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1. Introduction

The multiple Wiener integral with respect to an additive process with sta-
tionary independent increments plays a fundamental role in the study of the
flow derived from that additive process and also in the study of nonlinear
prediction theory. Many results on the multiple Wiener integral have been
obtained by N. Wiener [14], [15], K. It6 [5], [6], and S. Kakutani [8] by
various techniques. The main purpose of our paper is to give an approach to
the study of the multiple Wiener integral using reproducing kernel Hilbert
space theory.

We will be interested in stationary processes whose sample functions are
elements in E* which is the dual of some nuclear pre-Hilbert function space E.
For such processes we introduce a definition of stationary process which is
convenient for our discussions. This definition, given in detail by section 2,
definition 2.1, is a triple P = (E*, u, {T}), where u is a probability measure
on E* and {T:} is a flow on the measure space (E*, u) derived from shift trans-
formations which shift the arguments of the functions of E.

In order to facilitate the discussion of the Hilbert space Ly = Ly(E*, u), we
shall introduce a transformation 7 defined by the following formula:

(L1) Q)®) = [, = Op@u(d) for ¢ & Ls,

where (-, -) denotes the bilinear form of z € E* and ¢ € E. This transforma-
tion 7 from Ls to the space of functionals on E is analogous to the ordinary
Fourier transform. By formula (1.1) and a requirement that = should be a
unitary transformation, § = 7(L.(E*, u)) has to be a Hilbert space with re-
producing kernel C(¢ — 7), (¢,9) € E X E, where C is the characteristic functional
of the measure u defined by

(1.2) C® = [, é=ou(dz), el
117
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The first task in section 2 will be to establish the explicit correspondence between
L, and 7.

Another concept which we shall introduce in section 2 is a group G(P) asso-
ciated with a stationary process P. Consider the set of all linear transformations
{g} on K satisfying the conditions that

(1) C(gt) = C(¢) forevery ¢el/, and

(1.3) N .
(i1) that g be a homeomorphism on F.

Obviously the collection G(P) of all such ¢’s forms a group with respect to the
operation (gige)t = ¢q1(¢2£). The collection G(P) includes not only shift trans-
formations S,, h real, defined by '

(1.4) B0 = £t — b,
but also some other transformations depending on the form of the characteristic
functional.

An interesting subclass of stationary processes is the class of processes with
independent values at every point (Gelfand and Vilenkin [4]). Sections 4-6 will
be devoted to discussions of some typical such processes. Roughly speaking
they are the stationary processes obtained by subtracting the mean functions
from the derivatives with respect to time of additive processes with independent
stationary increments. In these cases the independence at every point can be
illustrated rather clearly in the space § by using a direct product decomposition
of it in the sense of J. von Neumann [10]. I'urthermore, hecause of the particular
form of the characteristic functional, we can easily get an infinite direct sum
decomposition of F:

(1.5) =3 @F.
n=0

Each §, appearing in the last expression is invariant under every V,, g € G(P)
defined by

(1.6) (Vef)(€) = J(g8), fes,

that is, V,(5.) C &, for every ¢ € G(P). With the aid of these two different
kinds of decompositions, we shall investigate § and discuss certain applications.

In section 5, we shall consider Gaussian white noise, although many of the
results are already known. To us, it is the most fundamental example of a
stationary process. Here the subspace &, corresponds to the multiple Wiener
integral introduced by K. Ité6 [5] and also to Wiener’s homogeneous chaos of
degree n. Kakutani [7] expressed the subspace of Ly(E*, u) corresponding to
F. in terms of the product of Hermite polynomials in L.. These results are
important in the determination of the spectrum of the flow {T, of Gaussian
white noise. It should be noted that the L, space for this process enjoys properties
similar to those of L.(S*, &,) over an n-dimensional sphere S* with the uniform
probability measure o,. As is mentioned by H. Yosizawa (oral communica-
tion), the multiple Wiener integral plays the role of spherical harmonies in
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Ly(S*, an); for example, {F., V,, g € G(P)} is an irreducible representation of
the group G(P). This suggests that one should consider certain aspects of the
theory which are analogous to the analysis on the finite dimensional sphere.
This is done by H. Yosizawa and others (oral communication).

We will also discuss the Hilbert space F arising from Poisson white noise
which is another fundamental example of a stationary process (section 6).

Finally we will show that our approach is applicable to the study of gen-
cralized white noise and even 1o an arbitrary sequence of independent identically
distributed random variables. IFurther discussions, such as the detailed proofs
of the theorems stated in this paper and certain of the applications of this work,
will appear elsewhere.

We would like to express our deep thanks to Professor J. W. Van Ness for
his help in preparing the manusecript.

2. Definitions and preparatory considerations

Before defining the term stationary process let us first introduce some notation.
Let I be a real nuclear pre-Hilbert space. Denote the inner product by (-, -);
it determines the norm || ||. Let H be the completion of £ in the norm |- || and
E* be the dual of K. Then by the usual identification H* = H for Hilbert
spaces, we have the following relation: ¥ C H C E*.

Let ® = B(L*) be the o-algebra generated by all cylinder sets in E*. If
C(¢), £ € I, is a continuous positive definite functional with C(0) = 1, then
there exists a unique probability measure u on the measurable space (L*, @)
such that

(2.1) C® = [, ox e, u(dr), el

(cf. Gelfand and Vilenkin [4]).

In what follows we shall deal only with the case in which £ is a subset of RT,
where R is the ficld of real numbers and T is the additive group of real numbers
or one of its subgroups. Every element of E then has a coordinate representation
£ = (&), t € T). Ior every h, we consider the point transformation S, defined
by (1.4). Whenever we are concerned with the S,’s, we always assume that K
is invariant under all of them. I'or each S; we define a transformation 7', on
I'* as follows:

(2.2) Ty T € K%, teT with (T & = (x,S&) for cvery &.
Obviously {7,: ¢ € T} forms a group satisfying

(2.3) T7T, =TT =Ty, s5,t €T,
(2.4) To = I (identity).

The group {7';; t € T} can be considered as a transformation group acting on £*.
Let ®&(T) be the topological Borel field of T.
DerFixiTiON 2.1, The transformation group {T.t € T} is called a group of
sheft transformations of T = f(x, ) is measurable with respect to & X &(T). The
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triple P = (E*, u, {T}) s called a stationary process if u is tnvariant under shift
transformations T,, t € T.

DEFINTTION 2.2. The functional C(£), £ € E, defined by (2.1) for a stationary
process P = (E*, u, {T}), is called the characteristic functional of P.

Having introduced these definitions, we begin our investigation of stationary
processes. For convenience, we assume the following throughout the remainder
of the paper.

AssUMPTION 2.1. There exists a system {n}n=1, £x € E, which forms a com-
plete orthonormal system in H.

For the measure space, (E*, ®, u), associated with a stationary process, we
can form the Hilbert space L, = L.(E* u) of all square summable complex-
valued functions with the inner product

(2.5) (o ) = [, o@F@udz), 0¥ € La.

LEmMa 2.1. The closed linear subspace of L. spanned by {e=®, ¢ € E}
coincides with the whole space L.

This can be proved by using the uniqueness theorem for Fourier inverse
transform (for detailed proof, see Prohorov [13]).

The next lemma, is due to Aronszajn ([1], part I, section 2).

LemMma 2.2. For any stationary process P = (E*, u, {T}) there always exists
a smallest Hilbert space § = $(E, C) of functionals on E with reproducing kernel
ClE—n), (&) € E X E, where C(§), £ € E, is the characteristic functional of P.

Let us denote the inner product in § by (-, -). We now state some of the
properties of & obtained by Aronszajn:

(i) for any fixed ¢ € E, C(- — §) € 5;

(i) (f(-),C(- — §) = f(§) forany fe€¥9;

(iii) ¥ is spanned by {C(- — &), £ € E}.
From these properties and lemma 2.1 we can prove the following theorem.

TureoreM 2.1. The transformation r defined by

(2.6) o) (®) = [, e@)ePu(da)

18 a unttary operator from Ls onto F.
In fact, the relation

2.7 T (zl a_,-e"'("f")> () = 21 a;C(- — &)
Jj= j=
shows that 7 preserves norm since this relation can be extended to the entire
space.
Note that
(2.8) D) =C()
and define
L; = ;¢ € Lo, , 1)) = 0},
2.9) 5= {o;0 €Ly, {p 1)) =0}

§* = {f;f €5, (f(-), C(:)) = 0}.
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Then 7 restricted to L} is still a unitary operator from L3 onto §*. On the-other
hand, if we define U,, ¢t € T, by

(2.10) Ui (Uw)(z) = ¢(Tex) € Ly for ¢ € Ly,
then {U,, t € T} forms a group of unitary operators on L. satisfying

UU, = UU; = Uyys, s, t €T,
(2.11) Us =1 (identity),

U, is strongly continuous.
Moreover, we can see that {U; U, = r- U1, t € T} is also a group of unitary
operators acting on &. For simplicity we also use the symbol U, for U,. Further,
we write U, even when U, (or U,) is restricted to L} (or §*).
In connection with G(P) we can consider a group G*(P) of linear transforma-
tions g* acting on E* as follows:

(2.12) G*(P) = {g*; g*x € E* for every x € E*, (g*z, £) = (z, g&)
holds for every x € E* with ¢ € G(P)}.

From the definition we can easily prove lemma 2.3.
Lemma 2.3.  The collection G*(P) is a group with respect to the operation

(2.13) (gig2)x = gi(gsx).
Also,
(2.14) (g = (gH*

ReEmark 2.1. Detailed discussions concerning G(P) and G*(P) will appear
elsewhere. For the related topics on such groups we would like to refer to M. G.
Krein [9].

By (1.3) (i), it can be proved that every g* € G*(P) is measure preserving;
that is, u(d(g*r)) = u(dx). Hence, by the usual method, we can define a unitary
operator V,* acting on L.(E*, u) by

(2.15) (Viro) (2) = o(g*2), g* € G*(P), ¢ € Lo(E* ).
Similarly, we define
(2.16) (Vo) () = f(g8), geG®), fev.

Obviously, {V,;¢* € G*(P)} and {V,;g € G(P)} form groups of unitary
operators on L(E*, u) and F, respectively.
We now have the following relation between V,« and V,

(2.17) (V) (8) = Vy(re)(8), tE€E,
which is proved by the equations
@18) [, cep(grru(dn) = [, ¢vep()u(dg* ) ,

= [, e 0p(@u(da) = (o) g7'8).
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Another important concept relating to stationary processes is the purely non-
deterministic property. Let T, be a set of the form

(2.19) T, ={s;5eT,s<1t}
and ®, be the smallest Borel field generated by all eylinder sets of the form
(2.20)

{o; (o, 8, - (2, &) € B & e Eysupp (5:) C T, 1 <k <n B*e ®(R)).

The subspaces of L,, Ls(t) and Li(f) arc defined by

Ly(t) = {¢; ¢ € Ly, ¢ is B,-measurable}, teT,

Li() = {¢;¢ € Lo()), (o, 1)) = 0}, teT.
Corresponding to La(f) and Li(t), we can define

5(1) = S{O(- — D3t € B, supp (6) C T))

F*O = ;7 €50, (J(-), C(+)) = 0},

where €{ } denotes the subspace spanned by clements written in the bracket.

Then we can easily prove the following proposition.
Prorosition 2.1. For every t € T,

(2.21)

(2.22)

(2.23) Ly(t) = F(1), (isomorphice)
and
(2.24) Li(t) = 5*(1), (isomorphic)

under the transformation r restricted to Ls(t) and L3(t), respectively.
DeriNtTION 2.5, If

(2.25) S(—w) = N Lis) = {0}
s&T

holds, then P = (E*, u, {T,}) is called purely nondeterministic.

This definition was given by M. Nisio [12] for the case where £* is an ordinary
function space. By definition and proposition 2.1, P is purely nondeterministic
if and only if

(2.26) FH(—oe) = (N F*(s) = {0}
s €T

holds.

We are now in a position to develop certain basic concepts relative to sta-
tionary processes. We would like {o emphasize the importance of a stationary
process with independent values at every point.

DeriNiTION 2.6 (Gelfand and Vilenkin [4]). A stationary process P =
(E*, u, {T}) will be called a process with independent values at every point of its
characteristic functional C(§), ¢ € E, satisfies

(2.27) ClE + &) = CE)C(E), whenever supp (&) Nsupp (k) = .

If E is the space X of C=-functions with compact supports introduced by
L. Schwartz, this definition coincides with that of Gelfand and Vilenkin. If ¥
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is the space s of rapidly decreasing sequences, then we have a sequence of
independent random variables with the same distribution.

Proposition 2.2. If P s a stationary process with independent valucs al crery
point, then it is purely nondeterminastic.

Proor. Tor f € F*(1) there exists a sequence {f,} such that Lim., . f, = f
and

b

(2.28) fa() = 3 aC(- — &), el supp (&) C T..
k=1

Since P is a stationary process with independent values at every point, we have
Na A,

(2.29)  fu(®) = kZl a’C(g — &) = C(§) k; ai"C(—&") = C()f.(0)

for any £ with supp (¢§) C TS However, f,(§) has to be zero since

(2.30) £0) = (f.(:),C(- —=0) =0 for [. € 3%

Thus, f(¢) = 0. If f € NieT F*(t), then (&) = 0 for every ¢ with supp (¢) C T¢

for every t. Hence, we have f(-) = 0.

Now we can proceed 1o the analysis of the L,(IS*, u) space arising from a

stationary process P with independent values at every point. First we discuss
polynomials on E*. The function expressed in the form

(231) ¢(a‘) = I)(<T7 £1>, R} <T, E">)y Sly D) Eu € Lv) T e ]f*,

where P is a polynomial of n variables with complex coefficients, is called a
polynomial on E*. If P is of degree p, we say that ¢(x) is p-th degree polynomial,
and if, in particular, P is homogeneous, we say the same of ¢.
Throughout the remainder of this seetion we shall assume the following.
AssUMPTION 2.2, The following conditions hold:

1 [,.;* Kz, Olruldz) < = for £ € K and every integer p > 1,

(i) f, (e, Dulda) = 0 for cvery £ € E.

With these assumptions we sce that the set M of all polynomials on I'* forms a
linear manifold of L.. Consequently, 7(M) = {r(¢); ¢ € M} is defined and
(M) C 5.

Derintriox 2.7, An operator Dy, £ € I, 1s defined by
. 1
(2.32) (D)) = 1.1.1(}1. UG+ ) = f0)]

if the limit exists, Dg is called a differential operator, end its domain is denoted
by HDe). We define D as Neger O(D).

Lrmma 2.4, [f P satisfies assumption 2.2, we have the following:

(1) C(- =& €Dforeery & € K, and TIj-1 D;,C(- — £) belongs to O for any
nand fy, -,k €E;

(i) () C D;

(111) For any &, - - , £, € I and any choice of positive integers ky, - -+, k., we
have



124 FIFTH BERKELEY SYMPOSIUM: HIDA AND IKEDA

ez {(foy)cO)f@=-OSu B @ear  aeh

(iv) (2)7'D; s a self-adjoint operator, the domain of which includes {C(- — §);
£ € By Ur(M);
(v) for any f € 1(M) and &, & € E, we have
(2.34) DyDef(+) = DeDef(-).
Proor. By assumption 2.2,
(2.35) Lim. % (gied) — 1)etem — §(x, £)e‘<’"ﬂ} = 0.
«—0

Using 7, the above relation proves that
. 1
(2.36) ll_gl s {CC-+e+n+CC+n)}

exists and is equal to 7 {i(z, £)eiem},

In a similar way, we can prove the second assertion using assumption 2.2.
(ii). By assumption 2.2, exp {z 3_7-1ti{z, £;)} is differentiable infinitely many
times (in Le-norm) with respect to ¢, - - - , t,—, and ¢,, and we have

@31 6 Lk (aZ Motk . -6tﬁ‘> exp {i él tix, Si)}L

L=iym oo =iy =0
n

= II <x’) Ei)ki'
i=1

The right-hand side belongs to Lg, and mapping by 7, we have (2.33).
For assertion (iv), if f € 7(M), we have

OH@) = OS), ¢ =) = (Lim L UC + @ =, ¢ =)
(238) = lim 2 {f(n + &) — S},

(JC:), DL —m) = 11_!}3% (fon — &) — f(m) = —(Def)(n),

which prove that (2)—'D; is self-adjoint.

For (v) consider (f(n + et -+ ef2) — f(n + ek2) — f(n + k1) + f(n))/€*. Ar-
guments like the above prove that D and Dy, are commutative.

N. Wiener [15] discussed the following decomposition of F(Ls) for the case
of Gaussian white noise. Consider a system K of elements of & defined by

K. = ﬁDfHC(');kly"';kn=1,2,°"}: n>1,
(2.39) i=1 i
Ko={C(-)}, and K= U K.

where {£2} ., is the system appearing in assumption 2.1. Since the system K,
Y 1 p
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forms a countable set, we can arrange all the elements in linear order. -We shall

denote them by {gi”(-)}. Let P be a stationary process satisfying assumption

2.2 and let %, be the one-dimensional space spanned by C(-), that is, F = K,.

Put fi" = ¢i and define

(2.40) F=6{ff";k=12 -}

Obviously, % and &, are mutually orthogonal. Suppose that {F,}7=¢ are defined

and mutually orthogonal, consider

(241) I(cn) = P(ni @g) gl(cn); k= 1: 27 Ty
i=0

where P.) denotes the projection on (-). Then &, is defined by

(2.42) Fo=S{fi"k=1,2--},

and it is orthogonal to X_%-¢ @ ;. This procedure can be continued until there

are no more elements gi**" not belonging to 370 @ F,. Finally

(2.43) K (= theclosureof Kin§) = > @F,.
720
DEerFINITION 2.8. The direct sum decomposition (2.43) is called Wiener’s direct
sum decomposition.

TuEOREM 2.2. Let P be a stationary process satisfying assumptions 2.1 and
2.2. If

(2.44) Z g (+)/n!, g (+) = (DY"C(-),

converges for every &, then Wiener’s direct sum decomposition satisfies the following
properties:

0 ¥ @5 =3
() Uds)

(2.45)
Fa

Proor. By assumption,
@46) £ 0w er/m =t (a0 Cmt) @0 = €O,
converges and the sum is equal to exp {i(z, £)}. Hence,
(247) o-9=3% e,
On the other hand, by the construction of the ¥,’s we can prove
(2.48) g ejé) D5
Therefore, C(- — £) € X7-0 @D F; which proves
(2.49) FC ,?::o D F(C F),

since {C(- — £)} spans the entire &.
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The second assertion is easily proved noting that

(2.50) Uge () = g%()
and
(2.51) E(UK,) = E(K,).
Let us return to the group G(P). If
(2.52) V,(F.) CF. for every ¢ € G(P),

we call the decomposition § = Y 7_¢ @ F. tnvariant with respeet to G(P). This
concept is important in connection with the Wiener’s dircet sum decomposition,
We shall discuss this topic in the later sections (4-6).

3. Orthogonal polynomials and reproducing kernels

From now on we shall deal with the decomposition of Lo(I*, u) and F(¥, (')
associated with a stationary process with independent values at every point.
Tirst we consider, in this section, the simple case where E is a finite dimensional
space. We can find a relation between the space with reproducing kernel and
Rodrigues’ formula for classical orthogonal polynomials. Such considerations
will aid us in considering the case where E is an infinite dimensional nuclear
space and will be preparation for later discussions.

Let » be a probability measure (distribution) on R! and € be its Fourier-
Stieltjes transform (characteristic function); that is,

3.1 o\ = [m eMy(dr), A ERL

Appealing to Aronszajn’s results [1] stated in lemma 2.2, we obtain the smallest
Hilbert space § = §(R', ), the reproducing kernel of which is CON — ),
\, u € R'. By theorem 2.1, there exists an isomorphism 7 which maps L, =
Lo(v; RY) = {f; [ |f(x)|2(dx)} onto § in the following way:

(3.2) GHo = |

I

eMf(r)v(dr).

We shall examine this isomorphism 7 in detail in the following examples. It
is more interesting to discuss the analysis on & rather than on L., since, for
one thing, the development of functions belonging to L, in terms of orthogonal
polynomials turns out to be the power series expansion in §.

3.1. Gaussian distribution. Consider the case where

3.3) v(dx) = v(x;0?) de = 2ue?)~ 12 exp {—:)%} dax,
then

(3.4) C(\, o) = / e™y(x; o) dr = exp (—‘f—)‘ 7\)
m -



ANALYSIS ON HILBERT SPACE 127

Choose Hermite polynomials

o = : o (_l)na‘zn 1 dr o o Y
(3.1)) I]"(l ;50 ) = il 1;(:1‘; 02) dzn V(.l ;0 ), n = 1, &y
(Rodrigues’ formula), which form a complete orthonormal system in L,. The
isomorphism 7 maps H,(x) to the n-th degree monomial of X times C. In fact,
(3.6) GIL(-50D))(N) = o.M C(A: 0?), 0, = “ml
The proof of the formula (3.6) is as follows:
B0 GH.(, %))
_ (__l)na.'ln : - . o dn L 1 o /
=t | {exp ()} {v(.l‘,a") ldx"v(a:, az)fv (x; 0%) dx

_ =D o N aA
=S ew o {im V(x,o)}dx

2n

g . ~ o
= W ' NC ()\, 0"').

More generally, we have

(3.8) {% <:U @l (- ﬂ)} ) = (; a,.a,)(‘) T(: o),

3.2. Porsson distribution. Letl v(dx) be given by

c.r+c _
Tetectr 1
where Sc = {—¢,1 —¢,2 — ¢, ---}. We obtain orthogonal polynomials with
respect (o the measure »(x, ¢)ds.(dx), which are called generalized Charlier polyno-
mials, by the following generalized Rodrigues’ formula (¢f. Bateman and others
([2], p- 222, and p. 227)):
(3.10) pu(x, ¢) = (—e)"(w(x, ) 'Alw(x — n,¢) = Ly "(c)n!, x €8,
where A denotes the n-th order difference operator acting on functions of .
The relation

(3.11) Cxie) = f eMy(x; e)bs(dr) = X e™Mp(x, e)
" rES

3.9) v(da) = v(x, €)ds.(dx) = xr €N,

exp {e™ — 1 — 4x¢)
is casily obtained. Now put

(3.12) Qulry ) = —=

nler P, o);

then we get the orthogonality relation for @,:

(313) Z Qu(l', (')Q,,.(;I', C)V(Cr, (') = 6u.m; n,m= ]) 2! e
ISR

Every P, of course, belongs to Li(v, R'), and it is transformed by 7 into
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(3.14) FPa(+, ©))N) = cn(e™ — 1)*C(\: ¢).
This is proved as follows:

(315)  GPa(-, )O) = [, e™(—0)(((x, ) Az — n, O))r(z, c)bs.(da)
(—or(=1) T (8™, o

o Y z": (=1)m ("’) eimeiny(z, c)
zE€8: m=0 m

cr(e® — 1)»C(\: ¢).

Note that the last expression is of the monomial form of (¢ — 1) times (.

4. Stationary process with independent values at every point

This section is devoted to the study of the general theory for a certain class
of stationary processes with independent values at every point. Let P =
(E*, u, {T'}) be a stationary process, where T is a set of real numbers and F
is the function space § in the sense of L. Schwartz, and let its characteristic
function be given by

C(&) = exp f

a(g@®)) dt,
(4.1) N

14 u?

Here 0 < ¢ < «© and dB(u) is a bounded measure on (—«, <) such that
dB ({0}) = 0. Obviously, P satisfies (2.27); that is, it is a stationary process
with independent values at every point.

For the moment let us turn our attention from the flow {U,, ¢ real} to the
direct sum decomposition of F = F(8, C) mentioned in section 1. Define

Kot m) = exp ( [ a(e®) dt) exo ([ a(—n®) dt) = C@C(—),
K = [ ae@) - 20) dt - [ a@®) dt = [ a(=n®) &,

(@) = (—o%?)/2 + [_ ‘: (em - )1 T dsta).

(4.2) 1
KP(S) "7) = F (Kl(g) ’7))"; P22

Kyt m) = pl!Ko@, D Eak, )7, p20, Enes.

Note that C(¢ — 1) = 3 ;-0 kp(¢, n). We then prove the following lemma using
the fact that a(z — y) is conditionally positive definite (cf. Gelfand and Vilenkin
[4], chapter 3).

LemMma 4.1.  The functionals Ko(%, 1), Ky(§ 1), and k(¢ 19), p=0,1, -+,
(&, 1) € 8 X 8, are all positive definite and continuous.
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Again appealing to the Aronszajn’s theorem (lemma 2.2), we obtain the
Hilbert spaces &, §, and &, p = 0, 1,2, - -- with reproducing kernels C, K,,
and k, respectively. Consider subspaces &, and §,. We use the symbol ®* to
express the direct product of subspaces in the sense of Aronszajn [1]. Hereafter
we use subscripts to distinguish the various norms.

Lemma 4.2.  The space F, 1s the class of all restrictions of functionals belonging
to §1 @* 5:10* - - - ©* F1 (p times) to the diagonal set 8, = {(§ --- ,£); & € §}.
The norm |- ||s, in &, can be expressed in the form

—_— 3 !
(4.3) /15, = f'E‘fo@}l)-f“@*ﬁx 1 s *. - @
I=r/%»
where f'/8, denoles the restriction of f' to §,.

Proor. By the definition of K, and by Aronszajn ([1], section 8, theorem II)
the assertion is easily proved.

LeMMA 4.3.  The space §, 1s the class of all restrictions of functionals belonging
to §o @* &, to the diagonal set 8, = {(§, £); £ € 8}. The norm ||- ||s, can be expressed
in the form

— 3 !
(4.4) 1flls, = o, 1/ ll$ucrs,-
=576
Lemma 4.4, The space Fp, p = 1,2, - - -, are mutually orthogonal subspaces
of §.
Proor. Put
(45) KP-q(E: 77) = KP(E} 7]) + I{q(gy 77); D #q.

Then the Hilbert space &, , with reproducing kernel K, .(%, 1) is expressible in
the form

(4.6) 8pq = cjp @ 5
To prove this assertion we first show that
(4.7) 5, N §, = {0].
Suppose p > ¢; then
(p— ¢! .-
48) Kol ) = Kty ) DB K, (6, 0.

Consequently, %, is the class of all restrictions of functionals belonging to
§, ®* §,_, to the diagonal set $,. Now suppose f € F, N F, and let {fi} be
a complete orthonormal system in &,. Since f € §,, it can be expressed in the
form

©

(4.9) @ = kzl ge(B)P (), g €%,
(remark attached to theorem II, Aronszajn ([1], p. 361)). But by assumption,
f belongs to §,. Consequently, all the ¢gi’s must be zero, which implies f = 0.

Let us recall the discussion of Aronszajn ([1], part I, section 6). By (4.7),
if f, € Fp, o € Fy, then
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o+ S5 = 1505 + [/
o = Sl = Wall3, + [I=Follfe = 1513, + /13,
which imply Re (f,, f,) = 0. Similarly, we have Im (f,, f,) = 0. Thus we have
proved (4.6) and the lemma.
Turther, by the proof of lemma 4.4, we can show the following. If &, , is the
reproducing kernel Hilbert space with kernel k,(¢, n) -+ k(& 9), then

(4.10)

(4.11) Fpo=F DT, P #q,
and if f € F,,, then
(4.12) (JC), k(5 8) = [(8)

is the projection of f on F,.

LemMa 4.5, The kernel K,(, n) and k(& 7), p 2 0, are G(P)-tnvarvant; that is,
(4.13) K98, gn) = Kp(&,m),  kplg, gn) = kp(§ )
for every gy € G(P).

Proor. It is sufficient to prove that K, and K, are G(P)-invariant. Ior K,
this is easily proved by (4.2) and the definition of G(P). Concerning K, we have

@10 Kl gn = [7 @O — @) dt = |7 algn o) d
— [ =)t = [ ate = @) d = [7 algp) @

- /a(—(gn)(t)) dt = Ki(& n),

since every ¢ € G(P) keeps the integral f‘iw a(((t)) dt invariant.
Now we shall state one of our main results.
TrEOREM 4.1.  The space § has the direct sum decomposition

(4.15) 5= 3 @F,

p=0

and it vs G(P)-tnvariant. The kernel k (-, £) is a projection operator in the following
sense:

(4.16) (FC)y k(- 8) = [,(8)

1s the projection of | on F .
Proor. By lemma 4.4,

n

(4.17) , Kol ), (1) €8 X8,
p=
will be the reproducing kernel of the subspace 2_5_¢ @ F,. Noting that

0

(418) ('(Ev 77) = A k’P(Ey 77)7

p=
and
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= 3 kol ),

2
F p=n

(4.19) [ }"f kp(-ym)

p=n

we conclude
(4.20) F= > @7,
p=0
(cf. Aronszajn [1], part I, section 9). The G(P)-invariantness of F, comes
from the definition of ¥, and lemma 4.5. By (4.12) and the above discussions,
we have the last assertion.
Coming bhack to L, space, we have the following decomposition:

(4.21) L= 3 @®LY with (L) = 7,.

p=0

5. Gaussian white noise

In the following three sections we shall discuss some typical stationary
processes with independent values at every point. I'irst we deal with Gaussian
white noise, the characteristic functional of which is

(3.1) C(¥) = exp {—% f:ﬁ £(1)? dt}» tes
namely the particular case where a(x) = —12? in the formula (4.1). Con-
sequently, K,(& ») is of the form

- 1 1 * P

(5.2) Kyeon) = 5 =2 ( [ en )

Now put .
Lo(R?) = {F; F € Ly(R"), F is symmetric},

(5.3) A 1 -
Ity ---,t,) = 1 2 Ftay, s ), (symmetrization)

where 7 denotes the permutation of integers 1, 2, - - . , p. Define I}(¢; F) by

G BER = [T ) EFG )l €S,

then we have

(5.5) INE F) = g ), forevery £e€8 and F € Ly(R").
TuEOREM 5.1.  For Gaussian white noise we have the following properties:
(i) §o= U0 J@®) = IE F), F € Ly(R)},

(i) (5 F), Ii(-; G))s, = p! f_if Fty, -, 1,)G, -, tp) dh---dt,.
Proor. Define L,(R?) and §, by

n

(5.6) Zz(R”) = {F; Fl, ---,t) = -i)l‘i kgl apge(t) - - - &Ly,

a; complex, &, - «- , &, € 8}
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and

(5.7) §, = {f(-); f(®) = I1(&; F), F € Lx(R?)}.
Then we can prove §, C §,. If F and G are elements of L(R?) of the form

1 & 12

(5.8) F=—=% abt) - &), = — 2 beme(ty) - - -me(tp),
Dlk=1 PlE=1

where a;’s and by’s are complex numbers and &, 7 € 8, we have

(6.9) (I F), I(-;G))s,

= > Z axb; = / / E(t) - - - Ee(tp)ni(t) - - - mi(te) dba-

= f_ /F(tl, .. t,)G(tl, .. tp) dtl

Since Ly(R?) is dense in Ly(R?), we can prove that &, is also dense in §,. Indeed,
(5.10) 8, = {f(-);f(&) = Ii(§; F), F € Ly(R)}.
Thus, by (5.5), we get (i).

The second assertion is easily verified using (5.5) and (5.9).

Take a complete orthonormal system {£;};%: in Ly(R!) such that all the /s

belong to 8§ (cf. assumption 2.1).
CoroLLARY 5.1 (M. G. Krein [9]). Define the functional

(5.11) B (B) = ——YHAM I (& &)
) ekl n=1
then
Goeeesy . Jv * 7+, Ja  different positive integers,
(5.12) E(CRROIE . e g
ky, - -+, ko different positive integers such that >° k; = p
T

forms a complete orthonormal system in .
Proor. The set of functionals on § X --- X § (p times) of the form

(513) {f @ edisn-igo=1,2}

is a complete orthonormal system in & @* - - - ®* &, (p times).
On the other hand, we have
(5' 14) (‘b 8;‘ kq) ) (kl %é) )5;
_ Vo Vp! ( 1 )
TP VR kg VL R \P!

Z Z, /;; / E;l(tl'(l)) ° 'E;l(tr(kl))z;t(tﬂ'(kd-l)) tt T

X Enltetatin) - - E1(tx @) Exlteran) - - Eltw ) dba- - - dt
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The right-hand side vanishes if ((ji, k1), - -+ , (Jo, ko)) # ((G1, k1), -+, (Jo, k2))
(as sets) and is equal to ‘

oot ([era)]-[g (fara)]-

otherwise, where = denotes the permutation of k integers. Moreover, if ¢ > ¢,
then (5.14) obviously vanishes. Thus we have proved the corollary.

Remark 5.1. The above result has already been proved by M. G. Krein
([9], section 4), although it is stated in a somewhat different form.

CoroLLARY 5.2. If H.(x;1) denotes the Hermile polynomial defined by (3.5)
with ¢ = 1, then

(5.16) @ (CO} @ = VAIVIRE IO T Hi (@ ;-

Proor. The formula

610 [ 0 T Hil £0; Dutan

m

(x,E4E,ED

q o . [}
o IL [Hi (2, &a); 1)eitinEe) 1u(dr) £ ¢ zez(jx.z---,;'o u(dzx)

I 1 =
= i 80T . - o g0
o [ ettt e e Fae (T 6 08)

FIURRRN ]
becomes
)) P
(5.18) S T (g 5,0,
1: q: m=1
This proves (5.16). ,

REMARK 5.2. From theorem 4.2 and the above result, we get the orthogonal
development of the elements of L, due to Cameron and Martin [3].

In the above discussion we use an important property of Gaussian white
noise, that is, the equivalence of independence and orthogonality. For other
cases discussed here, the multiple Wiener integral due to K. It6 [6] plays an
important role.

Let {I;}}-1 be a finite partition of T. Then we have

(5.19) C(©) = 10 Clex), tes,

where xj, is the indicator function of 7;. Note that C(£x;) has meaning even
though £x; may not be in 8. _
Now if we consider the restriction of C'(§) to &(.;); then

(5~2O) CI.(E) = C(E), £t e JC(TJ');

is a continuous positive definite functional. Therefore, we can follow exactly
the same arguments as we did for C(¢). Let us use the symbols §(I,), §,(I,),
and F,(I,) to denote the Hilbert spaces corresponding to ¥, §,, and &, defined
for C(¢). Then we have
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(5.21) 5= 11 @* 5,

j=1

by the formula (5.19). We can also prove
(5.22) M @*5U) =T ®5U,), (isomorphic)
J=1 i=1

by J. von Neumann’s theory [10].
Let ®(/;) be the smallest Borel field generated by sets of the form

(5.23) {r;(x,£) € B} £ € x(I'), B is a one-dimensional Borel set,
and let Li(/;) be the Hilbert space defined by
(5.24) Ly(I;) = {¢; ¢ € Ly, ¢ is B(/;)-measurable}.
Then by (5.21),
(5.25) L, = jﬁl @* Lo(1 ).

Because of the particular form of ('(£), we can prove that
(5.26) Lim. {x, £&,)

P

exists if £, tends to xy, in Lo(RY) as ¢ — »©. We denote the above limit by (x, xy,).
We are now in a position to define the multiple Wiener integral of K. Ito.

Let F(ti, ---,t,) be a special clementary function (see K. Ité6 [5], p. 160)

defined as follows:

- o 2 @iy, for (f], e ,tp) (3 T,', X -+ X ’1',‘,,,

(5.27) Fiv, ) = 0, otherwise,

where the 7'/s are mulually disjoint finite intervals. For such F, [,(x; F) is

defined by

14
(5.28) L F) = ¥ @ I (@, x13)-
1, 1p 1=

This funetion satisfics the following properties (5.29)-(5.32): for any two
special elementary functions F and G,

(5.29) I@; F+ G) = 1,(x; F) + 1,(x; G),

(5.30) L(x; F) = I(x; ),

where 7 is the symmetrization of F;

(5.31) I,(x; F) € L, for any p and any special elementary function F,
and

(s ), L(x; Gy = p!(F, @) e,

({pla; F), L (x; () = 0, it p#yq
The map I, can be extended to a bounded linear operator from Ly(R*?) to L.,
which will be denoted by the same symbol I,. The integral I,(x; F) is called

the multiple Wiener integral. It is essentially the same as that of K. It6 except
that we can consider complex Ly(I2”) functions as integrands.

(5.32)
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THEOREM 5.2. For cvery F € Lo(R"), we have
(5.33) I(z; F) = @rr={I3(-; F)C(-)} ().

Proor. If F is a special elementary function, (5.33) is obvious by the defi-
nition of 7* and 7. In fact, if F is defined by (5.27),

(534 MERC® = T a1 E ).

Henee, we have

(G:3)  TUGEGDCO @ = T, 1 X0
Sinee 77 {((-, xr)C()} (&) = (@)~Ya, x1,), the above formula is equal to
(5.36) O L i, ]_I:il () x1s).

Such a relation can be extended to the case of general F.

S. Kakutani [7] also gave a direct sum decomposition of L, using the addition
formula for Hermite polynomials. It is known that Kakutani’s decomposition
is the same as that obtained by using multiple Wiener integrals. Conversely,
this addition formula can be illustraied by using the decomposition of F. This
was shown by N. Kéno (private communication) in the following way.

Let I, I, and I be finite intervals such that I = I + [»; then

(5.37) ,( SxC() = k'< y Xt C(xn) 7 W= ! ),< y X1 RO xr)C (- xre).

Noting that
1 )
i:y('yxli>k(f('x1i) 65(11‘), ] = 17-1

C(-xi) € 5(I)

(5.38)

and that (5.25) holds, we have

(539) L Cxa ) gy o OO | ()
= i {f G} o)

st {(n—_-lk’)j -, x:)"“‘(‘(-ng)} (@) -7 Cxae)y (1),

where 7; denotes the mapping from L.(7) to F(/) which is similar to r. Here
cach factor of the right-hand side is expressed in the form

(540) 7-lvl‘ {]:“ <', Xh>k("(' XI:)} (T) = (7:)_1\.]7["«1.? Xll>; ‘[“) € L2(11)7

- - 1
(')'41) T {(N ])y < ’ Xl> (Y( XI: )J (-l)
= (z)—n+L.Hrz—k(<Iy X12>; ‘I?I) € L2<I‘.’)7
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(5.42) 1 {C(-x19} (2) = 1 € Ly(I9), '

where |I| denotes the length of the interval I. On the other hand, since
1

(5.43) (36 0000)) () = B, a0 11D,

we get,

(544) H,,((II‘, X1>; II|) = k§) Hk«'T; X11>; ]Ill)Hn—k«xJ XI:’>; |I2|)
Therefore,

(5.45) H,(x + y; || + |I]) = kZiJO H(z; |1)Hai(y; | I2])

for almost all (z, y) € R? with respect to the Gaussian measure,

1 22 y?
5.46 S S [——» f—]d dy.
(5.46) Var it P L T an
Since H,(z; ¢?) is a continuous function of z, (5.45) is true for all (z, y) € R2.
Indeed, (5.45) is the addition formula obtained by S. Kakutani [7].

Let us further note that N. Kono has shown that (5.45) can also be proved
by using the Gauss transform defined by

(5.47) oW) = [ ol +iun,  pelistu), yest

¢ This transformation is well-defined for polynomials. Since the transformation

| is bounded and linear, and since polynomials form a dense set in Ly(8*, 1), we

| can extend (5.47) to all of Ly(8*, u).

 Let $ be the Gauss inverse transform of . We can then introduce an opera-
tion o from Lo(8*, u) X La(8*, u) to Lo(S*, u):

~—
(5.48) (e ¥)y) = (- V) for ¢, ¢ € Ly(8*, ) and y e 8*
By simple computations we can prove the following: if ¢(z) = H.((z, &), 1) and

'I’(x) = Hm«x’ E2>, l)?

cn.mHn m(<y; E); 1) fOI‘ 51 = 52 = g:
'4 o = +

(5:49) w0 = {300 for (&, &) = 0.
More generally, we can prove that if ¢ € L{” and ¢ € L{™, then

(5.50) eoy €LFT™,

This operation becomes simpler when it is considered in . We shall use the
same symbol - to express the corresponding operation, namely,

(5.51) feog=1(G7) - (r7"g) for f,g 9.

Recalling that the &, appearing in Wiener’s direct sum decomposition of & is
7(L{"), we have the following proposition.

ProrosiTioN 6.1. The spaces {Fn}n=o form a graded ring with respect to the
operation . (For definition, see Zariski and Samuel [17], p. 150).
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6. Poisson white noise

In this section we shall deal with Poisson white noise, which is another typical
stationary process with independent values at every point. Our goal is to find
the explicit expressions for &, §,, and &, and also to look for relations between
the multiple Wiener integrals and the Charier polynomials. Since Poisson white
noise enjoys many properties similar to those of Gaussian white noise, we shall
sometimes skip the detailed proofs except when there is an interesting difference
from Gaussian case.

The characteristic functional of Poisson white noise P is given by

6.1) c® = e {7 @0 — 1 - i) ap tes,

thatis, a(z) = (¢ — 1 — 4z) in the expression (4.1). Hence, K,(£, 1) is expressed
in the form

(62) K60 =4[ reorraw a), Ees,
where P(z) = e¢®* — 1. For F € L)(R*) we define J}(¢; F) by

©63) S5 F) = [ [ PEw)--PEEGIFG, - b) dae - dy,
Obviously,

(6.4) T3(&; F) = Ji(E; B), tes,
still holds (ef. (5.30)).

THEOREM 6.1. For Poisson while noise, we have

D) F = {f();f(®) = T3 F), F € Ly(R")}

(i1) 3G F), I5(-;))s, = p!fi; /F’(tl, co )Gty e, ) dy- - -dty
for any F, G € Ly(R?).
Proor. The proof is nearly the same as that of theorem 5.1. Thus, we shall

just point out the necessary changes. The spaces L;(R*) and %, have to be
defined in the following way:

L) = {Fi P, -+ 1) = 5 £ aP@): - Pe);

Ple=1

(6.5) a; complex, & € S}’
3, = ;1@ = I3 F), f € LR},

If we prove that Ly(R?) is dense in Ly(R?), then the rest of the proof is exactly
the same as that of theorem 5.1. To do this, note that the totality of all linear
combinations of functions such as xr,(t1)- - - xr,(t,) with disjoint finite intervals
{T'} -1 is dense in Ly(R?), and also note that the fact that

66) [ [ aP):  PE@)xn): - xr ) di---dty = 0
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for any choice of {ax} and &’s in 8 implies that
6.7) XTx(tl) s 'XTy(tI') = 0, a.e.
We can therefore prove that Ly(R*) is dense in Ly(R?).

The direct product decomposition of F and L, is the same as in section 3.
For any finite partition {I;}?- of T,
(6.8) C@E) = 1 C(Exr1), £ s,

i=

still holds. Therefore we have, using the same notation,

(6.9) 5= 11 @ 3(),
(6.10) L= I ®* L)

i=1
Moreover, we can define the multiple Wiener integral with respeet to Poisson
white noise similarly. First note that (x, x;) is defined as an element of L. If
F is a special elementary function given by (5.27), then J,(x; F) is defined by
P
(6.11) Jp F) = 2 di..., 'nx @, X714
Wi =

The map J, can be extended to a bounded linear operator from Ly(R?) to L,
as was done in section 5 (ef. K. 116 [6], section 3).
THEOREM 6.2.  For cvery F € Ly(I27),

(6.12) Jp@; F) = 77155 F)C()j ().
Proor. This proof is also the same as that of theorem 5.2, except for the
following relation:

L4 \
(6.13) (G, xm) Gy xe ) = 11 [1 PGEW) dC ).
J= ]
IFfrom the last theorem we can show that
(6.14) 5= Y @7,
p=0

is nothing but Wiener’s direct sum decomposition. This fact can also be proved
using a certain addition formula for a onc-parameter family of generalized
Charier polynomials: let (2, ¢) be given by

) cJ“"('
5.15 o) = e r=—c,1l—c2—=c¢ -,
(6.15) v(x, ¢) Tat et 1) e, ! ¢, ¢, ¢
and let -
(6 16) P.(x,¢) = nlPi(x,c) = (—¢)"(v(x, €)' AL(x — n, 0),

where A? is a difference operator of order n; then the formula is

(6.17) P+ y,¢) = X Pie, c)PPh -y, ¢2), ey e > 0,¢= ¢+
k=0
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7. Concluding remarks

The theorems given in sections 5 and 6 extend to generalized white noise.
Turthermore, we shall show that a sequence of independent identically dis-
tributed random variables can be dealt with in our scheme. We do not take
up detailed discussions but summarize some of their properties.

7.1. Generalized white noise.  We now discuss the stationary process with the
characteristic functional

c® = exp | /_ " ate) i tes,

£ ) . 1 2
alr) = /_ <e““ -1 i Zuu,) -:t-?u dB(u),

which is the one obtained from (4.1) by eliminating the Gaussian part — (¢?/2)x%.
Then K, (£, 1) is expressible as follows:

(72 K60 = 5 ([ reowraon s w)

where dv(t, u) = dt dB(u). We introduce the following notations:
D, = R*, dm = u?dy, dm, = dm X --- X dm (p times),

(7.1)

(7.3) Lo(Dp;m,) = {F ; F is square summable with respeet to pl'dm,, )

z2(DP; mp) = {F; F € Ly(Dy;my), F((ti, w), -~ -, (tp, Up))

= F((tray, ), =+ 5 (teip)y Ux(m)) fOr any permutation ).
Define M3(¢; F) by

@4 MEF) = [ [ PEw)- - PEeIF(6, w), -, ()

X Uy - up dv(ty, wa) - - - do(t,, u,)
using the same technique as in sections 5 and 6. Then we have
(7.5) Mg F) = M3 P, tes,
where

P . 1
(7.6) Pty w), -y (tyy up) = 2 2 F((teay, Urqy), ==+ 5 (trpyy Unii))-

For generalized white noisc with characteristic functional (7.1), we have the
following results:

§,= {();f@®) = MyE; F), F € LDy, m,))
M F) = Myt P);
() Q5 F), M3(-5;G))s, = p! fffj((tl, w), ey (L 1))

(@)

X é((tl, U, + o, (Epy p)) d'm,,((h, W), *r e, (tpa Up)).
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Let us emphasize some of the important differences from Gaussian or Poisson
white noise. First we cannot expect that the decomposition § = Y 5.0 D Fp,
where &, corresponds to the &, appearing in (i), will be the Wiener’s direct sum
decomposition. However, 7(F,) coincides with the multiple Wiener integral
introduced by K. It6 [6]. The next remarkable thing concerns the direct product
decomposition. ,

Let {I;}7-1 and {J.}¥-: be finite partitions of T and R!, respectively, and
define

@7 CE I X T = exp { /1 ‘. f, k (ez'emu —1- lii(r‘):z) L+ ) dt}'

u2

Recall C(¢;I; X Jx) defines the subspaces F(I; X Ji), F,(I; X Ji) and
F,(I; X Ji). Since

(7.8) ce) = _ﬁl kile CE: I, X Jw),

we have ’

(7.9) § = 11 L @*5(; X Ju).
j=1k=1

Now we note a connection with K. Itd’s multiple Wiener integral. It seems
to be difficult to start in the same way as in sections 5 and 6 by introducing
{z, xr) in L. However, if we consider ¥, we can.proceed by defining for finite
intervals I and J,

(7.10) M*g I X J) = f; [J PEQwu dv(t, w),
(7.11) M@ I X J) = 7M1 X J)C()).

M(z; -) can be considered as a random measure as in K. 1t6 ([6], section 3)
and using it, we can define the multiple Wiener integral I,(F). Let us denote
it by M (z; F). Then, for every F € Ly(D,, m,) we can easily prove that

(7.12) T M3(-; F)C(+)) = My(=; F).

Rather than discuss the group G(P) in detail, we shall just give a simple
example. ‘

ExampLE. Consider the case where
(7.13) a(z) = |zff, 0<o<2.

This corresponds to the symmetric stable distribution with exponent 4. A trans-
formation g on E belongs to G(P), that is,

(7.14) Clg) = C), t€E
if and only if

(7.15) [7 i@oora= [~ ok d.

Then g,

(7.16) @8 () = ei(e), ¢>0,

is an example satisfying (7.15).



ANALYSIS ON HILBERT SPACE 141

7.2. A sequence of independent random variables. Consider a stationary
process P = (E*, u, {T'}) with independent values at every point, where E =
8 = (£ = {t!}%--«; £ real) is the space of rapidly decreasing sequences and T
is the additive group of integers. A system of independent identically distributed
random variables arises in the following way.

Take a sequence {£,}x-_« of sequences,

(717) En = {E:};:-—w €5, E,rc; = 6n.lc-

Since the £,’s have disjoint supports, the (z, £,) = X.(z), —» < n < », are
mutually independent.
Further, we have

(7.18) UXa(x) = Xa(T) = Xnpola).

In view of the above, T' = T\ is called a Bernoulli automorphism and P is called
a stattonary process with a Bernoulli automorphism T.
If C'(2) is the characteristic function of X,(z), that is,

(7.19) O(e) = fs | eisXae)(dz),
then the characteristic functional C of P is expressible in the form
(7.20) C®= T C@&), £= {#f--e e

We can now form the Hilbert space § = F(s, C) with reproducing kernel C
given by (7.20).

The direct product decomposition and the direct sum decomposition of F
can be done in section 4. We would like to mention two particular cases of
stationary processes with Bernoulli automorphisms.

(a) The Gaussian case. Let P = (s*, u, {T'}) be the stationary process with
a Bernoulli automorphism. Suppose that the characteristic functional of P is
given by

(7.21) C(#) = exp {—5[ll%}, tes

where [|£]|2 = Ti- -« (8¥)% In this case, the subspace F, of F(s, C) turns out
to be the following:

722) T =4fC)if) = % aly -+, dpni - niCln),

e fp=—o

= ("o w €5 a1 dn) € 22(Rp>}:
where #(R?) is defined by

(7.23) L(R?) = {“(jl, g 2 laGy el <o, 8 e )

My lpm —®
*is symmetric with respéct'to'jk’s}.
If the fi(-), k = 1, 2, in & are given by
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(724) fk("?) = Z ak(jl) Tt :jp)ﬂjl' ‘ '77';"0(77), k= 1: 2:

e, jp= — 2

then we have the following:

(7.25) (fly f2)s = p! ) E a (g, + - )jp)a2(.il) ey )

e
Actually § = 370 @ 7, is the Wiener’s direct sum decomposition. Thus, the
subspace LY of Ly(s*, u), corresponding to F,, is expressed as

(726) LY =€ { T Ho(Xa(@); 1); {s) different, 3° pu = p}-

(b) Poisson case. Consider the stationary process P = (s* u, {T'}) whose
characteristic functional is

(7.27) C) =exps 2 (¥ —1-— ’55")}’ = E--wEs
}j=—

Of course, P is a stationary process with a Bernoulli'automorphism. The interest-

ing thing is that Ly is spanned by elements of the form

(7.28) 2 peep I Qul(Xo(@);1), 22 pe = p,
J2VRI I k=1 k=1
where @, is the function defined by (3.12). Note that the @,’s form a complete
orthonormal system in L.(S,, dv(x, 1)) (for notation, see (3.9)).
We can also prove that

@20)  F={iOf = T aGy- i) fI @ = Do),

AL ?zuc")}-

Although the expression of f(-) in (7.29) is quite different from that in (7.22),
we still have the same formula for the inner produet, that is, (7.25).
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