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1. Introduction

Let XI, X2, *.. be inidependent randonm variables, each having the same dis-
tr'ibutionl Pr {Xi = k} = Pk, k = 1, 2, *. We assume wvithout loss of generality
that pi > 0 and p > p2 >P3 >

Let N,,(k) be the number of those Xj which e(qual k, j = 1, 2, * , n. In this
paper we are going to sttudy certain limiting properties of the ranidoml variables
(1.1) I£R = E 1,

N.n(k) >0

(1.2) n= E 1.
N. (k) -1 (miod(i 2)

rTilus Rn is the iumiiiber of distinct values assumiied by the se(luucice
(1.3) {XI, iX2, - X,)-,
or the "range" of this se(luence, while L,, is the number of values assumed an
odd number of times. In principle, other random variables of the form
Ykl ,(N.(k)), where 0 has a finite range, could be studied by the methods of
this paper. But the importanit case of the "coverage" C,,,

(1.4) Cn = E Pk
Nn(k) >O

cannot apparently be so sttudied.
The random variable R,, is related to the "coupon collector's problem" (cf.

Feller [1], p. 102) and has been studied in the case of finitely many eqtual pi > 0
by B6kessy [2] among others. The random variable L,, is related to a random
walk on a simple Abelian group, as described in section 3. It turns out that thie
studies of the random variables R,, and L,, are almost identical.
The main resuilts of this paper are given in (2.9), (2.11), (3.1O), (3.11),

and (4.2).

2. The generating functions

As is well known and easily proved, if in the definition of N,,(k) of sect.ion 1
we replace n by a random variable A which is inidependent of the {Xi) and has
a Poisson distribution with parameter X, the random variables NA(k) = Ak arc
independent Poisson random variables, k = 1, 2, Ak, A,, having a parameter Xpk,
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(2.1) Pr {Ak = j} = 0, 1, - - -

Thus from the equalities
(2.2) Pr {Ak > O} = 1 -e-XPk,
(2.3) Pr {Ak 1 (mod 2)} = e Pk sinh Xpk,

we conclude that for Itl < 1,

(2.4) E(tRA) = I (e-xPa + t(1 - e-xP'))

= e-' II ((1-t) + teXP),

(2.5) E(tLA) = e-x II (cosh Xpk + t sinh Xpk)

e-x IeXPk( + t) + e-XPk('

Let now 0 < t < 1, and let W1, W2, *- be independent Bernoulli random
variables Pr {1Vi = 1} = t, Pr {TVi = 0} = 1 - t, and put

(2.6) S = PiTti.
t=1

Let also Y], Y2, *-- be independent random variables of the same character
Pr {Yj = 1} = (1 + t)/2, Pr {Yj = -1} = (1 - t)/2, and put T = E piYi.
We then conclude from (2.4) and (2.5) that

(2.7) : E (tR-) -n E(e ),n=O n

(2.8) Ent- - !=E(
or, equating powers of X, that

E(tRn) = E(Sn)
(2.9) E(tLn) = E(Tn).

It is convenient for later purposes to transform T linearly as follows. With
the random variables Yi as above, define Zi = (1- Y)/2. Then Zi has the
distribution Pr {Zj = 0} = (1 + t)/2, Pr {Zi = 1} = (1 - t)/2. Setting

(2.10) U = piZi,
we have T = I - 2U, and

(2.11) E(tL.) = E((1 - 2U)-).

Thus the random variables Rn and Ln have generating functions which are
the n-th moments of fixed random variables S and 1 - 2U respectively, S and U
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being weighted sums (with weights pi) of simple Bernoulli random variables.
This representation is useful in studying limiting properties of Rn and Ln.

3. Recurrence properties of L.
The random variables Ln (and Rn) do not form a Markov chain, but the

events {Ln = 0} clearly form a sequence of "recurrent events" in the sense of
Feller ([1], p. 282), and it is easily seen that Pr {Ln= j infinitely often} is inde-
pendent of j, and hence, specializing to j = 0, it is either 0 or 1, according as
E Pr {Ln = 0} converges or diverges.

Spitzer ([3], p. 91) has analyzed the recurrence of L, by considering a random
walk on an Abelian group q in the following way: let the group elements g be all
infinite sequences of O's or l's ultimately terminating in zeros g = {W1l, w02, * * *}
wi = 0, or 1, E wi <0, with multiplication defined as component-wise addition
mod 2. A set of generators for 9 is {gl, g2, * * -} where gn has all zeros, except at
the n-th coordinate where it has a one. A "random walk" Qn on q is defined by
setting Qo = e = (0, 0, . . ,), Qn+1 = QnGr+i where the Gn are independent and
Pr {Gn = g,} = pi. If we set Ln as the sum of the components of Qn, this con-
forms distribution-wise to the Ln defined in (1.2), and the realization of infinitely
many L. = 0 is equivalent to the recurrence of Q,,.

If we set t = 0 in (2.10) and (2.11), we have the Zi as fair {0, 1} random
variables Pr {Z = 1} = Pr {Z = 0} = 1, Zi independent and

(3.1) U = EpiZi
Pr {Ln = 0} = E((1 - 2U)).

It follows from the general theory (cf. Feller [1], p. 285) that a necessary and
sufficient condition for recurrence is that E_ Pr {Ln = 0}zn be infinite at z = 1,
or that

(3.2) E ( (I -2U)) E

In other words, a necessary and sufficient condition for recurrence is that the
function whose Rademacher coefficients are the pj have a nonintegrable recip-
rocal. (Here the Rademacher functions rn(x) are defined as the n-th term in the
binary expansion of x, 0 < x < 1, using, say, the expansion terminating in O's
if x is of the form k/2n). Thus, a necessary and sufficient condition is that

(3.3) foE n(x) = -

Also, using (2.5) with t = 0, we have

(3.4) e-x F_ Pr {Ln = 0} e= II cosh Xpn,

arid the terms on the left being nonnegative, an easy Tauberian theorem for
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Borel sumimability shows tlhai a necessary and sufficienit condition for re-ecurriece
is that

(3~~~5) f ~~e-x I coshi Xp,, dX=

Neither of the above two results is very informative, and indeed it would
appear that, from the result to be given next, the necessary and sufficient
conditions on )ptt} to ensuire recurrenice are rather delicate and not to be exhib-
ited in a neat form.

In the series (3.1) for U-, let .Jk be the iiuiiber of terms separating the (k - 1)-st
and k-th occurreince of the event Zi = 1, so that JI, .12, are independent,
identically distributed ranidom variables with Pr 'J, = n'- 1/2, n = 1, 2,
Let also Sk = J1 + J2 + + Jk be the index at wlhieli Zi = 1 for the k-tli
time. Then U = PS, + PS, + -. If WCe set fk = Pk + Pk ±I - anid define

(3.6(;) Uk = PS + PS2 + ...+ PSk,
(3.7) I = pSI + Ps2 +± + PSk-I + `Sk,
we have Uk < U < Vk, aiid l,k DMonot oically increases, I1, mnonotonically (le-
creases to U, k x.

If we next define

(3.8) ail(r-) = E (P,, + P'2 + + P!'Jk-1 1 <r1 K 1'2 < * *=.

(3.9) gk(r) = (pn + p2, + + P,k1. + frk)1,
1 K r1 < 12 < . . r = 9

a straightforward calculationi gives

(3.10) U(T) > (A) = 1

~k 2ra (1r)'

for k = 1, 2, * . Consequently, a necessary and sufficient conditioni for recur-
irence is that for all k the series on the riglht of (3.10) diverge. Equivalelntly, a
necessary and sufficient coniditioni for recurrence is that the series on the right
of (3.11) diverge for some k.

lFor any fixed k > 1 the divergence of (3.10) is necessary, and the divergence
of (3.11) is sufficient, but there is a gal) (wh-Iichl vanishes as k - oc) which seems
difficult to bridge. For k = 1, this criterioni was given by Spitzer using different
methods, based on deterininiiig a set of grotul) characters for q (which are simply
related to the adenemacher flunctions rj(k) given above).

4. Limiting results

The limiting behavior of RK and L,, are essentially identical, since the geni-
erating functions are giveni as moments of essentially identical random variables
S and 1 - 2U (S and U are defined in (2.6) and (2.10)). We thus conisider
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only R,, and make the following assumption about the se(lueiice {p,,}. Define
g(4) = max {fj1pi > 1/t}, 0 < t < oo, and assume that g(t) = (aL(Q) where
L(t) is a slowly varying function; L(aV/I() -- 1, oc, a > 0.
We necessarily have 0 < a < 1, an(l it seems indispensable that some such

regularity condition be satisfied in order for limiting distributions to exist. It
is interesting that if this coiiditioii iS sliglitly strengthenied, the series in (3.10)
anid (3.11) converge or diverge together for all k, and one obtains, for this class
of -pnp, necessary and sufficienit conditions for recurienice.

In (2.9) we set t = e-e anid 6 = 1 - e-, and let J11, J2, be independent
random variables with the common distribution Pr .'J kt' = b(1 - )k-1
k = 1, 2, ***, = +11+ +1*± + J.-. We then have
(4.1) E(e-E?1) = E((1- - PS - )")
wlihere Sk relpresents the index of the k-th occurrenice of TlUi = 1 in the series (2.6).

Let Us define the stochastic process Sa(t) as Sa(t) = ,Si<t 1; it is then easy
to verify that Sb(t/3) converges in distribuitioni to X(t), the Poisson. process with
rate 1. From (4.1) we have

(4.2) E(e-,R-) = E I- f p, dSa(t))

= I(-n fO P'1ds^(,'6)+n )v)
where tie quotient of Zs by the integral in the last exponent. converges to zero

in distribution as 3 0.
Thus we can express limiting distributions in terms of the distributions of

ftinctionals of the form fo' f(t) dX(t), where X(t) is the Poisson process. As an
example, consider the case wbhen a > 0 where, because of the form of g(t)
p)resumed above, we have
(4.3) iiP[te(it0.
Now since E = 3 + O(3), 3 - 0, an application of the J-convergenice theorem
for functionals of additive processes of Skorohod ([4], p. 221), enables one to
conclude that, setting 3 = h/g(n),

(Rn j%c~~~~fdx(t)\(,-h hl-h JOt0(4.4) E cg(n)/ E (e tl)
This last remark follows from the fact that fo' (dX(t))tI/a has a positive stable
distribuitioni of index a, as is readily established.

5. Concluding remark

At the time of presenting these results at the Synmposium, a central limit
theorem was given for the random variables Rn, by refining the above calcuila-
tions. The author learned at the Symposium that this had heen established
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independently by S. Karlin (unpublished), using different methods. It was
decided that we would publish our results jointly elsewhere.
ADDED IN PROOF. In the presentation of the above paper, the author was

unaware of the work of R. R. Bahadur, "On the number of distinct values in a
large sample from an infinite discrete distribution," Proc. Nat. Inst. Sci. India,
V7ol. 26 (1960), pp. 67-75. In this paper Bahadur obtains estimates for E(Rn) in
a number of interesting cases, partly overlappiiig section 4 above.
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