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1. The specification of line processes

In recent papers [2], [3], I have discussed the spectral analysis of point
processes in one or more dimensions, showing that the degenerate character of
such processes does not prevent spectral analysis techniques, already familiar
with continuous processes being adapted to such processes. The question arises,
somewhat analogously as in the case of spectral or other distribution functions
themselves, whether other forms of degeneracy will be encountered in practice;
and, if so, what procedures are possible. One class of process which does arise
in various contexts is what I have termed a line process ([2], p. 295) in which the
points of a point process are replaced, in two or more dimensions, by lines. The
example given referred to a number of vehicles on a road, treated for simplicity
as points in a one-dimensional continuum, and thus at any instant as a point
process. If the points are considered at two instants of time we have a bivariate
point process, but if the points are plotted continuously over time as another
coordinate the process will consist of a number of lines. This example makes
two things clear. First, the specification of the process is partly optional, for
the same process is either a point process (in a coordinate z, say) developing
in time, or a “‘static”’ two-dimensional line process in z and the time coordinate ¢.
Such alternative representations are not exhaustive, for (as in dynamics) the
velocity % could also be included if convenient as an additional coordinate,
though of course this is not necessary, as u is always derivable in the other
specifications. Second, the lines in the line process need not be straight, as when
the vehicles are accelerating. Indeed, in any general mathematical specification
the lines might not even possess tangents at any point, as in a collection of
Brownian particles. We shall, however, for definiteness assume that derivatives
exist, as in our example. Moreover, as in the case of point processes, only partic-
ular classes of processes can be statistically analyzed by standard techniques.
In the case of point processes, spectral analysis requires stationarity (or the
equivalent property in more than one dimension). When discussing the spectral
analysis of line processes, we shall not only assume an appropriate stationarity
property, but shall also for simplicity consider processes consisting merely of
straight lines, though not necessarily of infinite extent. Such a process in two
dimensions is sometimes useful as an idealized representation of the fibers in a
sheet of paper.
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It should be noted (Bartlett, [1], [4]) that, whether or not the lines are
straight, the density functions for line processes corresponding to different
representations will satisfy various relations. For example, with the hest order
densities

fo(z, t) = E{d.N(z,t)} /dz,  fuz,t) = E{d.N(z, 1)} /dt,
(1.1) feulz, u, t) = E{d,.N(z, u, )} /dz du,
Jeu(@, u, t) = E{d.N(z, u, 1)} /dt du,

we have

(12) f.’t = [fx,u du; ft = /ft,u du, ft,u = |u|f:c,u-
When u = 0 for all possible «,

(13) ft = / ufz,u du = mfn

say,

(L4) w@fe = [findu = [ 0o du z W@,

whence u(f) = u(z), a result well known in the theory of traffic flow.

2. The spectra of line processes

In the case of point processes, their degeneracy implies that the correspouding
spectral functions must be defined in a suitably extended sense. A similar exten-
sion will be necessary for processes which are strictly line processes, though the
appropriate definition will depend on whether the lines are finite or infinite.
Elsewhere I have shown (Bartlett, [4], §6.52) that a (straight) line process
may conveniently be included as a degenerate example of the more general
process

@.1) X() = [ #s — 1) AN (s),

where N(s) is some point process and {£(r)} is a random function associated
with each point event of N(s) with the point as origin. The £(r) are in general
different realizations for each such point.

In the very special and purely random case of N(s) a Poisson process and
£(r) zero except on an infinite line of random orientation, we find f(w) varies
as 1/w, where f(w) is the (unstandardized) spectrum of X(r) and ? = w? + wj.
It is possible that direct measurement of the spectra of line (or near line) proc-
esses may be feasible in certain contexts; but in the analysis of line processes
by digital computation it seems convenient to make use of any alternative
representations to transform such a line process first to a convenient point
process, and then to analyze this point process. Let us list some theoretical
examples.
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(1) Inthe case of the purely random family of straight lines x cos 8 + y sin 6 =
p, the line process is equivalent to the Poisson point process in the infinite strip p
from — to «, and 6 from 0 to = (Kendall and Moran [5]).

(ii) For finite lines it is possible to think in terms of formula (2.1). Thus, if
the lines are of fixed length 2¢, we may consider the two-dimensional point
process of their centers, and an angle variable 6 from 0 to = representing slope.
(In the case of finite “arrows,” that is, lines with directions, 6 would vary from
0 to 2x.)

(iii) For finite lines of variable length 2L, there will be an additional random
variable L for each point. It is possible to think of L, or a transformation of it,
as introducing a further dimension to the point process; but in practice, as such
a point process would not in general be stationary even if the original process
were, it seems preferable to specify L merely as an ancillary variable. The same
procedure could apply to a set of particles (or vehicles) whose positions z and
velocities u were given at a single instant ¢ (or ¢ and » at a single position ),
giving rise to a one-dimensional point process with ancillary variable.

An interesting feature of the point process representations in (i) and (ii) is
that the point process is specified on a particular coordinate structure which
will affect its spectral function. Unlike p in (i) or r in (ii), 6 is an angle variable
with a Fourier series spectrum. The combined spectrum for p or r with 6 will
consequently be coefficients associated with a Fourier series, each coefficient
of which will have the form of a spectral function for p or r. (If the line process
were specified in three dimensions, the single angle variable § would be replaced
by two angles 8 and ¢ determining position on a unit sphere, with a corresponding
series of coefficients associated with expansions in spherical harmonics (see, for
example, Bartlett, [4], §6.53).

Another feature to notice is that the angle variable 8 will be uniform for a
completely random line process, but this does not apply to some transformed
variable such as the slope s = tan 6, for which the density is

(2.2) f(s) = }r I i ey

This raises the problem whether in some other example, such as the traffic
situation with vehicle velocities, there is any advantage in transforming the
ancillary variable to an angle variable by such a transformation as tan™!s, or
more generally tan! (s — s,). It might be worth exploring this possibility some-
what further, though the “nonstationarity” in general of the point process so
extended, even if the transformation is carefully chosen, seems to make the use
of spectral analysis less relevant with this device, as previously noted. It was
felt that a simpler and more empirical incorporation of the ancillary variable
in any spectral analysis was likely to be more informative, and the procedure
adopted is discussed below.
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3. The spectral analysis of line processes

The two numerical examples given for illustration will be

(a) an artificial, purely random, straight line process;

(b) a set of time instants at which vehicles passed a point on a road, together
with their velocities as values of an ancillary variable.

Example (a) was chosen as a line process for which the representation (i) above
was possible, as distinct from the more general representation (ii) which would
have meant a more complicated spectral analysis. Similarly, example (b), while
perhaps more immediately classifiable as a point rather than a line process, is
similar but simpler than the first point process representation mentioned in (iii)
for lines of variable length. However, the “periodogram’’ sums are defined below
for both one- or two-dimensional point process representations, with either one
angle variable 6 or one ancillary variable U. In the case of an angle variable
we write

(3.1) Jo(w) = \/;2; 2 et @Xetat),

T
where n is the number of points with (column) vector coordinates X, for
r=1,---,n and «' the (row) vector frequency (so that in two dimensions

@'X = wiT; + wx). In the case of an ancillary variable U, we consider the
somewhat more empirical sum

(3.2) Ju(w) = \/?L 2 e«% 30,

where 8U, stands for U, — U, U being the observed mean. For large n, the
sampling properties of Jy(w) will not be affected to the first order by the use
of U in place of the true mean E{U}. It seems convenient to measure U from
its mean, so that Jy(w) is zero if U does not vary; and thus, Jy(w) is kept as
distinct as possible from the unmodified sum J(w) (or Jo(w) in (3.1) above).

Corresponding to equation (3.1), there will be a spectral function of the
general form f(w, s) = a,(w), for s = 0,1, 2, ---. For example, in the case of
X, representing the centers of lines of constant length, with § measuring their
angle of direction (0 to 7), the assumption of independent 8 gives

(3.3) a(w) = 1 + f(w)E{e*®~"}
=1 +f(‘°) 53,0,

say, where 1 + f(w) is the spectral function for X (standardized to unity for
random X) and &, is zero for even s > 0, and 1 for s = 0. For odd s,
8.0 = 4/w2s2 In the simplified p, 8 representation for purely random lines of
infinite length, we may for convenience take the range 0 to « for p and 0 to 2«
for 8 (instead of —x to « for p and 0 to = for 6). In this case we then have
8.0 = O for all integers s except s = 0.

In an alternative extreme nonrandom case where 6 is constant, we should
have 8, in (2.5) equal to unity whatever s.
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Consider next the sum in (2.4), which we replace in theoretical studies by

(3.4) Jh(w) = \E Y 6w AT,

where AU, = U, — E(U,). Then for I(w) where Iy(w) = Jy(w)JF(w), and so
forth, we obtain

85) E{Iy(w)} = 72_,// e“2E{dN(x)AUx)dN (x + y)AU(x + 2)},

where N(x) is the point process for X, U(x) is U, at a point X, for which
dN(x) = 1, and the integration is over the sample region containing the X..
If AU, is independent of N(x), there is no contribution to the integral except
at z =0, and E{Iy(w)} — NeZ for all w > 0, where o = E{(AU,)?} and
E{dN(x)} = Xdx. More generally, we shall write

(3.6) E{dNAUE)IN(x + 2)AUX + 2)} = {Ao2d(z) + wm.(2)} dx dz.
If we write
3.7 E{dNX)IN(x + z)} — Ndxdz = {\(z) + u(2)} dx dz,

the second term on the right-hand side of equation (2.8) can rise to o2u(z) dx dz
in the extreme case where U, is perfectly correlated with U, for points X,, X,
contributing to u(z).

In order to examine further possibilities, let us consider the more general
extended process

(3.8) dM(x) = dN®)[1 + tAURX)],
where £ is an arbitrary (possibly complex-valued) coefficient. Then E {dM (x)} =
A dx, and for the complete covariance density ».(z) for dM (x), we obtain
(3.9 M1 + £*01)8(z) + »(2),
say, where
(3.10) »(z) dxdz = u(z) dxdz + £*E{AU(X)dN (x)dN (x + z)}

+ ¢E{AU(x + z2)dN@)AN (X + z)} + £ u.(z) dx dz.
To demonstrate the nature of these functions in a particular one-dimensional
clustering model, suppose AU in a cluster is associated with cluster size; for
example, with traffic data large clusters might well be associated with low
velocities if overtaking were difficult. For definiteness suppose the relation is
linear, so that
3.11) E(AUlr) = B[r — E@)],

where r 4+ 1 is the total cluster size; and suppose the residual AU — E{AU|r}
is otherwise correlated to extent p within a cluster. We find (see Bartlett, [2],
p. 266)

(3.12) »(zlr)
= EQALS() + 2fa(e) + -+ + thi(2] [1 + g5 aUAU" + (¢ + £9AU]I,
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where AU, AU’ are different AU in the same cluster, f.(2) is the rth convolution
density of the interval between consecutive vehicles in a cluster, and A, is the
average density of clusters. After substitution from (3.11) and

(3.13) E{AUAU'lr} = pv, + B2[r — E()]?,
where v, is the variance of AU given r, we finally obtain

B.14) »(2) = E.{A[fr(2) + 2fra(e) + -+ + 71(2)]
(1 + &*{ov. + B°[r — E(N]%} + B¢+ £)[r — E(N]}
where E, denotes averaging over r.

Two conclusions from this formula are

(i) if 8 in this model is zero, then v, = ¢2, and the second term in (3.6) becomes
pozu(z). In general, however, for 8 & 0, the relation of u,(2) to u(z) is more
complicated;

(i) if 8 = 0, no cross-spectral density terms (coefficients of £ and £*) arise,
but in general for 8 # 0 further information may be available from the cross-
spectrum of dN(x) and AU(z)dN(z). In particular, information on the sign
of 8 is only available from the cross-spectrum.

4, Analysis of example (a)

The data for the first example consisted of the 50 lines shown in figure 1,
with p from 0 to © and 8 from 0 to 2r coordinates given in table I. The latter

TABLE I

Dara ror First ExamMpLE

P 0 P [} P [} P ‘] P 0

245 2461 48.32  4.683 1240 0913 560 0.217 28.76  5.931
11.85 5.771 19.39  2.244 29.15 1.154 28.74  3.630 36.19 2.799
39.31 4.584 21.17  1.534 64.52  1.856 66.72 3.074 41.70  3.879
59.69  4.893 797  1.637 60.26  0.392 12.99  4.820 7.60  5.280
2348  0.017 27.03  4.223 62.76  0.484 10.63  0.582 43.59  3.436

12.86  0.557 47.14  0.000 30.92  3.261 21.31  1.443 54.86  4.962
16.56  3.737 48.12 0.883 44.03 4.573 26.77  0.671 37.16 0.173
26.76  5.110 4539  4.009 39.85  5.085 69.96  5.808 2691 0375
40.04  0.983 564  1.540 1240 1.346 67.00 5.945 3.10 2922
11.37  5.142 19.08  3.038 873 0.116 11.92  1.307 56.70  5.731

values were obtained by calculating tan—! (z/y) from a pair of independent
normal variables # and y (Tracts for Computers, No. 25), and the former con-
verted from uniformly distributed numbers in the range 0 to 100 (Tracts for
Computers, No. 24) by dividing by V2, thus ensuring that the 50 lines inter-

sected a circle of radius 502, and hence most of them a square of side 50 (two
did not, but were retained in the analysis).
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The values of I(w,) = J:(wy)J¥w,) were computed for w, = 2xp/50, for
p=1,---,100 and s = —5 to 5. Individual values are not reproduced, but
the frequency tables for each s are summarized in table 1I, and the cumulative
totals in steps of five at a time are given for each s in table II1. The distributions

Ficure 1

Fifty random straight lines, example (a).

in table II do not appear unreasonable, apart perhaps from rather more large
values in the row for s = 43 than would be expected. However, the overall
average of 2.10 is near to the theoretical average of 2, and the variation of the
averages for the different rows gives a x? of 17.86 with 10 d.f., which does not
reach significance at the P = 0.05 level, namely, 18.31.
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TABLE II

FrequeNcy TABLEs FOR [ (wp)

s 0—1—2—3—4—5—6—7— 8— 9— 10— 11— 12— 13— | Total | Avg.
—5 38 27 8 8 10 5 1 1 — 2 100 2.13
—4 34 34 9 9 6 4 1 1 1 — — 1 100 2.05
-3 42 19 16 10 4 4 3 1 — — 1 100 2.02
—2 48 20 16 4 6 2 2 1 1 100 1.75
—1 33 21 21 14 7 3 — 1 100 2.05

0 37 20 16 9 7 5 2 3 1 100 2.23

1 40 27 17 6 5 1 1 1 1 - — — 1 100 1.87

2 383 26 14 10 3 7 — 1 — 1 100 1.97

3 34 17 18 7 8 4 2 4 1 — 2 1 1 1 100 2.80

4 46 19 12 7 5 1 3 3 2 1 — — 1 100 2.15

5 37 30 10 8 7 2 2 — 2 2 100 2.08
Total | 427 260 157 92 68 38 17 17 9 6 3 2 3 1] 1100 2.10

TABLE III
CuMuLATIVE ToTALs FOR [s(wp)
s
—5 —4 -3 -2 —1 0 1 2 3 4 5
P

5 10.53 8.35 5.54 7.04 1140 11.70 20.10 14.30 4.57 5.44 14.71
10 14.20 20.19 2481 13.84 23.31 24.86 29.30 19.81 15.27 11.25 19.06
15 25.80 26.75 30.20 29.00 28.64 32.86 34.02 32.30 31.66 17.04 37.33
20 37.17 36.55 47.99 34.21 36.64 45.00 38.62 43.73 52.75 23.92 49.70
25 51.41 43.72 57.98 46.34 51.30 53.43 44.76 54.83 64.60 43.57 60.55
30 61.44 54.34 64.56 53.86 62.18 74.06 50.47 60.11 82.60 54.89 72.88
35 7447 70.34 77.05 69.67 71.09 93.65 63.37 74.19 94.60 62.39 83.56
40 79.80 78.26 86.95 79.10 77.66 113.73 82.24 81.65 101.56 69.54 89.82
45 91.53 85.55 102.11 91.29 92,41 119.56 90.28 92.65 115.84 82.60 95.16
50 98.60 97.96 106.78 101.22 104.06 127.50 97.43 100.77 128.70 92.38 102.75
55 114.21 109.46 114.71 106.56 117.71 133.22 101.91 117.09 150.60 102.36 108.14
60 132.66 118.35 123.11 110.21 124.75 137.89 108.77 128.00 161.34 113.60 116.44
65 149.30 124.26 131.74 118.23 133.14 152.02 116.66 132.39 177.77 123.27 131.33
70 161.41 136.98 134.87 129.59 143.25 165.56 125.30 141.16 186.68 141.00 140.25
75 169.66 141.40 142.71 133.22 149.72 178.63 139.83 147.72 196.05 144.57 147.57
80 175.98 151.98 148.83 147.80 154.85 187.68 151.08 158.99 205.04 151.73 163.17
85 179.24 158.56 158.28 154.95 162.52 193.53 159.82 171.73 221.66 163.22 174.84
90 198.19 173.82 179.20 161.56 171.00 208.09 168.45 185.72 232.34 169.44 179.83
95 205.22 185.45 191.41 168.87 179.08 212.70 174.06 194.17 263.28 193.32 185.15
100 212.99 203.37 197.22 175.80 196.08 216.69 183.64 198.01 272.95 211.30 203.38

5. Analysis of example (b)

The traffic data for the second example were kindly supplied to me by the
National Road Research Institute, Stockholm, and consisted of the time instants
in seconds of vehicles passing a fixed point in the northbound direction on a two
lane road (F4) between Stockholm and Uppsala on September 16, 1961. Velocity
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o ¢ 700
Times for first twelve vehicles, example (b),

100 260 €00
with velocities depicted by the slopes of the lines (arbitrary scale).

t
Ficure 2

measurements were only measured approximately in 10 km/hr group intervals.
This may preclude a very accurate study of spacing-speed relations, but should
be adequate for the type of spectral analysis described above. The entire series
was quite extensive, consisting of 1215 observations, in which five velocities
were missing. A series of 320 complete observations was chosen (the maximum
available was 325). The data are not reproduced here, but a graph of the first
twelve vehicle times and velocities is shown in figure 2. The results obtained
from this set were checked from another set of 320 observations, containing only

TABLE 1V

Brock ToTaLs oF 16 ForR Hp = U2l (w,) aAND H) = I5(w,)

1st Series 2nd Series

P H, H, H, H,
1-16 14367 651.8 19777 532.3
17-32 14985 614.0 17370 480.7
33-48 14534 434.0 14540 416.5
49-64 14980 371.8 13278 311.2
65-80 12273 319.7 15317 229.9
81-96 16133 384.2 11158 223.6
97-112 9231 226.4 8217 332.2
113-128 12085 429.8 9639 190.5
129-144 6915 331.1 5019 250.0
145-160 10455 370.4 9147 226.3
161-176 11107 223.1 7400 184.7
177-192 8363 317.9 7856 188.4
193-208 8667 282.4 7109 184.6
209-224 6718 370.5 8660 212.7
225-240 7030 347.8 9818 217.4
241-256 4031 320.8 4094 288.9
257272 8950 200.1 8659 218.7
273-289 5680 353.3 5484 190.5
289-304 5182 195.8 4823 146.1
305-320 6236 343.7 7160 153.4
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Ficure 3

Values of H, = U?I(w,) summed over blocks of 16 (1st series: continuous line;
2nd series: dotted line). The expected ultimate values are indicated by arrows.

one missing velocity observation, for which the near average value of 75 km/hr
was inserted.

In addition to the Jy(w,) of equation (3.2), a more standard point-spectrum
analysis was made from J(w,), or rather from UJ(w,), so that in addition to
I'v(w,) values were available of U2I(w,). The range of p taken was from 1 to 320,
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and block totals of 16 were recorded. For the first series, the value of U is, in
units of 5 km/hr, 14.77, so that the expected value of a block total of 16 in such
units is 14.772 X 2 X 16 = 6661 on the null hypothesis. The corresponding
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Ficure 4

Values of H, = Iy(w,) summed over blocks of 16 (Ist series: continuous line;
2nd series: dotted line). The expected ultimate values are indicated by arrows.

value on a random hypothesis for totals of I'y(w,) is 32¢Z, estimated to be in
the same units 32 X 6.87 = 219.8. The corresponding expected values for the
second sum are 32 X 14.842 = 7047 and 32 X 5.80 = 185.6. The actual values
obtained are given in table IV and figures 3 and 4. The significance of the rise
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FIGURE 5

Average of H, for both series (continuous line)
with similar average for H;, standardized
to same ultimate level (dotted line).
P = 0.05. Significance levels
(two sides) for any point are indicated.
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near the origin is clear from figure 5 which shows H, averaged over the two series,
with H, standardized to the same ultimate level, and P = 0.05 significance levels
(two sides, for each separate point).

6. Further discussion of results for example (b)

The results for I(w,) were expected to show a spectrum similar to the one
depicted for traffic data by Bartlett ([2], figure 1), and both series broadly
agree in this. In fact, while the average intervals between vehicles is somewhat
lower (12.35 secs for the first series and 10.63 secs for the second, compared
with 15.81 secs in the earlier example), the density has been standardized to
unity; the previous theoretical model, as specified in my 1963 paper [2], would
appear reasonably compatible with the present results. It is recalled that it
embodied a clustering process, with a modified geometric distribution for cluster
size (excluding the leading vehicle)

c, r =0,
1-a, r=12---,

with ¢ = 1/9, « = 2/3. A dominant feature of the spectrum is the ratio of its
value near o = 0 to its limiting value as w increases, this being equal to
o2 (1—a)2+cB—a

(6.2) mt T T—wdte—a
for the above model, where m and o2 are the mean and variance of r + 1. It will
be noticed that rather indirect information is provided on ¢ by formula (6.2).

The results for Iy(w,) are the more novel. The rise in Iy(w,) with I(w,), while
somewhat more irregular, is present for both series, and is consistent with an
anticipated correlation of velocities for vehicles in the same cluster. For the first
series the values of Iy(w,) seem to remain a little high on average compared
with the expected limit of 219.8 even for the larger values of w. In general, the
relation of Iy(w,) to I(w,) can be complicated (see formula (3.14)); but any
apparent persistence of Iy(w,) above its ultimate value for large w is not repeated
for the second series; and it was decided to consider, at least provisionally, the
simple clustering model where 8 is zero and velocity fluctuations within a
cluster had constant correlation p. The individual differences of I(w,) or Iy(w,)
from their ultimate values are of course subject to relatively large sampling
error. However, the ratio (H,/H,, — 1)/(H,/H. — 1) will be most accurate for
large value of the denominator; and an overall estimate of p was made by
weighting by the square of the denominator. The values H,, H, were taken
separately for the two series given in table IV, and the calculated values used
for H,, H’%. The estimates of p so obtained are 0.76 and 0.78, respectively,
suggesting rather a high correlation within clusters.

Such an effect should be demonstrable in other ways. The correlation p should

6.1 o) = 7,
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give rise to a detectable serial correlation between consecutive vehicle velocities,
where

(6.3) p' = p(m — 1)/m.

With m = 4/3, p’ = 0.19 when p = 0.76, and 0.20 when p = 0.78. The actual
serial correlations were computed to be 0.26 from the first series and 0.29 from
the second. The agreement seems fair: though it could be somewhat improved
either (i) by increasing m, or (ii) by increasing p, or (iii) supposing that addi-
tional heterogeneity in traffic density may contribute to the observed serial
correlations.

With the apparent high correlation of velocities within clusters another rough
check on the consistency of the model is possible. Suppose for simplicity we
consider the correlation to be near unity. Runs of identical velocities will then
be assumed to arise from two contingencies: (i) clusters; (ii) fortuitous runs.
If the velocity distribution with discrete categories has probabilities py, po, - - -,
Px, then runs of length s from a purely random series have probability

(6.4) piqi + pige + - -+ + prq.

From the observed velocity distributions (for each series of 320 observations
separately), the probabilities in (6.4) yield the calculated distributions of table V,

TABLE V

DISTRIBUTION OF RUNS OF VEHICLES WITH SAME VELOCITY

1st Series 2nd Series

8 Ps Observed Ps Observed

1 0.7541 126 0.7460 134

2 0.1763 44 0.1778 29

3 0.0488 11 0.0519 18

4 0.0146 4 0.0163 9

5 0.0044 1 0.0053 3

6 0.0012 3 0.0017 0

7 0.0004 0 0.0006 1

8 0.0001 2 0.0002 2

94 0.0001 2 0.0002 0
Total 1.0000 193 1.0000 196
Mean 1.345 1.653 1.367 1.633

with the observed distributions shown for comparison. As the calculation is
very rough, runs involving a single cluster of more than one for r > 0 are
neglected (as well as the overlap of clusters). We then have the approximate
equation for the first series, 1.8345 4+ ¢/(1 — &) = 1.653, the second term on
the left being the expected increase in length of run due to clusters of more than
one. With « = 2/3, this gives ¢ = 0.308/3 = 0.103, a value compatible with the
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value 1/9 previously assessed [2]. This estimate, while rather crude, is of some
interest in view of the comparative paucity of information on ¢ noted above.
The corresponding figures for the second series are 1.367 (in place of 1.345),
1.633 (for 1.653), whence ¢ is 0.266/3 (for the same ), that is, 0.089.

It might be noted that the mean value of the velocity for the larger runs (=5,
say) is, in 5 km/hr units, 14.0 for the first series and 13.7 for the second, com-
pared with an average over all vehicles of 14.8. This provides slight evidence
of a 8 <0 in (3.11), but hardly perhaps enough to justify fitting any more
complicated model as represented by such formulae as (3.14). However, it was
felt that calculation of the cross-spectrum would be of interest, and the results
are described below. The relevant explicit evaluation of (3.14) for the clustering
model is given in the appendix.

7. Calculation and discussion of the cross-spectrum

The cross-spectrum was conveniently computed by making use of the identity
(7.1) U2 + (8U)2 — U2 = —2U(8V),
where U = U — U. Thus, the spectrum of UdN (x) was computed and hence,
making use of (7.1), the cross-spectral function of dN(x) and 8UdNx. The

results are given in table VI (and figure 6), which gives —G, = — Ulz(w,),
where

(7.2) In(wp) = Ar(wp)As(wp) + Bilwp)Ba(wy),

the subscript 1 referring to dN(z) and 2 to 6UdN (z). (Notice that under the
assumptions for our model the imaginary terms in the cross-spectral function
do not appear, so that it is sufficient to calculate I12(w,) above.)

TABLE VI

Brock TotaLs oF 16 For —G,

1st Series 2nd Series
1. 2313.9 11. 561.9 1. 1520.7 11. —380.1
2. 2723.5 12. 1093.5 2. 1436.6 12. —263.5
3. 387.5 13. 190.9 3. 1562.8 13. —-412.4
4, 2447.3 14. 670.4 4. 1695.2 14. —8.5
5. 1521.8 15. 512.5 5. 67.8 15. —4079
6. 1777.5 16. —84.0 6. 1278.7 16. —629.6
7. 1765.8 17. 379.8 7. 588.7 17. 459.9
8. 345.9 18. 75.7 8. 575.0 18. 728.9
9. —142.0 19. —376.2 9. 635.1 19. —92.3
10. 418.2 20. 287.0 10. 744.1 20. 42.9

The most significant feature of @, is its negative value as w — 0, implying
the anticipated negative value for 8. We shall confine our attention to the
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1000

-1000

Ficure 6

Values of —G, = — Ul2(w,) summed over blocks of 16
(1st series: continuous line; 2nd series: dotted line).

values in the appendix at @ = 0+4. These values can only be appraised roughly
from the graphs; but the following values were used:

1st series: —Gy = 2000, H, — H,, = 1} X 10* — 6661, Ho — Ho = 600 — 220;
2nd series: —Go = 1500, Hy — H,, = 1} X 10* — 7047, H; — H. = 500 — 186.
The estimate of 8 from the first series then yields —0.266, and from the second,

—0.159, with a mean for the two series of —0.213. As a direct check on the
order of magnitude and significance of this estimate, we may utilize the mean
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values of U for the longer velocity runs noted at the end of the last section.
These give (if we assume any such run all belongs to the same cluster) estimates
of Bof —0.141 & 0.170 (1st series), —0.243 & 0.210 (2nd series), or a (weighted)
mean of —0.182 & 0.132. However, the significance of this relation seems much
more definite from the cross-spectrum (either from the overwhelming prepon-
derance of negative values for G, at the lower end of the frequency range, or
from their individual significance if the covariance I(w,) is converted to a
correlation).

With the estimate of 8 obtained from the cross-spectrum for each series, we
may revise our estimates of the within-cluster velocity correlation. We now
write this as

(7.3) po = p(1 — p?) + oi,

where p; is the correlation corresponding to 3. Using the theoretical value of
(14/3)'2 for o2 when ¢ = 1/9, a = 2/3, we have p estimated to be —0.127 (Ist
series) and —0.082 (2nd series). Making use of the expression for H, given in the
appendix, we obtain estimates of p (with v = ¢2(1 — p?)) of 0.815 (1st series)
and 0.879 (2nd series), or finally of py of 0.818 (1st series) and 0.880 (2nd series).
These estimates are likely to have less bias, but to contain more error fluctua-
tions than the previous estimates assuming 8 = 0, namely, 0.76 and 0.78. It
is perhaps worth noting that with these somewhat higher correlations the
expected serial correlations for the velocities are 0.20 and 0.22, a little nearer
the observed values.

The interpretation of the above spectral analysis of traffic data in terms of a
clustering model is not of course unique or exhaustive. An alternative (and not
necessarily incompatible) interpretation in terms of flow density relations will
be discussed elsewhere.

I am very much indebted to Stig Edholm, Head of the Traffic Department,
National Road Research Institute, Stockholm, for sending me the traffic data
for the second example. I am also much indebted to David Walley for his
invaluable help in providing the computer programs and arranging the computa-
tions for these “extended’ spectral analyses.

I A Y

APPENDIX

Evaluation of the spectrum of dM (x) for the clustering model. Equation (3.14)
has the form

(A1) E.{(A+ Br+ Cr)(fr + 2fr1 + -+ + 7f1)}.
If we write L(y) for the Laplace transform of f;, we have for

(A.2) /_: e =y(2) dz
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the expression
(A.3) G(—iw) + G(iw),
where G(¢¥) is evaluated (if », = v, constant; otherwise the term in p is modified)
as
(A4) A{LE()+ L*E'(r — 1)+ L*E'(r — 2) + ---}
+ B{LE(r®) + L*E'{r(r — 1)} + L*E' {r(r — 2)} + ---}
+ C{LE(r®) + L2E'{r*(r — 1)} + L}E'{r*(r — 2)} + ---},
E’ denoting expectation over all nonnegative values. Now
E'{r(r—s)} = E'"{(r — 8% + sE'(r — ),
E' {r2(r — )} = E'{(r — )%} + 2sE'{(r — s)2} + s2E'(r — ).
Further, for the modified geometric distribution,
E'{(r —8)% = aE'(?), E{r — )" = aE'{r%},

(A.5)

2__c(l-i-ne) 3=c(1-|-401-|—cv2)
B = =0 Ee) ==—1—ap
_ AcL BeL(1 4+ a — 202L)
A6 G =i —ah) T T=ad =l

CeL[(1 + 4o+ o)1 — aL)? + 2aL(1 — aL)(1 — a?)
" + oL — o)*(1 + al)]
(1 —a)*(1 — aL)?

where further * ( M,
_ Bcg*  Be(t + &
A= Ac{l + &*pv + 1—a)? (A-a)2

_ 26%t*c
(A7) B = —7\0{1 =, —BE+ s*)}’
C = \cB2EE*.

Rearranging terms, we may write this finally as
(A.8)

Ao(1 + EE*pv)cL
(I =a)(1 —al)

+ AcB2tE*cL { . 2c(1 + a— 2a2L)
(1 —a)’(1 — aL)

+ 14+ 4a+ a®)(1 — al)? + 2aL(1 —al)(1 — o?) + aL(1 — a)2(1 + al)
1 — al)?

+ BAc(E + £)cL {1 +a —2a2L c}-
(1 - a)2(1 — alL) 1— oL
It is of interest to examine the relative values at w = 0+ (L = 1) for the
particular case ¢ = 1/9, « = 2/3. We obtain, with A, = 3\ = 3/4,
(4.9) 201+ geton) + 460628 + 58 + £°).
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