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1. Introduction

The multiple Wiener integral with respect to an additive process with sta-
tionary independent increments plays a fundamental role in the study of the
flow derived from that additive process and also in the study of nonlinear
prediction theory. Many results on the multiple Wiener integral have been
obtained by N. Wiener [14], [15], K. 1to [5], [6], and S. Kakutani [8] by
various techniques. The main purpose of our paper is to give an approach to
the study of the multiple Wiener integral using reproducing kernel Hilbert
space theory.
We will be interested in stationary processes whose sample functions are

elements in E* which is the dual of some nuclear pre-Hilbert function space E.
For such processes we introduce a definition of stationary process which is
convenient for our discussions. This definition, given in detail by section 2,
definition 2.1, is a triple P = (E*, ji, {Tt}), where i is a probability measure
on E* and {Tt} is a flow on the measure space (E*, ,g) derived from shift trans-
formations which shift the arguments of the functions of E.

In order to facilitate the discussion of the Hilbert space L2 = L2(E*, ,), we
shall introduce a transformation r defined by the following formula:

(1. ) (TO (t) = fE* ei(-')(x)A(dx) for (p e L2,
where (*, *) denotes the bilinear form of x E E* and t E E. This transforma-
tion r from L2 to the space of functionals on E is analogous to the ordinary
Fourier transform. By formula (1.1) and a requirement that T should be a
unitary transformation, 3_ r(L2(E*, A)) has to be a Hilbert space with re-
producing kernel C(t- 7), (7,1) e E X E, where C is the characteristic functional
of the measure ju defined by

(1.2) C(t) = fE ei(x.Vy(dx), e E.
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The first task in section 2 will be to establish the explicit correspondence between
L2 and i.
Another concept which wN-e shall initroduce in section 2 is a group G(P) asso-

ciated with a stationary process P. Conisider the set of all linear transformations
{g} oni E satisfying the conditions that

(1.3) (i) (C(gq) = (1(t) for- every Ae 1, anid
(ii) that g be a homeoniorphisin on E.

Obviously the collection G(P) of all such g's forms a group witlh respect to tlle
operationi (9g12)g = g1(g20). The collection G(P) includes not only shift tralns-
formations Sh,, h real, defined by

(1.4) (S,h) (t) = (t-),
but also some other tranisformations dependinig on thle form of the characteristic
functionial.
An interestinig subclass of stationiary processes is the class of processes with

independent values at every point (Gelfaiid and Vilenkin [4]). Sections 4-6 will
be devoted to discussions of some typical such processes. Roughly speaking
they are the stationary processes obtained by subtractinig the mean functions
from the derivatives with respect to time of additive processes with independent
stationary increments. In these cases the independence at every point can be
illustrated rather clearly ill the space f by using a direct l)roduct decomposition
of it in the sense of J. von Neumann [10]. Furthermore, because of the particulal
form of the characteristic functionial, we can easily get an infiniite direct sumNl
decomposition of i:

(1.5) i= E (03
71=0

Each n,, appearinig in the last expression is iiivariant under every 7,,, g e G(P)
defined by

(1.6) (Vgf)(0) = f(gN), f E i,

that is, V,(5) C it, for every g e G(P). With the aid of these two different
kinds of decompositions, we shall investigate S, and discuss certaini ap)plications.

In section 5, we shall consider Gaussian white noise, although many of the
results are already knowni. To us, it is the most fundamenital example of a
stationary process. Here the subspace iT" corresponds to the multiple Wienier
integral introduced by K. 1to [5] and also to Wiener's homogeneous chaos of
degree n. Kakutanii [7] expressed the subspace of L2(E*, A) corresponding to
5:, in terms of the product of Hermite polynomials in L2. These results are
important in the determination of the spectrum of the flow -'T,, of Gaussian
white noise. It should be noted that the L2 space for this process enijoys properties
similar to those of L2(S', <) over an n-dimensionial sphere S, with the uniform
probability measure ',. As is mientionied by H. Yosizawa (oral communica-
tion), the multiple Wicner integral plays the role of spherical harmoniies in
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L2(S", 0-n); for example, {§, V,g e G(P),- is ani irreducible represelntationi of
the group G(P). This suggests that one should consider certain aspects of the
theory which are analogous to the analysis oll the finite dimensional sphere.
This is done by H. Yosizawa and others (oral communication).
We will also discuss the Hilbert space i arisinig from Poisson white noise

hlich is aniother fundamental examlple of a stationiary process (sectioll 6).
Finially we will show thai otur' approach is apl)licable to the study of geil-

eralized white nioise anid eveii to ani arbitrary se(lueniec of inidepenidenit identically
distributed ranidom variables. Further discussionis, such as the detailed proofs
of the theorems stated in this paper anid certaini of the applications of this work,
will appear elsewhere.
We would like to express our deel) tlhaniks to Professor J. W. V'ani -Ness for

his help inl prel)arillg the manuscript.

2. Definitions and preparatory considerations
Before defininig the term stationiary process let us first iintroduce some niotationi.

Let E be a real niuclear p)re-Hilbert space. Deniote the inniier product by (-, *);
it, determinles the iiorm 11-11 Let H be the comnpletioii of E ini the lnorm 11- 11 anld
E* be the dual of E. Thell by the usual idenitificationi H* = H for Hilbert
spaces, we have the following relationi: E C H C E*.

Let 6W=6=(1W*) be the a-algebra genierated by all cylinder sets in E*. If
C(t), EE , is a conltiniuous positive definlite funietionial with C(O) = 1, then
there exists a unli(lue probability measure p oni the measurable space (E*, W)
such that

(2.1) C(W) = fex*xp [i(xJ, 0)](dx), Ee F

(cf. Gelfand ancd Viletikiti [4]).
In wvhat follows we shall deal onily with the case ini which E is a subset of RT,

vhere lt is the field of real niumbers anid T is the additive group of real liumbers
or oiie of its subgroups. Every elemenit of E theni has a coordiniate representation
Q=((t), t e T). For every h, we conisider the point tranisformation Sh definied

by (1.4). Wheniever we are conicerned with the Sh'S, we always assume that E
is inivarianit unider all of them. For each S1 we defiiie a tranisformation Tt onl
E* as follows:
(2.2) Tt: T1x /E*, t c T with KTlx, t) = (x, S,() for every t.
Obviously Tt1: t e T, formlls a group satisfyitig
(2.-3) 7tT. = Y'T t = Tt+.S, s, t c T,
(2.4) T0 = I (idenitity).
The group {IT; t e T} can be considered as a transformation group acting on E*.

Let B3(T) be the topological Borel field of T.
DEFINITION 2.1. T'he transformation group {Tt, t E T} is called a group of

shift transformiations if Ttx = f(x, t) is neasurable with respect to 6w X 6w(T). T'he
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triple P = (E*, A, {T,}) is called a stationary process if ,u is invariant under shift
transformations T,, t E T.
DEFINITION 2.2. The functional C(t), t E E, defined by (2.1) for a stationary

process P = (E*, Mi, {Tj}), is called the characteristic functional of P.
Having introduced these definitions, we begin our investigation of stationary

processes. For conveniience, we assume the following throughout the remainder
of the paper.
AsSUMPTION 2.1. There exists a system {,nj} n = l, t'n E E, which forms a com-

plete orthonormal system in H.
For the measure space, (E*, 63, 1A), associated with a stationary process, we

can form the Hilbert space L2 = L2(E*, ,A) of all square summable complex-
valued functioins with the inner product

(2.5) (( fA)) = fE p(x)f(x)IA(dx), p, E' L2.

LEMMA 2.1. The closed linear subspace of L2 spanned by {ei(x.V, e E}
coincides with the whole space L2.

This can be proved by usinig the uniqueness theorem for Fourier inverse
transform (for detailed proof, see Prohorov [13]).
The next lemma is due to Aronszajn ([1], part I, section 2).
LEMMA 2.2. For any stationary process P = (E*, Au, {Tt}) there always exists

a smallest Hilbert space 5 = 5§(E, C) of functionals on E with reproducing kernel
C(t-), (%, r) E E X E, where C(t), t E E, is the characteristic functional of P.

Let us denote the inner product in a by (-, *). We now state some of the
properties of 5Y obtained by Aronszajn:

(i) foranyfixed t EE, C( --) elY;
(ii) (f(-), C(. - t)) = f(s) for any f E 5;
(iii) 5: is spanned by {C(- --), t c E}.

From these properties and lemma 2.1 we can prove the following theorem.
THEOREM 2.1. The transformation r defined by

(2.6) (Tr) (t) = f 50(x)ei(x e)U(dx)
is a unitary operator from L2 onto WF.

In fact, the relation
n \ n

(2.7) TE aje-i i))(X ) = E ajC(. - j)
j=l j=l

shows that T preserves norm sinice this relation can be extended to the entire
space.
Note that

(2.8) (Trl)() = C(*)
and define

(2.9) L*2 = {<p; EL2, ((sP, 1)) = O},
(. = {f;f 5i, (f(.), C(-)) = 0}.
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Then r restricted to L*2 is still a unitary operator f-rom L2 onto V. On the-other
hand, if we define Ut, t E T, by

(2.10) Us: (Ut#p)(x) = p(T,x) e L2 for p ( L2,
then (Ut, t e T} forms a group of unitary operators on L2 satisfying

UtU8 = U8Ut = Ut+,, S, t E T,
(2.11) U0 = I (identity),

U, is strongly continuous.
Moreover, we can see that {UC; Ut = rT- UT7-1, t E T} is also a group of unitary
operators acting on 5. For simplicity we also use the symbol U, for U,. Further,
we write Ut even when Ut (or Ct) is restricted to L2 (or *).

In connection with G(P) we can consider a group G*(P) of linear transforma-
tions g* acting on E* as follows:
(2.12) G*(P) = {g*; g*x e E* for every x E E*, (g*x, t) = (x, gt)

holds for every x e E* with g c G(P)}.
From the definition we can easily prove lemma 2.3.
LEMMA 2.3. The collection G*(P) is a group with respect to the operation

(2.13) (gl92)x = gl*(g*2x).
Also,
(2.14) (g*)-l = (g-')*
REMARK 2.1. Detailed discussions concerning G(P) and G*(P) will appear

elsewhere. For the related topics oII such groups we would like to refer to M. G.
Krein [9].
By (1.3) (i), it can be proved that every g* e G*(P) is measure preserving;

that is, ,u(d(g*x)) = ,u(dx). Hence, by the usual method, we can define a unitary
operator V0* acting on L2(E*, ,u) by

(2.15) (Vg*so)(x) = P(g*x), g* e G*(P), s E L2(E*, tl)-
Similarly, we define

(2.16) (VJf)(t) = f(9g), g s G(P), f ef-
Obviously, {VO*; g* E G*(P)} and {VO; g E G(P)} form groups of unitary
operators on L2(E*, ,u) and a, respectively.
We now have the following relation between V,p and VO,

(2.17) (r(V0*9'))(0) = V"-i(r<)Q()), t E E,

which is proved by the equations

(2.18) JE* ei(x.°sp(g*x)A(dx) = jE* ei(g*-'V1p(X)(dg*lx) /

= JE* ei(x.° °o(z)A(dx) _ (rup)(g'1).
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Another important concept relating to stationary processes is the purely non-
deterministic property. Let Tt be a set of the form

(2.19) Tt =s; s T, s < t

aind ", b)e the smallest Borel field generated bv all evliiider sets of the form

(2.20)

{; ((x, ) , (x, Rn))E 3n, tk EsE, 111)1) (,k) C T,, 1 < k < n, B' C(e (I?")}.
The subspaces of L2, L2(t) anid L*(t) are definied by
(2.21) L2(t) = Gp L2, f is 61,-measurable}, t T,

L2*(t) ={; ee L2(t), ((p, 1)) = O', t e T.

Corresponding to L2(t) and L2(t), we can definie

(2.22) ~ ~~i(t) -IC(.G((-E;t , supp)(t C T,'-
(2*(t) =-'f;f Ci(t), (f(.),('(*)) = O'

where C- } deniotes the subspace spaniiied by elemenits writteni in the biracket.
Then we can easily plove the followinig prop)osition.
PROPOSITION 2.1. For evtery t e T,

(2.23) L2(t) _ (t), (isomlorphic)
and

(2.24) L*2(t)-i() (isoimorpliie)
under the transfornation T re)stricted1 to L,2(t) and L*(t), respectiheliy.

D)EFINITION 2.5. If
(2.25) L2(-) _n L*,(s) = -'0O

hol(Is, theen P = (E*, u, -Tt, ) is called purely nondeterwiinistic.
This definiition was giveni by M. Nisio [12] for the case where E* is ani ordiniary

funcetioni space. By definition and propositioni 2.1, P is purely nondetermiiistic
if anid onily if

(= n *(s) -
(2.26) T8GT
holds.

WA'e are inow in a position to develop certaini basic concepts relative to sta-
tionary processes. We would like to emphasize the imnportance of a stationiary
process with independent values at every point.
DEFINITION 2.6 (Gelfanid anid Vilenkin [4]). A stationiary process P

(E*, A, {T,}) will be called a process with independent ralues at every point if its
characteristic functional C(s), t e E, satisfies

(2.27) C(1 +-2) = C(%1)C(%2), whenle-ver sui)p () nSSUpp (%2) = 0.

If E is the space 3c of C<-functions with compact supports introduced by
L. Schlwartz, this definitioni coincides with that of Gelfanid and Vilenkin. If E
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is the space s of rapidly decieasilig se(luences, theni we have a seqluelnce of
iitdependent random variables with the same distribution.

lPROPosITIoN; 2.2. If P is a stationary process with independent values at Cetcry
point, then it is purely nondeterministic.

PntooF. For f E V*(t) there exists a se(uelnce -ff' such that l.i.m.,l f, = f
aitd

(2.28) f (. ) = E a"'C(. - " k e( 1", supp (2n)) C T,.
k=1

Sinice P is a stationiary process with indep)endent values al every point, wve have

(2.29) f,(4) = _ a,Y(f k(n)) = C(f) 7 ak("C(- !'k") = C(t)f,,(0)
k-1 k=l

foi aiy wwith suppl) () C T,. However,f,,() has to be zero sinice

(2.30) f,(0) = (f,(.), C(. -0)) = 0 for f, V

Thus, f(t) = 0. If f nXteT W*(t), thell f(0) = 0 for every t with supp (t) C Tr
for every t. Henice, we lhave J'(.) = 0.
Now w\N-e cani proceed to the anialysis of thle L2(E*, i1) space arisilng fromii a

stationiary process P with independent values at every point. First, we discuss
polynlomials oni E*. The ftuncetioii expressed in the form
(2.31) sP(x) = P((X, (0), * *, (X,i,)y ...* , i,, E E, x E*,
where P is a polynomial of n variables withI complex coefficienits, is called a
polynomial oii E*. If P is of degree p, we say that y¢(x) is p-th degree polynomial,
anid if, in particular, P is homogeneous, we say the same of r.

T'hrloughout the remiainlder of this sectioni we shall assumlie the following" .
ASSUNIPTION 2.2. 7'he foliowing conditions hold:

(i) | Iox )PI,i(dx) < X for c
G E and eve(ry integer p > 1,

(ii) , (., t)A(dx) = Ofor e,very t e E.

AW'itlh these assumiiptionis we see that the set ,1I of all polynomials oni E,* forms a
linlear miianiifol(d of L2. Consequently, T(M) = eT(p); Ae M} is defined anid
T(ilI) C i.

1)EF1NI''IoN 2.7. Anii operator D)t, E ,F, is defined b)y

(2.32) (Dtf)(.) = l.i.m. [J( + et) -
e e

if the linit exists, D) is called a differ-enitial operator, and its domain is denoted
by OD(D/). W1e define D as nfl,. )(D).
LEMMA 2A.-. If P satisfies assuimption 2.2, we have the following:
(i) C(--) e for et?ery t E E, and 1,=I> DtiC'(.- b)belongs to O) J'or any

nand 1,*nd **,, EN;
(ii) r(M1) C 'D;
(iii) For any 0, ,E,se F and any choice of positilve integers k1, k* ,, Iwe

hatce
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(2.33) T- {(n Di;) C() (x) ](i) , aII (X, Oj)ki, x e E*;

(iv) (i)-'De is a self-adjoint operator, the domain of which includes {C(. -
eE} Ur(M);

(v) for anyf E r(M) and ti, t2 E E, we have

(2.34) DhDhjf(-) = DDtj,f(*).
PROOF. By assumption 2.2,

(2.35) li.m. {- (eie(x.) - 1)ei(xz.2? - i(x, t)ei(xz) = 0.

Using r, the above relation proves that

(2.36) l.i.m. 1 C( + et + 71) + CQ + 7)}

exists and is equal to r {i(x, t)ei(xfa)}.
In a similar way, we can prove the second assertion usiing assumption 2.2.

(ii). By assumption 2.2, exp {i =l t,(x, {,)} is differentiable infinitely many
times (in L2-norm) with respect to ti, * , t.-i and tn, and we have

(2.37) (i) (a a/tk*.. ) exp {itE tj(x, }L>}|

= II (x, tj)ki.
j-1

The right-hand side belongs to L2, and mapping by TX we have (2.33).
For assertion (iv), if f E r(M), we have

(DJf)(n) = (Dj(-), C(. - = (.M. [f( + t)- f(A)], C( -1)

(2.38) = lim- {f((1 + et) -f(71,

(f(-), DtC(. -7))) = limO (f(-q- Et) -f(-)) = (Dtf)(7)),
e*-O le

which prove that (i)-1De is self-adjoint.
For (v) consider (f(-o + eti + Et2) - f('7 + Et2) - f( + Et,) + f(n7))/E2. Ar-

guments like the above prove that Dt, and D6 are commutative.
N. Wiener [15] discussed the followiing decomposition of 5(L2) for the case

of Gaussian white noise. Consider a system K of elements of ff defined by

Kn ][IrJ DE,, C(-); ki ** kn = 1X 2, ***2n>1
(2.39)

Ko = {C(.)}, and K= U Kn
n=O

where {tn}n'= is the system ap)pearing in assumption 2.1. Since the system Kn
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forms a countable set, we can arrange all the elements in linear order. We shall
denote them by {gk)"(.)}. Let P be a stationary process satisfying assumption
2.2 and let 90 be the one-dimensional space spanned by C(.), that is, To = Ko.
Put fkrY = gk(" and define

(2.40) 51 = 5ff"; k = 1, 2, }.

Obviously, 5o and 51 are mutually orthogonal. Suppose that {5,}7jJif are defined
and mutually orthogonal, consider

(2.41) f(n) = p- )±(fl), k = 1, 2,***,
j=o

where P(.) denotes the projection on (.). Then 5 is defined by

(2.42) ff = e{fk; k = 1, 2, *.},
and it is orthogonal to :,'_ 1 ( ,j. This procedure can be continued until there
are no more elements g(n+1) not belonging to Fn o c. Finally

(2.43) K (= the closure of K in 5) = L(3 5j.
j >0

DEFINITION 2.8. The direct sum decomtposition (2.43) is called Wiener's direct
sum decomposition.
THEOREM 2.2. Let P be a stationary process satisfying assumptions 2.1 and

2.2. If

(2.44) E g) (.)/n!, 9g" (*)=.
n=0

converges for every (, then Wiener's direct sum decomposition satisfies the following
properties:

(i) E (E) i:n = 5;,
(2.45) n = O

(ii) U,(5;n) = 5Jn-
PROOF. By assumption,

(2.46) , (i)n(X,)n/n! = T
gn

gtn(.)/n!), (g°o)(.) =C ),
n=O =O0

converges and the sum is equal to exp {i(x, t)}. Hence,

(2.47) X- ) . )n-0 n

On the other hand, by the construction of the in's we can prove

(2.48) gtn e E E3 5jf
j=0

Therefore, C.--t) E FJ_-o ) 51j which proves

(2.49) 2C E ® (C i),ns
since {C(--) spans the entire i.
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The second assertion is easily proved noting that

(2.50) T,9t(-) = )
anid
(2.51) Z([ tK,,) =

Let us returii to the group G(P). If

(2.52) VT(5.) C is. for every g e G(P),

we call the decomposition 5 = ( ,, invariant with respect to G(P). This
concept is important in connection with the Wiener's direct suim decomposition.
We shall discuiss this topic in the later sections (4-6).

3. Orthogonal polynomials and reproducing kernels

From now on we shall deal with the decomposition of L2(E*, A) anid 5(E, (C)
associated with a stationary process with independent values at every point.
First we consider, in this section, the simple case where E is a finite dimensionial
space. We can find a relation between the space wvith reproducing kernel and
Rodrigues' formula for classical orthogonal polynomials. Such coilsiderations
vill aid us in considerinig the case where E is all inifiniite dimeiisiolial nuclear
space and will be preparation for later discussiois.

Let v be a probability measure (distributioii) oni f?1 aii(l C( he its Fourier-
Stieltjes tranisfoirm (characteristic functioni); that is,

(:3.1) C(X) = e(i,'v(dX), X 1.

Appealing to Aroniszajn's results [1] stated in lemmlla 2.2, we obtain the smallest
Hilbert space v = 5(RI, 7), the reproducing kerniel of which is C(X -)
) 4 E R1. By theorem 2.1, there exists an isomorphism T which maps L2=
L2(v; I1?) = {f; fR. lf(x)12v(dx)) onto ! in the following way:

(3.2) (+f)(X) = f (IXif(x)P(dx)

We slhall examinie this isomorphism T ill detail in the followi-inig examples. It
is more interesting to discuss the anialysis on S rather thani Oll L2, silnce, for
one thing, the development of functionis belonginig to L2 inl terms of orthogonial
polynomials turns out to be the power series expansion in 5.

.3.1. Gaussian distribution. Consider the case where

V(dX) = v(x.; u2) dX = (27r2)-1'2 exp d(.,

thenl

(3.4) C(x, a2) = Af 02(x;o2) di = exp. ( .fX2).
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Choose lermiiite p)olynomlials
(____l)"or 2 1 d1L(3.5) H,,(x;a2) = (- x(x;;2) d,.v(.-r n =

(ltodiigues' formiiula), which foiiii a coml)lete oithoiioriiial system iiill L2. 'l'hc
isomorP)hisi T maps H,,(x) to thle n-tl degree miioliomiiial of X timiies C'. Ill fact,

(iII1(- ; a2))(X) = 0,)X,qC(X: a2), o,. = !

The proof of the formilula (3.6) is as follows:

(3-7) (7H,1(*, (X)
- (-!)! j| -ecXj) (iXx)} {(x; 2)-1 v(x; a2)} v (X; a-2) (X

dx~~u2)rd

n! | CXI) (iAx) {d v(x; 2)}1dx
= n! i,X,C(X; a2).

More genierally, we have

(3s.8) {i ( E aJII,(.; a2))} (A) = (,( ai,a,X'X)C(x: a.2).
n=0

3.2. loisson distribution. Let v(dx) be giveni by

(3.9) v(da) = P(x, c)&s,(dx) = r(x +C + ' .

where S, = --c, 1 - c, 2 - c, * We obtain olthogonial p)olynomials with
respect to the measuec v(x, c)s,a(dx), which aie called yecneralized (Charlier polyno-
mials, b)y the followiog genieralized lRodrigues' formllula (cf. B3ateman antd others
([2], 1). 222, anid P). 227)):
(3.10) p,,(x, c) = (-c)?(v(x, c))-'A v(x - n, c) = Ln+±cn(c)n,!, x E S8,
wleire A',' deniotes the n-th order difference operator actinlg oln funictionis of .r.
The relationi

(3.11) 8(X: C) = f Ci'.rn(x; c)6s,(dx) = c(''v(.r, c)

= exl) ciV'" - 1- iXc
is easily ol)tailned. -Now put

(3.12) Q",(x, c) = ! '(.x, c)
theii we get the orthogoiiality relationl for Q,,:
(3.13) E Q,,(x, c)Q,,(x, C)v(1, C) = &,,n n, m = 1, 2,

x ES,

LEvery I',,, of course, belongs to L2(r', l'), atid it is tranisformiled by T- into
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(3.14) (iPn(-, c))(X) = c( 1)C(X: c).
This is proved as follows:

(3.15) (-P.(, c))(X) = J eilx(-c)n((v(x, c))-'Anv(x - n, c))v(x, c)&S(dx)

= (-C)n(-1)n E (A8eA)v(x, c)

=Cn E ( )n ( )eimxexv(zx c)
XGS. m-0O

= cn(e,^ - 1)nC(X: C).
Note that the last expression is of the monomial form of (eiX- 1) times C.

4. Stationary process with independent values at every point

This section is devoted to the study of the general theory for a certain class
of stationary processes with independent values at every point. Let P =
(E*,,, {T,}) be a stationary process, where T is a set of real numbers and E
is the function space S in the sense of L. Schwartz, and let its characteristic
function be given by

C(t) = exp f a(t(t)) dt,
(4.1)

ftI. ~~ixu \1 + u2da(x) = (-a2x2)/2 + | e_xu- 1 dg(u).

Here 0 < o.2 < 00 and d,#(u) is a bounded measure on (-0, -c) such that
d,3 ({0}) = 0. Obviously, P satisfies (2.27); that is, it is a stationiary process
with independent values at every point.

For the moment let us turn our attention from the flow {U,, t real, to the
direct sum decomposition of 5r = 5(8, C) mentioned in section 1. Define

Ko%(, q) = exp (f aQ((t)) dt) exp (f a(-tI(t)) dt) = C(S)C(-n),

K1(, 7) = f a(S(t) - i(t)) dt - J a(t(t)) dt- f a(-q7(t)) dt,

K(, 7) = p (K1(t, ))P, p 2 2,

kp% n) = p! Ko(%, )(K1(Q, p))P) P ,° E S.

Note that C(t - q) = E_0 kpQ, i?). We then prove the following lemma using
the fact that ax(x - y) is conditionally positive definite (cf. Gelfand and Vilenkin
[4], chapter 3).
LEMMA 4.1. The functionals Ko(%, q), Kp(Q, q), and kp%, ), p = 0, 1, **,

(-,n) e 8 X 8, are all positive definite and continuous.
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Againi appealing to the Aronszajn's theorem (lemma 2.2), we obtain the
Hilbert spaces 5, 9, and 5,, p = 0,1, 2, * * * with reproducing kernels C, K,
and k, respectively. Consider subspaces 6, and T,. We use the symbol (@* to
express the direct product of subspaces in the sense of Aronszajn [1]. Hereafter
we use subscripts to distinguish the various norms.
LEMMA 4.2. The space 9, is the class of all restrictions of functionals belonging

to Ci ;)*g®(D* ...* )* 1 (p times) to the diagonal set 9, = {(1, * *,%); % E 8}.
The norm 11 I in 9, can be expressed in the form

(4.3) ll IP= if lflS *
JT D1* .. (&*!;

f=fllgp
where f'/l, denotes the restriction of f' to Sp.

PROOF. By the definiition of K, and by Aroniszajn ([1], section 8, theorem II)
the assertion is easily proved.
LEMMA 4.3. The space 5:, is the class of all restrictions of functiontals belonging

to o (* 6, to the diagonal set 92 {(%, t); t E 8}. The norm 1 can be expressed
in the form

(4.4) Ilf Cif

LEMMA 4.4. 7'he space 5,, p = 1, 2, * , are mutually orthogonal subspaces
of W;.
PROOF. Put

(4.5) Kp,q(t,% ) K,(t, n) + KQ(S, X), p $ q.

Then the Hilbert space ¢p.q with reproducing kerniel Kp,q(t, q) is expressible in
the form

(4.6) 6p,q = p

To prove this assertion we first show that

(4.7) 6, nfl = {O>-
Suppose p > q; then

(4.8) K, X1) = Kq(,, ) q!(p_- q)! K,-,%7).p!
Consequently, 9, is the class of all restrictionis of functioiials belonginig to
q ®* Cp.q to the diagonal set &2. Now sUpp)OSe f Gc n Xq and let {f,ky)} be

a complete orthonormal system in S. Siiice f e 3p, it canl be expressed in the
form

(4.9) f(t) = E gk(t)fk(l)g 9 3 p-q
k=1

(remark attached to theorem II, Aronszajn ([1], p. 361)). But by assumption,
f belongs to 9. Consequently, all the gk's must be zero, which implies f = 0.

Let us recall the discussion of Aroniszajn ([1], part I, section 6). By (4.7),
if fp GSp, fq E,q then
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If"; + J#|3, lfllP+ IllfQlJ12(4.10) hJl qsq=h~~+{qj)q
Hlfr _- 2 = Ilf'!1aP + 11-I_ = lIfj!Is +Hj,112

which imply lie (f, fJ) = 0. Simiiilarly, we have Im (fp,f,,) = 0. Thus w\\e haVe
proved (4.6) anid the lemmiia.

Further, by the proof of lemmlia 4.4, we cant show the followinig. If $%., is tlle
rep)roducing kernlel Hilbert space with kerniel k,(t, n) + kq(t, -q), thell

(4.11) ®= q P' # q,
anid if J e Jp),q, thell

(4.12) kf*,i(*, t)-pt
is the p)rojectioll of f oil
LEMMA 4.5. The kcrnetl K,(, 7) adl(l k,(S, -), p > 0, arc G(P)-intcarimd1t thaCt is,

(4.13) Kp(yg, qg) = Kp(t, 7), k1,(yt, yg,) = k?(-,7)
for vcery y E G(P).

PitooF. It is sufficientt to p)ove that Ko anid K, are G(P)-inivarianit. For Ku
this is easily l)roved by (4.2) anid the definiitioni of G(P). CoIIcerIIIillg K1, we llave

(4.14) K1(yUn, g) = f| a((gt)(t) - (yi7)(t)) dt- f a((gi)(t)) dt

- f_ a(- (q'q) (t)) (It = f| a(y( -7 ) (t)) dl - f a((yt) (t)) (It

-f a(- (y7) (t)) (it = K1(t, n),
sinice every g E G(P) keeps the initegral f'x a(t(t)) dt inivarianit.
Now we shall state onie of our maiin results.
THEOREm 4.1. Thc space 5 has the (tirecc sumiii deconmposition

(4.15) = Z
= 0o

anid it is G(P)-in.ariamit. The ke.ornl k( ', t) is a projeCtion operator int the Jollowing
scnse:

(4.1( (f( ), 411(,I 0) MOl,t
is the projection oJ J o)l 5,.
PROOF. B3y lemmiiiia 4.4,

(4.17) k , v), ( (,n) E s X 5,

po
will be the reproducing kernel of the subspace ® Noting that

(4.18) C (~~~~~~~~~, -q)~~~ k,(I ,7)

aind
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2 m
(4.19) k~,Q, 7) = E k, ,= ),

1)fl~~~P1
we coneluide
(4.20) = E

p=o

(cf. Aronszajui [1], part 1, sectioni 9). The G(P)-iiivariantness of 5p comes
fromii the defintitioni of 5, anid lemma 4.5. lBy (4.12) anid the above discussiolns,
w\e have the last assertioni.
Coming back to L2 space, we have the followinig decomposition:

(4.21) L2 = ®Lw` NN-ith r(L2,(1) = TP.
7p-0

5. Gaussian white noise

Iln the followinig three sectionts we shall discuss some typical stationiary
processes with independent values at every point. First wre deal with Gaussiaii
white nioise, the characteristic futnctionial of which is

(-).1) C(C) =exl) I f (t)2 dt S'

iiamely the l)articular case whhere a(x) = -'12 in the formula (4.1). Con-
se(quenttly, K,(S, -q) is of the formli

(5.2) Kp(t, 7) =-t (t, -q)" = ! ( Q(t)v(t) dt)P.
Now p)ut !I2(RI') = IF; F c L2(R?"), F is symmetric>

(F(t1, , tp) = E F(tI,* t7r(p)), (symmet rizat ion)

where r dentotes the l)ermutationi of initegers 1, 2, * , p. Defille Ip(S; F) by

(5.e4) lp (S; F) = f. f t(ti) .. *S(QpF(tl,* , tp) dStl,* , dtp, t68
theni we have

(5.5) I* Q; F) = I*; F), for every t e S and F e L2(t").
THEOREM 5.1. For Gaussian white loise we have the following properties:

(i) !p= ff(.);f($) = I*Q; F), F c L2(RT)',
(ii) (I*(- ; F), I*(; G))s, = p! | |/+(tl,*-, t,)G;(ti,-, tp) dt.. -dtp-

PR)OOF. Define L2(RP) anid Sp by

(5.6) L2(I?') = fF; F(t1, *** ,t,) = 1 ak(tl) .

P!J. k=1
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and

(5.7) 6p = {f(.);f(t) = I(Q; F), F eL2(RP)}.
Then we can prove 6, C sp. If F and G are elements of L2(Rv) of the form

1 n lin
(5.8) F = p! k ak~k(tl) * . . (k(tp), G = p! - bkn7k (tl) (tp),Pk=1 Pk=1

where ak's and bk's are complex numbers and tk,e7C 8, we have

(5.9) (I*(- F), I*p(- ; G))s,
n n _1 / f

= ' '1 akb,- ! Jk(tl)-...k(tp)nj(tl) - * j(tp) dt1* *dtp

= p! J-... F(t1, * *-, tp)G(t1, - - -, tp) dt,* *dtp.

Since L2(RP) is dense in L2(RP), we can prove that p is also dense in %p. Inideed,

(5.10) p= {f(.);f() = I(t; F), F ceL(RP)}
Thus, by (5.5), we get (i).
The second assertion is easily verified using (5.5) and (5.9).
Take a complete orthonormal system {t;J°=j in L2(R1) such that all the ,'s

belong to 8 (cf. assumption 2.1).
COROLLARY 5.1 (M. G. Krein [9]). Define the functional

(5.11) . 4(ki'I'q) (t) = __ .$ZIj (S,(;.k ;

then

(5.,,j12) * , different positive integers, q
(5 1 2) (bkl. -,k) . q

,k,, * k**,k different positive integers such that I k, = p

forms a complete orthonormal system in ,p.
PROOF. The set of functionals on 8 X ... X 8 (p times) of the form

(5.13) {nI (t, 6); ji . ,j = 1, 2,

is a complete orthonormal system in (...* * 1 (p times).
On the other hand, we have

(5.14) (¢(b`;-, *k)n'kd - i)

(~~+k..---kq), p!/" I'
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The right-hand side vanishes if ((ji, k1), , (jQ, kq)) Fd ((j,, kg), * , (j,, k'))
(as sets) and is equal to

k!.. k! L(ki) Ia))] [ \Jk

otherwise, where 7r(k) denotes the permutation of k integers. Moreover, if q Fd q',
then (5.14) obviously vanishes. Thus we have proved the corollary.
REMARK 5.1. The above result has already been proved by M. G. Kremi

([9], section 4), although it is stated in a somewhat different form.
COROLLARY 5.2. If H.(x; 1) denotes the Hermite polynomial defined by (3.5)

with a = 1, then

(5.16) 1{,k...k)(i)C()}(x) = )- II Hk,((x, ,1).
m=-

PROOF. The formula
rq

(5.17) f ei(Z) ]IHk,((x, ) 1),u(dx)

[I [H.,[I((x, ,)1)ei(x. )(tte7)]jA(dx) f lei(j. IA(dx)

= I ei(U'_)xHknz(x;1) e dxC( t0(co 12 (a'/ i

becomes

(5.18) ][k II (t, t;)kC(t)-
This proves (5.16).
REMARK 5.2. From theorem 4.A and the above result, we get the orthogonal

development of the elements of L2 due to Cameron and Martin [3].
In the above discussion we use an important property of Gaussian white

noise, that is, the equivalence of independenice and orthogonality. For other
cases discussed here, the multiple Wiener integral due to K. 1to [6] plays an
important role.

Let {Ij7,=, be a finite partition of T. Then we have
n

(5.19) C(t) = EI C(Fxi), 8e S,
j=1

where xi, is the indicator function of Ij. Note that C((xij) has meaniilg even
though (x, may not be in S.
Now if we consider the restiictioin of C(t) to 3C(Ij); then

(5.20) CI/ ) = C(t), t E 3C(Ij),
is a continuous positive definite functional. Therefore, we can follow exactly
the same arguments as we did for C(t). Let us use the symbols 5(Ij), ,(Ij),
and 5,(Ij) to denote the Hilbert spaces corresponding to 5i, I, and 9, defined
for C(t). Then we have
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(5-,.2>1) F = II (* T(fj)
j=1

by the formnula (5.19). WVe caii also )rove

(5.22)--) 5(Ij)- rJH 5(b), (isonlorphlic)
j=1 j=1

l)y J. voui Neumannii's theory [10].
Let ol(Ij) be the smiallest Borel field genierated by sets of the formli

(5.23) fx; (x, t) e B}) t c 3C(I), B is a one-dimiienisional Bor-el set,

and let L2(Ij) be the Hilbert space definied by

(5.24) L2(Ij) = c L., is (6(Ij)-mneasurable.
Tlieii by (5.21),

(5.25) L= I x)* L2(Ii).
j= I

Because of the l)articular formli of ('(c), we caui prove tlnat
(5-.26;) L.i.,.l. (x,'

q_-

exists if (, tenids to xii in L2(1?') as (J -* x. We denote the above limit by (.r, xi,).
We are nlow iii a P)ositioll to definie the multiple Wieiier initegral of K. It6.

Let F(t1, *, tp) be a special elemenitary funietion (see K. It6 [5], ). 160)
defined as follows:

(5).27) F(t,, , ,,) = ajj, .s.., foil; (t,,*, tp) e 7 i, X ..X 71ip0 otlierwise,
where tlhe 7'i's are mutually disjoint finiite initervals. For such F, I,(x; F) is
defined by

p
(5.28) Ip(x; F) = aj,.. .,p (x, X7ii).

3-1

This funcetiont satisfies the following p)roperties (5.29)-(5.32): for ally twvo
sl)ecial elemiientary fuietionis F anid G,
(5.29) Ip(x; F + G) = I,(x; F) + I,(x; G),

(-.30) I7,(x; F) = I,(x; F),

where F is the symiiiietrizationi of F;
(5.:31) Ip(x; F) e L2 for anty p antd aniy special elementary funcetiouu F,

a(I
KKfp(.r; F), hI'.r, (J))) = p!(F, (I) L4'v({),

(5.32) ((Ip(x; F), I G(x;G))) = 0, if p F ll

The map I, cani be extenided to a bounided linlear operator froiii L2(RP) to L2,
which will be denoted by the samiie symibol I,. The int egrial Ip(x; F) is called
the m'iltiple lWiener integral. It is essentially the same as that of K. 1to except.
that we cani consider comiplex L2(IR,) funietionts as iiitegranids.
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THEOREM 5.2. For cery F e L2(Rp), we have

(5.33) Ip(x; F) = (j)PT-{11(.; F)C(-)}(x).
PROOF. If F is a special elementary functioni, (5.33) is obvious by the defi-

nitiion of 1* and r. In fact, if F is definied by (5.27),

(5.34) I*(t; F)C(t) = aj,.p II(I , XT)
i, j=1

Henice, we have

(5.35) T I 1(,. ; F)(( ), (x) = Z H,. . .,p H [T ( X7 ,)C( ) ]-
j=1

Siclle T-1-(((, XTj)C(-)X(X) -(i)1(x, XT), the above formulla is eqlual to
p

(5.36) (i)-P aa.., 1,I K1 X7 ;)

Suelh a relationt can l)e extenided to the case of genieral F.
S. Kakutanii [7] also gave a direct sumNl decomposition of L2 usinig the addition

formula for Hermite l)olynlomials. It is kntownv- that Kaklutanii's decomposition
is the same as that obtainied by usinig multiple Wienier integrals. Conlversely,
this additioni formula cani be illustrated by using the decomposition of F. T'Ihis
was showni by N. K6no (private comlimuniication) in the followving way.

Let 1, 11, anid 12 be finite initervals such that I = 11 + I2; theti

(5.37) ! ( xl),'C(.) = ( Xi)(. xi,) X)( ()"-x-((*X2)( (*XIv)-n! k-0 - ~~~~~~(nk
Noting that

(5.38) --!(. xl)kC((xI,) e (Ij), .j = 1, 2,

((5 xl8) kE
anid that (5.25) hol(ds, wve have

(53)39(T-'I( xi,)AC(. xi.) 1 ( XI2)"-kC( xI)(( x¢I)} (.-)

Ti, - xk!((,xi)1C(TX1V(x)

{(1 - ^ !~( -, X,.2), ( X .)} (.I ) -Ti, I (1( * XI,) " (.1-),

Where Ti (lenotes the mapping from L2(O) to 5(1) which is similar to T. Here
eaeh factor of the right-hanid side is expressed in the form

(5;.40) T/h 1-! ( -, x,1)k( (.xI)} (X) = (i) Hkl ((, xI); I l) 1

(5.41) Th' { 1 1), xiL2k( . xi') (x)
(j)-,+kH_k((X, xI); |l21) G L2(12),
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(5.42) ri"'{CQ xio)} (x) = 1 e L2(1c),
where III denotes the length of the interval I. On the other hand, since

(5.43) r- (h! ( xr)nC)) (x) = H.((x, xl); 'I1),
we get

n
(5.44) H.((x, xI); |I|) = Hk((x, xI1); lIIl)H.-k((X, XI2); II21)-

k=O
Therefore,

(5.45) H.(x + y; IIi + I21) = IIk(X; IIlI)Hn-k(y; |I21)
k-0

for almost all (x, y) E R2 with respect to the Gaussian measure,

(5.46) exp 2 + -2' 1 dx dy.
(5.46) 21111121 exp 12IIiI 21121

Since Hn(x; a2) is a continuous function of x, (5.45) is true for all (x, y) c R2.
Indeed, (5.45) is the addition formula obtained by S. Kakutani [7].
-7le us further note that N. Kono has showii that (5.45) can also be proved
by using the Gauss transform defined by

(5-47) i°(Y) = fs* so(x + iy)u(dx), p e L2(8*, -), Y e 8*.

This transformation is well-defined for polynomials. Since the transformation
is bounded and linear, and since polynomials form a dense set in L2(8*, /L), we
can extend (5.47) to all of L2(8*, 1)*

Let s be the Gauss inverse transform of so. We can then introduce an opera-
tioii o from L2(8*, p) X L2(8*, ,) to L2(8*, ,.:

(5.48) (o °&)(y) = (y o 4')(y) for sp, 4, E L2(8*, A) and y E 8*.

By simple computations we can prove the following: if $o(x) = Hn((x, 1), 1) and
4'(X) = Hm((X, 2), 1),

fCn,mHn+m((y,) 1) for t = t2 =
5Cz.mn (O)C'(y) for (41, t2) = 0.

More generally, we can prove that if so eLE ) and 4E L2' , then

(5.50) 45 E L2mK
This operation becomes simpler when it is considered in 5. We shall use the
same symbol o to express the corresponding operation, namely,

(5.51) fo g = T((Tr'f) o (T-1g)) for f, g E a.

Recalling that the Yn appearing in Wiener's direct sum decomposition of aY is
T(L(n) we have the following proposition.
PROPOSITION 6.1. l'he spaces {10} n' o form a graded ring with respect to the

operation o. (For definition, see Zariski and Samuel [17], p. 150).
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6. Poisson white noise

In this section we shall deal with Poisson white noise, which is another typical
stationary process with independent values at every point. Our goal is to find
the explicit expressions for 5, !p, and 5, and also to look for relations between
the multiple Wiener integrals and the Charier polynomials. Since Poisson white
noise enjoys many properties similar to those of Gaussian white noise, we shall
sometimes skip the detailed proofs except wheni there is ani interesting difference
from Gaussian case.
The characteristic functional of Poisson white noise P is given by

(6.1) C(t) = exp {| (eit(t) - 1 - it(t)) dt}> t E 8,

that is, a(x) = (eix - 1 - ix) in the expression (4.1). Hence, Kp, r/) is expressed
in the form

(6.2) Kw(U, r1) = | P(t(t))P(71(t)) dt EX 8, sS

where P(x) = eix - 1. For F e L2(Rp) we define J*(t; F) by

(6.3) J (t; F) = f- * Put(o)) .. *P(o,(pu)(tl,* , t,) dt-.. *dtp.
Obviously,

(6.4) J(t; F) = J*(; P) E 8,
still holds (cf. (5.30)).
THEOREM 6.1. For Poisson white noise, we have

(i) w= {f(-);f(t) = J*(t; F), F e L2(RP)}

(i) (JP(-; F), J*(-;G))I, = p! J . f P(tl,* * tp)O(ti, - - *, tp) dt, .. *dtp
for any F, G E L2(RP).
PROOF. The proof is nearly the same as that of theorem 5.1. Thus, we shall

just point out the necessary changes. The spaces L2(RP) and Sp have to be
defined in the following way:

L2(RP) = fF;F(t*, tp) E akP(tk(t1)) * P((k(tp));
k=1

(6.5) ak complex, (k E ST,
6P = {f(.);f(t) = Jp(; F),f E2(RP)}

If we prove that L2(RP) is dense in L2(RP), then the rest of the proof is exactly
the same as that of theorem 5.1. To do this, note that the totality of all linear
combinations of functions such as XT,(t) ... XT,(tp) with disjoint finite intervals
{T,}M,_1 is dense in L2(RP), and also note that the fact that

(6.6) fI** J E akP(k(tl)) .. *P(tk(t1))xTl(t1) ... xT (tp) dt ... dtp = 0
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for aniy clhoice of -'akj aid tk's inl implies that

(6.7) XTi(ti)...x7P(tP)= , a.e.

We can therefore p)rove that L2(RP) is dense ini L2(RP).
The direct product decomposition of a and L2 is the same as in section 5.

For aniy finite l)artition {Ij}j% of T,

(6.8) CW() = 11 (Wix), 8,
j=l

still holds. Therefore we have, using the samiie iiotatioin,

7~1(6.9) 1= oxX*5(Ii),
j=l

(6.10) L2= I L2(Ii).
j-1

MIoreover, we can definie the multiple Wiener initegral with respect to Poissoni
white noise similarly. First note that (x, xI) is definiedl as aii elemietnt of L2. If
F is a special elemeiitary functioni giveni by (;.27), theil J2,(x; F) is defined by

(6.11) .Jp(x; F) = a i,, ,i 11 (xr, X7.i).
il,*'*'*',iP j = I

The imial) J, can be exteinded to a bounided liniear operator fromi L2(IR ) to L2
as was done in sectioni 5 (cf. K. It6 [(6], sectioni 3).
THEOREM 6.2. For cvtery F cL2(1e 9,

(6.12) J,(x; F) = T- I V F)C( ) (x)
PROOF. This proof is also the same as that of thloreme 3.2, except for the

followinig relationt:
P r

((j-l <) T((x, X/,) ..(J., xY')(t = J](s)) (ltjC( 0t

Fioiii the last theorem we cani show that

(6.14) 5 =

is nothinig but Wienier's direct sum decomiposition. Tlhis fact call also be proved
usinlg a certaini additioni formuitila for a one-paranieter faiily of genieralized
Charier polynomials: let v(.r, c) be giveim by

(6.13) v(X, c) = 1-'t-+C+1) ' = 1 c-(, 2 - c,

antd let

(6 16) l',,(x, c) - n!Pn*(x c) = (-c)'(v(.r, c))-<'.v(x - 1, c),
where A. is a difference operator of order n; theni the formula is

(6.17) 1)"(j. + y, c) = (Py(.r, Cl)P (y, ('2), C,, C2 > 0, C = Cl + C2-
k=()
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7. Concluding remarks

The theorems giveni in sections 5 and 6 extend to generalized white noise.
Furthermore, we shall show that a sequence of iiidependent identically dis-
tributed random variables can he dealt with in our scheme. We do not take
ul) detailed discussions but summl-arize some of their l)roperties.

7.1. Generalized white noise. We now discuss the stationary process with the
characteristic funetioiial

C(s) = ex) {f a(t(t)) dt}l , E S

a((x) = 00 - 1 +u) d/3(i),Joo( 1 ~~~+u0) ?l2
which is the one obtainied from (4.1) by eliminating the Gaussiani part - (U2/2)x2.
Then Kp, r) is exp)ressible as follows:

(7.2) Kp t) = ! (JJ P(t(t)u)P(-q(t)u) dv(t, it)

where dv(t, u) = dt df3(u). We introduce the following notations:

Dp = R2p, dm = U2 dv, dmp = dm X ... X dm (p times),

(7.3) L2(Dp; mnp) = {F; F is square summable with respect to
I dm}

L2(Dp; mp) = {F; F e L2(Dp; mp), F((t1, t1), * * (tp, ?tp))
= F((lt,(n, U(l)), * * 7(t,,(p), tt,,(p))) for any pernmitat ion 7r'2.

Define 3I*(K; F) by

(7.4) 31t(*; F) = f|-. f P((tl1)u1) .P(t(tl)itp)F((tl, ,u), * * *, (up),un))
X ul..up dp(ti, U1) ..dv(tp, up)

usinig the same techni(lue as in sections 5 and 6. Then we have

(7.-)) 31!*,(; F) = A*; 1F), c CS,
where

(7.6) 1F((t., ul), ,(tp, up)) = ,F((t,,(l, u,,(.)), ** (tT(p)2 t(,)-

For generalized white noise with characteristic functionial (7.1), we have the
followinig results:

()p= {f(.);f(3)= AIp(t; F), F c L2(D)p, in,)',
(i)

Jl*,(t; F) = 1lI(t; IP);
(ii) (l*[(.; F), lRp(-; G))j, = p! || FZ((ti, it,), * u* (,, l)))
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Let us emphasize some of the important differences from Gaussian or.Poisson
white noise. First we cannot expect that the decomposition 5F = EPX o E oFv,
where 5, corresponds to the ;, appearing in (i), will be the Wiener's direct sum
decomposition. However, r1(§F) coincides with the multiple Wiener integral
introduced by K. It6 [6]. The next remarkable thing concerns the direct product
decomposition.

Let {Ij,} 1 and {Jk} km= be finite partitions of T and R1, respectively, and
define

(7.7) C(Q; Ii X Jk) = exp {f | 1eit(t)u - + u ) u2 d(u) dtd
Recall C(Q; Ij X Jk) defines the subspaces (Ij X Jk), 5:;(Ij X Jk) and
6,(Ij X Jk). Since

nm
(7.8) C(t) = II II C(;IJ X Jk),

j-I k-1
we have

n m

(7.9) II= 1 VEJ, @*(Ij X Jk).
je1 k=I

Now we note a connection with K. Mto's multiple Wiener integral. It seems
to be difficult to start in the same way as in sections 5 and 6 by introducing
(x, XI) in L2. However, if we consider 5:, we can-proceed by defining for finite
intervals I and J,
(7.10) M*(Q; I X J) = Jf fJ P( (t)u)u dv(t, u),

(7.11) M(x;I X J) = l-1(M*(.;I X J)C(.)).
M(x; -) can be considered as a random measure as in K. Ito ([6], section 3)
and using it, we can define the multiple Wiener integral Ip(F). Let us denote
it by Mp(x; F). Then, for every F E L2(Dp, mp) we can easily prove that
(7.12) T-1(Mp( .; F)C(*)) = Mp(x; F).
Rather than discuss the group G(P) in detail, we shall just give a simple

example.
EXAMPLE. Consider the case where

(7.13) a(x) = xIj, 0 < 0 < 2.

This corresponds to the symmetric stable distribution with exponent 0. A trans-
formation g on E belongs to G(P), that is,
(7.14) C(gW) = C(), E
if and only if

(7.15) f (gt)(t)j6 dt = | lt(t)I9 dt.

Then g,
(7.16) (g0)(t) = cW(c9t), c > 0,
is an example satisfying (7.15).
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7.2. A sequence of independent random variables. Consider a stationary
process P = (E*, A, {Tt}) with independent values at every point, where E =
S = = {k}t _ ;{k real) is the space of rapidly decreasing sequences and T
is the additive group of integers. A system of independent identically distributed
random variables arises in the following way.
Take a sequence {n}n--x of sequences,

(7.17) n={}k nXE k=a
Since the {^'s have disjoint supports, the (x, ,n)- X.(x), -oo < n < o, are
mutually independent.

Further, we have

(7.18) UtXn(x) = Xn(Ttx) = Xn+t(x).
In view of the above, T = T, is called a Bernoulli automorphism and P is called
a stationary process with a Bernoulli automorphism T.

If C(z) is the characteristic function of X.(x), that is,

(7.19) C(z) = L eizX.(z)i.,(dx),

then the characteristic funietional C of P is expressible in the form

(7.20) C k-o= = { }W -c C S.

We can now form the Hilbert space 5 = a(s, C) with reproducing kernel C
given by (7.20).
The direct product decomposition and the direct sum decomposition of f

can be done in section 4. We would like to mention two particular cases of
stationary processes with Bernoulli automorphisms.

(a) The Gaussian case. Let P = (s*, A, {T,}) be the stationary process with
a Bernoulli automorphism. Suppose that the characteristic functional of P is
given by
(7.21) C(t) = exp {-211j112}, t £

where kljj2 = ,t-- (tk)2. In this case, the subspace 5, of 5(s, C) turns out
to be the following:

r 0

(7.22) P =f();f(r) = E a(j, *- , ni-C(),

77 = {77n}= -, E s, a(ji, * * , jp,) E ?2(RP+
where 2(RP) is defined by

(7.23) 22(RP) = ja(j1, * *j,); E Ia(ji, * ,jp)j2 <cX, a(j,, * *j,p)
is symmetric with respect to jk's}.

If the fk(-), k = 1, 2, in 3f are given by



142 FIFTH BERKELEY SYMPOSIUM: HIDA AND IKEDA

(7.24) fki) =7 ak(j1, .* 7* *7*jC(), k = 1, 2,
jl, - * ,jp- -S

theni we have the followiing:

(7.25) (fi,J2) = p al(jl, ,jp)a2(jil, ,)

Actually 5 = 7p=o E p is the Wienier's direct sumn decompositioni. Thus, the
subspace L2P' of L2(s*, ,u), corresponidinig to 5p, is expressed as

f n 'n(7.26) L2p) = ( H Hpk(Xqk(x); 1); {qk.} differenit, Pk =p

(b) Poisson case. Conisider the stationlary process P = (t*, t",{7'l) whose
cliaracteristic funietionial is

(7.27) C(() = exI) { E (c -1-iU) , = (, _4
tj=_x J1

Of course, P is a stationiary process with a Bernloullirautomiiorl)lhisiii. The initerest-
inig thinig is that L2P) is spanned by elemenits of the form

7l n

(7.28) , ap,,. . HH Qpk(XQk(X); 1), P = P
pi, ,p"P. kI k-1

where Q. is the function defined by (3.12). Note that the Qn's form a complete
orthonormal system in L2(S1, dv(x, 1)) (for notation, see (3.9)).
We can also prove that

r x

(7.29) p = I'f();f7i) = E a(ji, -,j) n (Ci,i I)C-(,7)
,,- .,jp= _ x. .k=1

a(j, , p) e ?,(RI)1}
Although the expressioni of f(.) in (7.29) is (quite differenit from that in (7.22),
we still have the same formula for the inniierI)roduct, that is, (7.25).
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