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1. Introduction

At the present time, the exponential law is the fundamental law used in
reliability theory. The popularity of this law is explained principally by the
fact that almost all problems occurring in reliability theory are solved incom-
parably more simply if it is assumed that all the random variables in the problem
are distributed according to an exponential law. The same problems for arbi-
trary laws are either not solved in closed form, or lead to formulas which are
awkward and not readily usable.
On the other hand, it is known that the random variables used in reliability

(time of faultless operation, recovery time, time to find the imperfection, and
so on) have a distribution radically different from the exponential distribution,
for many systems and elements. In these cases the solutions obtained under the
assumption that all the laws are exponential will not describe the processes we
are interested in as accurately as desired. How does one get out of this blind
alley?

In the first place, methods worked out in similar disciplines, principally in
queueing theory and renewal theory, methods which permit the solution of
problems for cases when part of or even all the distribution laws are arbitrary,
may be used in reliability theory. Unfortunately, the class of such problems is
quite narrow.
Another very promising direction is to search for approximate formulas in the

proofs of any limit theorems from which other approximate formulas may, in
turn, be obtained. Thus, for example, it can be proved that a large number of
rarely recurring events generate a Poisson flow, and therefore, the time prior
to the first appearance of an event is distributed according to an exponential
law. Here it should also be noted that as a rule, a rigorous proof of such limit
theorems requires great efforts.
The third possible direction, to one aspect of which this paper is devoted, is

that some natural physical conditions may be imposed on the distribution laws
encountered in reliability, and estimates for the different reliability character-
istics may be sought in the given class of laws.

2. The hypothesis of aging

As is known, the exponential distribution of the time of faultless operation of
an element has a simple physical meaning-the probability of failure of such
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an element in a given time interval is independent of how much time the element
has spent working prior to this, but depends only on the length of the interval.
(By the word "element," we shall understand any unit which is considered as
a single whole, independently of the reliability of its component parts.) In other
words, the reliability of the element does not change with time; the element
does not age. Analytically, this is expressed by the fact that the local reliabil-
ity characteristic, the hazard rate, is constant for an exponential law
X(t) = -P'(t)/P(t) = X = const. where P(t) is the probability of faultless
operation during the time t. It is more natural physically to assume that the
reliability of the element can only decrease with time.

In conformity with this, let us introduce the following definition. An element
is said to be an aging element if its hazard rate increases monotonely (in the
nonstrict sense): that is, for any t1 and t2, (O < tl < t2),

(1) X(1) _ X(t2).
If the derivative V'(t) exists, this condition may be rewritten thus: V'(t) 2 0.
Henceforth, for convenience, we shall speak of an "aging random variable,"
and "aging law," as well as of an "aging element." Apparently the majority of
elements are aging elements. This is indicated by the results of numerous tests
conducted on elements of various types. It is true for many elements that the
hazard rate is initially high. However, this does not contradict the hypothesis
of aging, but only says that the batch of tested elements was not homogeneous;
there was a group of defective items in it which failed in the initial period of the
test and thereby distorted the resulting hazard rate curve.
The fact that almost all laws used in reliability theory are aging laws is an

important argument in favor of the hypothesis of aging. Let us show this.
(a) The Weibull law P(t) = e-xta is an aging law for a > 1, since X(t) = aXtl-1

increases monotonely. In particular, the aging law for a = 1 becomes the
exponential law.

(b) The normal law

(2) P(t) c Tg-eOe
(the constant c is determined by the condition that P(O) = 1). The hazard
rate X(t) equals

(3) X(t) = e,

In order to prove that the normal law is an aging law, let us find the deriva-
tive V'(t):

(4) e'(t) 1 r_e_(______ -
k(t) ff |e-222dxa|
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Let us introduce a simple inequality. If z > 0, then

(5) | e-2 dx = - d[-e-] < d(-e-lx') =- e-

Hence, it follows that the square bracket in equality (4) is positive for t > To.
If t _ To, then it is all the more positive. Thus X(t) > 0, and the normal law
is an aging law.

(c) The gamma distribution

(6) P(t) = f ) e-x dx.

Let us show that this is an aging law for a > 1:

(7) X(t) = Xt eX _ _ _ __ _ _ _ _ _

xa-1 e-x dx | a(x1) e-(x-xt) dx

xtLet us make the change of variable x =Xt + z in the integral. Then

(8) x(t)== X
fo (i + ez dz

from which it is seen that for a > 1 the integral decreases monotonely as t
increases, and the whole fraction increases monotonely. Thus, the gamma dis-
tribution is an aging distribution.

3. Operation on aging variables

Some operations on aging variables again lead to aging variables.
(a) If t and q are independent aging variables, then r = min (, 7) is an

aging variable.
Let Pi(t) = P{t > t}, P2(t) = P{77 > t}. Then

(9) P(t) = P{f > t} = Pl(t)-P2(t).
Let us express the probabilities Pi(t), P2(t), and P(t) in terms of their hazard

rate

Pi(t) = exp {-f X1(t) dt},

(10) P2(t) = exp {-f X2(t) dt},

P(t) = exp{f0 X(t) dt}.

It then follows from equality (9) that X(t) = Al(t) + X2(t), and since X1(t) and
X2(t) increase monotonely, their sum X(t) also increases monotonely, that is,
r is an aging variable. From this property it follows by induction that the
minimum of any number of independent aging variables is an aging variable.
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This property has a simple physical interpretation. If a system consisting
of independent elements operates up to the failure of the first of its elements,
then the time of its faultless operation is the minimum of the times of faultless
operation of the elements. Hence it follows that if all the elements in a system
are aging elements, the system itself, considered as a single element, is an
aging element.

(b) If ti, t2, * * * are independent, identically distributed aging variables,
then 1 = max (Q1, ;2, .* * * t,) is an aging variable.

Let F(t) = P{ ,k < t}, k = 1, 2, , n, and (p(t) = P{ 7 < t}. Then
,p(t) = Fn(t). Since the tk are aging,

(11) '(t) = | F'(t) ' = (1-F)F" + F'2>O11 - F(t) - 1 F)2
or (1 - F)F" + F'2 = 0.

In order to show that v is an aging variable, it is necessary to prove the in-
equality (1 - (p)p" + S'2 > 0. Let us transform the left side of this inequality:

(12) (1 - q')'p" + p'2
= (1 - Fn)[n(n - l)Fn-2F'2 + nFn-'F"] + n2F2n-2F/2

_ [n(n - 1)Fn-2 + nF2n-2]F'2 - (1 + F + - + Fn-1)nFn-IF/2

= [1-F+1-F2+ +1-F-' +(n 1)Fn]nFn-2F'2 > 0.

Thus the variable q is aging. Let us note that this property is generally untrue
for nonidentically distributed variables {k-
The proved property also has a simple physical meaning. If n identical ele-

ments are connected in parallel so that the failure of this whole group sets in
when the last of the n elements fails, the lifetime of such a group is then equal
to the maximum of the lifetimes of its elements. Hence, if all the elements in
the group are aging elements, then the whole group, considered as a single
element, will also be aging. In brief, a hot standby consisting of aging elements
is itself an aging element.

(c) The sum of aging variables is an aging variable [2]. This property has
the following interpretation: if all elements in a cold standby are aging elements,
the standby group is itself aging.

Properties (a), (b), and (c) lead us to the following deduction. A system with
hot and cold standbys in which all the elements are aging elements, is itself an
aging element.

(d) Let us consider the flow of failures of an element which at the time of
its failure instantly and completely recovers every time. Such a flow is called
a renewal flow. In practice it is often important to know the probability that
an element will operate faultlessly in a time interval (t, t + T).

If 77t denotes the time which has passed from time t to the first failure, then
the probability of faultless operation Pt(T) in the time (t, t + T) will equal
Pt(T) = P{ti > T}-
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It may be shown that as t -X o the variable t has the limit distribution

(13) lim P Jt7 > T} = Pf > T} [IT- F(x)] dx-

Here F(x) is the distribution law of the time of faultless operation, and To is
the mean time of faultless operation of the element.

Let us designate the variable I as the residual time of faultless operation of
the element. Let us prove that if an element is aging, the residual time 17 is an
aging variable.

Let p(t) = (1/To) f' [1 - F(x)] dx denote the distribution law for v. Let
X(t) and XA(t) denote the element hazard rate and the residual time hazard rate:

(14) x(t) 1F(t) 1(t) (t) L 1 - F(t)1 - F(t)' 1 P(t) - [1 - F(x)] dx

Furthermore, we have the inequalities

(15)
1 - F(t) = j F'(x) dx = Lo X(x)[1 - F(x)] dx > X(t) f [1 F(x)] dx,

from which it follows that Xi1(t) _ X(t).
Now, let us evaluate the logarithmic derivative

(16) X~(t==_X1 - Ft) __tF'(_) _
XI (t) [1 - F(x)] dx 1 - F(t) Xl(t)-A(t) > 0;

that is, M1(t) > 0, and therefore v is an aging variable. It will be shown below
how to use this property to estimate p(t), the distribution function of the
residual time.

4. Estimate of the reliability of aging elements

We now show how to use the hypothesis of aging to estimate various relia-
bility parameters. The general meaning of all the estimates presented below is
the following: many equalities connecting the reliability parameters of elements
subject to an exponential law turn into appropriate inequalities in the case of
an aging law. These inequalities indeed yield an estimate of the reliability. It is
essential to note in this connection that the reliability parameters are estimated
just from that aspect which the meaning of the problem requires. Thus, for
example, it is natural to estimate the failure probability from above, and the
mean time of faultless operation and the probability of faultless operation from
below.

(a) Let us first consider the simplest of such problems: to give a lower bound
for P(t), the probability of faultless operation of an aging element, if the mean
time of faultless operation To is known. Let us introduce the following notation.
Let A(t) = fo X(x) dx; then P(t) = e-A(t), and the mean time
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(17) To = fo P(t) dt = |o e-A(t) dt.

Since A"(t) = X'(t) _ 0, the function A(t) is convex downward. Let (P(x) denote
the inverse function to A(t), and let us make the change of variable x = A(t),
t = *p(x) in the integral

(18) To = e-x d~(x) = fj *p(x) e-x dx

(the second integral is obtained by integration by parts).
The function so(x) is convex upward, and hence, its graph lies below any

tangent. In particular, S(x) < so(l) + p'(1)(x - 1). From the inequality it fol-
lows that

(19) To < jf [so(1) + '(1) (x - 1)] e- dx = p(1),
and this is equivalent to the inequality A(To) _ 1.
On the other hand, any arc of the graph of A(t) lies below its chord. In par-

ticular, for t, < t2,

(20) A(t,) - t( ) t,

Hence, letting t1 = t and t2 = To, and taking into account the inequality derived
above, we obtain

(21) A(t) < A(To° t _ t
To To

from which follows the final estimate

(22) P(t) = exp {-A(t)} > exp (-t/To) for t _ To.
This inequality has a simple meaning, if we know the mean lifetime of an
aging element and we calculate the probability of faultless operation by an
exponential law, we thereby underestimate the reliability as compared with
the true reliability. It is true that inequality (22) is valid only for t < To but,
as a rule, this condition is satisfied.

(b) It follows from inequality (20) that

(23) P(tl) >_ [P(t2)]t1/t2.
It is convenient to use this inequality when we test for a large time t2, but we
desire to estimate the reliability in a lesser time ti.

If the estimate of the probability of faultless operation in time t2 is known,
as a result of testing, to be P(t2) _ p, then it follows at once from inequality (23)
that the estimate of faultless operation in time t1 is

(23') P(t1) _ (p)t/t".

Note that in the general case when no restrictions are imposed on the func-
tion P(t) the estimate of P(t1) coincides with the estimate of P(t2) because,
theoretically, the case P(t1) = P(t2) is possible. Hence, inequality (23') gives a
large improvement in the reliability estimate.
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(c) Let us prove some inequalities for the moments of aging random vari-
ables. Let

(24) m = (n ==0 t d[1 - e-A(t)] = Jo'"n(X) e-x dx, n = 1, 2,

where V(x) is the inverse function of A(t). In particular,

(25) ml= To= f0 %(x) e-z dx; a2 = Dt = m2-m'.

Let us show that the inequality
(26) mn < nmn_1m1
is valid for any n. To do this, let us consider the difference

(27) nm,,_1m1- mn = J0 (pn-I(x)[nmi - p(x)]e-x dx.

If 50(x) < nmm for all x, then inequality (26) is satisfied. Otherwise, a poinit xi
is found for which ,p(x1) = nmi.

Since so(x) > (,p(xl)/xl)x for x < xi and p(x) _ (,p(xl)/xl)x for x > xl, then

(28) f .pn-1(x)[nmI - .p(x)]e- dx > P(X) J xn-l[nm -*p(x)]e-z dx

Xl |nrl (n! Xxn-l) p(x) e-x dx.

Let x2 be the point at which n! = X2-1. Then, as above, we have

(29) nm_1mn1 - mn _ |*ox1) f (n! -Xn-1)p(x) ez dx

= o(Xl) In
2

____ | (n! Xn-')x e- dx = 0.

Inequality (26) is proved. It may also be written as

1>__ > > Mn >(30) m *2 ! m 3!

Hence, in particular, we obtain
(31) DS, = a2 < T2= (Mt)2
This latter inequality may be used to estimate the mean time of faultless oper-
ation of an aging element.
Suppose that we test n identical elements until they all fail. Let tl, t2, t,

denote the lifetimes of these elements, and let I be their arithmetic mean:
ln

(32) = Et.
n i=1

For large n the quantity
(33) n



320 FIFTH BERKELEY SYMPOSIUM: SOLOVIEV

is distributed according to a normal law, with sufficient accuracy. Hence, with
probability 1 - a it will be included within the limits

(34) -x < ToTo ¶ <Xa

where x. is determined from normal law tables by the condition

1 X.a

(35) ___ x. = 1- a.But then, by virtue of inequality (31), the inequality

(36) t-- To <

will be satisfied with even greater probability. Hence,

(37) x < To <
1+ X, 1--

We have obtained a confidence interval for the mean time To.

5. Aging elements and the theory of standbys

(a) Hot standby. All the elements in a hot standby operate in the same
regime and, hence, have the same reliability. If p(t) denotes the probability of
faultless operation of a single element in the time t, and Pn(t) the probability
of faultless operation of the standby group, then, as is known,

(38) Pn(t) = 1 - [1 - p(t)]n
The mean time of faultless operation of the standby group is expressed by the
integral
(39) Tn = fo Pn(t) dt.

This formula is not convenient for practical use. When the elements forming
the standby group are aging elements, we may obtain a very simple estimate
for the mean time T.. Let us write the quantity Tn as

(40) Tn = f* [1- (1- e-A())n] dt = f, [1 - (1 - ez)n]d <(x)

where po(x) is the function inverse to A(t). Integrating by parts we obtain

(41) Tn = n f|0 e- (1 -e-z)n- ps(x) dx.

Since po(x) is convex upward, then so(x) _ s(a) + q,'(a)(x - a) for any a > 0.
Therefore,

(42) Tn < n ft e-z(l- e-z)n-l[,(a) + p'(a)(x - a)] dx.
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Integrating by parts in the reverse order, we find

(43) T. < (p(a) - ap'(a) + 9'(a) f [1 - (1 - e-x)n] dx

p(a) + (p'(a) ( + I + * * + n-a)

Leta = 1 + a +* + I/n. Then Tn < p(1+ I + + I/n) from which
one obtains A(Tn) < 1 + 2 + * + 1/n and

(44) P(Tn) = e-A(Tn) > exp{-(1 + I + +

Furthermore, it may be shown that 1 + 2 + * + (1/n) < In (n + 1) + c
where c = 0.57712 ... is the Euler constant. Hence it follows that

(45) P(T.) > n + 0.56

In order to appreciate how much more accurate this estimate is, let us try to
estimate Tn from the other side. To do this, let us assume in addition that the
tangent to the graph of P(t) at the point where P(t) = 1/n + 1, lies below the
graph. This assumption is natural enough. Let q(t) = 1 - p(t) and let #(x) be
the inverse function to q(t). According to this condition, the tangent to the
graph of #,(x) at the point a = n/n + 1 lies below the graph. Thus,

(46) T. = f [1 - q"(t)] dt = f (1 -xn)do(x) = n f Xn-1(x) dx

2 n x"-1[4,(a) + #'(a)(x - a)] dx

= +(a) - a+'(a) + n+ +(a) = 41 (n

hence, q(Tn) > (n/n + 1) or P(Tn) < (1/n + 1). Combining this inequality
with inequality (45) we obtain

0.56 147) 0+1< P(Tn) <n+
This double inequality shows that the simple approximate formula

(48) P(Tn) = 1=n+1
may be used to estimate the mean time Tn. Its accuracy is perfectly adequate
if it is taken into account that the mean time is determined with great error,
even in the exact integral formula, since values of the function p(t) for large
times t are ordinarily known very roughly. However, these values for large t's
are the primary contributors to the determination of Tn.

(b) Cold standby. In the case of a cold standby, when the standby elements
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do not age and may not fail prior to the time of their connection, the lifetime
of the whole standby group is the sum of the independent lifetimes of all the
elements. Hence, the mean time Tn is determined trivially as Tn = nTo, where
To is the mean lifetime of a single element.
The probability of faultless operation of the standby group is expressed in a

much more complicated way. If q(t) denotes the failure probability of a single
element in the time t, and Qn(t) the failure probability of the standby group,
this latter probability is then determined from the recursion relation

(49) Qn(t) = fot Qn-_(t - r)dq(&), Ql(t) = q(t).
As is seen, in order to determine the probability Qn(t), it is necessary to perform
a sequence of several integrations. Moreover, we should know the function q(t)
in the whole range (0, t). It turns out that for aging elements it is possible to
obtain a convenient estimate of Qn(t), without these disadvantages. To do this
let us use the almost obvious result [3]: Let q(r) be a monotonely increasing
function such that q(r) _ 2(r) for r _ t. If Qn(r) is a function determined by
formula (49) with q(T) replacing q(T), then Qn(T) _ Qn(r) for T _ t. Since A(r)
is convex downward for aging elements, then

(50) A(T) < A(t) for all r < t,
and therefore,
(51) 2(T) = 1 - eA(r) < 1 - (/t)A(t)=

However,

(52) Q. (T)

= 1- {1 + [A(t)] + A(t)] + * + (n- 1)! t)] e-

Hence for r = t we obtain

(53) Qn(t) < 1- [1 + A(t) + 2!A2(t) + + (n 1)! An-1(t)]e A(t)-

This estimate is simple and convenient. Moreover, it depends only on the value
of the failure probability q(t) at the terminal time t.

6. Estimates for aging elements in renewal theory

Let us consider the renewal process in which the spacing between adjacent
recovery times is an aging random variable distributed according to the law F(t).
As is known [1], the renewal function is expressed by the series

(54) H(t) = F(t) + F2(t) + * * * + Fn(t) + ...

where Fn(t) is the convolution of n identical laws F(t). Then, as has already
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been shown above, F(r) : 1 - exp {-(r/t)A(t)} for r < t, and therefore,
H(r) _ (r/t)A(t) and
(55) H (t) < A(t).
It is convenient to use this estimate for small t. For large t it is possible to use
the estimate
(56) T-1 < H(t)-T-
which is easily obtained from the following argument.

If B(t) _ F(t) and A (t) is the solution of the equation

(57) A(t) = B(t) + fo A(t - x)dF(x),

then H(t) _ A (t). In order to use this to derive inequality (56), let us use the
fact (section 3), that the hazard rate for the residual time Xj(t) increases mono-
tonely. Therefore,

(58) Al1(t) - 1 - F(t) >-ju [1-F(x)]dx °
from which follows

(59) F(t) -Tf [1 - F(x)] dx = B(t).

However, as is easy to verify, A (t) = t/To will be the solution of equation (57),
and hence, 1I(t) _ t/To. As follows from Wald's identity, the left side of in-
equality (56) is always true.

In conclusion, we obtain an estimate for the distribution law of the residual
time

(60) (t) =T [1 - F(x)] dx.

Since the function (p(t) is convex upward, then V(t) _ tITo. If the law F(t) is
an aging law, then jo(t) is also an aging law, and
(61)

p(t) = 1-exp{-f IX(x) dx} > 1 - exp {-tXj (0)} = 1 - exp {-t/To}.

Hence, for aging elements the two-sided inequality
(62) 1 - exp {-t/To} _ .p(t) _ t/To

is valid, from which follows, in particular, that the error of the approximate
formula (p(t) - t/To does not exceed -(t/To)2.
The estimates presented in the paper for aging elements certainly do not

exhaust all estimates possible here. The purpose of the present work is to show
how useful the consideration of aging elements is in reliability theory.
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