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1. Introduction

Let X;, Xs, - -+ be independent random variables, each having the same dis-
tribution Pr {X; = k} = p, £ = 1,2, - - . We assume without loss of generality
1hatp,'> Oa.ndeZpg ZpSZ LN

Let N,(k) be the number of those X; which equal £, j = 1,2, --- | n. In this
paper we are going to study certain limiting properties of the random variables

(1.1) Ro= % 1,
Nalk) >0

Na(k) =1 (mod 2)
Thus R, is the number of distinet values assumed by the sequence
(13) {le X2» I} ‘\rﬂ}y

or the “range” of this sequence, while L, is the number of values assumed an
odd number of times. In principle, other random variables of the form
> -1 ¢0(N.(k)), where ¢ has a finite range, could be studied by the methods of
this paper. But the important case of the “coverage” C,,
(1.4) Co= > 7

NalB) >0
cannot apparently be so studied.

The random variable R, is related to the ‘“coupon collector’s problem” (cf.
Teller [1], p. 102) and has been studied in the case of finitely many equal p; > 0
by Békéssy [2] among others. The random variable L, is related to a random
walk on a simple Abelian group, as described in section 3. It turns out that the
studies of the random variables R, and L, are almost identical.

The main results of this paper are given in (2.9), (2.11), (3.10), (3.11),
and (4.2).

2. The generating functions

As is well known and easily proved, if in the definition of N.(k) of section 1
we replace n by a random variable A which is independent of the {X.} and has
a Poisson distribution with parameter A\, the random variables Ni(k) = A, arc
independent Poisson random variables, k = 1, 2, - - -, A; having a parameter Apy,

345



346 FIFTH BERKELEY SYMPOSIUM: DARLING

@.1) Pr A = j} = e U2 =01,
Thus from the equalities g

(2.2) Pr{A, >0} =1 — ¢

(2.3) Pr {Ax = 1 (mod 2)} = e=*» sinh \py,

we conclude that for || < 1,

@.4) E@) =TT (7 + (1 = e7))

(L~ 0 + to),
(2.5) E(tla) = c‘*I.:I (cosh A\py + t sinh Apy)

e—)\f_:I <e)\ﬂk(lT—i_t> + c_)\Pk(l ; t)).

Let now 0 <t < 1, and let Wy, Wy, --- be independent Bernoulli random
variables Pr {W,; = 1} = ¢, Pr {W. =0} = 1 — ¢, and put

t=
Let also Y,, Y5, --- be independent random variables of the same character

Pr{Y;=1} = 14+1)/2, Pr{YV:= -1} = (1 —1t)/2, and put T = X p;Y.
We then conclude from (2.4) and (2.5) that

@7 T E@w) Y = E@9),
n=0 n!

(2.8) > B X = B,
n=0 n:

or, equating powers of A, that

E(tR) = E(S),

E(tt~) = E(T").

It is convenient for later purposes to transform 7' linearly as follows. With

the random variables Y; as above, define Z; = (1 — Y;)/2. Then Z; has the
distribution Pr {Z; = 0} = (1 4+ ¢)/2, Pr {Z; = 1} = (1 — {)/2. Setting

2.9

we have T = 1 — 2U, and
(2.11) E(il) = E((1 — 20)7).

Thus the random variables B, and L, have generating functions which are
the n-th moments of fixed random variables S and 1 — 2U respectively, S and U
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being weighted sums (with weights p;) of simple Bernoulli random variables.
This representation is useful in studying limiting properties of R, and L.

3. Recurrence properties of L,

The random variables L, (and R,) do not form a Markov chain, but the
events {L, = 0} clearly form a sequence of “recurrent events’’ in the sense of
Feller ([1], p. 282), and it is easily seen that Pr {L, = j infinitely often} is inde-
pendent of j, and hence, specializing to j = 0, it is either 0 or 1, according as
> Pr {L, = 0} converges or diverges.

Spitzer ([3], p. 91) has analyzed the recurrence of L, by considering a random
walk on an Abelian group G in the following way : let the group elements g be all
infinite sequences of 0’s or 1’s ultimately terminating in zeros ¢ = {w1, we, -+ -},
w; = 0,0r1, > w; < », with multiplication defined as component-wise addition
mod 2. A set of generators for G is {gi, go, - - -} where g, has all zeros, except at
the n-th coordinate where it has a one. A “random walk” @, on G is defined by
setting @ = e = (0,0, --- ,), Qo1 = @.G,1 wWhere the G, are independent and
Pr {G. = g;} = p;. If we set L, as the sum of the components of @,, this con-
forms distribution-wise to the L, defined in (1.2), and the realization of infinitely
many L, = 0 is equivalent to the recurrence of Q..

If we set £ = 0 in (2.10) and (2.11), we have the Z; as fair {0, 1} random
variables Pr {Z = 1} = Pr {Z = 0} = 1, Z, independent and

U = iZi,
3.1) 2P
Pr {L, = 0} = E((1 — 2U)").
It follows from the general theory (ef. Feller [1], p. 285) that a necessary and

sufficient condition for recurrence is that > Pr {L, = 0}z" be infinite at z = 1,
or that

(3.2) E(% (1 — 2U)"> - % (%) = .

In other words, a necessary and sufficient condition for recurrence is that the
function whose Rademacher coefficients are the p; have a nonintegrable recip-
rocal. (Here the Rademacher functions r,(x) are defined as the n-th term in the
binary expansion of z, 0 < z < 1, using, say, the expansion terminating in 0’s
if x is of the form k/2"). Thus, a necessary and sufficient condition is that

1
€ € dz —
(33) A S pan@
Also, using (2.5) with ¢ = 0, we have
(3.4) ¢S Pr {L, = 0} % = ¢ 1 cosh Ap.,
. 1

and the terms on the left being nonnegative, an easy Tauberian theorem for
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Borel summability shows thatl a necessary and sufficient condition for recurrence
is that '

(3.5) / e ﬁ cosh A\p, d\ = =.
0 0

Neither of the above {wo results is very informative, and indeed it would
appear that, from the result to be given next, the necessary and sufficient
conditions on {p,} 1o ensure recurrence are rather delicate and not to be exhib-
ited in a neat form.

In the series (3.1) for U, let J, be the number of terms separating the (£ — 1)-st
and k-th occurrence of the event Z; = 1, so that J,,.Js, - - - are independent,
identically distributed random variables with Pr {J, = n} = 1/2*n =1,2, ---.
Let also Sy = J1 + J2 4+ -+ + Ji be the index at which Z; = 1 for the k-th
time. Then U = ps, 4+ ps, + -+ -. If we =et fx = pr + piy1 + - -+ and define

(3.6) Ur=ps + s+ -+ + Psw
(37) 17!: = Ps, + Ps: + cc + PSia + fb'k?
we have U, < U < V), and U, monotonically increases, 17, monotonically de-

creases to U, k — oc.
If we next define

(38) ak(r) = Z (pl'l + Dt - + prk)_l, 1< << - <rpp=r,

(3'9) 3];(7') = Z (,pn + Pr + Tt + DPrea + fl‘k)——l)
1S7’1<7'2< e = r,
a straightforward calculation gives

1 1Y & 1
(3.10) L <(,> < I <I_x> = ’:Z:]; Vo)
1 1 o 1
3.11 El+ El+) = s
B.11) <( > > <I I:> rgk 2784(r)
for k = 1,2, - - -. Consequently, a necessary and sufficient condition for recur-

rence is that for all k¥ the series on the right of (3.10) diverge. Equivalently, a
necessary and sufficient condition for recurrence is that the series on the right
of (3.11) diverge for some k.

For any fixed k > 1 the divergence of (3.10) is necessary, and the divergence
of (3.11) is suffcient, but there is a gap (which vanishes as k¥ — «) which seems
difficult to bridge. For k = 1, this criterion was given by Spitzer using different
methods, based on determining a set of group characters for G (which are simply
related to the Rademacher functions r,(k) given above).

4. Limiting results

The limiting behavior of £, and L, are essentially identical, since the gen-
erating functions are given as moments of essentially identical random variables
S and 1 — 2U (S and U are defined in (2.6) and (2.10)). We thus consider
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only R, and make the following assumption about the sequence {p.}. Define
g(&) = max {jlp; > 1/¢}, 0 < £ < o, and assume that g(¢) = &L(§) where
L(%) is a slowly varying function; L(a§)/L(§) -1, § >, a > 0.

We necessarily have 0 < @ < 1, and it seems indispensable that some such
regularity condition be satisfied in order for limiting distributions to exist. It
is interesting that if this condition is slightly strengthened, the series in (3.10)
and (3.11) converge or diverge together for all k, and one obtains, for this class
of {p,}, necessary and sufficient conditions for recurrence.

In (2.9) we set t = ¢ and § = 1 — e, and let .Jy, .Jo, - - - be independent
random variables with the common distribution Pr {J = k} = §(1 — 8)* 1,
=12, 8=Ji+J2+ --- + J.. We then have

(41) E(C—d‘)n) = E((]- — D5 T PSS, — ')“))
where S; represents the index of the k-th occurrence of 11"; = 1 in the series (2.6).
Let us define the stochastic process S;(f) as Ss(f) = X s,<¢ 1; it is then easy

to verify that S;(t/8) converges in distribution to X(f), the Poisson process with
rate 1. From (4.1) we have

(4.2) E(o—<k) = E((l _ ﬁ)* . dSa(t))")

=K ((1 _ L ® Dus dSa(t/a))")

- ( el piadSL/D) +n7s),
where the quotient of Z; by the integral in the last exponent converges to zero
in distribution as § — 0.

Thus we can express limiting distributions in terms of the distributions of
functionals of the form [5° f(t) dX(f), where X (f) is the Poisson process. As an
example, consider the case when « > 0 where, because of the form of g(&)
presumed above, we have

(4.3) NPiegtmyy — 71, n— 0.

Now since € = § 4 0(8), 6 — 0, an application of the J-convergence theorem
for functionals of additive processes of Skorohod ([4], p. 221), enables one to
conclude that, setting & = h/g(n),

w dx(t)

Rn
(4.4) Eleit) = g (e o ) = e-hra—e

This last remark follows from the fact that 5 (dX(2))/t~ has a positive stable
distribution of index «, as is readily established.

5. Concluding remark

At the time of presenting these results at the Symposium, a central limit
theorem was given for the random variables R,, by refining the above calcula-
tions. The author learned at the Symposium that this had been established



350 FIFTH BERKELEY SYMPOSIUM: DARLING

independently by S. Karlin (unpublished), using different methods. It was
decided that we would publish our results jointly elsewhere.

ApDED IN PROOF. In the presentation of the above paper, the author was
unaware of the work of R. R. Bahadur, “On the number of distinet values in a
large sample from an infinite discrete distribution,” Proc. Nat. Inst. Sci. India,
Vol. 26 (1960), pp. 67-75. In this paper Bahadur obtains estimates for £(R,) in
a number of interesting cases, partly overlapping section 4 above.
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