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1. Introduction

This paper examines in some detail the distribution of the total number of
cases in an epidemic of the general stochastic type for a closed population. The
assumed model is that of Bartlett [2] and McKendrick [11] which Bailey [1]
used to study the stochastic analogue of the deterministic threshold theorem
(Kermack and McKendrick [10], D. G. Kendall [9]). Bailey obtained recurrence
relations from which the required probabilities were computed numerically.
His calculations revealed a gradual transition from J-shaped distributions con-
taining only small epidemics for population sizes below the threshold, to U-
shaped distributions containing either large or small epidemics but practically
no epidemics of intermediate size when the threshold is exceeded. There is also
an interesting transitional form of distribution near the threshold value.

In an attempt to understand what motivates an epidemic to behave in this
way, Whittle [13] and Kendall [9] constructed different models approximating
to the one used by Bailey but easier to handle analytically. Both explained
Bailey’s results in terms of an initial birth and death process where extinction
is certain in the first case and not certain in the second. This work is summarized,
with additional references, in the book by Bailey [2]. In a paper presented at
this Symposium, Gani [7] develops some recent work by Siskind [12] and
himself [6] on a method of obtaining time dependent solutions of the epidemic
equations. For the limiting case considered here he shows how the probabilities
can be computed by successive multiplication of matrices.

My main object is to arrive at approximate formulae for the distribution of
total epidemic size which are appropriate for large populations. The approach
differs from that of most other investigations in that the backward equations
of the process are used. (See, however, Bartlett [3].) I also find it convenient to
work in terms of the number remaining uninfected, rather than the total number
of new cases. The technique by which the approximations are obtained was
previously used by me in an entirely different context (Daniels [4], [6]). As
presented here it should not be regarded as rigorously establishing the approx-
imations, though I have no doubt that the results are correct and numerical
comparisons bear this out.
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2. The deterministic model

Suppose that at time ¢ there are x susceptibles, y infectives and z recovered
or dead in the population. Initially we shall take ¢ = £, y = #, z = 0, so that
2+ y+2=£§4 9 The deterministic epidemic has been fully studied by
Kendall [9], but we examine it briefly for the sake of some results referred to
later. The deterministic equations are, with a suitable time scale,

dz _ dy _ dz _
(2.1) it T A Rl TR rl 2
where p is called the relative removal rate by Bailey, and the threshold by Kendall.
Then dz/dz = —x/p and z = £ exp (—z/p) for all ¢. At the end of the epidemic

y=0,2=§4 19—z and the number z of individuals remaining uninfected
satisfies the equation

(2.2) zexp (—z/p) = Eexp [— (& + n)/p].

We suppose that £ and p are large and »/p is small. There are two values of
satisfying (2.2) near the respective roots £, & of z exp (—x/p) = £exp (—£/p).
The only relevant root is the one less than £ When £ < p, this root is near £
and (2.2) gives as a first approximation

(2.3) x=¢t—18/(p — §.

On the other hand, when £ > p the required root is near ¢ < p and approx-
imately,

(2.4) z =t —n¢/(p—¥).

These hold provided # is not near p, though it is easy to get an approximate
transitional form for £ ~ p. Together, they constitute the deterministic thresh-
old theorem in terms of the number remaining uninfected. Notice that when
£>> p then ¢ /p is small and

2.5) z ~E ~ tetle,

3. The stochastic model

In the continuous time model considered by Bartlett and McKendrick the
transitions in (¢, ¢ + 8t) are (z,y) — (z — 1,y + 1) with probability zyét +
o(8t) and (z, y) — (z, y — 1) with probability pydt + o(t). As we are concerned
only with the final distribution of z, it is simpler to work with the random
walk of transitions in the z, y plane such that

P{x,y) > (@ — 1L,y + 1} =z/(p + 2),
P{(z,y) = (z,y — 1} = o/(p + 2),

where initially z = £, y = » and absorption occurs on y = 0.

3.1)
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An alternative formulation of the random walk in terms of the numbers of
new cases w = £ — z and removals z is of some interest. This is
P{(wyz)—)(w'i' 1,2)} = (E—w)/(9+$—w);
P{w,2) > (w,z+ 1)} = p/(p + & — w).
The problem can then be described in terms of a game involving a mixture of
sampling with and without replacement. A box contains ¢ real pennies and p
false ones. The player starts with a capital of » pennies and the price of a draw
is one penny. If he draws a false penny he replaces it in the box. If he draws a
real penny he keeps it and is allowed a further trial free. The game stops when
the player is ruined (w 4 n = z) or when he has drawn all the real pennies
(w = §).
Let p(z|£, 1) be the probability that there are ultimately = uninfected individ-
uals, when initially there were £ susceptibles and 75 infectives. The backward
equations for p are

(33) Ep(xlE - 1) 7+ 1) + Pp(x|€, L/ 1) - (P + E)p(xlf, 77) = 0:
£§>z,m21,and

(3.2)

(3.4) pp(xlz, n — 1) — (o + z)p(zlz, n) = 0
with the condition
where 6(f — z) = 0, £ # z and §(0) = 1. From (3.4),
(3.6) palz, n) = [p/(0 + 2)Ip(2|lr,n — 1) = - -+ = [o/(p + 2)]"
Our method of attack depends on the fact that
E P oty
®.7) (x + s) (,, +z+ 8)

is a solution of (3.3) for arbitrary s, and satisfies (3.6) when s = 0. We try to
build up a solution of the form

8 vl =5 4, 5,) Gris)

satisfying the required conditions. If Ao = 1, condition (3.6) is satisfied, and
from (3.5) we must have

o e E () )

The coefficients A, can be determined recursively and hence p(z|¢, 4) can be
found, provided A, is independent of £ That this is so becomes clear if we write

(3.10) A, = (—)«(’” N s)H.,
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and use the fact that

(3.11) (x i s) (x ;r s) - (j) (E s x>

Then,
612 pelen = ()T om0 )
(3.13) 8 —z) = z (—)H, ( ) x) (lﬁ)w.

The coefficients H, depend only on x and p.

As a method of computing the probabilities, these equations are if anything
less convenient than the original equations (3.3), (3.4), or the corresponding
forward equations, when £ is large and £ > p. Their value lies in the fact that a
technique is available for obtaining an asymptotic approximation when ¢ is
large.

4. Some exact results

The problem is substantially simplified by using the following result. Since
the left side of (3.13) is zero except when £ = z, it can equally well be put in
the form

W oS o))

If we then write H, = H,(z, p) and p(z|§, n) = p(x|£, 9, p) to show their de-
pendence on p, it appears that

4.2) H,(x, p) = H,(0, p + ),

and from (3.13) we get the exact relation

4.3) pialeyn,0) = (-25)7(5) o0k = 7m0 + 20

(H. F. Downton has succeeded in deriving (4.3) by a direct combinatorial
argument.) This enables everything we want to be deduced from a knowledge
only of the behavior of p(0l¢, n, p) which we now study. The equations are,
with H, for H.(0, p),

@9 0k = 5 (5 (25)

@5) 50 = £, () (2)

Taking £ = 0,1,2, --- in (4.5) we get a set of equations for H, which can be
solved in determinantal form as
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!
(4.6) H,,=‘i—; ¢ 1 0 00 --- 0 ©
'8
c2 ¢
51 I 1 00 0 0
3 2
Co C1
31 51 C2 10 0 0
* 3
! ke cs3 c |
s—D! =2)! (s—3)! 2
s! s—1! (s—2)! 2! =

where ¢, = p/(p + s) and H, = 1. Substitution in (4.4) gives an explicit solu-
tion for p(0|¢, », p).

6. Approximations below the threshold

The form of the solution (4.6) bears an unexpected and, I suspect, fortuitous
resemblance to expressions for the probabilities associated with the Poisson
process with a curved absorbing boundary and the related Kolmogorov-Smirnov
test [5]. For example, it follows from the work on that problem that H, can also
be expressed in the form H, = ¢;° C;(0), where

co (4§ Cs—1

(5.1) C@) =s! [Tdn [Tdn oo [,

is a so called Gontcharoff polynomial [8] whose jth derivative vanishes at
z = ¢;. A good deal can be discovered about the asymptotic behavior of these
expressions by using a technique originally developed for a related problem [4].
But there is an essential difference here which complicates matters. In the
applications mentioned ¢, is an increasing positive sequence and this ensures
that C,(0) is always positive. In the present problem c, is a decreasing positive
sequence and beyond a certain value of s, H, begins to oscillate with increasing
amplitude and alternating sign. Nevertheless, we shall use a modified version
of the same technique to study the asymptotic form of H, and, hence, deduce
that of (0|, , p) when £ and p are large. The presentation is heuristic and to
some extent incomplete. A rigorous development must depend on a more ex-
tensive study of the asymptotic properties of Gontcharoff polynomials which
it is hoped to publish later.

In (4.5) replace ¢ by m, multiply it by (—N\)= (i) and sum from m = 0 to &.
After a little manipulation the result is

£ £
(5.2) 1=3 H, (s) (e)'(1 = A&, ¢ = p/(p+ 3),

8=0
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where ) is an arbitrary parameter. The technique is to look at the behavior of
(5.3) T.0) = (ﬁ) (e)'(1 = Ae)

for large ¢. It can be shown to have limiting forms analogous to the normal
and Poisson limits of the binomial distribution, with a peak at the unique root
sp of s = A\c,. By varying A we can scan H, with this ‘““window” and deduce its
asymptotic behavior. The range 0 < A < 1 ensures that T,(\) is positive, but
X can be allowed to exceed unity provided T,(\) remains positive near the
root sp.

We shall consider only the normal limiting form. Assume ¢ and p are large
and write z = s/¢, dz = 1/¢, ¢(2) = ¢, T:()) = T'(z, \)dz. If neither znor 1 — 2
is small, Stirling’s approximation leads to

i £ JU2ac(e) 8 1 — Ae(z) JE—2
(5.4) TN ~ | 272(1 — 2)_ l: 2 :I [ 1—2z ]

o] fo - =) ey

terms involving}

I T T VO P Vi)
- —_— P — o _I_ hlgher powers
| 272(1 — 2) 2z(1 — 2) of 2 — Ae(2)

The maximum of T'(z, A) is at the unique root zy of 2 — Ac(2) = 0, and it is
shown in [4] that there are no other maxima. Near z, we can write z — Ac(2) =
(z — 20)[1 — Ae'(z0)], and because z — 2 is O(£'/2) over its effective range, we
get the normal approximation

g 2 £[1 — A'(20)]2 .
65 16N~ g | oo { LT €~ =7}
where
(5.6) 20 = )\C(Zo)‘

If it can now be assumed that H(z) = H;, varies slowly with z near z, then
(5.2) approximates to

(5.7) 1~ L‘ H() T(z, Ndz ~ H(z) ﬁ) ' Pz, Nde
~ H(z0)/[1 — Nc'(20)] = H(20)/[1 — 20¢' (20)/¢(20)].

Hence,

(5.8) H(@) ~1— 2 (2)/c(z),

provided z is a possible root of (5.6) at which (5.5) holds. In terms of s, we have
¢'(2)/c(z) = —¢&/(p + 8), and we arrive at the approximation

(5.9) Ho~14+s/(p+s)=2—p/(p+9).

The result is, of course, suggested rather than established by this kind of
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reasoning. It depends on the assumption that H(z) varies slowly, and we would
expect it to fail for large values of s corresponding to roots for which A causes
T.(\) to oscillate. Also, small values of s have been excluded by the argument.
Nevertheless, calculations show that the approximation is good for values of
s up to about p (see table I). It should therefore provide an approximation for
p(x|, 1, p) when ¢ is less than the threshold p.

TABLE I

Exact AND APPROXIMATE VALUES H, FOR p = 20
VARIATION OF K, WITH s

8 H, 1+s / (p + 8) K,
0 1.0000 1.0000 1.0000
1 1.0500 1.0476 —21.0000
2 1.0948 1.0909 109.4762
3 1.1352 1.1304 —336.3698
4 1.1721 1.1667 732.5702
5 1.2059 1.2000 —1234.8024
6 1.2369 1.2308 1696.7042
7 1.2655 1.2593 —1966.9936
8 1.2921 1.2857 1971.5763
9 1.3168 1.3103 —1740.1758
10 1.3397 1.3333 1371.8941
11 1.3612 1.3548 —977.0948
12 1.3813 1.3750 634.5692
13 1.4002 1.3939 —378.7168
14 1.4179 1.4118 209.0655
15 1.4347 1.4286 —107.3579
16 1.4504 1.4444 51.5285
17 1.4655 1.4595 —23.2195
18 1.4792 1.4737 9.8550
19 1.4938 1.4872 —3.9585
20 1.5028 1.5000 1.5028
21 1.5268 1.5122 —0.5480
22 1.4979 1.5238 0.1840
23 1.6522 1.5349 —0.0664
24 1.1344 1.5455 0.0143
25 3.1684 1.5556 —0.0120
26 —4.8683 1.5652 —0.0053
27 28.2780 1.5745 —0.0086
28 —112.890 1.5833 —0.0091
29 508.531 1.5918 —0.0106
30 —2314.03 1.6000 —0.0121
31 10901.2 1.6079 —0.0137
32 —52810.9 1.6154 —0.0155
33 263176 1.6226 —0.0175
34 — 1347561 1.6296 —0.0197
35 7084284 1.6364 —0.0221

Let us substitute (5.8) in the right side of (4.5) to see how nearly it is satis-
fied for £ > 0. (It is exact for £ = 0). We have
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o0 %o () ) ~ 5 o ([ 65) - )"

- e ) @ -
(1 — e vir)ke~rdu

- [ e e

— (/& + &/p)ut/pt + - - -] du.

The expansion within the integrand is convergent for small enough %, and
termwise integration yields an asymptotic expansion in powers of p~! for fixed
¢ The term in p—¢ vanishes and the leading term is

(5.11) —£Q@E)!/pH(E - DL
For large p this is small even at £ = 1. As ¢ increases it becomes approximately
(5.12) — [pe?/8(2)12](4/pe)*+2

which decreases to a minimum at about § = p/4. It does not become appreciable
again until ¢ approaches pe/4 after which it rapidly becomes large. So at least
for ¢ < pe/4 one can with some confidence insert (5.9) into (4.4) and obtain in
the same way,

613 PO P ~ T =T [) [2utrt — ubhr/(E + )]

&+
(1 — e ¥o)ke~du
7(2£ + 9 — ! .
~E= T 2 O(p ).
E+mre 1O
Then from (4.3) we get for values of ¢ below the threshold p,

s+ 26 — 2z + 9 — 1)!
(5.14) pumm»~@13wmﬂ6)“@_i+ﬂn)

= npt (E)(2w+n— 1!
(p+E&—wyt\w/ (w+n)!

in terms of the number w of new cases. Since £ is large, a further approximation
lIeads to the result

o et 2w 4 — DI
P H+ o wilw + !

which is the solution for the birth and death process proposed by Bartlett and
exploited by Whittle and Kendall, having birth rate £, death rate p, and whose
mean is given by the deterministic approximation (2.3).

(5.15)
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6. Approximations above the threshold

To investigate the range of ¢ above the threshold p, it is necessary to study
the behavior of H, at values of s beyond those which can be reached by the
previous method. It has been mentioned that H, begins to oscillate violently
when s exceeds a certain value. This suggests that the following transformation
of (5.2) will be useful for such values of s. Write A = —»/(1 — »), and

(6.1) H, = (=)[(1 = ¢)*/ci]Ks = (—)*(s/p)°K..

Then, (5.2) becomes

(6.2) 1 =»t= io K, (i) (1 — )] [1 — »(1 — c)]E.

We could now try using the previous technique with 7',(\) replaced by
(63) v.6) = () bt = et = vt = e,

which has peaks at the roots of

(6.4) s = vE(l — ¢;) = vst/(p + 3).

The lower root s = 0 is irrelevant because we are only interested in using (6.2)
for large values of s. The upper root is s, = v — p, and by varying » over a
suitable range we could examine the behavior of K,, provided it can be assumed
to vary slowly (see table I), after substituting the known approximation (5.9)
in (6.1) and (6.2) to cover the lower range of s.

We shall adopt an approach which is based on this idea but is rather more
direct for the present problem. Let

(6.5) H, =1+ s/(p+ ) + (—)(s/p)’Ls.

We have seen that the effect of L, can be ignored at least for s < pe/4. On
substituting (6.5) in (4.5), we get

(6.6) -0 ~% (1+55) () G5)

: E\(_s Y(_r )5“ '
+sz=:oL‘ <8> (p +8> (p + s
= A + B,
say. The second term B can be expressed as Y L,U,(1). As before, put z = s/¢
and U,(1) = U(z, 1)dz. The upper root of (6.4) is s = £ — p and provided this is
far from zero, U(z, 1) will have an isolated peak at zo = 1 — p/& near which
6.7) U, 1) ~ [£/2m20(1 — 20)]V2 exp{—£[1 + ¢/(20)]%(z — 20)*/220(1 — 20)}.

Assuming that L, = L(z) varies slowly near z,, we can infer that

(6.8) B ~ L(z0)/[1 + ¢(20)] = pL¢,/(§ — p).
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Consider first the case where £ is much greater than p which is itself large.
Under these conditions there is a remarkably simple approximation for p(z|t,
n, p) in the region of large epidemics. The terms in A die away rapidly and
their sum approximates to

(6.9) A~ io (=& ¥r)r/s! = exp (—gem ).
Hence,
(6.10) pLep/(E — p) ~ —exp (—&e¥r).

The formulae for p(0|¢, 9, p) corresponding to (6.6) is
(6.11) Ol m, ) ~ 2, (1+ b\
' PO 2, # p+8)( )()<p+9>

£ E s s ) =5ty
+.§0L“<8>(p+8> <p+8) '

Suppose that 5 is small. Compared with (6.6), to the order of approximation
considered the effect of the extra factor [p/(p + s)]” is to leave the first term
unaltered and to multiply the second term by [p/(p + s0)]" = (p/£)". It follows
that

(6.12) p(0[§, n, p) ~ [L — (p/£)"] exp (—Ee~t).

Then from (4.3) we obtain, for small values of z,

6.13) palt, n, ») ~ [1 — (/9] EC exp (—geer).

In other words, when the threshold is large but the population size is much
larger, the distribution of the number remaining uninfected in a large epidemic has
approrimately the Poisson form with the deterministic mean ge ¢

This could perhaps have been conjectured from (4.3) on the plausible sup-
position that p(0|¢ — z, n, p 4 z) changes slowly with 2 when x is small and £
is far above the threshold p. It is a good approximation for large values of £/p,
but otherwise it is rather a crude fit. One feels that there must be a direct
argument in terms of the epidemic process itself to explain this Poissonlike
behavior, just as the approximating birth and death process explains the be-
havior for small epidemics.

At the other end of the distribution near z = £, (5.14) or (5.15) provides a
good approximation. Notice that (5.15) can also be expressed as

7p¥Et Qw4+ — 1!
(614) p~ (P/E)" (p + £)2w+q wl(w + 7’)1

in accordance with the point of view adopted by Kendall and Whittle, (p/£)"
being the probability that a large epidemic will not develop.
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7. A more refined approximation

When ¢ is not much larger than p the argument of the previous section breaks
down principally because the peak of U(z, 1) at 1 — p/# is no longer sufficiently
isolated from the one at z = 0, and the overlap begins to matter near the tail of
the distribution when § — x approaches p + . Provided this does not happen,
we can still improve the previous approximation considerably by looking again
at the exact expression for the first term of (6.6) which is, from (5.10),

(7.1) 4= @}T)EL” w12 — u/E)(1 — e~vP)tedu
gt ® e e
=(ET1)!]; 0812 — 0)(1 — e*¥r)te~Er dy,

TABLE II

DisTRIBUTION OF THE FINAL NUMBER z OF UNINFECTED
p is exact; pi is from (7.4); pe is from (6.13);
only the lower end of the distribution is tabulated.

£ = 1000 =1 p = 200 £ = 100 =1 p =25
Exact Best Fit Poisson Exact Best Fit Poisson
z P D P2 4 21 Ds
0 .00144 .00144 .00095 .13363 13341 12012
1 .00821 .00820 .00639 .19039 .18991 22001
2 .02416 .02413 .02152 .16379 .16321 20148
3 .04889 .04882 .04834 11187 11134 .12303
4 .07646 .07636 .08142 06741 .06700 .05633
5 .09857 .09843 .10972 03781 .03752 102063
6 .10906 .10890 12322 .02036 .02017 .00630
7 .10649 .10632 .11860 .01073 .01061 .00165
8 .09364 .09349 .09989 .00561 00553 .00031
9 07532 .07520 07479 .00293 .00288 .00008
10 .05609 .05599 .05039 .00154 .00151 .00001
11 .03905 .03898 .03087 .00082 .00080 —
12 .02562 .02557 .01733 .00044 .00043
13 .01595 .01592 .00898 .00024 .00023
14 .00947 .00945 .00432 .00013 00013
15 .00539 .00538 .00194 .00008 .00007
16 .00296 .00295 .00082 .00003 .00004
17 00157 .00156 .00032 .00002 .00002
18 .00081 .00080 .00012 .00001 .00001
19 .00040 .00040 .00004 .00001 .00001
20 .00020 .00020 .00001 — .00001
21 .00009 .00009 .00001 _
22 .00004 .00004 —_
23 .00002 .00002 —_
24 .00001 .00001 e




292 FIFTH BERKELEY SYMPOSIUM: DANIELS

Applying the Laplace method of approximation to the integral, we get
(2 — vo)vﬁei(l—vo)(l — e—WE/P)E

(7.2) A~ T = DA T g — 1 T 0
where
73) etle — 1 = (w/p)/ (0 — 1).

(When £/p is large, v, ~ 1 and this reduces to (6.9)). Since 5 is small, the effect
on A4 of the extra factor [p/(p + s)]7in (6.11) is to multiply 4 by vj to the same
order of approximation. By the previous argument, we then get for large epi-
demics

E—ztg n

a4 plelgn e ~(2) (j) [0 - (5E2) s & = 2,0+ ),
where v satisfies (7.3) with £ — x for ¢ and p 4+ z for p. Table II shows (7.4)
to be a remarkably good fit even for values as low as p = 25, £ = 100. When
p = 50, £ = 100 the fit is still found to be good for small values of z but it
begins to deteriorate in the tail of the distribution because of the overlap effect
mentioned. There seems to be no simple way of allowing for this with the
present technique.

From the practical point of view, agreement to such a high order of accuracy
is not particularly important because the underlying model is itself very much
idealized, and exact computations can in any case be carried out by computer
on the original backward or forward equations. But it does give one considerable
confidence in the method used to arrive at the approximations.

I am much indebted to Mr. R. L. Holder and Dr. V. D. Barnett for calcula-
tions on our English Electric KDF.9. computer which have sustained me
throughout the work, and in particular for the computations of tables I and I1I.
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