot concern ourselves
here with those situations where the response causing agent is not a self-repro-
ducing entity. The reader may fiind discussion of these elsewhere [7].
Most of the earlier mathematical models related to the time dependenlt

response curves treat the case where the response is the death of the host,
although this is by Ino meamis a restrictionl of their applicability to other cases.
A brief referenice to these is desirable here.

Wigginis [20] hlas studied a stochastic model of survival of an1 aniimal irnjected
with a certaini dose of viruleint bacteria. He assumes that the body of the host
is divided initotlobee regionis Iei, 1e2, and(1 ]?:, with the followilng p)roperties. If a
bacterium eniters R3, it is remidered nioniiifectious, anid inothinig happens to the
This research lias been prepared -with partial support from USPHS Granit GM-10525.
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host. If, on the other hand, it enters R1, the bacterium remains therein for a
time so short that practically no cell division occurs. Thus, the birth rate in RI
is assumed to be zero. However, the bacteria are allowed to migrate from R1
to R2. Finally, the region R2 is considered to be a sensitive region which acts as
a "trap" in the sense that, once a bacterium reaches R2 from R1, it cannot
return. The bacteria in R2 undergo a simple birth and death process; the funda-
mental assumption is that when the population in R2 reaches a certain fixed
number No for the first time, the animal dies. The number No may be called the
lethal threshold. The same hypothesis of a fixed lethal threshold seems to
underlie the experimental work of Meynell and Meynell [12]. In fact, the latter
authors produced experimental results tending to support this hypothesis. The
theory of Wiggins, while interesting, did not produce formulas that could be
compared with the observations.

In a more recent paper, Gart [8] has considered two stochastic models, which
he calls (i) the individual action model and (ii) the collective action model.
Let m denote the number of particles inoculated into the host at time t = 0,
the growth of each particle being governed independently by some growth
process. Then the total number of particles present in the host at time t is
given by X(t) = EJ I Xj(t), where Xj(t) is the contribution from the jth inoc-
ulated particle. The key assumption of model (i) is that a positive response is
observable at time t whenever, for at least some j = 1, 2, * *, m, and for some
t' < t, Xj(t') > No, where No is the lethal threshold. On the other hand, the
assumption underlying model (ii) is that a response is observable at any time t,
whenever for some t' < t, X(t') > No. The hypothesis involved in model (i)
is similar to the hypothesis of independent action proposed by Meynell and
Stocker [11], as noted by Gart himself. Furthermore, an extended model used
by Meynell and Meynell [12], although completely deterministic in character, has
some resemblance to Gart's model (ii). In another recent paper, Williams [21]
considers the same problem with only partial success, again under the hypothesis
of existence of a lethal threshold.
We note that the hypothesis of existence of a fixed lethal threshold is a com-

mon feature of all the models considered so far. In the present paper, however,
this hypothesis is abandoned, for two reasons. First, it is not likely to be strictly
correct; and second, it is mathematically intractable because of the involvement
of the first passage time problem. We adopt an alternative hypothesis suggested
by LeCam [9], namely, that the connection between the number X(t) of par-
ticles in a host at time t and the host's response is indeterministic in character.
In other words, it is assumed that the value of X(t), or of a random variable
whose distribution is dependent on the process {X(t)}, determines not the
presence or absence of response, but only the probability of response of the host.

In the next two sections, we shall discuss in detail two stochastic models, A
and B (model B being a special case of model A), based on this indeterministic
hypothesis. In section 4, we shall introduce a class e of stochastic models, which
will include A and B as elements. In section 5, the theoretical distribution



RESPONSE AFTER INFECTION 513

under model B of the number of virulent bacteria at the time of death of the
host is obtained and is compared with actual observations. Later, in section 6,
we attempt to fit a typical model of class e, with certain appropriate modifica-
tions, to response curves based upon data on guinea pigs injected with varying
doses of tubercle bacilli, the response in this case being death. Finally, in section
7, consideration of the biological mechanisms underlying the response to infec-
tion leads to suggestions for further research to improve models.

2. Model A

2.1. Underlying assumptions. We assume the origin on the time scale to be
the moment when we start the experiment by giving the host a certain dose of
particles. Let X(t) be the number of live particles in the body of the host at
time t, with X(O) equal to m, the number of live particles injected at the start
of the experiment. We can treat m as a fixed number or as a random variable,
usually assumed to be Poisson distributed. To begin with, m will be treated as
a constant.
We assume that the particle growth is governed by a simple homogeneous

birth and death process with birth and death rates X and g, respectively, both
assumed constant over time. The basic assumptions underlying the following
developments are that all the events that might occur during (t, t + r) to a
particle alive at t are independent (i) of the events occurring to the other par-
ticles, (ii) of the events that occurred to this particle in the past, and (iii) of the
state (response or nonresponse state) of the host. With these assumptions {X(t)}
is a Markov process. Another of the key assumptions we make here is that all
the hosts are uniform in their susceptibility to the response causing mechanism.
Let a + f(X(t), Y(t) It) be the risk function for the response of the host, so that

(2.1) P{host responds during (t, t + TrIX(t) = x, Y(t) = y, Z(t) = 1)}
= [a + fr(x, y)]r + O(r),

where a > O, x = O, 1, 2, **,and

Y(t) = fO X(r)dr,

(2.2)
1 if there is no response by time t,

z(t)=
CO otherwise.

A practical realization of the above assumption concerning the risk function for
host response might be found in the case where the survival of an animal inocu-
lated with virulent bacteria is in question. Here, the function f(X(t), Y(t) it) is
nonnegative, nondecreasing in both of its arguments, with f(O, Olt) = 0,
and represents the risk of death solely due to the bacterial invasion. The com-
ponent a, on the other hand, represents the constant risk of death due to other
causes and may be taken as zero in cases where the response is other than
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death and/or where no other causes are operating. The function Y(t) is contem-
plated as a measure of the amount of toxini produced by the live bacteria during
the interval (0, t), assuming, of course, that the rate of toxin excretion is con-
stant per bacterium per unit time. The toxin excreted by certain types of
bacteria is well known to be a factor contributing to the disease process and
thereby to the ultimate death of the host. It therefore seems natural to believe
that the risk function for the death of the host should depend not only on X(t)
but also on the total amount of toxin that has been produced by time t.
As a first attempt, we shall assume in model A, for the sake of mathematical

simplicity, that
(2.3) f(X(t), Y(t)lt) = bX(t) + cY(t),
with b > 0, c _ 0. Then the natural course is to study the joint distribution
of the process {X(t), Y(t), Z(t)} which is of the Markovian type. The distribu-
tion of the process {X(t), Y(t)} has already been studied extensively, along with
the limiting behavior of some of the related processes [18], [19]. Let 5P(u, v,
w; t), or so for short, denote the joint characteristic function (ch. f. for short)
of the process {X(t), Y(t), Z(t)} defined as
(2.4) p(u, v, w; t) = E{eiuX(t)+ivY(')+iwz(0)IX(0) = m}

where Y(O) = 0 and Z(O) = 1. We derive in the next section a differential
equation satisfied by the ch. f. p.

2.2. Differential equation for the ch. f. p(u, v, w; t). Let (6X, 6Y, AZ) be the
element of change in (X(t), Y(t), Z(t)) during an infinitesimal interval of time
(t, t + T), in which at most a single event may occur. Then, given X(O) = m,
Y(O) = -0 and Z(O) = 1,

(2.5) sp(u, v, w; I + T) = E{exp[iuX(t) + ivY(t) + iwZ(t)]
E[exp(iubX + iveY + iwbZ)IX(t), Y(t), Z(t)]}.

We proceed first to derive the expression for

(2.6) E[exp(iubX + iveY + iw6Z)jX(t) = n, Y(t) = y, Z(t) = z]

separately for z = 1 and 0, under the assumptions of the previous section.
First of all, we note that, given X(t) = n, Y(t) = y and Z(t) = 1 and that no
event affecting the n particles occurs during the interval (t, t + s), the prob-
ability that the host does not respond during (t, t + s) is given by

(2.7) exp -(a + bn + cy)s -1 cns2;.

Let the event, if it occurs, occur at time t + s, where 0 < s < r, and let the
conditional probability density function (p.d.f., for short) of s, given that
Z(t) = 1 and that a birth occurs during (t, t + T), be fB,j(s). The probability
density function fD,1(s) is correspondingly defined given that Z(t) = 1 and a
death occurs during (t, t + T). Similarly, let fB,o(s) and fD,o(s) be the correspond-
ing p.d.f.'s given Z(t) = 0. Then it is easy to show that
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exp{(A + X + b + C)s -- CS2}
fB1(8) = rT 1

fo exp{(1i + X + b + cr)s - cs2}ds

exp{-(A + 1X + b + cr)s + ICS2}
fD,1(8) =2

(2.8) J exp{-(X + ,u + b + CT)S + cs2} ds

fB,O(8) = (X + A) exp{(X ++)sj,exp{I(X + IA)T}r-

fDo(8) (X+M) exp{-(X + ,)s}fD,0( 1 - exp{- + A)4-}
where 0 < s _ T.
Given Z(t) = 1, let the probability that no event occurs in (t, t + T), given

X(t) = n, Y(t) = y, be denoted by Po,,,,, and let PX,n,l,Pi nl and Pr,n,l denote
the probabilities under the same given conditions, of a particle birth, of a
particle death, and of the response of the host, respectively; then

Pownel = exp{-(X + ji)nT - (a + bn + cy)Tr- ncT2}

PAX,n] = nXexp{-(X +i)(n + l)r - (a + bn + b +cy)T

- !(n + 1)C}r2 exp{(X + ji + b + CT)S - cs2} ds,

(2.9) Pp,nl = nA exp{-(X + bL)(n - 1)r -(a + bn - b + cy)r

- (n - 1)cr2} exp{-(X + A + b + CT)S + 2cs} ds,

P,,., = exp {-(X + A)nT}{1 - exp[-(a + bn + cy)-r- ncT2]}.

Similarly, given Z(t) = 0, the corresponding expressions for Po,n,o, P,n,o, and

P,,n,o are

Po,,no = exp{-(X + /.)nr},

(2.10) PX,n,o = nX exp{-( + A)(n + 1)T} {exp[(X + ;,)Tr]-1

Pp n0o= X exp{-( + A)(n -1)}{1-exp[-(X + },4r]}.
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Thus we have
(2.11) E{exp(iu3X + ivaY + iw6Z)IX(t) = n, Y(t) = y, Z(t) = 1}

= PO,n,I eivnr + Px,n,i f0o exp{iu + iv[ns + (n + 1)(T - s)]} fB,l(s) ds

+ P, n l f| exp{-iu + iv[ns + (n -1)(T- s)]}fD,I(s) ds

+ Pr,n,l exp{ivnT - iw} + 0(r),
and

(2.12) E{exp(iu5X + iv3Y + iwbZ)jX(t) = n, Y(t) = y, Z(t) = O}
= E{exp(iu3X + ivr Y)IX(t) = n}

= PO,n,G eivnr + PA,,O JO exp{iu + iv[[ns + (n + 1)(T- s)]}fB,o(s) ds

+ P',,io ofT exp{ iu + iv[ns + (n - 1)(T - s)]}fD,o(s) ds + o(T),

where O(T) corresponds to the contribution due to the occurrence of more than
one event.
Combining (2.11) anid (2.12), we may write the general expression for (2.6),

for Z(t) = z, as

(2.13) zE(exp(iuSX + ivlY + iwbZ)!X(t) = n, Yl(t) = y, Z(t) = 1}
+ (1 - z) E exp(iu3X + ivlY + iw6Z)IX(t) = n, Y(t) = y, Z(t) = O}.

Let the first partial derivatives of sp(u, v, w; t) with respect to u, v, w and t be
denoted by sou, so, so and sot, respectively, and likewise the second partial
derivatives by Spuw, . .. , and so on. These derivatives exist, since X(t) and
Y(t) are nonnegative and all the moments of X(t), and consequently those of
Y(t), exist. Substituting the expression for (2.13) into (2.5), subtracting s0(u, v,
w; t) from both sides, dividing both sides by T, and finally letting T -O0, we have

(2.14) Spt = E(exp[iuX(t) + ivY(t) + iwZ(t)] - {ivX(t) - (X + MA)X(t)
- Z(t)[a + bX(t) + cY(t)] + ,uX(t) e-iu

+ XX(t) e-iu + e-iw [a + bX(t) + cY(t)]Z(t)}),

which may be written as the differenitial equation
(2.15) sc = -,v + i[(X + ,u) - Xeiu -ueiu]. I

+ (1 - ie-w)(iasp,, + b)pu,v + CsPtv)l
with the initial condition

(2.16) $o(u, v, w; 0) = exp{ium + iw}.

2.3. Some remarks on the solution of the differential equation for q'. IUnfor-
tunately, equation (2.15) lends itself to solution only in special cases, for instance
when either u = 0 or X = 0. However, we are not interested in the complete
solution for p. What we would like to obtain is the expression for Q(t1m), the
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probability of no response until time t, which can be expressed in a variety of
ways, such as

71(2.17) Q(tjm) = P{Z(t) = 1} =E[Z(t)] = . (r(O 0, 0; t)-
Differentiating (2.15) with respect to w, and putting u = v = w = 0, we find
that

(2.18) Q(tlm) = -aE[Z(t)] - bE[Z(t)X(t)] - cE[Z(t) l(t)].dt

This equation does not help us in obtaining the solution for Q(t1m), but it does
demonstrate how the rate of decrease of Q(t1m) depends upon the various
elements given on the right side of (2.18).

Taking another approach we write the identity

(2.19) 50(U, v, w; t) eiw gM(u, v; t) + go(u, v; t),

where for j = 0, 1

(2.20) gj(u, v; t) = f , ik+ivyd,P{X(t) = k, Y(t) _ y, Z(t) = j.
JOk=0

Since Q(tim) = g1(O, 0; t), we need only to solve for the function gl(u, v; t).
Substituting the expression on the right side of (2.19) in equation (2.15) and
equating the coefficients of eiw and terms independent of w on both sides, we
find the differential equations for g1(u, v; t) and go(u, v; t) to be

(2.21) gi = {v + i[(X + A + b) - XeiU -,e-i.]}glu + icl,v-ag,
(2.22) got = {v + i[(X + ,)-Xeiu - ie-iu]}gou + (agq - ibglu--icgl,),
with the side conditions gl(u, v; 0) = eimu and go(u, v; 0) = 0.

Although equation (2.21) appears much simpler than (2.15), unfortunately,
this also lends itself to solution only in special cases, such as with either z = 0
or X = 0. Without going into the details of solving for these special cases, we
give here, for the sake of completeness, the corresponding expressions for
Q(tjm) as

(2.23) Q(tim, u = 0)

= e at {exp [(b + X)t + c]- X exp [(b + X + ct)T - 2 ] dr}

and
(2.24) Q(tlm, X = 0)

= e at {(exp [-(M + b)t - + exp [-(b + ji + Ct)T + 2]dT} .

When X, Iu > 0, one may derive an approximate expression for Q(tim), valid
only for sufficiently small values of the parameter c (see Puri [17]).

Finally, equation (2.21) can be completely solved if we assume that c = 0, or
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equivalently that Y(t) plays no role in bringing about the response. This modi-
fied model (model A with c = 0, so that f[X(t) It) = bX(t)], henceforth called
model B, will be discussed in the next section.

3. Model B: theoretical time dependent response curves

Under model B, let

(3.1) Gx,1(s; t) = , szPz,i(t), is! . 1,
z =0

where for x = 0, 1, 2,-- * ,
(3.2) P.,1(t) = P{X(t) = x, Z(t) = lIZ(o) = 1, X(O) = m}.
The partial differential equation for the probability generating function
(p.g.f., for short) Gx,i(s; t) under model B can be derived by the standard pro-
cedure. It is easier, however, to obtain it by taking c = 0, v = 0 and eiu = s in
equation (2.20) with j = 1, and again in equation (2.21), wherefrom we find
that Gx,i(s; t) = gl(-i log s, 0; t) and that this satisfies the equation
(3.3) G, = [8s2-(X +p+ b)s + g]G.-aG,
subject to the initial condition
(3.4) Gx,i(s; 0) = s-

where G, and G, denote, as before, the corresponding first order partial deriv-
atives of G.
From the auxiliary equations associated with (3.3) we have

ds
(3.5) dt = -XS2 + (X + u + b)s -,
whence

(3.6) C- [(-_ r2f exp[X(r -r2)t],

where C is the constant of integration and r1 and r2 are the roots of
(3.7) Xy2 - (X+ + b)y + , = °;
that is, they are, with positive and negative signs, respectively,

(3.8) 1 {( + u + b) i [(X + u + b)2 - 4AX]1/2}

Again from the auxiliary equations,
(3.9) Gx,i(s; t) = -at + constant = -at + h(C),
where h is an arbitrary function. Using the initial condition (3.4), we obtain
after some manipulation

(3.10) Gx.i(s; tlm) = e_Gt (r -r2C)]
or, on substituting for C,
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(3.11) Gx,1(s; tlm) = e-al {ri(s- r2) - r2(s- ri) exp[X(r, -r2)t] m

Since (1 - ri)(1 - r2) =-b/X < 0, it is easy to see that
(3.12) 0 <r2 < 1 <r1.
If m = 1, the p.g.f. (3.11) can be written as

(3.13) Gx,i(s; tlm = 1) = e-a, [rr2a + (1 - ria)(1 - r2a)s az]2
where
(3.14) a = {1 - exp[-X(r, - r2)t]} {rl- r2 exp[-X (r, -r2)t]
From (3.13), it follows that for m = 1,

(3.15) P,,l(t) = (1 - ria)(1 - r2a)a-I exp(-at) for x > 1,
(rir2a exp(-at) for x = 0.

The probability of no response until time t is given by

(3.16) Q(tlm) = Gx,i(1; tlm).
Also, the median effective dose, which is just enough to get response, during a
fixed time interval (0, t), from 50 per cent (on the average) of the hosts, is
given by the solution for m of the equation

(3.17) Gx,i(1; tlm) =

Let us now consider m, the number of particles which initiate the biological
process at t = 0, to be a random variable having a Poisson distribution with
parameter 3. Then, taking the expectation of (3.11) over m and substituting
s = 1, we have the probability of no response as

(3.18) Q(tJj3)

=exp {at - g(l( - r2)(r, - 1) [ 1 -exp{--X(r, - r2)t}
[(1-r2) exp{-X(r, - r2)t} + (r, - 1)Jf

Now if the random variable T denotes the waiting time for response, usually
known as the incubation period, then its density function p#(t) is given by

(3.19) pOt) = -dA 0l0)-_-dt

In figure 1, this density function is graphed for a = 0.01, X = 6, u = 5,
b = 10- and for various typical values of (3. It is to be noticed that as ,B in-
creases, the distribution contracts and moves leftwards, as one would expect.
Furthermore, there is a striking initial rise and subsequent falling off of the
distributions, as also observed by Williams [21] through investigations based
on the threshold hypothesis. These observations suggest that in general as ,B
increases both the expectation and variance of 7' tend to decrease.
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FIGURE 1

Theoretical curves for the density function pp(t) for the incubation period,
for various values of #, with a = 0.01, X = 6, , = 5, b = 106.

The mean and variance of T, if they are finite, are given by

E(T) = f Q(tl3) dt,
(3.20) (2 = 2 i: tQ(tlB) dt - [f|O Q(tIi3) dt]2.
Unfortunately, it is not possible to express these in closed form. Instead we
consider the median incubation period MT, which is given by the solution for t
of the equation Q(tljB) = 1/2, or equivalently, of

(3.21) r- _ log 2 - at + j3(r, -1)
(1 - r2) exp[-X(r, - r2)t] + (ri - 1) A(r, - 1)

With a = 0, as will be the case if the response can be initiated only by the
injected particles, we note that P{T < ox} = 1 - exp[-#(1 - r2)]. However,
neglecting exp[-3(1 - r2)] for large j3, we have from (3.21) with a = 0,

(3.22) MT =_ 1 log [1- X(r1 - r2)log 2 1
(3.22) MT Xk(r1~- r2)o~I bf3 + X(l - r2) log 2'
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which for large b,B can be approximated to yield

(3.23) 1 (1-r2) + boj2
Thus, for model B, for large bj3, the inverse of the median incubation period is
approximately linearly related to ,B, the average number of particles injected
at t = 0. Note, however, that since b is usually small this approximation requires
extremely large 3.
REMARK. In model B, the risk function for response, namely, a + bX(t),

suggests that, while the constant a corresponds to the risk due to causes Uni-
related to the particles, the risk of response due to particles is b for a single
particle and is additive over the particles present at any moment. While this
additivity brings about independence of action among the m particles starting
at t = 0 (this is similar to the hypothesis of independent action proposed by
Meynell and Stocker [11]), the additivity between a and bX(t) essentially
implies independence of action between the causes due to the particles' invasion
and the ones unrelated to this one.

4. A class e of stochastic models

We propose here a class e which consists of stochastic models that are es-
sentially based on the hypothesis suggested by Meynell and Stocker [11], of
independent action of the particles. In the present case this independence is
introduced into the models through the risk function a + f(. It); here a is, in
general, a constant, but may depend upon j3, the initial average dose injected,
and/or may possibly be taken as a function of time; the function f(- It) is a non-
negative and nondecreasing function of the random variable X(t) and/or some
other related random variables. For instance, we had in model B, f(. It) = bX(t),
while in model A, f(. It) = bX(t) + cY(t), with Y(t) = fO X(T) dr. Later, we
shall give a few more examples of the function f.

Let Q(tlm) be, as before, the probability of no response until time t, given
that m particles were injected at t = 0. For a given risk function a + f(. It)
let #f(t) denote the probability Q(tlm) evaluated at m = 1 and a = 0, so that
we have

(4.1) Q(tjm = 1) = e-a f(t).
We may now define the class e as consisting of those models satisfying the as-
sumptions of section 2.1 except that X(t) and ,u(t) may be functions of time and
that the risk function f( * It) may be any function such that

(4.2) Q(tIm) = e-at [iof(t)]m; m = 1, 2,

It is evident from (3.11) that the model B, with f(. It) = bX(t), belongs to e.
The expression for 4,f(t) in this case is in the square brackets on the right side of
(3.11) with s replaced by one. The relation (4.2) clearly implies independence
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among the m iniitial particles in their responise causing action. This in turln re-
quires, generally speaking, that the function f( It) be such that the contribu-
tions of the m particles to the components of f(. t) are additive. This and the
fact that even model A with f(- It) = bX(t) + cY(t) belongs to C, can be seen
heuristically as follows.

For a given realization of X(T) for all T with 0 < T < t, it is clear that the
probability of no response during (0, t) is given by

(4.3) exp {-J0 [a +f(jIT)] dr}

Taking the expectation of this over all realizations of {X(T); 0 < T < t}, we
have

(4.4) Q(tlm) = e-at E [exp {-lof(* IT) dT} X(O) = m]
where f(. IT) is a function of the random variables X(r) and so on. Comparing
(4.2) and (4.4), we have for every model of class C, for m = 1, 2,

(4.5) E [exp { 0t f( IT) dr} X(0) = m] = [14,f(t)],
so that
(4.6) {If(t) = E [exp {f1f(* IT) dr} X(O) = 1].
Now, since X(t) = _J= Xj(t), where Xj(t) for j = 1, 2, , m, is the contribu-
tion of the jth inoculated particle, we have

mPt m

(4.7) Y(t) = E Xj(r) dr = Yj(t),
j=1 Jo j=1

so that, for instance, for model A
m

(4.8) f[X(t), Y(t)] = bX(t) + cY(t) = , [bXj(t) + cYj(t)].
3=1

Because of the hypothesis of independent growth of the particles (section 2.1),
it is thus clear that for model A, (4.5) and hence (4.2) are satisfied, so that
model A belongs to C. Furthermore, the relations (4.4), (4.5), and (4.6) pave
another equivalent way of deriving the expression for Q(tjm), namely, from the
differential equation of .f(t). For instance, for model A,

(4.9) Q(tlm) = e-al E [exp {-bY(t) - c J Y(T) d} X(O) = m].
Now let, for X(0) = m,

(4.10) g(u, v, w; t) = E [exp {iuX(t) + ivY(t) + iw |O Y(T) dT}].

It is obvious that knowledge of g(u, v, w; t) is sufficient for obtaining Q(tjm).
Following the procedure of section 2.2, it is not difficult to show that the ch.f.
g(u, v, w; t) satisfies the partial differential equation
(4.11) gt = {v + i[(X + A) -1ciu ue-iu]}gu + wgv,
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with the initial conditioni
(4.12) g(u, v, W; 0) = emu.

Interestingly enough, equation (4.11) resembles (2.21), the equation for the
function gl(u, v; t); in fact (2.21) can be obtained from (4.11).

Again in (4.2), assuming m to be Poisson distributed with parameter ,B, the
probability Q(tljB) for a typical model of class e is given by
(4.13) Q(tl,O) = exp{-at - 3[1 -f(t)]-
Other forms of the function f(. It) which could be considered are, for example,

(4.14) f(- t) = bX(t) + cN(t)
and

(4.15) f(It) = bX(t) + cX2(t),
where the random variable N(t) denotes the number of particle deaths occurring
during (0, t), and has been studied elsewhere by the author [19]. A model with
f(- t) given by (4.14) is applicable when the bacteria are known to yield a
certain type of toxin only at the time of their death. Clearly, this model belongs
to class e. However, a model with f(. It) expressed by (4.15) does not belong to
C, especially since X2(t) 5s F,LI Xj(t).

Finally, we remark that, although the above models are, in general, applicable
to several experimental situations, nevertheless, for certain situations they may
require modification. In section 6 we shall attempt to fit the models of class C,
with certain modifications, to survival data obtained from a dilution series
experiment on guinea pigs injected with tuberculosis bacilli. First, in the next
section, we obtain the distribution under model B (section 3) of the number of
particles at the time of death of the host, which is relevant to the hypothesis of
existence of a fixed lethal threshold.

5. Distribution of the number of particles at time of death
of the host under LeCam's model

Let XT be the number of particles at the time T of death (or other response)
of the host. We shall now derive the distribution of XT under the model (B)
suggested by LeCam, under the restriction a = 0, that is, that the response can
be caused only by the particles. However, in the case of a = 0, there is a pos-
itive probability for T = oc; in fact from (3.11) and (3.16) it follows easily that

(5.1) P{T = oo} = Q(-ojm) = r-.
The appropriate distribution for us to consider is, therefore, P{XT = xI T < O
for x = 0, 1, 2, * . . Let

(5.2) H(ulm) = L2 UZP{XT = xIT < oo}, Jul _ 1,
X=O

be the corresponding p.g.f. To find H(ulm) we may proceed as follows.
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For t < ti, consider the p.g.f.
(5.3) Gx,1(u, v; t, trlm)

= uviPI'{X(t) = k, X(t1) = j, Z(tO) = 1IX(0) = m, Z(0) = 1},
j=O k=O

where Jul < 1 and lvi _ 1. Using (3.11), the expression for the p.g.f. (5.3) can
easily be derived, but will not be reproduced here.

It is clear that for x = 0, 1, 2, ,

(5.4) P{X(t) = x, T = t= d P{X(t) = x, T > tQ}

= -d-P{X(t) = x, Z(ti) =

and that the density function for T is given by

(5.5) PT(tl) = d P{T > t} = d P{Z(t) = 1},
with

(5.6) pr(tuJT < = 1_ d PPI > til.1- r2' dti,
Thus, we have

d P{X(t) = x, 7' > ti}dt1(5.7) P{X(t) = xlT= ti} = Pd

which yields
d PP{X(t) = x, T > t}ljt=g

(5.8) P{X(t) = xjT = t} - d
dt P{T > t}

Using (5.6) to take the expectation of (5.8) over T, we have the unconditional
distribution of XT, given by

(5.9) P{XT = xIT < -°} = 1m d P{X(t) = X, T > tJ}lti=tdt,
from which it follows easily that

(5.10) H(ujm) 1-2 Jo d Gx,1(u, 1; t, t4)Jti=t dt.

Substituting the expression for Gx,(u, 1; t, t1) in (5.10), we obtain after some
simplification

(5.11) H(ulm) r(1-)- -(u -r)U(u - r2)
and this yields easily
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(5.12) P{XT = xIT < oo}
10 for x = 0,

b [rr-x + r±(-+'1) + + r'-' (D1)l
for 1 < x < m,

(1) P{XT = mIT < oo} forx > m.

Also, we have

(5.13) E(XTIT < oo;m) =1mr2+ b

and

(5.14) Var(XTIT < oo; m) = (X -) + b(X + )_ m _r'
b2 -~(r2-

At this stage, we refer to the experimental work of Meynell and Meynell [12],
where several groups of mice were injected with varying doses of virulent
bacteria (Salmonella typhimurium). For each animal, a bacterial count was
made immediately after death (within half an hour). In figure 2, which is taken

10

0 gO 8 °

,o 0* 0 O 0
o 0e 8 ~~~~~~~~~~~~~

0~~~

-J 0

0 I 2 3 4 5 6 7
Log, number of organisms inoculated

FIGURE 2

Logarithm of observed terminal viable count plotted against logarithm of dose,
showing that the former is approximately constant with mean of 108 75, for all
doses given to two lines of mice of differing resistance. Counts from experiment 1.

(LD5o = 320 organisms; open points) and
experiment 4 (LD50 = 3 organisms; solid points) [12].

from [12], a plot is shown of the logarithm of the number of bacteria at death
against the logarithm of the injected dose. One observes in this plot an absence
of any trend in the number of bacteria at death with changing size of injected
dose and also that this number appears to remain constanit on the average. It is
this observation which seems to have led Meynell and Meynell to support the
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hypothesis of the existence of a threshold. The average number of bacteria
observed at death in their experimental work was about 108 75. This high es-
timate of the left side of (5.13) suggests that X > ,u and that b must be extremely
small. Thus, it may be relevant to approximate the distribution of XT for small
values of b. To this end, then, our next step is to find the limiting distribution
of bXT as b -O 0. The ch.f. of the limiting distribution of bXT as b -O 0 is given by

(5.15) lim H(eiwblm) =1)'

which is the ch.f. of (X - s)x2/2, where x2 is the central chi square with two
degrees of freedom. Thus, for small b, we have the approximation

(5.16) XT - X2.

It is interesting to note that this approximation is independent of m, the number
of bacteria injected. Thus, the observations made by Meynell and Meynell
could be explained easily under LeCam's model without relying on the threshold
hypothesis. It may be remarked here that under the threshold hypothesis X,,
is constant and the variability exhibited in figure 2 is to be attributed only to
measurement errors; by contrast, under the models considered here, XT is a
random variable and the variability is thus intrinsic.

Using (5.16), it is easy to obtain an approximation for the distribution of
log XT. The numbers at death observed by Meynell and Meynell, were read
from the plot of figure 2 and the distribution of log XT was fitted to these by the

1.0

.8

.6

.4

.2

6.0 7.0 8.0 9.0 10.0
y = loa,o(number of bacteria at death)

FIGURE 3

Histogram for the log1o (observed number of bacteria at death) and
the theoretical curve under LeCam's model.
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minimum chi square method. The result is presented in figure 3. The fit is
found to be excellent, with the calculated value of chi square (2 d.f.) slightly less
than two.
Another paper based on the experimental work of Berry, DeRopp, Fair, and

Schur [4], has recently come to the author's attention. In this work it was found
that, for small and moderately large m, the number of bacteria at death showed
no trend with changing dose m; but if the injected dose m was very large, the
number at death was observed to be larger than for the smaller values of m. In
this case, then, the limiting procedure used in approximating the distribution
of XT should be slightly different. In the approximation (5.16), m is assumed
to be only moderately large, so that for very small values of b we could neglect
terms of the order bm. However, for very large doses it seems appropriate to
avoid this assumption and consider instead, the limiting distribution of XT/EXT
as b -O 0. Using (5.11), it is easy to establish that

(5.17) lim E (exp LEXT|m} = 1
b-0 iWXTO1 T i

wherefrom we have for small b

(5.18) XT [2b + 2(1 -r)]X2-

6. An application of models of class e to survival data

6.1. Effective number of organisms. Meynell and Meynell point out [12] that
their results can be given the interpretation that host response to inoculation
is caused by only a fraction of the administered organisms. They hypothesize
that the fates of individual inoculated organisms are randomly and indepen-
dently determined, so that each inoculated organism has a certain chance of
experiencing an event or succession of events in vivo which will permit it to
multiply sufficiently to cross the threshold and thereby cause a response. Accord-
ing to them, this chance, denoted by p, depends upon the virulence of the organ-
ism. If the organisms are of maximum virulence, the inoculation of a single
organism will invariably lead to a response so that p = 1. But if the organism
is of intermediate virulence, so that p < 1, then in most cases more than one
organism will have to be inoculated before a response will follow. Thus, on the
average, only a proportion p of the total inoculated organisms will multiply
sufficiently to initiate a response. Meynell and Meynell call such organisms
"effectives." In their model, which is purely deterministic in nature and is
based on the threshold hypothesis, p is assumed to be constant for a given
system and is unaffected by the number of injected organisms. They do, how-
ever, agree (see [12], p. 325) that an alternative and perhaps more realistic
hypothesis could be stated on the assumption that p varies with the size of the
dose. Following this suggestion, we modify our models to include (i) the existence
of p, the probability that a particular organism among the m inoculated will be
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effective anid (ii) the assumption that this p depends on ,B, the average number of
organisms per unit volume of the dose inijected. Onie could assume the dependeniec
of p on the random variable m, rather than oni its expectation 1, but this is
probably an uninecessary complication. Finally, it is assumed that the effective
organisms iniitiate the disease process at time zero, and are solely responisible
for the eventual response of the host, whereas the noneffective ones are con-
sidered dead right from the start, possibly killed by the defense mechanism of
the host. Under these assumptions, we proceed to derive a modified expression
for the probability of survival.

Let ,7 be the total number of effective organisms among the m injected, then
for given q = n, we have, from (4.2),
(6.1) Q(tln = n) = e-a [1f(t)]n
It is clear that for given m, q has a binomial distribution with probability p(,B)
of a single organism being effective, where ,B E(m). Taking the expectation
of (6.1) over q yields, for given m and p(13),
(6.2) Q[t|m, p(,B)] = e-al{p(0)[,Ff(t) - 1] + 1}".
Finally, taking the expectation of this expression over m, we have
(6.3) Q[t1JO, p(0)] = exp{-at - 1p(1)[l -f(t)]}.

6.2. A dilution series experiment. We now turn to an actual realization of a
dilution series experiment, the response in this case being death. What is usually
done is that a standard volume of suspension with a certain concentration of
organisms is injected into each of a group of animals. This suspension is then
diluted, say d times, and a standard volume of this diluted suspension is given
to each of another group of animals. This new suspension is further diluted d
times and standard volumes administered to a third group of animals. This
process of dilution and inoculation is carried out, say, 4 times, and all the
groups of animals are then followed for their survival. Assuming that the proc-
ess of dilution was carried out uniformly and that the laboratory conditions
(temperature, and so on) are so adjusted that changes in the populatioln of
organisms during the time it takes for dilution and inoculation are negligible,
it is clear that if 13 is the Poisson parameter of the distribution of m for the last
group (inoculated with the lowest concentration), then the Poisson param-
eters for the various groups are given, from last to first, by O3dk, with k = 0, 1,
2, . .. , 1, respectively. Then for the group associated with Poisson parameter
1dk, the probability Qk(t) of a particular animal being alive at time t is, from
(6.3),
(6.4) Qk(t) = exp{-at - Odkp(1dk)[1 -

for k = 0, 1, 2, * , t. Unfortunately, the exact dependence of p on 1dk is Ull-
known. Therefore, it appears more appropriate to consider several pk for k = 0,
1, 2, - - *, e, instead of taking an arbitrary function p(1). In fact, in this way
we might be able to get some idea of the form of the fuinction p(,B) by estimating
the pk. With this modification, the Qk(t) of (6.4) become
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(6.5) Qk(t) = exp {-at - jdk pk[l - *f(t)]},
for k = 0,1, 2, * .
We shall denote by Q(t), without subscript, the probability that an animal

belonging to the control group (which received no inoculation, except possibly
an equal volume of saline for the sake of comparison) is alive at time t. Assuming
that the saline has no effect on the normal survival of the animal, it is clear that

(6.6) Q(t) = exp{-at}.
Now we attempt to fix the expressions (6.5) and (6.6) to some actual data on

the survival of guinea pigs injected with tubercle bacilli. These data were ob-
tained by Bjerkedal and Palmer (see [5] and [6], study "P") in a dilution
series experiment, conducted along the lines explained above with k = 0, 1, 2,
3 and 5 (for some reason the data for the series with k = 4 are not presented)
and d = 10. Each of these five groups was composed of about 158 guinea pigs.
The animals of a sixth group received no bacilli and served as controls. All six
groups were observed for their survival for 52 weeks after inoculation. While
the reader may refer to [5] and [6] for complete observed survival curves,
these are shown in figure 4 only for the first 30 weeks of observation, and have
been labeled by the corresponding Poisson parameters, namely fdk, with k = 0,
1, 2, 3 and 5.

1.0 --Best Fitting No-Defense-
I o -~~~~~~~~~Mechanism Curves Ok()

Observed and fitted survival curves of guinea pigs
after injection of tubercle bacilli.

(Data of Bjerkedal and Palmer [6].)

For a given f(. It), if 4'1(t) is known (as in model B), one may proceed to tit
the formulas (6.5) and (6.6) to the above data. The usual approach would be to
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break the time axis into intervals, consider the numbers of deaths occurring
during the various intervals as multinomial variables, and estimate the param-
eters of interest by some standard method such as that of minimum chi square.
However, because of the complexity of the formula (6.5) (in view of the expres-
sion for T',(t)) and the multiplicity of the parameters involved (for instance for
model B, the parameters involved are a, b, /3, X, s and pk, k = 0, 1, * * *, t), this
approach was dropped. Instead we adopted an empirical approach, which is not
only simple but also useful for fitting (6.5) without prior knowledge of the func-
tion Tj(t). The function TfI(t) instead is estimated from the data. If this estimate
is satisfactory, one could, as a next step compare it with the corresponding
theoretical expression for 'fI(t) for various particular models of the class C.
We shall restrict ourselves, for all except the control group, to the data

observed up to 30 weeks after inoculation, in order to avoid the effect on our
analysis of the large fluctuations which occur during the latter part of the study
period when relatively few animals remain alive for observation.

Let qk(t) represent the observed proportion of animals alive at t in the kth
series. From formula (6.6) for Q(t), we estimate the parameter a from the
observed survival curve for the control series by using the standard method of
least squares on log q(t). The estimate Q turns out to be 0.00858. From now on,
we shall consider a known to be equal to Q. Taking the logarithms of (6.5) and
(6.6), we have
(6.7) log Qk(t) + at = -#dkpk[ - wf(t)
for k = 0, 1, 2, *,t; and
(6.8) log Q(t) + at = 0.
Taking now a combined average over both sides of (6.8) and (6.7), for k = 0,

1, 2, * *, f, we have for each fixed t

(6.9) Tog Q(t) + at = -j[ (t) ],
where

(6.10) log Q(t) = +2 [log Q(t) + k log QK(t)],

2p=-+ 2 k dkpk-

Thus, with a, QK(t), and Q(t) replaced, respectively, by Q, qk(t), and q(t), we can
estimate empirically, for each t, the left side of (6.9) by log q(t) + Qt, where

(6.11) log q(t) = t + 2 [log q(t) + E log qk(t)]
In order to smooth the plot of log q(t) + dt for t, a cubic
(6.12) x(t) = alt + a2t2 + a3t3
was fitted by the ordinary least squares method, the term independent of t in
x(t) being zero, since both functions given by (6.9) and log q(t) + Qt pass through
the origin. Thus, we have an empirical estimate of Io Q(t) + Q given by
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(6.13) x(t) = 6lt + 62t2 + a3t3.
Using (6.9), (6.7) can be rewritten as

(6.14) log Qk(t) + at = (dk ) [log Q(t) + at].

However, the left side of this can be estimated empirically by log qk(t) + dt,
which suggests that if we fit for k = 0, 1, 2, - - *, f, a function 5kx(t) to log qk(t) +
at, where x(t) is given by (6.13), then Sk will give us an estimate of (dkpk/i7p),
for k = 0, 1, 2, * *, L. Thus, we may write the estimate of Pk/Iv as

(6.15) est(pk/2p) = Sk/dk.
Also, we have an estimate for Qk(t), given by
(6.16) Qk(t) = exp{-& + Skj(t)}.
The plot against k of values of est(pk/lV) obtained from the data (figure 5)

.30

.20

.10

0 3 5 6
k

FIGURE 5

Plot of est(pk/d,) against k.
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shows tlle variationi of Pk with k (except for a multip)licative coiistanlt). It seemlls
clear that, in general, thc larger the dose inoculated, the smaller is the prob-
ability p(3). Again, in order to see how well the models of class e fit the oh-
servatiolis, thc estiinates Qk(t) given l)y (6.16) were plottedl alotng with the
observed qk(t) (figure 4), for k = 0, 1, 2, 3, anid 5. Altlhouglh the genieral form
of the fitted curves is similar to that observed, the fit is, nievertheless, quite
poor because of the presence of systematic bumps in all the observed curves
which are absenit in the corresponding curves based Oll Qk(t). In actual fact,
the animals die more slowly in the beginniing than indicated by the fitted curves,
and the opposite behavior is exhibited durinig the later weeks. Several improve-
ments might be made in the preseint models to take into accoult other relevant
factors, such as the initiation of some defense mechanism within the host,
interactioni between the various causes of death and so oIn. In order not to
overload a single pal)er, these consideratioins are discussed oilly briefly in the
niext sectioni.

7. Discussion

A great maniy biological factors influeiice the response phenioinenoni; for
examl)le, (i) the virulenice of the particles, (ii) the number of particles admin-
istered to the host or more generally, the amount of exposure, (iii) variation iii
the susceptibility of the host, (iv) the defenise mechaniismii, if any, induced by the
particles in the host aiid developed durinig the course of the experiment, for
instance the genierationi of anttibodies, and (v) interactioni among various causes
of response, particularly wheii the respoinse is death; the list can be greatly
extended. Some of these factors were incorporated in a simple manlner in the
above models, whereas others were left to future investigations. The stochastic
models suggested here appear to explaiii onily the broad features of the time
dependent responise curves, but not the fiiner details relating to the mechaniism
itself. In this seiise, using the terminology of Neyman, Park, anid Scott [16], we
may regard these as "models in the large." Still deeper models incorporating
the finer poiiits such as (iv) and (v) are very much needed. Im)provemenits of the
above models based oni some of these poiInts are suggested below.

7.1. Variation in susceptibility of the host population. In the above models,
it is assumed that the hosts are uniform in their susceptibility to the response
causing particles. However, as has been poiilted out by Armitage and Spicer [3],
Armitage [2], Moran [13], [14], and several others, this assumptioin may not be
valid. One effect of this might be that the probability pk of a particle beinig
effective will vary not only with the dose (that is, with k) but also from host
to host. Assuming that in the kth series this probability varies over the host
population with a distribution fuiictioii Fk(p), the new expression for the prob-
ability Qk(t), USilg (6.5), is giveni by

(7.1) Qk(t) = e-al J exp{t-dkp[l - Tf(t)]}dFk(p)-
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However, the problem faced by the above authors still remains since we nieed
to know the exact form of Fk(p). As a first step one might wish to test the
hypothesis of uniformity of the probabilities Pk within each series, by using
large sample tests following Neyman [15] and Armitage [1].

7.2. Defense mechanism. Meynell and Meynell [12] observed some indica-
tions in their experimental studies that the hypothesis of independent action
might not apply to attenuated Salmonella deposited within the host tissues.
In the same context, they suggest the possibility of a fall in resistance of the
host because the initial effective particles might enable initially ineffective
particles to multiply and thus contribute to the ultimate response. At the same
time, a force in the opposite direction might be exerted by the production of
defense entities, such as antibodies, which cause a rise in the resistance of the
host, thus contributing to its struggle against the invading particles. One or the
other of these forces may predominate in a given biological situation, or both
may be present, counteracting each other. Models taking these forces into
account are greatly needed, even though they may be mathematically com-
plicated.

7.3. Interaction among different causes of death. In the above models, it was
assumed that both causes of death, namely, the bacterial and the nonbacterial
ones, operate independently. This was reflected through the additivity of a and
f(. t) in the risk function. In the actual fact, this assumption is hardly tenable.
On the other hand, the question remains as to what kind of interdependence
one should introduce among the various causes. A simple improvement that
comes to mind, which retains the independence between the two causes of death
in our models, is to allow the risk a to vary from series to series, a kind of dose
dependence, giving from (6.5) for k = 1, 2, * * -, G,

(7.2) Qk(t) = exp{-akt - Pdkpk[1 - Tf(011.

7.4. Otherforms of risk functions. In the above class of models, the hypothesis
of independent action of the particles starting at time zero was incorporated by
taking an appropriate risk function f(. It). In reality, this hypothesis may not
quite hold, in which case one needs to try some other forms of the function
f(. It), for instance

(7.3) f[X(t)lt] = bX(t) + cX2(t).

Unfortunately, with such modifications the algebra becomes somewhat com-
plicated.

7.5. Other types of particle growth processes. In the above class of models the
particles were assumed to undergo a linear birth and death process with birth
and death rates X(t) and I(t), respectively. One needs, however, to consider
growth processes such as quadratic birth atid death processes. Ill actual fact,
the growth process might become even more complicated in the presence of a
defenise mechanismn within, the host. Again, the AIarkovian assumption made
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for the growth process may also be questionable. The simplest form of Inon1-
Markovian behavior that onie could introduce in the above models would be to
let the rates X and A depend upon m, the number of particles injected at t = 0.

8. Summary

In mathematical models of the phenomenia resulting from the infection of an
animal (host) by a population of bacteria (or, more generally, self-reproducing
particles) and culminating in the animal's "response" (for example, death), it
has been customary to assume that the response occurs when the nlumber of the
infecting particles reaches a fixed threshold. In the present paper, the hypothesis
of a fixed threshold is abandoned in favor of a more realistic assumption, sug-
gested by Professor L. LeCam. Given that at time t the host is alive, the occur-
rence of its death between t and t + T is treated as a random event, the prob-
ability of which can be written as [a + f( It)] T + O(T), where a _ 0 anid f is a
nonnegative and nonidecreasing function of the inumber of particles present in
the body of the host at time t and, possibly, of certain other relevant charac-
teristics of the process of infection. Onie possibility is to assume f = bX(t) +
cY(t), where X(t) stands for the number of particles in the body of the host at
time t and Y(t) = fo X(u)du, with b, c > 0. With this treatment, the nlumber
of particles in the body of the host at the moment of its death becomes a random
variable, say XT; the deduction of the distribution of XT is one of the l)roblems
treated in this paper.

The author is greatly indebted to Professor J. Neyman for his inspiration anld
guidance, and to Professor L. LeCam for his iilvaluable suggestions and discus-
sionis, during the course of these investigations.
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