
A THEOREM ON FUNCTIONS OF
CHARACTERISTIC FUNCTIONS AND

ITS APPLICATION TO SOME
RENEWAL THEORETIC RANDOM

WALK PROBLEMS
WALTER L. SMITH

UNIVERSITY OF NORTH CAROLINA

Summary

This paper is concerned with three main problems and their interrelationship.
A function M(x) belongs to the "moment-class" M* if it is nonnegative and
nondecreasing on [0, o), if M(x + y) < M(x)M(y) for all x, y 2 0, and if
M(2x) = O(M(x)) for all x > 0. The class 6Bt(M; v), for any real v > 0, is the
Banach algebra of functions which are Fourier-Stieltjes transforms of functions
B(x) of bounded total variation such that f1 Ixk^M(IxI)IdB(x)I < . Our first
main result, theorem 3, demonstrates that if a characteristic function belongs to
ct(M; v), then it has a Taylor expansion whose remainder term may involve
a nonintegral power of 101 and a member of some subalgebra M: whose "pa-
rameters" depend on a variety of details which we suppress in this sunmnary.
A version of the Wiener-Pitt-L6vy theorem on analytic functions of functions
of Vt(M; v) is then given, and from this and our results about Taylor expan-
sions of characteristic functions, we obtain our second main result, a "Master
Theorem" (theorem 1). This Master Theorem considers a certain rational form
involving several characteristic functions and shows that under appropriate con-
ditions it will be in some algebra mt (M; v); the form has been chosen as being
liable to arise in various investigations in the theory of random walks.
The Master Theorem and the results about characteristic functions are then

applied to a general problem of a renewal-theoretic nature. Suppose {Xj} is an
infinite sequence of independent and identically distributed random variables
such that 0 < 8 X. < X. Let the characteristic function of X,, belong to 6B1 (M; v)
for some M E SM* and some v > 0. Then what can be said about the asymptotic
nature of, for instance,

St(X) - ( 1) P{X1 + X2 + *+ X. < XI,
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where 4 > 1 is not necessarily an integer? A variety of results, too detailed to be
accurately described here, are obtained. These include more familiar results in
renewal theory, but the behavior of SI(x) for nonintegral t seems not to have
been studied before. Another novelty of the present approach comes from the use
of the algebras 63t which enable us to show the effect of the finiteness of quite
general moments of the {X.} upon the remainder terms which arise in our
"polynomial-type" approximations to S4(x). As a by-product of our results we
are able to make some remarks about conditions which are necessary for the
finiteness of Sz(x); these subsidiary questions tie up with a line of research
initiated by Hsu and Robbins. (See also note added in proof at end.)

1. Introduction and notation

One of our concerns in this work is to allow for the existence of moments, of
our random variables, of a fairly general nature. For this reason we introduce a
class of functions ¶ as follows.

DEFINITION 1. The function M(x), definedfor all x > O belongs to f if
(i) M(x) is nondecreasing in [0, oo),

(ii) M(x) > 1, all x > 0,
(iii) M(x + y) < M(x)M(y) for all x, y > 0.

In fact, we are essentially concerned only with the character of M(x) for large
x and can conveniently specify a suitable M(x) by stipulating its values for all
sufficiently large x. Suppose we have a function N(x) such that for some large
A > 0,

(i)* N(x) is nondecreasing in (0, X ),
(ii)* N(x) > O for x >2 A,
(iii)* for some A > 0 and all x > A, y 2 A, N(x + y) < AN(x)N(y).

With no loss of generality we may suppose that AN(A) 2 1 and define

(1.1) M(x) = AN(x), x> A,
=M(\)I x <A.

The function M(x) so defined, as can be verified, belongs to n and M(x) -_ N(x)
for all large x (that is, 0 < a, < M(x)/N(x) < 62, for all large x).
Our interest in the class on arises from the fact that ifX and Y are independent

random variables, then &M(IXj + IYI) < {8M(XI)}j{8M(IYD)}. Two typical
5M-functions in which we might have interest are those asymptotically equal to
ex and to xl/2 log x. An important special WflZ-function is I(x) 1.

It will transpire that in certain cases we shall need to be specific about the
rate of growth of M(x) E on, compared with the rate of growth of xP, 0 < p < 1.
We introduce three subclasses of 1, which, though not exhaustive, would appear
to cover all situations of interest:

Mr1(p): if xp = O(M(x)) as x -* oo, then we say M e fi(p);
%2(p): if M(x)/xP is nonincreasing for all large x, and as x -X -,
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(1.2) L u) du = ° (Mx))'
then we say M E M2(P)-

(This will be the case, in particular, if, for some e > 0, M(x)/x(Pe) is non-
increasing for all large x.)

OE3(p): If M(x)/xp is nonincreasing for all large x and if we can find Mp(x) e DM
such that, as x -- oo,

(1.3) WuMu) du = O (M(x)),

then we say M(x) e M3(p), providing M(x) ( M2(P)-
The class 'fl3(p) represents a "critical-borderline" class between Zi(P) and

OR2(p). A typical member of Mf3(p) might be given by M(x) - xP/(log x). We
could then take Mp(x) _ XP/(log X)2. Notice that Mp(x) will always have the
meaning developed here and that, always, Mp(x) = O(M(x)), as x -*o.

In part of our investigation it will also be necessary to suppose that the
following condition is satisfied:

(iv) M(2x) = O(M(x)) for all x> 0.
The class of M E 91z which also satisfies (iv) will be called M*; similarly for

*IZ(p), and so on. It is an easy exercise to show that if M E M*, then M(x) =
O(xN), as x -a , for some large N. An i-function based on ex is not in Mt*;
an f-function based on x112 log x is in M*. (See note added in proof.)
We shall simply write S for the class of functions more usually denoted

Ll(- o, +o); iff(x) E S, we writeft(O) = f+O exf (x) dx for its Fourier trans-
form; thus we shall write St for the class of functions which are Fourier trans-
forms of functions of S. If g(x) belongs to S and, for some M(x) E i1, and some
v 2 0, ft xj"'M(jxI)jg(x)I dx <0, then we shall say g(x) E S(M; v). In an
obvious way, Zt(M; v) denotes the class of Fourier transforms of functions of
L(M; v). If B(x) is a function of bounded variation, we write

(1.4) Bt(O) = f+ eizdB(x)

for its Fourier-Stieltjes transform. The symbol O shall denote the class of
univariate right-continuous distribution functions, and we let V denote the
class of Fourier-Stieltjes transforms of functions in 5D; thus DEA is the class of
characteristic functions. The class of distribution functions F(x), such that
fr+ IxJxM(IxI) dF(x) <0 will be denoted 5D(M; v) and the corresponding class
of characteristic functions will be SD (M; v). We write B for the class of functions
which are finite linear combinations, with possibly complex coefficients, of func-
tions from D (that is, 33 is the class of complex-valued functions of bounded
variation), and da(M; v) for the class similarly derived from D(M; v); the classes
of Fourier-Stieltjes transforms corresponding to B and B(M; v) are denoted $
and (B*(M; v), respectively. If F E 5)(I; v), it will occasionally prove convenient
to write p,,(F) = fr- xv dF(x) for the v-th moment of F.
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If Bi(x) and B2(x) are any two members of 63, then we may define the product
BlB2(x), say, as the familiar Stieltjes convolution of BI(x) and B2(x). If M(x) E Y1
and B(x) E M3(M; v) for some v> 0, we can define the norm of the function B(x)
in terms of some K(x) in Z such that K(x) - x"M(x), as

(1.5) JIBI! = fI K(jx!)IdB(x)J
and, when B1(x) and B2(x) are both members of (B(M; v), we shall have IIB,B211 <
1JB111 I1B211. Thus (6(M; v) can be regarded as a commutative Banach algebra, and
this fact explains our special interest in 63(M; v). However, we shall prove all
our results without appeal to the general theory of these algebras.
Many-valued functions like za, for a nonintegral, will occur often in this paper;

we must establish a satisfactory convention to prevent ambiguities from arising.
It will be supposed that the complex plane is slit by removing the negative real
axis from 0 to - oo. The function za is then defined throughout the open slit plane
by analytic continuation from the positive real axis, on which Za is taken in a
natural way to be real and positive. Thus we only attempt to define za when
larg zl <7r. However, zG will be a one-valued analytic function throughout the
open region on which we define it. In particular, the following simple and useful
algorithm is true. If the arguments of z1, Z2, and z1z2 all lie in the open interval
(-7r, +77r), then z' Z2 = (Z1Z2)a.
Let F(x) e 2D and let F$(0) be the corresponding Fourier-Stieltjes transform.

If F(x) has a nonnull absolutely continuous component, then we shall say F(x)
belongs to the class S and F*(0) belongs to the class St. If Ft (6) does not neces-
sarily belong to 3: but we can find an integer K > 1 such that {Ft(0)}' E l3t,
then we say that Ft (0) belongs to the class (lT and F(x) belongs to the class S.
Thus 3 C S and 3l: C EiT. A related class 'Ult is the class of all characteristic
functions F1(6) such that

(1.6) lim inf 1 - Ftl(0)I > 0.
I-0oo

If Ft (0) E 'UT, then we say F(x) E 'U. Presumably the class 'U - (5 is not empty
(it is easy to see e C Al); Stone [13] calls cU the class of strongly nonlattice
distribution functions.
One of our main objects in this paper is to establish the following general-

ization of Smith [12].
THEOREM 1. Suppose that, for some M(x) e M*, (possibly M = I),
1(i) Clly a20*2 *... X ,n 1,012, . * * , Bm are strictly positive real numbers, and we

definey= (a, + a2 + - * + an) + 2(,1+ 32 + - * +13m);
1(ii) 5°1(0), 5P2(0), - - , SPn(0) are characteristic functions of random variables

with finite nonzero expectations ,(1)1 , .2. A* l*"), and these characteristic functions
belong to 25fn v(M; 1);

1 (iii) Pi/(0), Vt2(6), . - * , #Pm(6) are characteristic functions of random variables
with zero means and finite, strictly positive, variances, and these characteristic func-
tions belong tostnlf (M; 2);
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l(iv) X(0) E V31(M, -y) and X(a) = O(101) as 101 - 0;
1(v) If y is an integer, then 7=1 aj sgn ) = y mod 2;
1(vi) \14(0) is defined for 0 # 0 by

(1.7) \o (0) = X()
II [1 - S°r(0)?" II [1 - CM]a
r=1 8=1

and *1(0) is defined to make '1(0) continuous.
Then we may draw the conclusion that '$(0) E BI(M; 0), if y is an integer. On

the other hand, if y is not an integer and k > 0 is the greatest integer not exceeding
-y, set p = k + 1 - y. We can then state the following:

(a) if M e U2*(p), '1(0) E (B(M; 0);
(b) if M c M3r(p), V(0) E (B(M,; 0), and in this case the conditions "7r(0) E

5D(M; 1)" can be relaxed to "'Pr(O) E D(Mp; 1)", with a similar relaxation of the
conditions on the characteristic functions 7A,,(0);

(c) if M E SrL(p), '1(0) is the Fourier-Stieltjes transform of some 63-function
I(x). However, if every 'pr(O) E DI(I, 2) and every e/',(0)E O$(I, 3), then as x -- oo,

sin( -c + z j

(1.8) xP{\If(x) - (oo)} n(27 r)
where c = a>=I j sgn Icsij and

(1.9) C = lim {t(*0)eriF(1)g}
This limit necessarily exists.
The need for the somewhat puzzling condition 1(v) is illustrated by the

following example. Consider

(1. 1 0) \If* (0) - 1

(1.10) ( ) ~[1 -(1 + i@)-1]/3[l (1 - o)-1]2/3-
This \0(0) satisfies all the requirements of theorem 1 except for 1(v). However,
as 0 -O 0, V1(0) -exp {(27ri/3) (sgn 0)} and is therefore intrinsically discontinu-
ous at 0 = 0. Thus V$(0) cannot possibly be the Fourier-Stieltjes transform of a
function of bounded variation.

In order to establish theorem 1, we find it necessary to study Taylor expansions
of characteristic functions, especially when moments of nonintegral order are
known to exist. It also becomes necessary to establish the following sharpening
of a well-known Wiener-Pitt-L6vy theorem.

If sp(a) is a characteristic function, we shall write 1 - 3 [p(0)] for the total
weight of probability in the absolutely continuous component of the associated
distribution. We then define
(1.11) p[q,(O)] = inf {a[{f(0)}k]}1/k

k

and note that p[,P(O)] < 1 if V(O) EF 25.
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THEOREM 2. Suppose thatfor some M(x) e YW'*, some v> 0, some closedfinite
interval J, both op(D) and #(O) belong to iV(M; v), and suppose that i(6) vanishes
identically on the complement of J. Suppose that as 6 runs through J, the point
z = 'p(0) maps out an arc C in the complex plane and that b(z) is analytic at every
point of C. Then 4'(O)'(Ip(O)) also belongs to VB4(M; v).

Moreover, if Vp(O) E V, then the interval J may be infinite (or semi-infinite),
provided that, in addition to the above conditions, no singularity of 4'(z) is within a
distance p[p(0)] of the origin.

Conceining the Taylor expansion of characteristic functions we shall prove
the following theorem.
THEOREM 3. Let F(x) e D(I, C) for some C> 0, and let k > 0 be the greatest

integer not exceeding C. Set p = k + 1 - C.
When t is not an integer, we can choose any real constant c and have

kC p.(F)(1.12) F$(0) = 1 + E '.) (io)i + leleitBnest(o)
j=i J.

where st(6) e £t is the Fourier transform of some function s(x) E £ such that
st(0) = Oand

(1.13) r(4 + 1) 1+ Is(x)j dx

2(-k+l) {sin 2 c)- + Isin +- )cJ f+ dx
< ~~2 2 lxlt''J dF(x).

If it is additionally known that F E 5D(M; 4) for some M E W, then: (a) when
M E r2(p) we have s(x) e £(M; 0); (b) when M e M3(p) we have s(x) E S(Mp; 0);
(c) when M E MLI(p) we have

sin I-c
(1.14) r(1 - p)xPI s(y) dy- (-)k(k+l)(F) 2 /

Jx ~~~~(k+ 1)! sin (t7r)
as x - oo0.
On the other hand, if 4 2 1 and r is any integer, 1 < r < C, for any F (0) E
$(M; 4), we have

'F:(0r-I+ ,.(F) (iO)r

(1.15) F$(0) = 1 + E 1X (! ) (i@); + (i@!)-jr
where te(0) E B (M; f - r) is the Fourier transform of some function t4(x) e £
such that t!(0) = Mzr(F) and

(1.16) f Itr(X)l dx = f+| lxlr dF(x).

Indeed, when r is even or, if r is odd, when F(x) refers to a nonnegative random
variable, 40() = Aur(F)Fr)(0), where Ff(r)(0) c Dt(M; (4- r)). In any case, er(0)
is expressible as the linear combination of two characteristic functions, one of which
refers to a positive random variable and the other to a negative one.
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With reference to (1.12) we observe that little has been published concerning
the remainder term in the Taylor expansion of a characteristic function when a
moment of nonintegral order is known to exist. Doob [2] and Loeve [7] give
some information on this topic; another important discussion is given in a little-
known paper by Hsu [4]; our remainder terms are quite different from the ones
obtained by these authors. The results concerning (1.15), where the remainder
term involves an integral power of 0, are foreshadowed by similar results of
Smith [11] and Pitman [8].
We believe that theorem 1 will ultimately find a number of applications in the

study of random walks. However, in the remainder of the present paper we
shall explore just one avenue of development. Let {X"} be a sequence of inde-
pendent and identically distributed random variables; we do not suppose that
these random variables are necessarily nonnegative. Write S" = X1 + X2 +
. . . + Xn, n = 1, 2, * * *, ad infinitum. Then we shall be concerned with finding
conditions under which sums like

(1.17) 24(x) = E n0e-2)P{Sn < xI
n=1

will be convergent, and, more especially, when (1.17) does converge, we shall
also be concerned with the asymptotic behavior of 2z(x) for large positive x. The
constant t in (1.17) may be any real number. However, if t < 1, the series
E n(-2) is convergent, and our problem becomes a trivial one. We shall therefore
suppose t > 1.
In our study of 21(x) our first step will be to deduce from theorems 1, 2, and 3,

the following.
THEOREM 4. If F(x) E D(M; t) for some M e on* and some t > 1 (possibly
M =_ I), and if pi, = A1(F) # 0, then there exist constants A1(e), A2(t), ,Ak(t),
where k is the greatest integer not exceeding C, such that

(1.18) 1k- A(_Clo)T_j)
tends to zero as 101 -+ 0. Moreover, if we assume F(x) e c, then: (a) when t is an
integer we may conclude that (1.18) is a member of (P$(M; 0); (b) when t is not
an integer and we write p = k + 1 - C, we have: (i) if M E M2(p), then (1.18)
belongs to (BP(M; 0); (ii) if M e OR3*(p), then (1.18) belongs to (B6(M,; 0); (iii)
if M e o*(p), then (1.18) is the Fourier-Stieltjes transform of some Au(x) E 6
such that, as x -oo,
(1.19) xP{At(x) - A()} -+0 if P1 < 0,

-Ce if 1 >O,
where Ce = lime-.o {A1(o)/(-io)Pr(1 - p)}, and this limit must exist.

In the work that follows it is convenient to use the special function U(x) =
P{O < x}. From theorem 4 we then deduce the following.
THEOREM 5. Suppose that {Xn} is a sequence of independent and identically
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distributed random variables with distribution function F(x) e Do(M; 4) for some
M E =*, and some 4 > 1. Suppose further thatpi = A,u(F) > 0 and that F(x) C S.
Then 2;(x) is finite for every x and, if k is the integer part of 4,

(1.20) X n P4-2) X}
k A,(e) j

=jEl r( ) 1) (,xl U(x) + A(x),,=11r(-j+1) /Ail
where A(x) is a function of bounded variation such that A(- o) = 0 and At(O) is
given by (1.18), and the conclusions of theorem 4 apply to A(x) appropriately.

For ease let us, in the future, write
A; AJ(e) Ix\(1)v(1.21) WP(x) = .( U(,,=jr(t-j+1) \Mi,

(1.22) Hl(x) = E (nP+)p{Sn < x}.

The requirement F(x) c e is vital to our methods of proof. One suspects that
some result like (1.20) should be true even if this requirement is dropped.
Certainly when t = 2 we have the so-called "Second Renewal Theorem" without
this requirement. However, if we relax the requirement a trifle to F(x) E lU, we
can at least obtain the following corollary.
COROLLARY 5.1. Suppose v > 4 > 1 and let F(x)e 5)(I; v) n M. Write m for

the integer part of v. Let K > 0 be arbitrarily small. Then Zj(x) is finite and:
(a) if 4 is an integer,

(1.23) H1(x) = @(x) + Q(x) + r(x),

where Q(x) E 6B(I; v -4) and r(x) = O(X-(m+2-t)), unless t = 2, in which case
r(x) = O(x-(-"));

(b) if 4 is not an integer but v < k + 1, then (1.23) still holds, with Q(x) E

(I; v - t) and r(x) = O(X- m+2-1)) if 4 > 2, but r(x) = O(x-(m-k)) if t < 2;
(c) if 4 is not an integer and v > k + 1, (1.23) holds with the same conditions

on r(x) as in case (b), with Q(x) E 63, and xP{Hl(x) - P(x) -Q(oo)} -+Ci as
x -- oo where Ct and p are as for theorem 4.

Corollary 5.1 shows that "polynomial-type" approximations to H1(x) are still
possible if we only require F(x) E 91, as Stone [13] has done; indeed, this corollary
generalizes some of Stone's results. However, if no such restraint is placed on
F(x), we are unable to obtain such precise information about H1(x). Nevertheless,
a simple trick enables us to deduce from theorem 5 the following (note that
X+ Xn if X,, > 0 and X+ = 0 if X. < 0, X- = IX.1 if X, < 0, X- = 0 if

Xn >0)-
COROLLARY 5.2. Let {Xnj be a sequence of independent and identically dis-

tributed random variables such that,for somee> 1, g {(X. )'} < Xo. Assume 0 < i =
X.n < Xo. Then 21(x) is finite and

(1.24) zt(X) '(_ 1),.d'11 as X- ++o.
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Under the conditions of theorem 5 or corollary 5.1 it is possible to prove rather
more about the "remainder terms" of bounded variation than is actually given
in these particular results. By way of example, we show that the following is a
straightforward consequence of our work.

(A further example is given in the addendum at the end of this paper.)
COROLLARY 5.3. Let t> 2 and A(x) be the remainder function of bounded vari-

ation in theorem 5. Then, for any h > 0, we have: (a) if 4 is an integer, A(x + h) -
A(x) e B(M; 1); (b) if 4 is not an integer,
(1.25) xP{A(x+ h)-A(x)}- 0 as x- o.
These remarks also apply to the remainder term Q(x) of corollary 5.1.
A special case of this result, when 4= 2, provides information about the

familiar Blackwell limit theorem. If we set

(1.26) ,B(x)= L2P{x< Sn < x + h},
n=O

we have, under the conditions of theorem 5, that 13(x) = (h/,g1) + 6(x) where
6(x) -O 0 as x -- oo and B(x) e (M; 1). Thus, for instance, if it is known that
&JX,4' < oo, for some not necessaiily integer-valued v > 4, then we have among
other things, that 6(x) = o(x-(y-')). It is clear that under the conditions of
corollary 5.1 our conclusions about 6(x) need some modification, but we can still
show that 5(x) = o(x-(y1-)). Thus we see that corollary 5.3 generalizes in some
directions certain other results of Stone [13] about the Blackwell theorem.

Since this work was started, a paper by A. A. Borovkov [1] has appeared.
Borovkov is concerned solely with the qu. nt ity we have chosen to call ,B(x) and
with the case of lattice-valued random variabic s. We make the important remark
at this place that all the work of this paper can be repeated for the lattice case
without difficulty; in fact, the lattice case will be easier because we shall be spared
the complications about absolute continuity and the class S. Borovkov also
uses a sharpened form of the Wiener-Pitt-L6vy theorem (different from ours)
and makes use of functions of slow growth (where we use the class =Z*). Concen-
trating as he does on a more particular problem than we have, Borovkov obtains
a variety of detailed results about ,B(x). However, our results on ,B(x), stemming
from corollary 5.3, seem no weaker than corresponding ones of Borovkov.
Theorem 5 and its corollaries exclude the possibility 4 = 1; this case is not

without interest, but needs special arguments. We prove the following theorem.
THEOREM 6. Let the sequence {Xn} have a distribution function F(x) e e

n D (M; 4) for some M E M* and some 4 > 1. Let , = 8X. > 0; then
c0 1

(1.27) E_ -P{Sn < x} =Q(x) + A(x),
n= n

where
Q(x) = 0, for x < 0,

(1.28) rZl1_-'
Q(x) = le dt, for x > 0,

oAxbotoM;- atn t
and A(x) belongs to G(M; 4 -1) and tends to zero as IxI X~ o.
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COROLLARY 6.1. Let the sequence {Xn} merely be such that S{X;n} < 00 and
0 < SX. <00. Then ZI(x) is finite and when 0 <gXn < oo,

(1.29) 21(x) - logx as x-o .

When &Xn = 00 we may merely conclude that

(1.30) lim sup Zl(x) < 1
Z+

PXlog x-
The result (1.29) is actually a very special case of a general theorem proved

elsewhere (Smith, [12]). However, in that latter work an appeal is made to the
following corollary (an easy consequence of our results).
COROLLARY 6.2. Suppose X0 is a random variable which is independent of the

variables {Xn}. Then, under the conditions of corollary 5.2,

(1.31) E n(1-2)P{X0 + Sn < x}
n=1

will be finite if &{(X )(V-1)} < co. Under the conditions of corollary 6.1, (1.31)
will be finite (with t = 1), if ,{log (1 + XO )} < - .
The question naturally presents itself as to whether the conditions of corol-

laries 5.2 and 6.1 are necessary for the convergence of the series (1.17) or whether
they are unnaturally restrictive. We do not know the full answer to this question,
but the following final theorem suggests that our conditions are reasonable.
THEOREM 7. Suppose that P{Xn = 0} F 1 and that, for some t > 1 and some

finite x, the series (1.17) converges. Then this series converges for every x. If, in
addition to the convergence of (1.17), it is given that &X,1 is finite (and it then follows
trivially that &Xn > 0), then it necessarily follows that & (X; )4 is finite. On the other
hand, there exists a sequence {Xn} for which both &Xnt and &X; are infinite, and
yet (1.17) converges.

It should be pointed out that questions of the finiteness of our series (1.17)
have a bearing on the theory of "complete convergence" developed by Hsu and
Robbins [5] and further studied by Erd6s [3] and by Katz [6]. The finiteness of
(1.17) could, in fact, be deduced from the direct theorems of Katz; however,
here it has been a consequence of our detailed Fourier analysis of 2e(x). Further-
more, theorem 7 shows that the "one-sided" problem considered by us can
exhibit features which do not arise in the "two-sided" set-up considered by the
aforementioned authors.

2. Functions of characteristic functions

By arguments very similar to those in section 3 of Smith [11], or Pitman [8],
we have the following.
LEMMA 1. Let r > 1 be an integer and M(x) E M. Let F(x) E 5)(M; t), where t

is not necessarily an integer and t 2 r, refer to a nonnegative random variable. Then
there exists an F(r)(x) E 5)(M; (t- r)), also associated with a nonnegative random
variable, such that
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(2.1) F$(6) = 1 + E j(F) (jO)i + (!) (iO)rFt)(6)j=1 j.r!

and F(r) (x) is absolutely continuous with a density function which is monotonically
decreasing for positive x.

In conjunction with this known result we need the following new one which
extends our scope to expansions of F*(6) which terminate with terms involving
fractional powers of 0.
LEMMA 2. If F(x) E D(I, 4) for some 0 < t < 1, then for any prescribed real

constant y there is a function st (0) E St such that

(2.2) F1(6) = 1 + 101ei7y8gn est(0).
If s(x) is an £-function with Fourier transform st (6), then f s(x) dx = 0 and

(2.3) r(C + 1) f Is(x)l dx < C(4, -y) +| lxl dF(x),

where Jsin trlC(t, y) = 21+1{Isin ((&t/2) + y)l + Isin ((t1r/2) - y)I}.
If it is additionally known that, in fact, F(x) e 53(M; 4), for some M E X, then:

(a) when M E M2(1 - t), we have s(x) E £(M; 0); (b) when M e 0 l3(1-),
we have s(x) E £C (M(1-); 0); (c) when M E MI1(I - ) we have, as x -+,

sin ( -7r_ +

(2.4) X(''?J s(y) dy -4 s.rJ2 x dF(x).

PROOF. For any A > 0 define the function

(2.5) ha(x) = x(-l)-I x(x-), X > A,

(2.6) ha(x) = - (x-z) x <

We first show that ha(x) E 2. If x < A, then hA(x) is negative, and an application
of Fubini's Theorem will show that

rA ~~~~10°(2.7) f h,(x)I dx {(A + jzj1 - Al} dF(z) <00*

On the other hand, when x > A we can write

(2.8) ha(x) = gl(x) + g2(x) + g3(x) - g4(x) -g(X),
where the functions gi(x), i = 1, 2, * , 5, are all nonnegative, and are given by
the following equations:

(2.9) g1(x) = F((X-A)

(2.10) g2(X) = F(-x)
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(2.11) 93(X) = f [(lUg)- 1)(1-)1 dF(z),

(2.12) 94(X) = [X Z)(1-)- (1) dF(z),

(2.13) g9(X) = dF(z)

If we use integration by parts it is an easy matter to verify that

(2.14) f g9(X) dx = f [(x + A)' - A] dF(x),

(2.15) f 92(x)dx = [[xl - A'] dF(x).

A further appeal to Fubini's Theorem, followed by some slight rearrangement
will show that

(2.16) 94(Y) dy

=
-A

[(z + A)' - At] dF(z)- e [x' - (x - z)'] dF(z).
At this point it is convenient to state and prove the next lemma.
LEMMA 3. If m(n) > n and m(n) - n = o(n('-')) as n -X , then [m(n)]' -

n4 -*0 as n -X o and [m(n)]' - nt< [m(n) - n]l for every n.
PROOF OF LEMMA 3. We observe that [m(n)]'-nt nn i-(n) (dy/y(1-')) and

that the integrand y-(I-) is a strictly decreasing function. Thus, for example,

(2.17) [m(n)]' - n4 <4[m(n) -n] -0 as n o.

On the other hand,

(2.18) [m(n)]' - n< frnm)(ndy)[m(n)
which proves lemma 3.
To return to the proof of lemma 2, if we now appeal to lemma 3, we can see

thatxt- (x - z)e < z'forall0 < z < xandx' - (x - z)t-Oasx--*cc for z
fixed. Hence, by dominated convergence

(2.19) lo [xt - (x - z)'] dF(z) -*0 as x-*oo.

Therefore, we may deduce from (2.16) that

(2.20) f g4(x) dx = [(z + A)t- A'] dF(z).
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Again, by using Fubini's Theorem one can show that

(2.21) g3(y) dy = 2' z1 j| IzVdF(z) + z -[(A-Z)' _ A] dF(z)

_1f1°[(x - z) -X] dF(z)

Lemma 3 shows that (x - z)t - xt < izil whenever z < 0 and that (x - Z)t -
xt - 0 as x -X o for z fixed and negative. Therefore, again by dominated con-
vergence,

(2.22) J [(x - z)' - x'] dF(z) -*0 as x oo,

and we conclude that

2' 1I~ 1(0
(2.23) f g3(x) dx = 2 l zil dF(z) + e j [(A - z)' - A'] dF(z).

Finally, we notice that g5(x) < g2(x) so that g6(x) e L1(A, Xo). One more appeal
to Fubini's Theorem will then establish that

(2.24) g59(x) dx = 2t f zl dF(z) - 1 (A - z) dF(z).

If we now combine our findings concerning the various functions gi(x), **,
g5(x), we see that hA(x) E S as claimed, and we also see that ft ha(x) dx = 0.
Therefore,

(2.25) f h&(x)l dx < 2 L {gl(x) + g2(x) + g3(x)} dx
_,0a

< 2 [(A + IzD) -A'] dF(z) + 2 zlz dF(z),
- tJ- t J

ignoring a negative term. But, again by our lemma, (A + zj)' - A' < Izl and
(A + Izi)t- A' - 0 as A -* oo, lzl fixed. Hence we can deduce from dominated
convergence that

(2.26) f| jh,(x)I dx -O0, as A-oo.

We are especially concerned with the function ho(x), which is necessarily a
member of S by the preceding argument, and we require the Fourier transform
hg(O). In view of (2.26), we see that

(2.27) h(0) = lim f ex[ho(x) - hA(x)] dx
A-_o -x

= lim lim |+ elZ[ho(x) - ha(x)] dx.
A-*^ T-o j-T
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But, for large T,
r+T

(2.28) f eiz[ho(x) - hA(x)] dx

= ei___ dxf- e {|_ dF(z) )x.=1 x1' dx - T 'x1Z (x - z (1-04dx
Let us call the double integral on the right of this last equation J. Ifwe rearrange
the order of integration in J, the resulting double integral is easily seen to be
absolutely convergent. Thus we obtain

-T r+^ ei )
(2.29) J = _f {T (X -ZT--t) dx} dF(z)

fT-A C z+A eiox
+ J- jT (x -z)('') dx)dF(z)

+ fT{J (T dx} dF(z).
If we substitute x = z + u in the three inner integrals and rearrange the orders
of integration of the resulting absolutely convergent double integrals, it tran-
spires that

(2.30) J = 10 {T i9Z dF(z)} du.
However,

(2.31) f T-U
eiOz dF(z) -* (6), boundedly, as Tm.

Therefore, by bounded convergence,

rAeiou
(2.32) n J = JOU(()e du.

Hence
eiou

(2.33) ht(O) = lim [1 -s(o)] f u1t) du

r(t) (1/2),,isgn -[1

In a similar way we can consider the function

ko(x) = - (z)-x)('-)' x > 0,
(2.34)

1 f0 dF(z)
= jxl((-') (z -X)(')' X < 0,

and show that ko(x) c 2; that f ko(x) dx = 0; arid that the Fourier transform
of ko(x) is
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(2.35) kt(O) r(t) e-iti8gnO [1 - 40(0)]

Let us now define

(2.36) St(0) = (-lw) { (S - h9(0) + i + ) k((0)
Lsin (t7r) sin (&r) J

Then st(0) belongs to st and, by our previous results,

(2.37) St(-) {1-p(01)} T(

where

sin -y) sin ( + y)
(2.38 T(O (2 /0raI1IgnI1 + (2

/ ___£i sgn
(2.38) T(0) - sin (41r) sin (b1)

e-iytsgn O.

Thus (2.2) is established, and it is obvious at this stage that f s(x) dx = 0.
We do not need (2.3) in the sequel and have only mentioned it for completeness'
sake; it can be demonstrated by routine computations based upon the fact that

r+. 2t+1 f+.
(2.39) J Iho(x)l dx < . J jxtdF(x),
which can be inferred from the previous argument.
Now suppose that F(x) E 3)(M; C) where M E OR2(1- t). To prove (2) of

lemma 2 it will be enough to establish that M(jxl)ho(x) E E. For x > 0,

(2.40) M(x)ho(x)

= M(x) {l-F(x)} + | --(x - z)(10} M(x) dF(z)
= al(x) + a2(x), say.

An integration by parts will easily establish that ai(x) e L1(O, Xo), if we use the
inequality
(2.41) M(1u) du < M(x)xt

Next we observe that

(2.42) f 1a2(x)I dx

< |f|f +f | |1_t -( _ z)(1£) M(x) dx dF(z)

= f Ji(z) dF(z) + f J2(z) dF(z), say.
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For x > 0,

(2.43) 1(-t)-( + K 1)('-')l < mill (1t) X
(2 -)lz

Thus

(2.44) J1(z) < M(() dx + (1 - f21 M(x) dxx(1- t) XX'J zI

- z- M(1zD) + O(lzI'M(1zD),e
in view of the fact that ME M2(1 - t). Thus f_ Jj(z) dF(z) < x, because

F 5D(M; t).
To deal with J2(Z), let us suppose that

(2.45) f M(x) dx < AM(z)(2.45) Jz x(2-t) z(1-d)
for all z > 'A, where A and A are some constants; such a hypothesis must hold
because M C M2(1 - t). For x > 2z > 0 we have

(2.46) 1 1 < 2(2-t)(1- )z < 2('-')(i-t)
(X -z) (1-1) <(-t X(2_ t) _ X(1-t)

Thus, if 2z < A, we have

(2.47) 1 (x z)(' -(10} M(x) dx

< 2(1-1)(1 - e)M(A) dx-) + 2(2-t)(l- t)AM(A)A

= 0(1);
and if 2z > A, we have

(2.48)- )(- Z
Mx dJ2z {(x z)(1') 1vM(x) dx < p2-I - M(x2()

= 0(ZM(z)),
in view of our assumptions about M(x). Furthermore, -M(2x) < 2(1-')M(x),
and

(2.49) f2 M{(x z)(1') x(1)} M(x) dx < M(2z) (2 z }
on performing a simple integration. Thus we may conclude that J2(Z)=
0(1 + ztM(z)), and hence that fo' J2(z) dF(z) < oo. This establishes that
M(x)ho(x) e L1(0, oo). A similar argument will show that M(x)ho(x) E L1(-ac, 0).
Obviously one could similarly show M(x)ko(x) e S. Thus, part (a) of lemma 2
is proved.

It should be clear that (b) can be proved by slightly modifying the proof of
(a) suitably.
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Now suppose M E O1Z(1- ), which means that F E O(I, 1). We have, for
x > 0,

(2.50) ho(y) dy = 1 - FZ() dy

+ L f {y(1t) (y - z)(-1} dF(z) dy
= AI(x) + A2(x), say.

It is easy to see that x('-')AI(x) -+ 0 as x -- +Xo. The integrand of A2(x) is
negative when z > 0. If we were artificially to make F(z) = 0 for all negative z,
then the resulting A2(x) would necessarily be finite. Similarly, the argument of
A2(x) is positive when z < 0, and if we were artificially to make F(z) = 1 for all
z > 0, the resulting A2(x) would also necessarily be finite. Thus the double
integral A2(x) is necessarily absolutely convergent and we may reverse the order
of integrations. We find

(2.51) A2(X) = f f {yJl - -_)(1t)} dy dF(z)

+ L {y(1e) (y z)( dy dF(z)

= gf|oo {x' - (x -z)} dF(z) + z'dF(z)
= Bl(x) + B2(x), say.

Since F(x) e fD(I; 1), it is easy to see that x('-')B2(x) 0 as x -> +oo. Also,
since x {1 - (1 - z/x)t} Izl, it follows by dominated convergence that

(2.52) -x(1-t)Bj(x) | +J z dF(z), as x 0.

Thus, after combining our various results, we find

(2.53) - x(1-) ho(y) dy J+ z dF(z), as x o.
A much easier argument will also show that

(2.54) x('-1) f ko(y) dy 0, as x oo.

The limit (2.4) now follows and lemma 2 is proved.
PROOF OF THEOREM 3. Suppose that X is an arbitrary random variable (not

necessarily nonnegative) with a distribution function F(x) c 5D(M; f). Then X+
and X- are nonnegative random variables with finite moments of order t. There-
fore, by lemma 1, we have that F , the characteristic function of X+, can be
expressed as follows:

(2.55) (k-i) Mj(F+) ( __y+ _k(F+)_(2.55) F+(O)=1+~2----O+ +)(jO)IFkF (0)
i= j. Al

+
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where k is the greatest integer not exceeding f, F+ (k) (0) isthe characteristic function
of a nonnegative random variable with an absolutely continuous distribution
function, and this distribution function belongs to 5D(M, t - k). An expansion
similar to (2.55) also holds for FP (0), the characteristic function of X-. Evi-
dently, if Ft (0) is the characteristic function of X, we have

(2.56) Ft(0) = Ft (0) + F$ (-0) - 1.

Moreover, by repeatedly differentiatiing (2.56) and putting 0 = 0, or by more
direct arguments, we find that

(2.57) yj(F) = Aj(F+) + (-1)ipj(F_), j = 1, 2, * , k.

Thus by combining (2.55) and the corresponding expansion of F$ (0) together,
in accordance with (2.56), we deduce that (1.15) holds with k in place of r and

(2.58) ek(0) = Ak(F+)F+(k)(0) + (-l)kAk(F )FP (k)(-0)-

Clearly, a similar result can be obtained for any integer r < k; the properties
claimed for tr(x) in theorem 3 flow easily from this representation of tt(0).

Parts (1.12), (1.13), and (1.14) are all immediate from lemma 2 if k = 0.
Suppose that k > 0. By applying lemma 2 to F+ (k0() and F (0)(0) separately
we find

(2.59) F$ (k)(0) = 1 + 01(ek)ei718v1et(0)
(2.60) F_ (k) (0) = 1 + I0I(Z-k)ei,2Bge08(0)
where 'y and Y2 are arbitrary constants and si(x), s2(x) are the appropriate
£-functions, as described in lemma 2. If we now choose -y' = c - 47rk and
72 = -c - rk, then we find

(2.61) (k ) = k(!) (i)')k + 0jteicsgn0st(O),

where
(2.62) k!st(0) = Ilk(F+)Si(0) + /.k(F-)S2(-O).

If we put r = k in (1.15) and substitute for e4(0), using (2.61), then (1.12)
follows. The function st(0) clearly belongs to St.
Routine computation based on the fact that, for x > 0,

(2.63) dF+(k)(x) = 1- F+(k-1)(X) dx
AI(F+(k-1,)

will lead to the result
.0 ~~~k!r(e - k + 1)(2.64) A x(t-) dF+(k)(x) = r(t+ 1)k(F) xI dF(x),

and, of course, a similar result is true for F_(k)(x). From these results, (2.62), and
(2.3) of lemma 2, it then follows that if s(x) E C is the original of the transform
st(0), we must kave
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f+ 2e-k+iTJsin (4-C)l + Isin (2 + c)|}
(2.65) Is(x) I dx < 2si 2&),
where

(2.66) A = r +xI'dF(x).

Thus we have proved (1.13).
What we have so far proved only needs F E D(I; t). Evidently, if F E D(M; t),

then, by lemma 1, both F+(k)(X) and F(k)(x) belong to 5D(M; t - k). Set p =
1- t + k. Then (a) if M E OR2(p), we can infer from lemma 2 that si(x) and
s2(x) belong to s(M; 0); thus s(x) e £(M; 0) as claimed; (b) if M E 0%(p),
then, by similar reasoning, s(x) E £(Mp; 0); (c) if M e OZi(p), we infer from
lemma 2 that as x -- 00,

sin(2 -c+c
(2.67) r( - k)x(l-t-k) s1(y) dy 2i/

( 2

x dF+(k)(x)
sin (e-k7r) J

sin (2c) .(k+l)(F+)
sin (t- k7r) (k + 1)1gk(F4)

and similarly, but allowing carefully for signs, we find

(2.68) r(t - k)x(I-t+k) s2(-y) dy

sin ( c - k) ()(k-1),(k±l(F)

sin (t - k7r) (k + 1)(-)ksk(F-)

sin2(A)/I(k+l)(F-)
sin (&7r) (k + l)Ak(F-)

Therefore,

(2.69) r(t - k)x(1-t+k) st((y)d )k(1) (F) sin
ix ~~~~~(k+ 1)! sin (&7)

as x -- oo. This completes the proof of theorem 3.
PROOF OF THEOREM 2. To begin with we must define what we mean by a

smooth mutilator function (S.M.F.). Let us define

(2.70) p (x) = exp { D} Ixl <
= 0, jxj >1.
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Then pt (x) is differentiable for all x an arbitrary number of times and each
derivative is a bounded S-function. Moreover, pt (x) and all its derivatives
vanish when lxl 2 2. Suppose we are given a < , < y <6 as four points on the
real axis. We define qt(x; a, 13, y, B) as the S.M.F. based on these points by the
equation

(2.71) qt(x; a, 13, , 6)

__1_Pt__(a_+_ 1 tyy-(y+6) dy

f:co{(-a) P \ (,1-a) J (6-T) P
\ (6-_y) jj

I

f pt(y) dy
The S.M.F. has the following properties. It vanishes when x < a or when x > B.
It has the constant value unity on the interval 13 < x < y. It is monotonically
increasing on a < x <13 and decreasing on y < x < b. Furthermore,
qt (x; a, 13, -y, B) is differentiable for all x an arbitrary number of times and each
derivative is a bounded £-function. The derivatives all vanish identically, except
when a < x <1 or y < x <6.

If we put
+

(2.72) q(x; a, 1 Sy 6) = 2-Jf elxqt (0; a, 13, zy, 6) dO,

then we can, by a familiar argument involving repeatedly integrating by parts,
show that q(x; a, 13, -y, 6) = 0(1/1 + xliN) for N arbitrarily large. Thus
q(x; a, 13, y, 6) e £(M; v) for any M e M* and any v > 0.
We shall write qt(O) for the special S.M.F. qt(O; -2, -1, +1, +2). Let 0o be

any fixed point in the closed interval J (possibly an end-point). Then 4(z) is
analytic at z = sp(oo) and so admits of an expansion

(2.73) C(z) = X(0o()) + E c. (z -s(0))
n=1

about the point z = sp(Oo) with a strictly positive radius of convergence. Since
s(o) must be continuous, it follows that for all sufficiently small ID - Ool

(2.74) 4(Xv(0)) = '(QP(Oo)) + E c.(sp(O) - (po)) -
n=1

For some X > 0 let us define

(2.75) t (O) = qt (0 - ). (X()))
Then the functions At(@) and T(s(O)) are identical for 10 - Ool sufficiently small.
For any n > 0,

(2.76) qt (0 ) = qt (0 - 0) [qt ( °)],
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and so

(2.77) at(@) = 4(p(Oo))qt (0 o)

+ E c,nqt ( 1p ) [qt ( X ) {<(0) - <(0o)}].
Now qt(0 - Oo)/X){p(O) - v(Go)} is the Fourier transform of rx(x), say, where

(2.78) rx(x) = X f|' e-iGo(z-z){q(X(x - z)) - q(Xx)} dB(z),

and B(x) is the function from 63(M; v) of which s(0) is the Fourier-Stieltjes
transform. Thus, after an application of Fubini's theorem, we have

(2.79) J| lr(x)I dx <X fj, {tf I(q(X(x - z)) - q(Xx)I dx} IdB(z)I

ff {f q(u - Xz)-q(u)l du} IdB(z)I.
The inner integral tends to zero boundedly as X 0. Thus, by choosing X

sufficiently small, we can make ft Irx(x)I dx = px, say, as small as we please.
Since rt(O) is the product of a function in B(M; v) and an S.M.F., it is

apparent that r?,(x) belongs to S(M; v). Define convolutions of ri,(x) as follows:
(2.80) rx*(x) = rx(x),

(2.81) r(x) = f+ao rx(x - z)rx*'f-')(z) dz, for n = 2, 3, * , ad inf.

Then r*x"(x) also belongs to £(M; v), and we can define

(2.82) a,(n) = f| M(IxI)IxI"jr>n(x) dx.

If M(x) e ME* and we set K(x) = M(x)(1 + x)", then it is easy to verify that
K(x) E SW* also. Thus there is some A such that K(2x) < AK(x) for all x> 0.
From this it is easy to show the existence of d > 0 such that K(nx) < ndK(x)
for all positive integer values of n and all x > 0. Thus

(2.83) K([zl + *-- + z.1) < K([zjI + *-- + lZnl)
n

< E K(nlzjl)
j=1

n
< nd EK(Izjl).

Thus

(2.84) a,(n) < J ... J K(Izl + + z.1) II Irx(zj)l dzi
<a =1
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If we choose X small enough to make Fn2,1 ndcn(px))n absolutely convergent, then
it follows that En 1 CnrXn(X) = r(x), say, is a function of the class C(M; v) and
its Fourier transform is

(2.85) rt (0) = E c [qt (0 -0) {n(0) -

From this it is an easy step to see that at(@) E £t(M; V), since the product of
two functions in £t(M; v) is a further function in £t(M; v). Thus we have shown
that if 0o is any point of the closed interval J (including the end-points), then
we can find a function 61(0), say, which belongs to £t(M; v) and is such
that ib(,p(0)) = #t(0) for all 0 in a closed subinterval centered upon 00. By the
Heine-Borel theorem we can cover the finite closed interval J with a finite
number of these subintervals. Suppose (#,/, yi), (/32, 72) are two overlapping such
subintervals, i31 </82 < 'Y < 72, and suppose Ax.(8) and at,',() are the appropriate
£t(M; v)-functions associated with these intervals. Then the function
(2.86) qt(0; /1- 1, /3, /2, 'Y)t8(0) + qt(0; /32, 7Y, 72, 72 + 1)Wt'(0)
is a new £t(M; v)-function which is identically equal to 4b(0(p)) throughout the
larger interval (/31, 72). It is clear how this argument may be continued, with
appropriate modifications at the end-points of J, so that we end up with a single
function At(0), say, which belongs to £t(M; v) and is identically equal to o(0(p))
throughout J. But t(O) = 0 for all 0 q J. Thus Vp(0)6t(0) = k(0)4(0(p)) for all
0; and k(0)tt(0) belongs to £t(M; v). This actually proves a little more than is
claimed in theorem 2, namely 4V(0)4(o(0)) belongs to £t(M; v) rather than to
W$(M; v).
Next, for the sake of argument, suppose that J is semi-infinite; say J

(ii, +oo). Write p for p[po(0)]. Since no singularity of 4(z) is within a distance p
of the origin, we can find an e > 0 such that 4(z) = F ,c.zT for all lzl < p + 2E,
the series converging absolutely in this region. We can then find a k such that
{fp()}I= aat(0) + /B$(0), where a > 0, / . 0, a + / = 1, and where at(0) E
.Ct r, a$(M; v) and BT(0) E I$(M; v) and /3k < (p + 4E)k. For all 101 > 2X, say,
kp(0)I < p + E and so

(2.87) 4(s(0)) = L (S°(0))
0

(k-1)
E' E Cnk+j('P(O))nk+i

j=O n=O

(k-1)
E (p(0))i E cfk+j(aat (0) + /3B$(0))n
j=0 n=0

(k-1)
=E (so(0))i=j(0), say.
j=0

Now for 0 > 2X,

(2.88) aj(0) = ECnk+j (aat(0) + /BT(0) - aat(0)qt (X//
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and this series converges absolutely. As at (0) is the Fourier transform of the
2(M; v)-function a(x), then at (0) - at(0)qt (O/X) is the Fourier transform~of the
E(M; P)-function gx(x), where

(2.89) gx(x) = f [a(x) - a x - u)] q(u) du,
if we use the fact that fr q(u) du = qt(O) = 1. By arguments very similar to
those we have employed in the first part of the present proof, we can next show
that f+1 Igx(x)l dx -O0 as X - oo. Thus, by choosing X large enough we can
ensure that #BT(0) + agt(0) is a function of B (M; v) whose total variation is
less than (p + E)*. Much as before, it will follow that Z,j() e B$(M; v) if we
recall that 4(z) is analytic in JzJ < p + 2e. Since {fv(O)}i e V3t(M; v') for every
integer, it follows that there is some function t6 (0), say, belonging to 63t (M; v)
and such that [1 -qt(/2X)]=6(0)I(o(O)) _t (0) for all 0. By the first part of
this proof we can say there is also a function O(O), belonging to V(M; v) and
such that qt(_/2X)=(O)4(o(e)) _ 7(o), all 0. We combine 9t and t3*(0), and
conclude the proof of this theorem, as before.
LEMMA 4. Suppose that for some -y > 0 and some M E on (possibly M = I)

we have X(0) e V$(M; 'y), and suppose further that X(0) = O(100I) as 101 -*0. Then
(a) when y is an integer, X(0)/(-iO)'y E V$(M; 0);
(b) when y is not an integer and k is the greatest integer not exceeding y,

set p = k + 1 - y and let w be any prescribed constant and write At(0) =
eiw sgn X(0)/(-i6). . Then At(0) = o(l) as 101 -+0 and

(i) ifM E OR2(P), Al(0) e CB(M; 0);
(ii) ifME Ms(p), AI(0) E 63I(M,; 0);

(iii) if M E M1(p), At(0) is the Fourier-Stieltjes transform of some function
A(x) E B such that, as x -* oo, xP{A(x) - A(oo)} -* (sin (,y7r + w)/sin ('y7r))C,
where

(2.90) C = lim X(O)

this limit, C, necessarily existing.
PROOF. Since X(0) E t(M; y), we can infer that there must be four members

of 2D (M; -y), AI(0), A21(0), At(0), AI(0) and four constants a,, a2, a3, a4, such that
A(8) = 4-amA, ().
Let us suppose first that y is nonintegral and recall that k is the greatest

integer not exceeding -y. By (1.12) of theorem 3 we have, for any prescribed
constants c1, C2, C3, C4,

(2.91) At (0) = 1 + (i)j + laleeei-gn°s

for m = 1, 2, 3, 4, where s1(0), * - *, 84(0) are the members of some St-class,
depending on M. Since y > k and X(0) = O(10IY), we have that

4
(2.92) E a.Aj(A.) = 0, j = 0, 1, , k.

m=1
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Thus, if we choose c1 = C2= C3= =C4= -W (7ry), we have

(2.93) ( ) - eiw8n a (0),

and it follows that eiwsgn9-X(O)/(-i0)y belongs to the B-class as claimed. The
remainder of lemma 4, for -y nonintegral, follows from the properties proved for
the 8t (O) in theorem 3. The only point that, perhaps, calls for any remark con-
cerns the final limiting result. We can infer from theorem 3 that, as x -

,

(2.94) r(y -k)xk-+1 | s(y) dy -+(1)!k sin (-y7+w) A(k+l)(A)-j dy I.t(k+1)1(Am)in(y7r
form = 1, 2, 3, 4. Thus, as x -- +00,
(2.95) r(y - k)Xk-7+l{A(oo) - A(x)}

(_k sin (-yr ___)
+1! sin ( F_a.p(k+l)(A.).(k + 1)! t sin (,y7) } m-= +

However, since in this part of the argument we may assume Am(x) E fD(I; k + 1)
for m = 1, 2, 3, 4, we can make use of expansions like (1.15) of theorem 3, ending
with terms involving (iG) (k+1), and find that

4 X(O)(2.96) 1 .A(k1 (A,, 1.im~
(k + 1)! m=1 amg(k+1)(Am) = (jo)(k+1)

and the final limiting result is verified.
The part of lemma 4 that concerns integer values for y is easier, and it will

be obvious at this stage how it follows from the relevant parts of theorem 3.
PROOF OF THEOREM 1. We begin the proof of theorem 1 by noting that, for

any X > 0,

(2.97) V (0) = qt (0) *1t(0) + [ - q t ( (0)

= *1(0) + '14(0), say.
We shall prove that both *14(0) and '14(0) belong to appropriate &3t-classes.
We put SUpje >1/2X k1i(0)1 = a, say. Then because v0(O) e e, it follows that

a < 1. Hence, as 0 runs from 2X to +00, the point z = <pi(O) maps out a continu-
ous curve which lies everywhere in the circle Izl < a. Thus it follows from
theorem 2 that

(2.98) [1-qt ()]
[1 -S°l(0)1-

belongs to W,$(M; 1) if pi(0) E VU$(M; 1). Hence

(2.99) [1 ( X )]
n m

II [1 - S°r(0) ] II [1 - %s(0) ] $
r=1 s9=1
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is a member of 6Bt(M; 1) if every qpr(O) and i,t(O) belongs to St(M; 1). But

(2.100) [ - qt qt ()] [ qt )]

so that it follows easily that 4(0) E (B(M; 0), if X(0) e VI(M; e), y 2 0.
To deal with 4I'(0) we first note that, as a consequence of theorem 3,

(2.101) 1 - S'r(O) = (-i0uP2)u7(0),
where we have written ,AP4 for the mean of the distribution associated with
Sr(O), ,IAp) £ 0, and u,(0) is a member of £t (M; 0) which assumes the value
unity at the origin. For any small 5 > 0, because of the absolute continuity
present, we have supa<.eI<4x 'p,r(O) < 1. Therefore, there is an angle v, say,
v < 7r/2 such that larg (1 - p,.()l < v for all a < 101 < 4X. From this it follows
that larg ur(0)l < v + 27r < 7r for all 0 in the same range. For 101 < 5 the function
ur(O) takes on values near unity if we choose a small enough. We can therefore
draw the following conclusion. As 0 runs from -4X to +4X, the function ur(O)
maps out a continuous closed curve C, say, in the complex plane. The curve C
is a strictly positive distance from the negative real axis. Thus C lies in some
open subset of the slit complex plane, throughout which our definition of z-a
is a one-valued analytic function. From theorem 2, therefore, qt(0/2X)/{ur(0)}at
belongs to V (M; 0) if ur(O) e 63$(M; 0), and theorem 3 assures us this will be
so if °'r(0) e B(M; 1).
We can similarly show that 1 - u/'(0) = 2O2V.W8(0) where V. > 0 is the vari-

ance of the distribution associated with 4,.(0) and w.(0) E £t (M; 0) if ip8(0) e
V(M; 2), and w.(O) = 1. Indeed, w8(0) is a characteristic function (theorem 3).
As before, we can show that qt(0/2X)/{w8(0)}j. is a member of B1(M; 0). But

(2.102) qt (0) = qt (0) [qt ( 0)]n+
Hence we may conclude that

(2.103) qt ()
nm
I [u,(0)]a' I17 [WJ(0)]"

belongs to 63 t(M; 0).
For 101 < 4X we have seen that the three numbers u,(0), 1 -Pr(0), -i0,4(.) all

have arguments between - 7r and + 7r. Thus we can write
_ F - (P,(0) lay..... [1 -

(2.104) [u(0)]= _i ]

and therefore,
(2.105) [Ur(0)]ar [1 -

lar[.r)[larexp {r2 sgn (0 )}
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Similarly,

(2.106) = [1 I1012,- .

and we therefore have that

(2.107) ll ()r=l1 8-1 e-ic,i sgn
n m

II [1 -P°(O)]a' II [1 - 'p(M]",
r=1 I= 1

belongs to M$(M; 0), where c = a,. sgn
Let us now suppose, for the time being, that y is an integer. By l(v) we can

suppose that c = y + 2p, where p is a positive or negative integer, or zero. By
lemma 4 we see that

(2.108) (l)r = (l) 0(-io)7y-10'
belongs to Mt (M; 0) if X(6) E Mt (M, X). On multiplying (2.107) and (2.108)
together, and ignoring constant terms, and noting especially that

(2.109) ei(-C)OisnO = (-1)P, a constant,

we find that 'f4(0) E Mt (M; 0) as desired. The proof of theorem 1 is now complete
for the case of y having an integer value.

If y is not an integer, recall that p is the difference between Y and the least
integer exceeding y. Suppose, to begin with, that M E R2*(p). By lemma 4 we
can state that

(2.110) ei'r(c-^])i sgn 9X(0) eICTi sgn OX(O)

belongs to 6 3$(M; 0), if X(0) E Bt(M; y). On multiplying (2.110) and (2.107) as
before we reach the desired conclusion that *1 (0) E 6$(M; 0). It should be clear
that a similar argument will cover the case M E M3*(p).

Finally we come to the case when M E M*1(p). Since X(0) E G3T(M; -y) implies
X(0) E M3T(I; y), and so on, it is clear that *f(0) E V3$. However, let us now
assume every Sr(O) e VA(M; 2) and every #,.(O) e IDt(M; 3). Then, from (2.107)
we see that Q(O), say, defined as

(2.111) 101'yqq (O/X)e- 1-i

8gn
II E[1 - S°(0)]" :I [1 - 'P-(0)]fl

belongs to M$(I, 1), and, from lemma 4, X(0)/(-iO)k e 6Mt(I, 1). Therefore,

(2.112) Xi (O) - (O) I Q(0)

must belong to MT(I, 1) and must be O(161y-k) as 101 -+0. Hence,
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(2.113) eiw sgn 01(0)(2.113) ~~~~( o)(,yk)

for any constant w, is the Fourier-Stieltjes transform of some function Al(x) E (B,
say, such that, as x -

,

(2.114) r(1 - p)XP{Al(x) - A1(-)} sin ('y7r + W) limSin Q'y7r) ~0-o(-iG)
If we choose w = l1r(c - y), then we find that Ti(O) is the Fourier-Stieltjes
transform of some T1(x) e 6B such that, as x -

,

(2.115) XP{T1(X) - 1(c)} -si ((+) )) C,sin (,y7r)
where the constant C is defined in the enunciation of theorem 1.

However, under present conditions, I2 E M(I; 2), and it is therefore trivial
that xP{1T2(x) - T2('0( )} O-0, as x -+ oo. Thus theorem 1 is proved.

3. On certain sums arising from random walks

PROOF OF THEOREM 4. We shall deal with the case of nonintegral t, when 4
is an integer the proof is similar. Once again, recall that k is the greatest integer
not exceeding t. Since t > 1, we have (by theorem 3) that

(3.1) F1(O) = 1 + y1(i0) + * + jk(o) + o(46I').
For 0 small, the arguments of 1 - Ft(O) and {1 - F(0)}/(-igAi) both lie in
(-7r, +7r) so we may claim

(3.2) {1-

(_____________ 1 + .2 (io) + + Ilk (io)(k-1) +

= ( A()) + o(l),
.i=i

where the constants Aj(t) are obtained by expansion of the previous line. This
proves (1.18). Now suppose that M E M2*(p). Let us note that, by theorem 3,

(3.3) 1 - F(O) = -i0,uit1(0),
where tl(0) E Mt(M; t - 1), and let us write

(3.4) At (0) = - 1 - ,
3

( -{1F$(0)} ('- ) ,= (-AjUi0)(-j)
Then

(3.5) ((0) F(0)}( -) -F{1-F$(0)}(V_
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If t is an integer, the argument which follows could be simplified; however, let
us suppose 4 is not an integer. By theorem 2 we can state that qt (O/X) {tl(O)} (e-j)
belongs to (B$(M;t - 1) for any X > 0 (we use F e e to ensure that tt(O)
stays away from zero). Thus

(3.6) A1(0) =_ qt(0/X)A$(0) = (0)
where V$(0) e (B(M; 4- 1). Furthermore, since At(0) = 0(1) as 0 -* 0, it fol-
lows that V(8) = O(fOj('- 1)). From theorem 1, withy = (4- 1) we can now infer
that Ai (0) e OB(M; 0). Similarly, if M e M3*(p), we can prove that AJ1(0) E
GI(Mp; 0).
Theorem 2 shows that

(3.7) A21(0) ( - qt(0/X)}/{1 -F(0)} V-1)

belongs to Vt (M; 4), and it is easy to see from lemma 4 that, for every j,
1 < j < k,
(3.8) A$3(0) = {1-qt(0/X)}/(-,.ii)('i)

belongs either to 3*l$(M; 0) if M EE M2*(p) or to 63V(M,; 0) if M E R3*(p). Since
k

(3.9) At(0) = At(8) + A2(0) + E, A3i(0),
.1=1

it is clear that the theorem is proved except if M e fMTZ(p).
Suppose, therefore, that M E *1(p). It is easy to see that A1(x), in this case,

is of bounded variation and simple computations will show that, as x -
,

xP{Al(x) - Al(o)} tends to 0 or C1, according as ,ul < 0 or MI > 0. The same
limits for A2(x) must be zero because A2(x) E (B(M;t). The same limits for
A3j(x) must be zero because At(0) vanishes identically in a neighborhood of
the origin. Thus the theorem is proved.

It is convenient at this point to give the following proof.
PROOF OF COROLLARY 5.3. Suppose that 4 > 2 is an integer. We must prove

that (e-h - 1)A* (0) belongs to $ (M; 1). This plainly amounts to showing that
(e-ih -1)A1(0) e 63T(M; 1). But

(3.10) (e-h - 1)A1(0) = All(O)A12(0), say,
where

(3.11) Ahl(0) = (e{l-h )qt(0/2X){1 FtF(0)}
and

(3.12) A(12(0) = -V( -2)

Theorem 1 shows that both Al1(0) and A12(0) belong to V$(M; 1). Thus this
proves the corollary for t integral.

If C is not integral, we remark that both At l(0) and V$ (0) belong to (B(M;4- 1).
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The final part follows on writing X(O) = A:h()Vt(0),

(3.13) (e-h - I)Ai() = - ()

and appealing to theorem 1.
Note that in proving theorem 4 for an integer value oft, the awkward condition

1(v) must be checked; it is easily found to be satisfied in the present circum-
stances.

Before we prove theorem 5 we shall establish the following.
LEMMA 5. Suppose that
(i) {An(x)} is a sequence of bounded and nondecreasing functions,
(ii) {Bn(x)} is a sequence offunctions of bounded variation which are uniformly

bounded in any finite interval, and B.(x) -+ B(x) for almost all x as n -- 0, where
B(x) is of bounded variation in any finite interval,

(iii) An,(O) - Bnt(O) -O0 boundedly as n mo.
Then we can conclude that An(a) - A"(b) B(a) - B(b), as n -- o, whenever a
and b are continuity points of B(x).
PROOF. Let us introduce the special function (recognizable as the so-called

triangular probability density function):

(3.14) Aa(X) = a- -Ixa-21, xi < a,

= 0, otherwise.

Its Fourier transform is 4,(a) = (sin2(a0/2)/(a0/2)2), which conveniently
happens to be a nonnegative member of £ also, like Aa(x). Let us also write

(3.15) fn(x) = f A(a(X-z) dAn(z),

(3.16) gn(x) = J| Aa(X- z) dBn(z).

Then the functions f.(x) and gn(x) are continuous functions in £, and the two
transforms
(3.17) fn(O) = Aa(O)An,(0), gln(O) = Aa(0)Bn(O)
are both also functions in £. Therefore,

(3.18) fn(x) - gn(x) = 2-f e-z8Aa(0){An,(0) - Bn(0)} do.27r _

In view of assumption (iii) of the present lemma, Al(0) {Ani(0) - Bn,(0)} -* 0
as n - oo, and this convergence is dominated by some multiple of the £-function
Ata(). Thus we can infer from (3.18) that

(3.19) fn(x) - gn(X)-O, as n- oo.

Integration by parts shows that

(3.20) 9"(x) = -|f+a Bn(z) d,Aa(x- z).
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However, by (ii), Bn(z) -+ B(z) boundedly in any finite interval. Therefore,

(3.21) gn(x) _ x-fa+a B(z) dzAa(X - z), as n-+ oo.

If we now recall that B(z) is of bounded variation in every finite interval, we
shall see that a further integration by parts is legitimate, and yields

(3.22) gn(x) - fa+a Aa(X -z) dB(z), as n-oo.

Thus we can infer from (3.19) that, as n oo,

(3.23) fx-+a Aa(X - z) dAn(z) -|
+

A,a(X - z) dB(z),

and this convergence holds for every x and every a > 0. The deduction of
lemma 5 from (3.23) now proceeds on fairly routine lines, by sandwiching
rectangular step-functions between suitable linear combinations of triangular
functions, and so on. An example of such a procedure will be found in section 8
of Smith [12]. It is in this stage of the proof that the nondecreasing property of
An(x) is needed.
PROOF OF THEOREM 5. We shall use the special £-functions defined for X > 0

and n > 0,

(3.24) eP(n;x) - x _-v

= 0, otherwise.

The corresponding Fourier transforms are el(X; 0) = (1/(X - io)n). We shall also
write Fn(x) = P{Sn < x} and, for 0 < < 1, define

(3.25) Hr(x) = E r ( ( )) Fn(X).
Then Hr(x) is a nondecreasing and bounded function. Moreover, if we write
so(0) = FI(0) for the characteristic function of Xi, it is easily seen that

(3.26) H'(6) (1- 1

Let J be some small open interval centered at the origin and let us suppose for
the time being that 0 is confined to J. Write 3 = (1 - )- ,ui0. Then

101 02
(3.27) = (1 - .)2 + p2,402'

and by elementary calculus we can show that |0/312 . (1/j2) + 62 uniformly
for 0 < r < 1. Thus, for all 0 in J we have that 161 = 0(1#13), uniformly with
respect to ¢. In addition, we might notice that ,B will be uniformly bounded for 0
in J and 0 <D < 1.

Since 8IX1j' < cc, we have from theorem 3, after a little algebraic manipu-
lation, that
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(3.28) {1 - so(0)}-(4 1) = #-(t-1){l - E -i (i0)i + 1

where k is the greatest integer < 4, and the summation on the right vanishes for
k < 2. We shall suppose k > 2 in what follows; the case k = 1 is simpler. Note
that we have already started to use the fact that 101 = 0(1013) and that the
0-term on the right is uniform with respect to r. By expansion from (3.28) one
obtains
(3.29) H1(0) = #-('-')S,
where

(3.30) S =1 + (

+ 0(101(t-)).
On substituting jO = {(1 -t) - 1}/(bpi), performing several expansions, and
collecting terms, we evidently obtain a relation as follows:

j=2

(3.31) 114(0) = * Ass(,¢ + 0(1).

where 2 means "omit the term j = k, if 4 = k." Note that we continue to make
use of the uniform 101 = 0(1#1) result. The coefficients Aj(t, P) which appear in
(3.31) are rational functions of r and of the moments gi, P2, * , Mk. If we refer
to theorem 4 and note that -,B --p,gi0 as t -- 1 - 0, then it becomes apparent
that, as r -* 1 - 0,

(3.32) Aj(4, t)-Aj(t), for j = 1, 2, ,k.

0, for j= 0,-1,-2,* ,-k+ 2.

where the constants Aj(t) are defined in theorem 4.
At this point we recognize Dip(/13 as the transform e1(X, 0) with X =

(1 -)/(bp). Let us define
- =k ~~ ~ y y

(3.33) *r(x) = Hr(x) - Y* y) dy.,=-k+2 (~pi)~ J-

Then *r(x) E s and

(3.34) *'(0) = Hr(0) - E*a-i)
6= -k+2

By (3.31) the transform **(0) is bounded for 0 in the interval J, uniformly with
respect to r, 0 < t < 1.
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Since s(O) is assumed to belong to 5, it will be bounded away from unity on
the complement of J; using this fact it is not a difficult matter to prove that
*$(O) is bounded on the complement of J, uniformly with respect to P. Therefore,

(3.35) *1(O) -*1I(0) = (1 - 1 Ic
l ( /- ,i0)(1 ')

as 1 - 0, and this convergence takes place boundedly.
By theorem 4, the function *14(0) is the Fourier-Stieltjes transform of some

function I'(x), say, of Js(M; 0), or some related class, depending on M and 4.
We are now in a position to apply lemma 5. The functions An(x) of the lemma
here become the functions Hr(x). We see that these functions Hr(x) are bounded
and nondecreasing and, from (3.25) and the principle of monotone convergence,
we see that as -1 - 0,

(3.36) H(x)- Hl(x) = E ( J( 1 F.(x);
the limit HI(x), so far as we know at this stage in the argument, may be infinite.
The role of the functions Bn(X) of the lemma is to be played by the functions

¢(x), say, where

(3.37) S4(x) = I1(x) + E A { | e(t_j)(X, y) dy

(recall that X = (1 -)/(,L)). It is obvious that for 0 < <i< < 1 the func-
tions ¢(x) are uniformly bounded in any finite interval, and as 1 - 0,

(3.38) (x) - 1() = (x) + * _(t_j) U(x),=I (C - j)PA)U()
The limit -I(x) is of bounded variation in every finite interval.
From (3.35) we have that H(0) -a(0) -o0 boundedly as 1 - O. Hence

we can infer from lemma 5 that whenever a and b are continuity points of Z&(x),
(3.39) Hr(a) - Hr(b) -:-:,(a) - (b)
as r -* 1 - 0. If we assume a > b and appeal to monotone convergence, this
last limiting result implies

(3.40) L= ( (' 1)) {Fn(a) - Fn(b)} = S1(a) - (b).

We now let b -° o and deduce that

(3.41) ((-j 1)) Fn(a) = -,(a)-

from which the theorem is proved. The various properties of the "remainder
term" Ql(x) all come by applying theorem 4 to 11(x).
PROOF OF COROLLARY 5.1. For this part we have F(x) E (3(I; v) for some

v 2 t > 1, but Ft(0) = sp(0) e 'tu rather than St. Thus a certain part of the
argument leading up to theorem 5 does not apply. In particular, the difficulty
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occurs in the proof of theorem 1 when dealing with *21(0); we cannot state that

(3.42) {1 - qt(O/1)}/{1 -o P-1)
belongs to a class Mt. It is, however, still true that *1(0) -- *1(0) boundedly as

1 - 0, and that qt(O/X)it(6) belongs to an appropriate 63$-class. Recall that

j=k A V()(-i)U()
(3.43) P(x) j=, (t)x('-J
Then, as 1 - 0, we have that

(3.44) *r(x) - *'(x) = Hl(x) - P(x).
The fact that HI(x) < oX is a consequence of corollary 5.2, whose proof is inde-
pendent of the present argument. By a familiar inversion theorem we can show,
for any a > 0, any u, v,

fu+a fv+a
(3.45) J r(y) dy - J r(y) dy

1+ (e-iuO- e-iv) (eiaO ) () dO.

We note that, since *1(0) is uniformly bounded as 1-0, we can appeal to
dominated convergence to deduce that the above equation holds with r = 1.

Let us write Q(x) for the function of bounded variation such that Q(-Xo) = 0
and QT(6) = qt(0/X)*I(0). Then

u+a v+a

(3.46) | (y) dy- | Q(y) dy

1+ (e-;8 - e-ivo) (eibIw0 @

Thus, if we set 0(0) = (1 - qt (0/X)/02)*I(0), then it follows that

(347) flu+a { i(y) -Q(y)} dy - J+ (y)-Q(y)v dy

f + (eiu - e7iv@)(ew - 1)0() dO.

Since so(O) E ¶Ut, 0(0) is in £ and so we can appeal to the Riemann-Lebesgue
lemma to infer (letting v - -),

(3.48)
+a

{'1(y) - f2(y)} dy = J+ (ei(a-u)e e-eie)0(0) dA
We are supposing that F(x) E M(I; v). Let m be the greatest integer not

exceeding v. Then 0(0) can be differentiated m times and it is not hard to see
that 0(m)(0) also belongs to C. Then, by repeated integrations by parts, we have

(3.49) f' (ei(-$)" e-ei0)0(O) dO = f+ T(O)0(m) (0) dO, say,
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where
e-iez ~e-i(xa)a(3.50) T(0) = (-i(x-a))m

Let K be small and K > 0; suppose we substitute a = x-m. We consider a number
of cases: suppose x > 0 in their arguments.

Case (i) 0 < 101 < x:

(3.51) IT(0)I 1 (1 _ -__ +2___ =m-K)
xm X-(M1

Now we can write jO(m)(O)j = A(0)/02, say, where A(0) is a bounded function
which vanishes identically in [-X, +X]. Thus

(3.52) f-X T(0)jjEO("f)(0)j dO = O(x-(2n-r))
Case (ii) xi:' < 101 < x(i+')K, for integer j such that (j + 1)K < m:

(3.53) IT(O) = O(x-(2m-(i+1)k))
Thus if Aj is the 0-set: xft < 101 < x(i+')K

(3.54) fA IT(0)I (2 do = X(X(2m-(j+1)K) IA 02

since it is easily shown that fA, (A(O)/02) dO = O(x-iK).
Case (iii) xi, < 101 for integer j such that jK < m < (j + 1)K: here we can only

state that IT(O) = O(x-m). However,

(3.55) A A(O) dO = O(x-i),i"02
and since jK > m- K, we have that

(3-56) IT(0)1 A(O) dO = O(X-(2-.))
< 02

Thus, on combining the results of the finite number of cases together, and using
the result in (3.48), we have that, as x -> ,

(3.57) JX+ {fH(y) - P(y) -Q(y)} dy = O(X-(2-K)),

where K > 0 can be arbitrarily small.
We note that

(3.58) xm l +x- y(f-j) dy = xV-i) + O(x(?-j-l-m))

so that

(3.59) xm x+x (Y(y) dy = @(x) + O(x(?-2-m)).
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Now UT (0) is bounded and is identically zero outside the interval (-2X, +2X).
Thus there is a bounded function w(x), say, such that w(x) -O0 as lxl - oo and
Q(x) = fx-. w(y) dy. Thus

(3.60) xm fz+z+ Sl(y) dy = Q(x) + xm fx+Z {fY w(u) du} dy.
However,

(3.61) | {|f w(u) du} dy = o (fx+x (y - x) dy) = o(X-2m).
Thus,

(3.62) xm fx+ (y) dy = Q(x) + o(x-m).
(a) If t is an integer. We must have t > 2 in this case and, from all we know

about T14(0), we can also state that Q(x) G (3(I; v - f). From (3.57), (3.59), and
(3.62) and the monotone character of Hl(x) we have

(3.63) H1(x) < @(x) + Q(x) + o(X-m) + O(X-(m+2-1)) + O(x-(m-K)),
where K> 0 can be arbitrarily small. Evidently if t = 2, we can simplify the last
inequality to

(3.64) Hl(x) < P(x) + Q(x) + O(x-(m-))
whereas, if t > 2, we must have
(3.65) Hl(x) < ((x) + Q(x) + O(x-(m+2-t)).
It is clear that similar arguments will produce the needed reverse inequalities on
Hl(x) to complete the proof (when t is an integer).

(b) If t is not an integer. Recall that the integer k is such that k < t < k + 1.
If v < k + 1, then we can state that Q(x) c 63(I; v - f) aind the argument pro-
ceeds much as before. If t < 2, we have the result (3.64) and if t > 2, we have
(3.65). If, however, v > k + 1, then we set p = k - t + 1 as usual and have

(3.66) lim sup xP{Hj(x) - 2(x) -Q(°o)} < Cl,

where C1 is defined in the enunciation of theorem 4. Similarly we can obtain
a result concerning the lim inf and complete the proof of the corollary.
PROOF OF COROLLARY 5.2. Let A be a large positive number, and define a

sequence of truncated variables {X,(A)} by

(3.67) X"X(A) = X" if X. < A,
= A if X. > A.

Then {X.(A)} are independent and identically distributed and have their first t
absolute moments finite. We shall assume A chosen sufficiently large to make
FX.(A) > 0; clearly the assumptions of corollary 5.2 make this possible. Let
{Yn} be a sequence of independent random variables, each uniformly distributed
over the interval (0, 1); assume the {Y} and the {Xn(A)} to be independent. We
shall write S.(A) = Xl(A) + X2(A) + * - * + X,(A), Tn = Y1 + Y2 + * - * + Y.,
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and we choose a small positive E < &X,(A). Then {X,(A) -eY"} is a sequence
of independent and identically distributed random variables with strictly posi-
tive first moments, finite absolute moments of order f, and an absolutely con-
tinuous distribution function. We can therefore appeal to theorem 5 to deduce
that

(3.68) n=O ( (e; 1)) P{Sn(A) -eT < xl

Ec Ae g,i U(x) + A(x),
j=1 F(f- j + 1) GX (A) - U

where A(x) is a function of bounded variation and the coefficients Aj(e) now
depend on the moments of Xn-eYn rather than Xn. Since Sn > Sn(A) -ET,
it follows from (3.68) that

(3.69) n-° ( n )P){S < x}

< E' r(-A()1)(- X E) U(x) + A(x),
= 1 r t +F1 Xn() -

and this implies the finiteness claimed in the theorem for the sum on the left-hand
side.

It will be seen by referring to the proof of theorem 3 that A1(t) = 1. Thus,
from (3.69), we have

(3.70) lim sup (, 1 ( n ) [6(X()-YPSXI
Let e ->0 and then A -X> o on the right of this inequality; we then find

(3.71) lim sup P(n) nO ( n< xI < -

From the fact that, as n co, P(t)( (t - 1)n('-2), it is now an

easy matter to infer that

(3.72) lim sup (c-1) E n 2)P{Sn < x <

If ,ul = oo, then (3.72) proves the corollary. If 41 < X we must now obtain an
inequality reverse to (3.72) for the inferior limit. This can be obtained fairly
easily by invoking the weak law of large numbers. Since 41 is finite, it follows
from this law that Sn/n ->,ui in probability as n --oo. Therefore, given an
e > 0 we can find no(E) such that P{Sn < n (A, + e)} > (1 - e) for all
n > no(E). If we employ the notation i.p. [t] for the integer part of (, then it
follows that for all large x

¢0 ~~~~~~~~~i.p.[Z/l+E]

(3.73) E n(t-2)P{Sn > xI > (1 -E) E n(t-2)
n=1 n=no(e)
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From this inequality we can infer that

(C - 1) (1--2)(3.74) lim inf p-,i) E nC 2)P{Sn 2 x(X 1 + e)y(j1)
The required inequality, and hence the corollary, follows by letting e -f 0 on
the right-hand side. Incidentally it is interesting to note how much easier it has
been to prove this last result, compared with (3.72).
PROOF OF THEOREM 6. In this proof we shall use the many-valued function

log z. We shall suppose as usual the complex plane to be slit along the negative
real axis from 0 to -oo and log z, defined on the slit plane, is to be that branch
which is real on the positive real axis.

For ease, write sp(@) = F1(0) and write ,i6(0) = (1 -,li0)-1 for the character-
istic function of the negative-exponential distribution with the same mean as
so(0). Choose a small E > 0 and define

(3.75) ue(p)= SUp |S(0)I-
I9I>e

Because of the assumption s(8) E c$, it follows that o-,(p) < 1. Similarly we
have a.(4) < 1. Let 0 < r < 1, and 101 2 e. Then the complex number 1 - N(0)
necessarily lies in the circle Iz -11 <a.((p) in the complex plane. From this it
follows that there is an angle aEQP), say, such that

(3.76) 1arg [1 - ps(0)1l < caSe(S) < 7r/2

for all 0 < v < 1 and all 101 > E. In a similar way there must be an angle a,(V/)
such that

(3.77) larg [1 - 4,6(0)]1 < a.(,P) < 7r/2,
also for 0 < v < 1 and 101 2 e. From all this it follows that if we define the com-
plex quantity

(3.78) z (0) -N(0)
then

(3.79) larg z,(0)j < a.(p) + aE(46) < r

for all 0 < r < 1, 101 > E.
In addition, for the same range of r and 0, we see that

(3.80) 0 < 1-2a (P) < lzr(O)l < _ < -2 ~~~~~~1- T(4~)

Thus z.(0) always lies in a certain bounded closed region A, say, of the complex
plane. This region A is defined by the inequalities (3.79) and (3.80). It is a
circular annulus centered on the origin minus that part which also belongs to a
narrow sector containing, and symmetrical with respect to, the negative real axis.

Since in proving theorem 6 we may assume u& = p1(F) > 0, it follows from
theorem 3 that sp(O) = 1 + .liOAp(l)(O), where o(1)(0) e (BG(M; t - 1) and 90(1)(0) =
1. Computation based upon (3.78) then shows that
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(3.81) zr(6) = 1- - [°(6) -

if we recall the special form of t'(6).
Suppose now that 0 < r < 1 and that 1O1 < e. Given a small 6 > 0 we can

make E small enough to ensure k(o(l)(0) - s(p)l < abecause rp(1)(0) - 'p(O) - 0
as Of *-- 0. Moreover, it is easy to show that when 0 < r< 1, ililiOl <
11- liO - rl. Therefore, from (3.81), it follows that z.(O) will lie within the
small circle Iz - 11 < a for all 0 < r < 1 and all 1J1 < e. This circle is clearly
within the region A. We can now state the following.
LEMMA 6. Let the complex plane be slit along the negative real axis from 0 to

-oo and define log z on the slit plane to be the branch which takes real values for real
positive z. Then there is a bounded open set A* in the slit plane, this set A* being a
strictly positive distance from the slit, and such that

(3.82) 1 - so(0)1 - ~(1 - l)-
lies within A* for all 0 and all ¢, 0 < v < 1. As a consequence of these facts and of
(3.81), it follows that

(3.83) log (1 1 - (p(O) log (1 + SO(1)(0) -s(0))G- W( AO-
boundedly, as v increases to unity.

In addition to lemma 6, we shall need the following.
LEMMA 7. Suppose that both F(x) and G(x) belong to e n D(M; 4) for some

M E M* and some 4 > 1. Suppose further that Al (F) -sl(G) > 0. Then

(3.84) log (1 F (O))

belongs to (BT(M, 4- 1); the logarithm is intended to be the branch taking real
values for real positive arguments.

PROOF. Clearly it will be enough if we prove the lemma when G(x) refers to
a negative exponential distribution. Suppose first that ul = ,u1(F) = ul(G) > 0.
Thus G*(6) = (1 - u,i0)-l. Then, by lemma 6, and the arguments leading
thereto, we see that

(3.85) Z1(O) = 1 - Ft(O) 1 + Ftl)(0) -F(0),(3.85) zl(o) 1 - G6(6)
and, evidently, z1(O) e $BI(M; 4- 1). From theorem 2 and lemma 6 it appears
that, for any X > 0,
(3.86) qt(O/X) log z1(0)
belongs to B1(M; 4- 1), where qt(.) is the usual S.M.F. Furthermore if, in
theorem 2, we take the interval J as (X, oo) then we may infer that both

(3.87) [1 - qt(O/X)] log [1 - Ft()] and [1 - qt(O/X)] log [1 - G(O)]
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are in (B (M; 6). Consequently,
(3.88) [1 - qt(O/X)] log z,(6)
belongs to &BI(M; t). Combining (3.94) and (3.96) proves the lemma under our
extra assumptions.
We must now remove the assumption that yi(<p) = s,u(#). Reflection will show

that it will be sufficient to prove that if 0 < a < b < oo, then

(3.89) log 1 (1 -i)-11 -(1 - bi0)'1
belongs to V (M; 4- 1). To achieve this conclusion, consider the function

e-(xIa) -e-(xzb) x > 0

(3.90) x

=0, x < 0.
It is easy to see that g(x) belongs to £(M, t - 1). By evaluating an integral of
the familiar Frullani type we can show that the Fourier transform of g(x) is

b'-1 iG(3.91) 9gt() = log (a-' i- )
and simple computation shows (3.89) to be the same function as gt(O).

Finally, and to complete the proof of lemma 7, we must cover the situation
in which both Ai(,p) < 0 and ,i(J,) < 0. We content ourselves with the observa-
tion that this case can be dealt with by arguments similar to the ones already
employed or, alternatively, by using the fact that the complex conjugate of a
function of 6$ is also a function of V$.
Now that we have established lemmas 6 and 7, the proof of theorem 6 presents

little difficulty. Suppose 0 < t < 1 and consider the functions

(3.92) Hr(x) = E n F();
,I=1 nl

(3.93) Br(x) U(x) n- Z (n-1) d
n=1 AinlJ (n -1)

=U(x) f e (lo(v/p1) - e-(A/ul)
= U(x)~ ~ ydy.

It is apparent that Hr(x) and Br(x) are nondecreasing functions of 03, and
their Fourier-Stieltjes transforms are such that

(3.94) BT(O) - H1(0) = log (1 1- )

Moreover, if we now appeal to lemmas 6 and 7, we see that as r increases to unity
(3.95) B$(0) - HI(0) - ' (O),
where *t(0) is the Fourier-Stieltjes transform of some function I(x) of
(B(M; t - 1), and this convergence takes place boundedly.
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We can now appeal to lemma 5, in much the same way as was done in proving
theorem 4, and discover that

1 fx 1-Wil(3.96) - F71(x) = U(x) e dy - '(x) + '(-oo).

However, since V(0) = log (1 + p(1)(0) - yp(O)), it is clear that *(+oo) -
1(-oo) = V1(0) = 0. From this fact and (3.96) the theorem follows.
We shall not bother to give the detailed arguments for corollary 6.1 because

it is deducible from theorem 6 in much the same way as we have deduced
corollary 5.2 from theorem 5.
The proof of corollary 6.2 needs only the slightest sketch. If, taking t > 2, we

define K(x) = _i= n('-2)P{Sn < x}, then by corollary 5.2 K(x) is a non-
decreasing function which is O(x(1-1)) for large positive x; also K(x) -*0 as
x -> -oo. If we write G(x) = P{Xo < x}, then

(3.97) E2 n(I-2)P{Sn + Xo < x} = |' K(x - z) dG(z).
n=11

It is straightforward to verify that the assumption .fow Izi( - ) dG(z) < oo will
ensure the finiteness of the convolution on the right of (3.97). Similarly, one
can discuss the case t = 1.
PROOF OF THEOREM 7. We begin by proving that if 2&(x) is finite for one

value of x, then it is finite for every value of x. If P{Xn 2 0} = 1, then it
follows from familiar renewal theory for positive random variables (see, for
example, Smith [10]) that P{Sn < x} tends to zero geometrically and from this
the finiteness of 21(x) follows; let us suppose therefore that P{Xn 2 0} < 1.
On the other hand, if P{Xn < 0} = 1, then it follows from the same familiar
theory that 2;(x) is infinite for every x; we may therefore suppose that
P{Xn < 0} < 1. In other words, we may suppose 0 < P{Xn < 0} < 1,
P{Xn = 0} $ 1, and 0 < P{X7 > 0} < 1.

Let us now be given that 2Z(xo) is finite, and for argument's sake suppose
xo < 0. It is trivial that 2;(x) will be finite for x < xo; we must therefore demon-
strate such finiteness for x > x0. Since P{Xn < 0} > 0, there must be an integer
r such that P{Sr < xo-x} =x , say, >0. Then

(3.98) 2;(xo) > E n(12)P{Sn < Xo & Sr < X0 - X}
n=r+l

= L n('-2)P{Sn - S < x& S < x-x}
n=r+l

n(C 2)PjS._, < XI
n=r+l

> A2(x),
where A is the greatest lower bound to the numbers {n(t-2)/(n - r)(-2)} for
n = r + 1, r + 2, - - * ad inf.; obviously A > 0. Thus the finiteness of 2;(x) is
demonstrated; similar arguments can be employed if xo = 0 or if xo > 0.
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Next let us assume 2;(x) to be finite for every x and suppose it is given that 8X"
is finite. If &X. < 0, then it follows from the weak law of large numbers that
P{Sn < x} -*1 as n -oo, for every x > 0. This would imply that Z&(x) = 00,
a contradiction of our hypothesis. The case when 8X. = 0 is covered by a result
of Spitzer [9]. Therefore, we must have FXn > 0, as claimed in the statement of
theorem 8. Let us write g,i = FXn > 0. By the weak law of large numbers we
know that Sn/n -- , in probability as n -- oo. Therefore, we can find p > 0 and
X > Al such thatP {0 <S. < niq} > pfor all large n. Moreover, since &jXi1 <o, we
will also have that nP{X, < -ni} < 2p for all sufficiently large n.

Define Ar, for r = 1, 2, * , n, to be the event

(3.99) {Sn- X, < n/; Xr < -nq;X > -nq for s = 1, 2, * , (r - 1)}.
Clearly the events A1, A2, - * * , A n are disjoint, and any one of them implies the
event {Sn < 0}. Therefore,
(3.100) P{S. < 0} 2 E P{Ar}.
However,
(3.101) P{Ar} = P{Sn- X, < nq; X, < -nr7}

- P{Sn- Xr < n; Xr < -nq; X. < -n, for some s < (r - 1)}
2 P{S.-, < nj}P{X, < -n} - (r - 1)[P{X1 < -nn2

2 pP{Xj < -ni}.
From (3.100) it then follows that P{Sn < 0} 2 lpnP{X, < -nq}. Hence, if
Zt(0) is given to be finite,

(3.102) L n(0-)P{X, < -ni} < oo.
n=1

This inequality implies that &(Xi )t < co, as was to be proved.
The following example completes the proof of theorem 7. Suppose that Y1,

Y2, --, is an infinite sequence of independent, identically distributed, non-
negative random variables with distribution function Fl(x), where 1 - Fl(x) =
I/x for all large x. Let Z1, Z2, * * * be a similar sequence of independent, identically
distributed, nonnegative random variables with distribution function F2(x),
where
(3.103) F2(x) = exp -t + 2) (X1/(2+t)
for all large x. Assume, moreover, that the {Yn} and the {Zn} are independent
of each other.

If Ar is the event {Y, > (e+1%)}, then it is clear that
(3.104) P{Y1 + Y2 + *-- + Y. > n(1+2)}

< P{A1U A2 U *.. U An}
< nP{Al}
= n-1, for all large n.
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Also, if Br is the event {Zr < n(C+2)}, we see that

(3.105) P{ZA + Z2 + *- * + Zn < n('+2)}
< P{B1n B2n ..n* Bn}
= [F2(n(1+2))]n

= [exp {~_logn}]n
= n , for all large n.

Define the sequence {Xn} by putting Xn = Zn- Yn. Then
(3.106) P{Sn < 0} = P{Z1+ Z2 + + Z. < Yl + Y2 + + Yn}

< P{ZI + Z2 + *-*+ Zn < 0(+2)j
+ P{Y, + Y2 + *-- + Yn > 0'+2)j

< 2n-4, for all large n.
Hence,

(3.107) 2, n(2)P{Sn < 0} <°O
n=1

and we have constructed a sequence {Xn} which makes lt(x) finite for x = 0,
and therefore for all x. To see that £X+ is infinite, we can argue as follows.
Choose any constant c > 0, and let x be arbitrary and positive. Then

(3.108) P{Xn > X} 2 P{XM > x; Yn < C} > P{Zn > X + C}P{Yn < C}.

Thus, if any moment of Zn is infinite then so is the corresponding moment of
X+. It is a simple matter to see that £Zn = °°.

Similarly, one can show that

(3.109) P{Xn < -X} > P{Zn < C}P{Yn > C + X}
and prove that £Xn =

ADDENDUM

The function A1(0) which arises in the proof of theorem 4 can be treated in a
slightly different fashion to yield modified forms for the remainder terms in
theorem 5 and corollary 5.1. For simplicity we deal here with the case of integer
4 > 2. Evidently we can write
(A.1) AI(0) = qt(0/X)X(0)/{1 -Ft()}(1-1)
where X(0) e V$(M;t - 1) and X(0) = O(101(4-1)). Thus X(0)/(-i0)(-1) = BT(0)
say, where B(-oo) = 0 and B(x) E (*>(M; 0). Now we differ here from the proof
of theorem 4 in writing

(A.2) 1A-''A$i(0) = [f qt(0/x) 1

(A.2) JAI ')AI(O) B t ~~~~~~~~(0).
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If we write VT(0) for the expression in braces, then we can say Vt(0) E
Mt (M; C - 1). Thus
(A.3) Ai(l Al(x) f B(x - z) dV(z)

and so

(A.4) ,4t1-"Al(x) - B(x) = -|f [B(x) - B(x - z)] dV(z).

Now,

(A.5) f [B(x) - B(x - z)] dV(z) = ° (M(z/2)f0 >z/2 dV(z))

= o(/x(1-l)M(x)).
But, for large positive x, B(x) must be representable as the finite linear combi-

nation of a constant and terms like fZ [1 - D(u)] du where D E 5D(M; 1). Thus
[1 - D(x)] = o(l/xM(x)) and hence,

(A.6) f+x2 [fz [1-D(u)] du] dV(z)

= ((x-z)M(x _ Z) dV(z))
= o f IzIM(Izl) dV(z)).

Thus

(A.7) J 1/2 [B(x) - B(x - z)] dV(z) = o(l/xM(x)),

since fI+ lz dV(z)I < oo. It follows that

(A.8) Al(x) B(x) + (1VM 1 \XMF'X)/
Moreover, it is easy to show that A2(x) and A3(x) are in 6(M; 1) and that they
are consequently o(l/xM(x)) as x -+ oo. Therefore, we can write the remainder
function of theorem 5 thus:

(A.9) A(x) = B(x) + O M( ))

In particular cases it is straightforward to express B(x) in terms of F(x), F(l)(x),
and so on. Thus, in the important case 4 = 2, under the conditions of theorem 5
we have

(A.10) HI(x) = + 2 F(2)(X) + (xM(x)

At this point it is not hard to see that under the conditions of corollary 5.1 we
shall have a similar result, the error term being o(x-(,-1)).
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Note added in proof. No changes in our arguments are necessary if, for
instance, we replace M(Ixl) by K(x), where K(x) = M(x) for x > 0 and K(x) = 1
for x < 0. Thus, our theorems also apply to cases where nonsymmetric moment
functions are appropriate.

Condition (iv), defining MJR*, can be substantially weakened to the following.
(v) There is a K(x) E R such that

() Ilog K(x)I dx < oo

and, as x -- oo, M(x) = O(K(Xx)) for every X > 0.
For example, (v) is satisfied by M(x) - exp {x/(log x)2}. Condition (iv) is

used in only two places. One place is where we show a,(n) of (2.82) to be suitably
small, and this use of (iv) can be avoided without difficulty, though we must
omit details. The second place is where we show that the S.M.F. based on (2.70)
is in S(M; v) for anyM e M*. Suppose we redefine M* using (v) instead of (iv).
The following theorem shows that functions exist with which we can construct
an S.M.F. in S(M; v) for any given M in the more general on*.
THEOREM. If M e on and satisfies (v), then there is a nonnegative (and non-

null 2-function g(x) such that g(x) = 0 for all sufficiently large Ixl and, for each
X > 0, gt(XO)(1 + 02)M(I6I) is bounded for all 0.
PROOF. Let Kr(x) belong to n and be such that Kr(x) _ K(x)(1 + X2)r,

where K(x) is the oflZ-function of (v). Then, by theorem XII of Paley and
Wiener ("Fourier transforms in the complex domain." Amer. Math. Soc. Publica-
tions, Vol. XIX, New York, 1934), we can find f(x) E L2 such that f(x) = 0
for all x < -A, say, and Ift(0)l _ l/K3(101). Assume (Rf(x) is nonnull and set
u(x) = (Rf(x) (otherwise use sf(x)). Since f(x) must be continuous, we may sup-
pose (by moving the origin if needed, a maneuver which leaves ift (0)I un-
changed) that u(x) has no zeros in some neighborhood of the origin. Let u2(x) =
[u(x)]2. Then

(2) 2rul(0) = |+ ut(0 - a) ut(a)da,

and so

(3) u (0) =0 (f|da K2(I0-aI)2la)(1 + a2)

From K2(10l) < K2(10 - aj)K2(Iaj) we see that ul(0) = 0(1/K2(I01)). If we now
set g(x) = u2(x)u2(-x) a similar argument shows that gt(0) = 0(1/Ki(l1l)). This
g(x) has, therefore, all the properties claimed.
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