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1. Introduction

We shall consider the frequently met problem of linear extrapolation of the
stationary random processes x(s), —x < s < «, with Ex(s) = 0. The problem
consists of finding that linear functional £(¢; 7), = > 0, of the values x(s) for
s <t (extrapolation according to the entire past of the process) or for t — 7' <
s <t (extrapolation of a process given on a finite interval) which would give
the best approximation to the random variable z(¢t + 7). “Best” here is intended
in the sense of least-squares; that is, it is required of the functional £(¢; r) that
the mean-square prediction error
(1) o¥(r) = Elx(t + ) — 2t 7))
takes on its minimum value.

A. N. Kolmogorov [1], [2] initiated the theory of linear least-squares ecx-
trapolation of stationary processes. This theory was developed further by M. G.
Krein [3], N. Wiener [4], K. Karhunen [5], and others. At present, it has
achieved a significant degree of completion (see, for example, Doob [6], chap-
ter XII, or Rozanov [7]). We may formulate the general solution of this problem
in the following way.

Let us start from the spectral representation of the stationary stochastic
process in the form

@) 2(s) = f_’: e AZ(N)

where Z()\) is the stochastic measure on the —= < X\ < « axis. This measure
is connected to the spectral function F(\) of the process x(s) by the relationship

3) r{ fs AZ(\) - fs 37?\7} = /:sns. dF(N),

where the bar above the symbol signifies the complex conjugate. If F'(\) is
zero on a set of nonzero Lebesgue measure, or if F/(\) is not zero almost every-
where but

© Jlog F'(N|
€)) /_w RS v a\ = =,
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then the best linear extrapolator £(f; 7) agrees almost surely with z(t + 7); in
other words, in this case ¢(7) = 0 for all . If the integral in the left-hand side
of (4) converges, then

(5) 8(t;7) = [7 08,00 dZ0)
where ®,(A\) = 0 for A € §, and

©

(6) d.(\) = %%(Uﬁ e~ dp/ eitnuy(y) du for A g S.

— o0

Here S is a set of zero Lebesgue measure consisting of the discontinuities of
F(\) and of the growth points of the singular component of F(\), and ¢()) is
defined by the condition ¢(A\) = lim, ;¢ ¢(A — %) for almost all A\, where

1 [° 1 !
@) o(w) = exp {2—m /_w lxtt:)v Olgf S) d)\}.

The function ¢(w) is analytic and has no zeroes in the lower half-plane of com-
plex variable w, and its boundary value on the real axis ¢(\) satisfies the condi-
tion |@(A\)|> = F’(\) almost everywhere.

The function &,()) is called the spectral characteristic for linear extrapolation.
When the analytic expression for this function is known, it is also usually pos-
sible to give an explicit expression for the best extrapolator £(¢; 7). In fact, from
(5) and (2) we have

(®) #t;7) = [7 2t — pru) dp,

where w(p) is the generalized function (a Schwartz distribution) which is the
Fourier transformation of the function ®,()\):

©

® o) =g [ e, a0 = [ emugap

The mean-square extrapolation error is expressed in terms of the spectral char-
acteristic of the extrapolation by using the formula

10) o) = [ o — 2 AFO) = Ele®f ~ [ 18,00 dFOV.

In a number of cases the function ®,(\) may also be found without using the
complicated formulas (6) and (7). Thus, for example, in the case of an absolutely
continuous spectral function F(\), it is easy to show that if there exists a func-
tion ¥ of the real variable N such that ¢ (a) belongs to the space L*(dF) (has an
integrable square modulus in the measure F'(\) d\), (b) may be continued analyt-
teally in the lower half-plane so that there it will not have an order of growth higher
than a power of |\|, and (c) satisfies the condition that [e™ — ¢(N\)]F’(\) may be
continued analytically in the upper half-plane so that it will fall off not slower
than a power of |\| at infinity, then ¢ will indeed be the spectral characteristic
®.()\) (see [8]).

A general solution for the problem of the best least-squares linear extrapola-
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tion of a stationary process z(s) (such as given by formulas (5)-(7)) cannot be
obtained by means of values on the finite interval ¢t — T < s < t. However,
some sufficient conditions similar to the conditions (a), (b), and (c¢) presented
above, which permit the direct selection of the spectral extrapolation char-
acteristic ®,(\) in several special cases, may be formulated for this case too,
For example, let us suppose that the nondecreasing bounded function F(\) is abso-
lutely continuous and that there exists a function ¢ such that y(ar) belongs to L*(dF),
(br) it is an entire function of complex variable \ of the form y(\) = D i-1 e~ M(A)
where r is an tnteger, 0 < s, < T for all k and all Yi(\) are rational functions,
and (cr) salisfies the condition that [e'™ — ¢(\)]F’'(\) may be represented in the
form o1(\) + e T pa(N) where ¢1(N) may be continued analytically in the upper
half-plane and ¢2(\) may be continued analytically in the lower half-plane so that
both functions will fall off in the corresponding half-planes not slower than a power
of |N. Then 1t is possible to show that ¢ () will indeed be the speciral characteristic
Jor the linear extrapolation of the stationary process x(s) with the spectrum F(X\)
in terms of the values x(s) on the interval t — T < s < t (see [9]).

2. Explicit expressions for the best extrapolator

The general case of an arbitrary stationary process was considered in the
Kolmogorov [1], [2] and Krein [3] works on the theory of extrapolation.
However, since it is impossible to give any uniquely defined “most natural”
representation for the functional £(¢t; 7) in the general case, the problem of
finding this extrapolator was not even posed in the works mentioned above, and
all attention was turned to finding an expression for the mean-square extrapola-
tion error ¢2(r) and, especially, to the clarification of the conditions under which
o2(r) = 0 or, conversely, ¢2(7) = 0. Wiener’s great contribution was that he was
the first to direct attention to the possibility of obtaining very simple and
convenient explicit expression for the best extrapolator £(¢; 7) in some particular
cases. Namely, in his book [4] Wiener examined the case of stationary processes
with an absolutely continuous spectral function F(2), and an everywhere positive
rational spectral density F’'(\). The general form of such a spectral density is
given by

M 2
IT (A — 80
(11) F'() =B t—0o-— —o <\ < o,
’ _IIl \ — a))
i

where B > 0, N > M and the imaginary parts of all roots «; and g, are positive.
It is easy to verify that in the case of (11) the function ¢(w) in formula (7)
acquires the extremely simple form:
M
_II (w— B
(12) ow) = VBEL .
jI_Il (w — aj)
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Substituting this expression into (6) (for the S = 0 case), Wiener obtained an
explicit expression for ®,(\) in the form
. Ko\ N-—-1 v
(1";) (I)r(}‘) = 37 V_Q_’ 77(}‘) = Z (/'1')“\')*‘7
IO =8 =0

where the coefficients (', = C;(r) (dependent on 7) are determined from a simple
algebraic system of N linear equations. The same result is obtained even more
simply by starting from the sufficient conditions (a), (b), and (¢) defining ®,(\)
mentioned at the end of section 1. The extrapolator £(¢; 7) of the form

N—-M-1

BT -
A EG) = 3 B0 + 5 By [ et — p) dp,
where the coefficients B3y, - -+, By_; are linear combinations of the Cy, - -+, Cy_y,
corresponds to the spectral characteristic (13) under the condition that the g
are different. When multiple roots 8y = Bi31 = -+ = Bi,. exist among the roots
B, - -, By, the weight functions ¢ ... ¢ in (14) must be replaced by
e peie ... pleitz All these results are widely known at present and may
be found in several advanced mathematical and engineering texts.

Tt is far less known, however, that there are many examples of processes with
irrational spectral density F’(\) for which the explicit formula for the best
linear extrapolator is no more complicated than in the case of a rational spectral
density. Apparently, the author gave one of the first of such examples around
ten years ago in [10]. The question of the least-square extrapolation of stochastic
processes with spectral density of the form F/(A\) = AN, —c <X < ®, was
considered there. Clearly, such a function F’(A\) may not be spectral density of a
stationary stochastic process x(s) since it is nonintegrable. Nevertheless, the
function F’(\) = Ax= for A > 0 and « > 1 is the spectral density of a sto-
chastic process x(s) with stationary increments of some order, and the whole
theory of the linear extrapolation of stationary stochastic processes is extended
without difficulty to such processes. In particular, formula (6) is only slightly
changed when applied to processes with stationary increments. It is further-
more easy to show that for F’(\) = A\~ the function ¢(w) in (7) will be given
by ¢(w) = V Aw~* where w = |w|e?, 0 > § > —.

Substituting this value of ¢(w) in the appropriately modified formula (6), we
find an analytic expression first for the spectral extrapolation characteristic
®,(\), and then for the best extrapolator £(f; 7). IFor example, if 1 < a < 2, it
can thereby be shown that the best extrapolator here has the form

o T
Sl — o
5 e 2 m/ 2t =p) .
(15) 2(t7) = T Jo P+ P

and if 2 < a < 3, then
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sin 2%
- . 2 Talt—p) — x(t)
15’ T(t;7) = x(t) + “/2/ — " dp.
(1) (7) = a) + — = | B dp
In both these cases, the process x(s) is a process with stationary first inecrements
which has the structure function Elx(t + s) — a(s)|? of the form

(16) D) = Ela(t + s) — a(s)2 = Dltj=, D= —14A1'(1 — a) sin

1roz.
o
Kolmogorov [11] first considered such stochastic processes; it later turned out
that they play an essential part in the statistical theory of turbulent flows
(see, for example, [12]).

The method applied in [10] may even be used to solve problems on the
extrapolation of some stationary stochastic processes with irrational spectra)
density. I'or example, let the spectral density of a stationary random process
x(s) be
(17) F'() = A + a)==,
where @« > 1, A4 > 0, a > 0. In this case, the covariance function 53(t) of the
process x(s) 18
B(t) = Ex(t 4+ s)x(s) = D|t| V2K o_p.(alt]),

D = Va2 2= 2 (2) ],
where R, is the so-called Basset’s funetion (the modified Bessel funetion of the
second kind). The function ¢(w) in (7) has the form ¢(w) = VA (w? + a2~
in this case, where the argument 6 of the complex number w? 4 a® =
(N — 2u)?® 4 a? is assumed to satisfy the inequality 0 > 6 > —2x. Moreover,
repeating the reasoning in [10] which results in formulas (15) and (157), we
find that

(19) ;1)

(18)

sin - " p—ar
= o—arpa’? PN — d for 1 <a< 2,
T ]0 ok p)dp

™

sin &
2 e 1 dp ~
—ar a2 T —_ — —x( B f . 2 4
L e ﬁ |:p+Tl(t P) Tl()]p‘” o Sos

(analogous formulas for &(f; ) may also be obtained for @ > 4). More complex
results of the same kind, referring to the problem of the extrapolation of homo-
gencous and isotropic stochastic fields x(t;, fs, - - -, {,) with a speetral density of
the form (17), in terms of their values in the ¢, < 0 half-space may be found
in the IFortus work [13].

Still another class of stationary stochastic processes with irrational spectral
density for which an explicit formula may be written for the best extrapolator
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is the class of processes z(s) with spectral density expressed in terms of polyno-
mials in A and trigonometric functions in X as follows:

Il'I (O — 8 II 1+ e—“‘m*)lz
(20) F'(\ =

IH N\ = a,) H (1+4a e—w-)\)'z

=1
where B > 0, N > M, the imaginary parts of all o; and g are positive and

@ny bm, ¥n, and 3, are real numbers such that vy, > 0, 6, > 0, |a.| < 1, |b] < 1
for all » and m. It is easy to verify that in this case

H (w — Br) II 1+bd e”“"”)
(21) o(w) = VB
II (w — a,) H (1 + ane—trw)

Substituting this expression for ¢(w) in (6) (with S = 0), we may obtain
after some analytical manipulations an explicit formula for the spectral extrap-
olation characteristic ®,(\) and then for the extrapolator £({; 7) also. The same
result may be obtained more simply by direct selection of the function ®,(\)
satisfying the conditions (a), (b), and (¢) mentioned at the end of section 1;
that is, by using the method developed in my book [8] to solve prohlems on
linear extrapolation for the case of a rational spectral density F’(\). Finally,
it is also possible to use here the fact that under condition (20), the difference
equation

(22) nI:il [2(s) + anz(s — v4)] = mljil [y(s) + bmy(s — 6m)]

will have the solution y(s), which is a stationary stochastic process with rational
spectral density of the form (11), such that H; (f) = H, (t) (here H; (t) denotes
the linear span of the set of stochastic variables x(s), s < t, which is closed
relative to mean-square convergence) and

L K
22) 1 (25 7) + anb(t;r — v)) = T [9(t57) + bt 7 — bn)]

(the last approach has been recently developed in his candidate dissertation by
S. Grigoryev at Kazan University for the cases K =1, L =0 and K = 0,
L = 1). In the particular case where

B [1 + be— 2 B (1 + b?) 4 2b cos 6\
N —ia? A2+ a?
where B, b, a, and & are real parameters, B > 0, «a > 0, § > 0, |b| < 1, each
of the three methods we have described leads to the formula
e—ar + be—-i(b—v))\
e~ (1 + be?d)
1 + be~ i

(23) ') =

for 7 < 3§,
(24) ®(\) =
for r>4.
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It follows that
(25)  2(t;7)
e 3 (=1l — k) S (=DM 47— k8)  for 1< 8,
=0 k=1

(1 4+ bexs) S (—1)bea(t — kd) for >0
: k=0
(the result (25) for the case b = —e= has been published by Grigoryev [14],
who used a more artificial method in his paper). If, for example,

. , _ B _ B
(26) Fo) = N — 2]l + ae= ™2 T (A2 + a2)(1 + a? + 2a cos A
where B > 0, a > 0, v > 0, a is real and |a| < 1, then
e[l — (—=1)a
1 + aev

@) &) (1 4 ae ) 4 (= Lyrare i

for (r — 1)y < 7 < ry, which means that for such

eo[1 ;—s;:alrarerGV] [(t) + ax(t — v)]
+ (_l)rarx(t + T — T'Y)'

As is seen from these examples for specific spectral densities of the form (20),
explicit formulas for the best extrapolator turn out to be no more complex than
for rational spectral densities of the form (11), which contain the same number
of factors in the numerator and denominator. However, the form of the extrap-
olators in these cases differs considerably from the forms of the extrapolators
for rational spectral densities.

Generally, it is considerably more difficult to find an explicit expression for
the best extrapolator #(f;7) for the best least-square linear extrapolation in
terms of the values x(s) on the finite interval ¢ — 7' < s < ¢ than for extrapola-
tion in terms of its values on the half-axis s < ¢{. However, in the particular
case of a rational spectral density of the form (11) (where the numerator may
even vanish; that is, the imaginary parts of some 8’s may be equal to zero),
this expression may also be effectively determined (for example, by using direct
selection of characteristics ®,(\) salisfying the conditions (ar), (br), and (cr)
of section 1 or by some other similar method; see, for example, [15], [7], [9]).
Tt turns out that in this case the extrapolator £(f; 7) has the form

(28)  2(47)

W—-M-—1 N-M-1

(29) ;7)) = 4 Biz®(t) + k;o By_aysz®(t — T)

Mg .

+

T .
L Bov_om—1+k ];) éovx(t — p) dp

1

+

k

it

T
Bov_3y_14k ',:) ¢orr(t — p) dp,
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where By, B, -+, Bay_; are r-dependent coefficients determined from some
system of 2N linear equations (for simplicity, we consider all the roots 8y, - -+, Bur
to be different). It is, however, essential that N of these linear equations be
homogeneous equations not containing the parameter 7; hence, only N of the
2N coeflicients By, -+, By are independent. Therefore, for any = the best
extrapolator £(¢; ) may be represented as the sum of N definite lincar combina-
tions of values and derivatives of the process x(s) at the points s = t and s =
t — T and of integrals of x(t — p), 0 < p < T, with the weight functions e«
and ¢ where every combination is multiplied by some r-dependent coefficients.

The conditions (ar), (br), and (cr) may also be applied to finding the explicit
expression for the best extrapolator #(¢; 7) in terms of the values 2(s) for ¢t —
T < s < tin the case of more general spectral densities of the form (20) (where
the imaginary part of some §’s may even be zero and some b’s may be equal
to +1 or —1). I'or special cases where either K = 1, L =0, or K =0, L = 1,
the expression for (4; 7) has recently been obtained by this method by Grigoryev
in his dissertation (the results for the spectral density (23) where b = —e™e?
were published in [14]). In the general case K = 1, L = 0 the best extrapolator
for r > 8, consists of the integral term and the linear combination of the values
and derivatives of the process x(s) in the points of the form ¢ — jé, and ¢t —
T 448, 7=0,1, -, belonging to the interval [t — 7, T']; the extrapolator
for r < §; contains additionally the values and the derivatives of the process
in the points of the form ¢t + r — j&, j =1, 2, --- . In the case where K = 0,
L = 1, the best extrapolator #(¢; 7) contains the integral term, the values, and
the derivatives of the process at the pointst,t — 7, ¢t — v, ¢ — T + 1, belong-
ing to the interval [t — T, t], and the value of the process at the point £ + 7 — ryy,
where (r — 1)y, < 7 < rys.

Tor the process with stationary increments having the structure function (16)
and the spectral density F/'(A) = AN, 1 < o < 3, it is also possible to obtain
the explicit expression for the best extrapolator in terms of the values of the
process on the interval ¢ — 7" < s < ¢ (Krein [16], [17], Grigoryev). According
to Grigoryev, the extrapolator &(f; 7) for 1 < a < 2 has the form

sin =%

) Tt —p) 1
30 ;) = = [«(T @ 2/ e, |:~—~— — c] dp,
(30) i) = T | TR |
where ¢ = 2(a — 1) ’aT)YF(1, a; 1 4+ «/2; —7'T) anl F(a, b; ¢; 2) is the usual
symbol for the hypergeometrie series.

3. Simplified linear extrapolators. The use of the decomposition of the
random process into the principal components

The problem of finding the explicit expressions for the best linear extrapolator
is an interesting, purely analytical problem. However, the solutions of the
problem are rarcly used in practice, as they arc usually not simple enough.
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Besides, even when the explicit expressions for the best extrapolator are used,
they are often not the best in reality. The derivation of the expression for
£(t; 7) requires the knowledge of the precise form of the spectral (or covariance)
function of the process, and the spectrum or covariance which is used in many
cascs 1s only an approximation to the precisely unknown or too complicated
true function F(\) or B(1).

From the theorctical point of view, the use of the best extrapolators cor-
responding to the approximate expression for the covariance function or the
spectrum scems not {o be justifiable. There are some special examples where
the best extrapolation becomes meaningless (for example, as it contains non-
existing derivatives) or very far from being optimal after very small changes
of the functions B(f) and F()\).

(In the special case where it is known that the approximation Fi(\) to the
true speetrum F(\) which is used has the property that the difference Fy(\) —
F(\) is itself the spectral function, the situation is simpler. In this case the best
linear extrapolator #,(¢; ) which corresponds to the spectrum F,(\) can obviously
be applied to the process z(s) with the spectrum F(X). Tt is also easy to show
that if Fy(\) — F(\) is a speectral function and max, [F;(A\) — F(\)] is small
enough, the error of the extrapolator £,(¢; v) will be quite close to the error of
the best linear extrapolator #(¢; ) for all 7 (see Rozanov [18]).)

However, in almost all practical applications the use of the best extrapolators
corresponding to the rather rough approximations to covariance or spectrum
functions as a rule leads only to a very small excess of root-mean square error
of extrapolation over the root-mean square error of the true best linear extrap-
olator. But the excess of root-mean square error over its minimum value o(r)
will also be usually very small for many linear extrapolators of different forms.
Therefore, in many cases it is possible to fix beforehand a form of the extrapolator
confaining a few undetermined parameters and to sclect only the values of the
paramelcrs from the condition of minimization of mean square error. I'rom this
point of view the most interesting result of the theory of linear extrapolation is
the evaluation of the minimum value of mean squarc error. The knowledge of
this irremovable mean square error of extrapolation permits us to make sure
that the selected simplified extrapolator cannot be significantly improved.

One of the simplest possible extrapolators is evidently the following:

31 2t ) = alr)x(t).

Root-mean square error of the extrapolator (31) will have the minimum value
a{r) = {B0)[1 — B(r)/B2(0)]} 2 when a(r) = B(r)/B(0). In the case of the
convex covariance function B(t), the error o,(7) can be compared with the root-
mean square error ¢(r) of the best linear extrapolator with the help of Hdjek’s
result [19]. According to this result, if B(t) is a convex function, then o(r) >
{B(0)[1 — B(r)/B(0)]} 2. Tt follows that for the convex function B(t) the
error o1(r) exceeds o(r) by no more than the factor [1 + B(r)/B(0)]'/* (that
is, by no more than 50%;). Hijek’s estimation for o(r) is sharp (it is
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attained exactly when B(f) = max {1 — ||, 0}); however, for many individual
covariances it appears to be rather rough. As to the nonconvex covariances B(f),
there is no general estimation of the ratio e:(r)/o(7) (since it is possible that
a(r) = 0 and o,(r) > 0). Nevertheless, even for the nonconvex covariances met
in applications, the value ¢,(7) is often surprisingly near o(r). For example, if
B(t) = e~ cos at, then max, o1(r)/a(r) = 1.01 (that is, oy(r) exceeds o(7) by
no more than 19 for all ). The ratio o:(r)/0(r) takes somewhat larger values
in cases where the function B(t) is twice differentiable, and the best extrapolator
£(t; 7) contains values of the derivatives of x(s) at the point s = {. However,
even in these cases the replacement of the best linear extrapolator by the best
extrapolator of the form (31) has in many practical cases sufficient accuracy.

A still better approximation to the minimum value of the root-mean square
error of extrapolation can be attained using two-term extrapolators of the form

(32) 2@ 1) = aln)x(t) + ai(n)x(t — t).

When ¢, is fixed, the optimal values of the coefficients a(r) and a:(r) are deter-
mined from the simple system of two linear regression equations. Determination
of the optimal value of ¢, in equation (32) is a complicated mathematical problem
having, in some cases, no solution. (For example, if B(f) = Ce==*(1 + «alt]),
then the root-mean square error of the extrapolator (32) will decrease with the
decreasing of t; tending to the root-mean square error of the best linear ex-
trapolator as {; — 0.) However, by means of two or three tests, in almost all cases
it is easy to select a value ¢; such that the root-mean square of the extrapolator
(32) will exceed the root-mean square of the best linear extrapolator no more
than by a few percent. If still greater accuracy is required, it is possible to use
an extrapolator #(f; 7) having the form of a linear combination of three values
z(s) at the points s < .

Note that in the case of extrapolation of a multidimensional stationary random
process (that is, of an homogeneous random field) the number of terms in the
right-hand part of equation (32) necessary to attain accuracy of extrapolation
close to the one of the best linear extrapolator appears to be markedly greater
than in the one-dimensional case. For some special cases of extrapolation of a
two-dimensional process x(t1, fy) in terms of its values in the half-plane ¢, < 0,
it was shown by Fortus [20] that a good approximation to the root-mean square
error of the best linear extrapolator can be attained only by means of the linear
combination of several known values of the process containing no less than
ten terms.

One can also find in the secientific literature a great number of functionals
different from linear combinations of some values x(s) at s < t used as extrap-
olators £(¢; 7). For example, Yudin suggested in [21] to extrapolate the process
x(s) with stationary increments and with structure function (16) by the mean
arithmetical moving average of the form

(33) ttsn) =2 [ x~ pap,
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where the best value a = ap¢ is determined by the condition of minimization of
mean square error o%(r; a) = Elz(t + 7) — £,({; 7)|%. He found that a., = 0 if
a > 2, s0 that the best extrapolator of the form (33) is the “inertial extrapolator’
2(t;7) = z2(t) if @« > 2. However, if 1 < o < 2, then the ratio a./7 takes a
finite value different from zero, and in this case, o(7; aop) exceeds the root-
mean square error of the best linear extrapolator (15) (found after the publica-
tion of Yudin’s paper) by no more than 109,. The fact that extrapolator (33)
is of no use when @ > 2 is the consequence of the negativeness of the correlation
coefficient between x(t + 7) — «(t), = > 0, and z(t — p) — «(f), p > 0, in these
cases. It is clear from equation (15’) that when 2 < a < 3, it is much more
reasonable to select an approximate extrapolator of the form

(34) Za(t; 7)

() + iﬁ [x(t) — x(t — p)] dp

= 2x(t) — %/: z(t — p) dp.

If the mean square error of the best extrapolator (34) is again denoted as
a2(1; Qopt), then o(7; aop) Will also be very close to the root-mean square error
of the best linear extrapolator for 2 < a < 3.

Sometimes the exponentially weighted moving averages of the form

(35) L.t;7) =a /;m e~ rx(t — p) dp

arc also used for extrapolation (see, for instance, Cox [22], where the time
series with discrete time are studied). The extrapolator (35) is closely related
to (33); in the case where the value a = apt is determined from the root-mean
square criterion, its root-mean square error will in many cases only be slightly
in excess of the minimum value of such an error. For the cases when the extrap-
olator (35) is not good enough, Cox [22] suggested the use of an extrapolator
of the form

(36) Fanlt; 1) = bz(t) + a(l — b) ﬁ) * e 2(t —p) dp.

The last extrapolator contains two parameters, a and b, the values of which
can be determined by minimization of the mean square error.

All extrapolators (31)—(36) are linear combinations with variable coefficients
of some fixed simple linear functionals of the past of the process. It is also
possible to use a linear combination of functionals, selected not because of its
simplicity but for particular theoretical reasons. For example, it seems reasonable
to select the functionals involved in the extrapolator by a method based on the
general analysis into principal components. The analysis was introduced by
Hotelling [23] at the beginning of the 1930’s for finite families of random var-
iables and is, at present, the widely used method of multivariate statistical
analysis (see, for example, Anderson [24], chapter 11). Its generalization to the
case of the continuous family of random variables (o the part of the continuous
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random process) was later obtained independently by several scientists (see [25]
to [29]). The analysis begins by extracting the first principal component. The
component is the normalized linear combination or the normalized linear func-
tional of the given random variables having maximum variability (that is, max-
imum variance). The word normalized means that the sum of squares of the
cocflicients or the integral of the square of weight function is one. Then the
second normalized linear combination or normalized linear functional is sought.
It is uncorrelated with the first one and has maximum variance among all those
which are uncorrelated with the first principal component, and so on. Dealing
with the statistical problem concerned with the given family of random var-
iables, it is natural to find the approximate solution which depends only on a
few first principal components (supposing that the other components with small
variability cannot change the solution significantly). During the last years this
approach was often suggested for practical statistical extrapolation (see, for
instance, Pugachev [30] and Lorenz [31]).

The principal components of the part of the stationary random process x(s),
t — T < s < t, with covariance function B(t), are the Fourier coefficients of the
process corresponding to the orthogonal set of cigenfunctions of the integral
equation

(37) N[, Bl = sels) dss = ¢(s), t—T<s<t

The variance of the component

(38) W= [Tat = pyett —pyap, [' lelds =1,

is equal to A ', where A is the corresponding eigenvalue of the equation (37).
The contribution of the principal component 1, to the best linear extrapolator
&(t; 1) is equal to

(39) iA(l, T) = ]L'[.T(t + T)]’V}.:] ]V}L = ﬁt—T 13<t “+r = 81)99k<81) (.]81' IV}c.

The sum of all contributions &(¢; 7), k = 1, 2, - - -, is evidently equal to the
best linear extirapolator in terms of the values a(s) for ¢t — 7 < s < ¢ (cf.
Grenander [32], p. 269). So it is natural to expect that the sum of a few first
terms £,(¢; 7), with smallest indices k corresponding to the smallest eigenvalues
i, will form a good approximation to the best extrapolator £(¢; 7).

However, the true situation does not coincide with the expected one. Let us
consider the typical case of rational spectral density (11). It is possible to show
that in this case the integral equation (37) is equivalent to the cigenvalue prob-
lem for the differential equation

N a2 9 —‘))\BM<—£—|—2> )
(40) ]'1;11 (‘F + a,-) e(s) = 2r kl;ll ae Bk ) o(s

with the special boundary conditions at the points s = tand s = { — T' (see [33]).
This statement leads to the conclusion that the eigenvalues Ay in the rational
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speetral density case are the roots of some transcendental equation accessible
to numerical analysis. The corresponding eigenfunctions ¢(s) have simple
analytical expressions which involve the parameter ;. In the simplest case of
the Ornstein-Uhlenbeck process with covariance function B(t) = Ce—<lt!| the
transcendental equation for N\, has the form

Ao tanV2Ca\ — o271 = 1,

41 e
1) V20a\ — o

and the functions ¢,(s) are proportional either to cos V2Ca\, — a® (s — { + 1/2)
or to sin V2Ca\, — a? (s — ¢t + T/2). These results allow one to compute easily
the root-mean square error ai(r) of the extrapolator £ (¢; 7) for the Ornstein-
Thlenbeck process z(s), t — T < s < t. If, for example, ar = 0.1, it appears
that o1(r) &~ 1.30(7) for aT =%, o1(7r) X 1.750¢(7) for aT =1, and o\(7) ™
2.2¢(7) for T = 3, where o(7) is the root-mean squarc error of the best linear
extrapolator &(¢; 7). Similarly, if ar = 0.2, then o,(r) X' 1.15¢(7) for aT = 1},
oi(r) & 14o(7) for aT =1, and o1(r) X 1.60(r) for a7 = 3. Therefore, the
extrapolator ,(f; 7) involving only the first prinecipal component is, in this case,
satisfactory for a short interval 7' (and a not too small 7) but very inaccurate
for a long interval T. The next approximations > % &({;7), n =2,3, -+,
behave the same way, and consequently, in order to obtain a good approxima-
tion to #(t; 7) for a long enough 7, it is necessary to use a large number of
principal components Wy,

This phenomenon may be explained by the faet that the values x(s) in the
beginning and in the end of the interval ¢ — 7' < s < ¢ contribute equally to
the principal components, whereas the last known values of the process are much
more important for the extrapolation than the carliest ones. It is also clear that
the Ornstein-Uhlenbeck process is the least suitable for the extrapolation by
means of principal components because all the information about the future «f
such a process is contained in its last known value x(f). However, in all other
cases the best extrapolator will also be dependent mainly on the values z(s) in
the neighborhood of the point s = . Therefore, for the extrapolator determinated
by a fixed number of the first principal components IV, the accuracy of extrap-
olation must decrease when the length of the interval of known values x(s),
and consequently, the known information, is increasing. This proves that the
application of the method of principal components to extrapolation problems
with long intervals 7" is not advisable.

4. Theory of canonical correlations for stationary random processes

The decomposition into the principal components is not convenient for the
extrapolation because it is based on the selection of the functionals containing
maximum total information (that is, maximum variability), whereas only the
specific information about the future values of the process is of interest for
extrapolation. The method of statistical analysis being most suitable for the
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study of interdependencies and interrelations between two families of random
variables is the method of canonical correlations. Therefore, it is interesting to
investigate the application of this method to statistical extrapolation. The the-
ory of canonical correlations was developed in the middle of the 1930’s independ-
ently by Hotelling [34] and by Oboukhov [35], [36] (see also Anderson [24],
chapter 12).

According to the theory, the investigation of the interrelations of the families
X=(r, - ,x,) and y = (y1, -+ + , Ym) begins by finding out the normalized
linear combinations U; = X} aar; and V, = X7 By; having maximum cor-
relation coefficients p;. Then the second linear combinations U; = > % anr; and
Vo = X7 By, are sought. They are uncorrelated with the first ones and have
maximum correlation coefficient p; among all those which are uncorrelated with
the first ones, and so on. As a result one manages to select coordinate systems
in the spaces of variables 2’s and %’s such that all the components of the com-
pound vector (Ui, Uy, -++, Uy, Vi, Vg, -+, Vi) (where U; and V; are the
components of x and y in a new coordinate system) appear to be pairwise
uncorrelated with the exception of the pairs (U, V), ¢ =1, 2, ---, [ where
[ < min (n, m).

One can show that the canonical variables Ui = - aar; = axx and V. =
3" Biy; = Biy and the canonical correlations p, = A are determined by the
following algebraic eigenvalue problem:

(42) —ABax + BB = 0, Byt — ANBy,B = 0,

where ®,,, ®.,, B,., and &,, are the coiresponding covariance matrices.

The method of obtaining the values Uy, -+, Uy, Vy, -+, Vi, and py, -+, pu
can also be described purely gecmetrically. Let us consider the multidimen-
sional space H,, of all linear combinations w = 3.1 a;x; + 21 B;y; with the
usual scalar preduct (wi, w;) = Eww, Let @, be the matrix of projection in
H., on the linear subspace H, consisting of linear combinations of the form
3% auzy, and let @, be the matrix of projection to the subspace H, of combina-
tions 37 8,4;. In this case the correlations py, - - - , p1 will coincide with the non-
zero eigenvalues of the matrix ®, = ®.®,®, (or the matrix ®, = ®,®.®,). The
variables Uy, -+, U; and Vi, -- -, Vi will be eigenvectors of the matrices ®,
and ®, corresponding to the eigenvalues py, - - - , p1.

1t is clear that in the case where the variables (21, + -+, 2w, Y1, - * , Ym) have
a multivariate Gaussian distribution, all the information about the vector x con-
tained in the vector y is fully characterized by the values of the canonical cor-
relations py, - -+, p. Using the known Shannon’s formula it is easy to calculate
that in the case considered the amount of information about y contained in x
is equal to —(1/2) % log (1 — p§) (cf. [33]). In the course of evaluating the
amount of information about a Gaussian random process contained in another
random process, the theory of canonical correlations was generalized by Gelfand
and Yaglom [33] to the case of two infinite families of random variables (that
is to the case of two random processes {x(s),s € S} and {y(t),te T}). If S
and T are two intervals of a real axis (which can coincide with each other),
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the determination of canonical correlations and canonical variables for {x(s)}
and {y(?)} can formally be reduced to the solution of the eigenvalue problem
(related to (42))

(43) -2 j; Baa(t, 1)e(t) At + [S B.,(t, )W(s") ds’ = 0, (e,

/‘T Bye(s, )e(t') dt’ — X /b Byy(s, () ds’ = 0, s €N,

where B,,, B.,, B,., and B,, are the covariance functions and the cross-covariance
functions. However, the eigenfunctions of the problem, as a rule, are generalized
functions (for example, they can contain the é-function and its derivatives; cf.
the similar situation in the paper [15] devoted to extrapolation and filtering).
Therefore, the mathematically rigorous presentation of the theory of canonical
correlations for random processes can be developed more easily by basing it on
the geometrical interpretation of the theory. This interpretation can be extended
{o an infinite dimensional case without any changes with the exception of the
fact that the matrices ®,, ®, and ®,, ®, turn out to be operators in the Hilbert
space (see [33], [37] and related purely geometrical papers [38], [39]).

The papers [33], [40] deal with the case where S and T are the same inferval
of the time axis —o < s < « and where y(s) = x(s) + 2(s), with z(s) and z(s)
mutually uncorrelated stationary random processes with rational spectral den-
sities. Under the additional assumption that the spectral density of z(s) falls
off at infinity faster than the spectral density of x(s), the evaluation of the
canonical correlations for this case can be reduced first to some eigenvalue prob-
lem for a linear differential operator with constant coefficients and then to the
solution of some transcendental equation containing exponential and trigonomet-
ric funetions. The number of nonzero canonical correlations p; in this case is
infinite.

I'or the theory of extrapolation of stationary random processes, another case
is clearly more interesting. This is when «(s) and y(¢) are the same stationary
random process, but the sets S and 7" are different: S is the past (that is, cither
the semiaxis s < ¢t or the finite interval t — 7 < s < ¢), and T is the future
(that is, either the semiaxis s > ¢ 4+ 7 or the interval {t + 7 < s <t 4+ 7+ T},
where > 0). Such a theory of canonical correlations of two parts of the same
stationary random process was considered in the paper [41] for the case where S
is the semiaxis s < t and T is the semiaxis s > ¢t + . Here the operator @, of
the projection of the future on the past is the operator which transforms
z(t + 1), 71 > 7, in its best linear extrapolator &(¢; 7). The formulas (13) and
(14) show that if the process x(s) has rational spectral density of the form (11),
the projection ®.H, of the whole future into the whole past is a finite dimen-
sional (namely N-dimensional) linear manifold. Consequently, the number of
nonzero eigenvalues of the operators ®, and ®, in this case cannot be more
than N. In the Gaussian case it follows from the above mentioned phenomenon
that for a stationary process x(s) with rational spectral density, all the informa-
tion about the future contained in its past is eoncentraied in N special linear
functionals U, - - -, Uy of the values 2(s), s < t.
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The explicit evaluation of the canonical correlations p, and canonical var-
iables Uy, Vi for the rational spectral densities can be obtained with the help
of a simple modification of the conditions (a), (b), and (¢) mentioned in section 1
in connection with the problem of the best linear extrapolation. Let us suppose
that the spectral density F(\) is absolutely continuous, and let us introduce the
functions &5 (\) and & () determined by the relations

(44) Uy = f_: et (N) dF(N), V= ‘[_2 CIFABE(N) dF(N).

Then the considerations used in [8] for obtaining the sufficient conditions (a),
(b), and (c) allow us to prove the following statement.

Assume that there exist functions Yy~—(\) and y*(\) and a nonnegative number p
such that:

(a’) ¥~ and Y7 satisfy the conditions

[2 Ry i = 7 gty

(b’) the function ¥y*(X\) may be continued analytically in the wpper half-planc of
the complex variable N and Y—(\) may be continued analytically in the lower half-
plane so that both functions will not have an order of growth higher than a power
of |\|; and

(¢') the function [e™Y+(N) — py~(N)JF'(N) may be continued analytically in the
upper half-plane of N, and the function [e=™¢~(\) — oyt (A\)]F'(N) may be con-
tinued analytically in the lower half-plane, so that both these functions will fall off
not slower than a power of |\ at infinity.

Then + and ¢~ will be the functions ®i (\) and ®; (\) corresponding to canonical
variables Uy and Vi and to the canonical correlation pr = p (see [41]).

If the spectral density F’(\) is rational and has the form (11), the stated
conditions may be satisfied by functions ¢=(\) and ¢*+(\) of the form

— +
(43) )= gy =

m

jl=11 (N —85) I=Il (A~ 8)

2PI(N) AN = 1

where v~(\) and y*(\) are polynomials of degree N — 1. Then the conditions
(a’) and (b’) will be evidently fulfilled (after the normalization of the coefficients
of y=(\) and ¥*(A)). In order to satisfy the condition (¢’) also it is necessary to
select y~(\) and y*(A\) in such a way that the functions

M M
oith ~I__Il A= B)vt(\) — p 1211 A =B

b

N
I3~ )
(46) i o B
e Hl A =B (\) —» _H1 (N = BHvt(N)
i= Jj=
¥
I0—a)
k=1

should be entire functions of A.
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The last condition leads to a system of 2N homogeneous linear equations for
the 2N unknown coefficients of the polynomials y~(\) and 4*(\) which contain p
as a factor in certain terms. The condition of the existence of a nonzero solution
of the system gives us the algebraic determinantal equation for p of degree 2N.
The ecquation has the roots p1, - -, py and —py, - - -, —py. When the canonical
correlations p, have been determined, the coefficients of the polynomials vi (A)
and v (\) corresponding to the functions & (A) and & ()\) can be found from
the linear system involved in (¢’) and the normalizing conditions (a”).

Similarly, one may treat the more general problem about the canonical cor-
relations and canonical variables for two finite parts {x(s),t — 7' < s <t} and
{x(s"),t + 7 <s <t+4 7+ Ty} of the stationary random process x(s) with the
rational spectral density (11). Here the operator ®, transforms the variables
(s, t+7<s <t+ 74+ T, into the best linear extrapolators in terms of
the values x(s) for t — 7 < s < {. Since the space of all linear functionals of
2(s) where { — T < s < i for T < o is a subspace of the space of the linear
functionals of the whole past of the process x(s), it is evident that the space
®.H, cannot be more than N-dimensional for 7 < « (cf. equation (29) and the
statement after it). Tt follows that for two arbitrary disjoint finite intervals of
the process x(s) there cannot exist more than N nonzero canonical correlations.
These correlations and the corresponding canonical variables can be found with
the help of the following modification of the conditions (a’), (b’), and (¢’)
mentioned in section 1.

Assume that there exist functions y=(\) and ¢+ (\) and a nonnegative number p
such that

@) [ W PFO) = [T ORF) ax = 15

(b”") the functions y—(\) and Y+t(\) are entire functions of N represented in the
form y=(\) = ¢ (\) + e ™5 (\) and ¢t(\) = @i (\) + ¢TMF (\) where  the
functions ¥, ¥z , Y17, and 3 are rational; and

(¢") the functions [ei™im (\) + eTHTNF (N) — oy N IF'(A) and ¥ NF'(N)
may be continued analytically in the upper half-plane of X\, and the functions
[e=™r (\) + e Dy (N) — o WJF'(N) and 5 (\F'(\) may be continued
analytically in the lower half-plane so that all the functions will fall off not slower
than a power of |\| at nfinity in the corresponding half-planes.

Then the functions y—(\) and Y+(\) will be the functions & (\) and & (\) of
the equations (44), which determine the canonical variables Uy and Vi (correspond-
ing to the canonical correlation p = p.) of the parts {x(s), t — T < s <t} and
(), t + 7 <8 <t+ 7+ Ti} of the process x(s) with the spectral density F'(\).

The proof of this statement is similar to the proof of conditions (ar), (br),
and (cr) mentioned at the end of section 1. For the rational spectral density (11)
the conditions may be satisfied by the functions of the form

L= 8 O = 8P
J= 7=
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where v,/ (\) and 4, (\) are the polynomials of degree N + M — 1. The condi-
tions (a’’), (b"’), and (¢”’) lead to a system of linear homogeneous equations
for the coefficients of the polynomials v;" (\) and v, (\). After eliminating some
unknowns from the system, it is possible again to obtain the determinantal
equation of degree 2N having the roots o, -+, px, —p1, -+ +, —px. When the
canonical correlations p; are known, the coefficients of v/ (A) and 7 (\) can
be easily obtained for every p, from the system of linear equations and the
normalizing conditions (a’’).

The best linear extrapolator £(¢; ) in terms of the values z(s) for s <t or
t — 7 < s <tcan always be decomposed into the sum of contributions of dif-
ferent eanonical variables U, for the corresponding past values and the arbitrary
part of the future which contain the point ¢ + 7 (for example, for the semiaxis
s>t+ Tors>t+ 7, where 0 < 7o < 7). Therefore,

(48) ;) = ; (Ex(t + 1)Uy) - Uk

Usually in real situations the canonical correlations p; arc rapidly decreasing
when the index k increases. Therefore, as a rule, the extrapolator can be approx-
imated precisely by a few first terms in the right-hand part of (48). In the
special case of the Ornstein-Uhlenbeck process, where the method of the principal
component turns oul to be ineffective for the purpose of extrapolation, the right-
hand part of (48) contains only one term correspounding to U = x(¢).

In the more general case of the arbitrary rational spectral density (11), the
right-hand part of (48) contains a finite number (namely N) terms; however,
all of them, with the exception of one or two first terms, are usually negligible.
If we increase the length of the interval of the known past values of the process,
the accuracy of the approximate extrapolator containing only the fixed number
of right-hand terms in (48) will be inereasing too. All these facts display the
great advaniages of the canonical variables in comparison with the principal
components in studying the statistical extrapolation.
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