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1. Introduction

The concept of sign-invariant random variables was recently introduced by
the writerin [1]: X, - - - , X} are called sign-invariant if the 2* joint distributions
corresponding to the sets (X, -+, &Xi), e+ 1, --- , & = 1 are all the
same. A family of random variables {X,, ¢t € T}, where T is some index set,
is called sign-invariant if every finite subfamily consists of sign-invariant random
variables. An example is a family of independent random variables with sym-
metric distributions.

During the last several years, probabilists have been extending their interest
from random variables and vectors in Euclidean space to random elements in
abstract spaces, particularly topological groups. Grenander’s monograph [3]
contains a large bibliography of work up to 1963. In this paper we shall gen-
eralize some of the properties of sign-invariant random variables on the real
line [1] to sign-invariant random elements in a commutative, locally compact
topological group G having a countable base. This may be read independently
of the previous paper. The definition of sign-invariant random elements is a
direct extension of the definition given above for random variables: the X’s are
clements of the group, and —X is the inverse of X under the group addition.

The Fourier transform was the main tool in the study of sign-invariant random
variables on the line; this suggested the generalization to a commutative,
locally compact group, which is the natural domain of Fourier analysis.

Section 2 contains the fundamental structure lemmas of sign-invariance. One
of the main ones is that sign-invariant random elements are conditionally
independent and symmetrically distributed, given a nontrivial sub-o-field. In
section 3 we present some group-theoretic results which characterize the con-
vergence of a sequence of elements in a group ¢ in terms of the convergence of
their images under the mappings induced by the character group. The funda-
mental convergence theorem for series of sign-invariant random elements is
given in section 4.

The main part of this paper, sections 3, 6, and 7, is about the stochastic process
with sign-invariant increments: a stochastic process in G with a real interval
parameter set such that increments of the process over nonoverlapping intervals
are sign-invariant. An example is a process with symmetric independent incre-
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ments. We show that a process in ¢ with sign-invariant increments has the same
sample function charaeteristics as real-valued semimartingales and processes
with independent increments. First we define separability for processes in (;
then we show that almost all sample functions of a separable version of the
process are bounded and have right- and left-hand limits at each point of an
interval where such limits are definable; furthermore, there are at most a
countable number of fixed points of discontinuity on an interval. These proper-
ties are found by studying the image of the sample functions under the mappings
induced by the characier group. These images are complex-valued processes
closely related to martingales. This method of analysis was first used by Doob
for processes on the real line ([2], p. 389).

We now formally state our assumptions. Iirst, (@, F, I?) is a probability space,
where @ is a set of points w. Second, @ is a commutative, locally compact topo-
logical group having a countable base. The latter assumption, which happens to
make G a separable metric space ([7], p. 15), identifies the class of Baire sects
in ¢ with the class of Borel sets ([4], p. 220). A random element in ¢ is a func-
tion X = X(w), w € Q, from Q into (¢ such that the inverse image of every
Borel set in ¢ is in . The sum of two random elements is a random element
because the Borel sets are the Baire sets ([4], p. 222). The argument w of X (w)
will be understood but not explicitly recorded. Properties which are valid for
all w € Q, with the exception of a set of I>-measure 0, will be said to hold a.e.(P).

Let T be the character group of G: the set of all representations y of G into
the set of complex numbers of modulus one, denoted by 7'. Also T' is commuta-
tive, locally ecompact, and has a countable base ([7], p. 100). By the measurc
space (T', 3¢, u) we shall mean the group I' with the o-field 3¢ of Borel sets and
Haar measure u. A property holding for all v except for a set of u-measure 0
will be said to hold a.c.(x). We shall assume one more property for I', namely,
that T is connected; this will be used from time to time. However, ¢ cannot be
compact, for then T is discrete, and cannot be connected.

2. Structure of sign-invariance

The following are gencralizations to G of several real line propositions in [1].

LemMma 2.1, Let Xy, - -+, X1 be sign-tnvariant and let fi(x), gi(x) be bounded
continuous, complex-valued functions on G such that g;(x) = g;(—2),7 =1, --- , k,
x € G; then,

@n  E{Is00 E = 5 { I B + LX)
Proor. Changing the sign of X; and using sign-invariance, we have
02 E{AEnt0) LX) |
= {1~ X000 TLA (X0

J=a
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henee, the latter ix also equal to the average of the quantities on either side of
the equality sign, namely, to

. v k
2.3) E{RU0) + A= X100 TG00 H
j=2
We obtain (2.1) by suceessively changing signs and averaging over Xo, - - -, Xi.

Let (x, v) denote the value in 7T of the character vy at the point , x € G,y € T;
let z be the complex conjugate of z and Rz the real part of z. I'rom (2.1) and the
relation (—z,v) = (x, v), we get

k k
e E{IG s} = B{ a0 ve)) wm e

When « is real, [z} is the function which identifies x with max (—z, z). In [1],
we made fundamental use of conditioning sign-invariant random variables with
respect to their absolute values. Since the “positive’” member of the pair (x, —x)
is not distinguished in an unordered group, we shall define the above conditioning
for sign-invariant random elements in a more general way, as follows: let & be
the class of all “even” complex-valued Borel functions on (7, that is, g is in §
if and only if ¢g(x) = g(—x), ¢ € G. We define the o-field generated by

Xil, «+-, | Xi| as the o-field generated by the complex-valued random vari-
ables ¢:(X5), -+, ge(X4), g1, -+, gx € & We define conditional expectation
given | X, ---, |X| as conditional expectation with respect to that o-field.

Then equation (2.1) is identical with the following:

k
(2.5) E jI=Ilfj(Xj)

X, 10 = A0 + 5(-X0;

in fact, (3)[f(z) + f(—x)] is a function belonging to &. I'rom (2.4) we conelude:

LEmMA 2.2. The elements X, - - -, Xi are sign-invariant if and only if they
are conditionally independent, given |Xi|, ---, |Xil, with the conditional joint
characteristic function TI=1 ®(X;, v;).

Putting v, in (2.4) equal to the identity of T', j = h 4+ 1, --- , k, we obtain:

LemMma 2.3.  The conditional characteristic function of X, ---, Xu, given
(X4, oo+, | Xa], 1 < h <k, is independent of | Xipl, - -+, | Xl

The econditional characteristic function of X; 4+ X, and X; + X,, given
X1 4+ X,| and |X3 + X4, is equal to the conditional characteristic function
given |Xi|, | Xy, |Xa|, | X4, |Xi + X.|, | X3 4+ X4|; this can be verified by the
kind of caleulation in the proof of lemma 2.1. More generally, we have:

Lemma 24, Let Xy, e =1, -+ ,n;, 7 =1, ---, k be sign-invariant; then the
conditional joint characteristic function of the k sums 2 71 X5,j = 1, - -+, k given
their absolute values is the same as the conditional joint characteristic function given
their absolute values as well as those of all their summands and partial summands.
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3. Convergence in topological groups

Here are several propositions relating convergence of elements in G with con-
vergence of their images in T under the mappings induced by the characters
of G.

Lemmas 3.1 and 3.4 appear on the real line in the following form in
([2], p. 335): if {x,} is a real sequence such that lim,_,. ¢* exists for all u in
a set of positive Lebesgue measure, then lim, . x, exists and is finite. We now
generalize this result.

Lemma 3.1. Let {z.} be a sequence in G. If limu—w (X, v) exists for all v,
then lim,—« T, exists in G.

Proor. Let@ = G U {=} be the one-point compactification of G. The neigh-
borhoods of {=} in G are the complements of compact subsets of G because G is
locally compact ([5], p. 150). Either all elements of {x,} are in a compact subset
of G or some subsequence converges to {«}. We shall show that the latter is
impossible.

Let {x;} be a subsequence converging to {~}, and let f be a real-valued
continuous function on I' with compact support. We have

(3.1) lim [[ (eh, v)f(2) du(y) = 0

by the Riemann-Lebesgue theorem ([7], p. 116). Here the interchange of order
of limit and integration is permitted by dominated convergence; hence,

(3.2) f. lim (i, V)f) duty) = 0.

The validity of this equation for every f implies that lim,—. (2, ¥) = 0, a.e.(u);
however, we have |(x1, v)| = 1, a contradiction. This negates the possibility
that z, — .

In accordance with the first alternative, the elements of {x,} belong to some
compact subset of G and so must have at least one point of accumulation. We
shall show that there is at most one such point: this will finish the proof. If
v and ¥y, are accumulation points, then, as the hypothesis implies, they must
satisfy the equation (y1, v) = (y», v) identically in ¥ € I'. This implies ¥ = y»
([73; p. 99).

Lemma 3.2.  Let f(¢) be a function on a real number set S to G, and r a point of
accumulation of S from below (above). If im (f{8),v), tT+ | 71), t €8, erists
for all ¥ € T, then the corresponding limit of f(t) exists in G.

Proor. It is enough to prove that f(f) approaches a unique limit along every
sequence in S converging to 7 from below (above), because G has a countable
base. The discussion in ([2], p. 409) demonstrates that it is even enough to
show the existence of a limit along each monotone sequence in S converging to r.
The existence of such a limit is a consequence of lemma 3.1 and the hypothesis
of our lemma.

We use the connectedness of T' to strengthen our results.
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LemMma 3.3.  Let 2H be the image of a set H C T under the mapping
(3.3) Y=y 4y = 2.

If u(H) > 0, then any subgroup of T containing 2H 1is identical with T.

Proor. Any subgroup containing H is identical with I'; in fact, H — His a
neighborhood of the identity in I', and since T is connected, it is generated by
such a neighborhood ([7], pp. 13, 50). This implies that a subgroup containing
2H also contains the subgroup 2T'. To complete the proof, we show that I' = 2T,
Let G’ be the annihilator of 2T, that is, the subgroup of G defined by the relation
G = {z: (x,2v) =1,y € T'}. If 7, € ¢, then we have the following chain of
implications: (2xy, v) = (0, 2y) = 1 for all ¥ € T'; 2x9 = 0; x, is an element of
finite order; zo = 0 ([7], p. 110); G’ contains only 0; T' = 2T.

LEmMA 3.4. The hypotheses of lemmas 3.1 and 3.2 are fulfilled if the limits of
(xny 2v) and (f(t), 2v) are assumed to exist for all v in some set H, H € 3¢,
uw(H) > 0.

Proor. The y-set for which such a limit exists is a subgroup of I'. Lemma 3.3
applies to such a subgroup.

4. Convergence of sums of sign-invariant random elements

As is well known, a series of independent random variables converges in distri-
bution if and only if it converges with probability 1. In [1], we proved this
relation for a series of sign-invariant random variables. The proof depended in
part on some facts from the theory of series of independent random variables.
Now we prove a general theorem for series of sign-invariant random elements
in @, one which does not depend on the case of independence. The method used
is an extension of a martingale analysis first used by Doob on the real line
([2], p. 335).

In the following, all random elements are defined on the common probability
space €.

Lemma 4.1.  The complex-valued function (X, v), where X is a random element
in G and v 1s in T, is measurable with respect to the product o-field § X 3in Q2 X T.

Proor. The mapping from @ X T'into G X T defined by w,y = X, visF X ¥
measurable; and the mapping of G X T into T defined by z, vy — (z, v) is con-
tinuous; therefore, the composite mapping is § X JC measurable.

THEOREM 4.1. Let {X,,n = 1,2, --- ,} be a sequence of sign-invariant random
elements in G. The following three conditions are equivalent:

() 2.1 X, converges in distribution;
(i) for every ¢, 0 < € < 1, the vy-set for which IIi-1 |R(Xn, ¥)| > € has positive
u-measure, a.e.(P);
(i) Yow=1 X, converges a.e.(P).

Proor. It is well known that (iii) implies (i); we shall prove that (i) implies
(ii), and that (i) implies (iii).
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By the continuity theorem for characteristic funetions [3], (i) implies that
the characteristic function of X, 4 .-+ 4+ X,, namecly, £ {Ili-1 R(Xr 7))},
converges to a characteristic function ¢(y), v € I'. Applying the bounded con-
vergence theorem to ITi-; ®R(Xy, v), we get

4.1) 1«;{ fjl;a(xn, 7)|} > lim I {kf_il‘“(X"’ 'y)} — o(y), yer.

n—ro

Let A be a set in § with indicator function 74, and let 6 be the identity of T';
then, by (4.1), we have

PA) — K11, ﬁ1 |R(X,, 7)]}'

n=

(4.2) lim

v

= lim

y—8

Now let A denote the w-set for which TIy-; |R(X,, v)| < ¢ a.c.(u). The set A

belongs to § by lemma 4.1 and Fubini’s theorem. The latter also implies that
-1 [ (X, )| < ¢ for almost all w € 4, a.e.(u); therefore,

I {L.(l — 11 R(X, m)}l < lim [1 — o(y)] = 0.
y—0

n=1

(4.3) Edr, T %m(x,,,v)w} < (), a..(s).
1

Comparing this with (4.2), we see that ’(4) < el’(4), =0 that I’(4) = 0; thus
(i) implies (ii).

We now prove (iii). Let I(¢, v) be the indicator function of the F X 3c-
measurable set where TIi-1 |®(X,, v)| > e The sequence

(+.4) (k>;1 X, 7> I{e, 7v) /{kI—I1m(X"" 'y)}y n=12---,
is bounded by 1/¢, so that all its expeetations exist for cach y. Let &, denote
the o-ficld in @ generated Xy, -+, X,, X, i), IXopel, oo, m=1,2, -+ -5 we
have &, C F..1 C F for every n. I'or each v, the sequence in (4.4) is a martingale
with respect to the sequence of o-fields {F,). In fact, appli~ation of the condi-
tional expectation operator IK(-|F,) 1o the n + 1* clement in (+.4) leaves
I(e, v) and the denominator unchanged, and transforms (3_:%{ Xy, v) into
R(Xoq1, Y) (k-1 Xty v) by lemma 2.3. The martingale convergence theorem
applies to the sequence in (4.4) because it is bounded: for cach v the limit exists
a.e.(]”). From this, lemma 4.1, and I'ubini’s theorem, we infer the existence of
the limit a.c.(u), a.c.(’). The sequence obtained from (4.4) by squaring cach
element, namely,

n

(4.5) (£ X 20) 16 /A fse v},

also has a limit a.e.(u), a.e.(’). By definition of I(e, v), the limit of the denomi-
nator exists and is greater than € for almost every pair w, v for which I(e, v) = 1;
therefore, the limit of (3_§-; X4, 2v) exists for all such pairs. The latter exists on
a set of positive p-measure, a.c.(I’); in fact, the set of v's for which I(e, v) = 1
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has positive uy-measure, a.c.(I’), by (ii). I'rom this and from lemmas 3.1 and 3.4
(iii) follows.

b. Stochastic processes with sign-invariant increments

Let X (), a £t < b, be a stochastic process on (@, F, I’) to (. The process is
said to have sign-invariant increments if for every finite set of disjoint intervals
(ar, b), -+, (ay, by), in [a, b] the random clements X(b) — X(a), ---,
X (by) — X(ay) are sign-invariant. An important example of such a process is onc
with independent symmetrie inerements.

Let {t,,n =1,2,---} be a sequence of distinet points in [a, b]; assume
L=a, to=>b. For n > 2, let t{, ™, -+, " be the first n + 1 elements of
{t,) arranged so that a = f* < #® < .-+ <t = b. Define the following:

X = XHP) — X)), =1, n,
B.1) ®, = o-field in Q@ generated by [N, b =1, -+, n,
®" = g-field in Q generated by  ®,, B, -,

B =N &,

n=1

These o-fields are all contained in 3.
LEMMA 5.1, For every vy € T, n > 2, we have

(.2)  E{X@®) - X(a), [B.) = E{®WX(B) — XN(a), v)| B}
= E{®(X(1) — X(a), DIB) = T R(X. ), a.e.(D).
k=1

Proor. Write X(b) — X(a) as X.u + -+ - + X,.; then the first equality in
(5.2) follows from lemma 2.4 (for the case & = 1). Lemma 2.2 implies the equality
of the first and last members of (5.2).

We now link the third member of (5.2) to the others. For any integer m > 0,
the conditional characteristic function of X (b) — X(a) given ®&, is the same as
the conditional characteristic function given ®,, - - - , ®,ym, by lemma 2.4, The
latter converges a.e.(/’) to the conditional characteristic function, given ®&™ for
m — », by the martingale theorem for conditional expectations ([2], p. 331).

LeEmMma 5.2, Fory €T, we have

(3.3) ER(XD) — X(a), )8} = lim TI 0(Xu, ¥), ae.(l).
n—o k=1

Proor. Let n — = in (5.2) and apply the previously mentioned martingale
theorem.

LemmA 5.3. Lemmas 5.1 and 5.2 remain valid if a and b are replaced by any
two elements t' and t”', i’ < 1", of the sequence {t,}, and the product of R( X, v) s
restricted to X j~tncrements over subintervals of [¢, t'].

Proor. By Lemma 2.3, the conditional characteristic function of a subset of
{Xu, b =1, ---,n}, given all of the absolute values |X,:|, depends only on
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those absolute values corresponding to members of the subset. This makes it
possible to prove our lemma in the same way as lemmas 5.1 and 5.2.

LeMMA 5.4. Fore, 0 < € < 1, the y-set for which |[E{®R(X(b) — X(a), v)|®}| >
¢ has positive u-measure, a.e. (P).

Proor. TFor A € &, we have, by bounded convergence,

(5.4) PA) = liIrgx E{I;,(X®) — X(a),v)}.

Here we are permitted to interchange the order of limit and expectation because
T has a countable base, and, consequently, the convergence ¥ — 8 may be defined
as sequential convergence.

The proof is now similar to that of the first part of theorem 4.1. Let 4 be the
w-set for which |E{®R(X(b) — X(a), 7)|®}| < ¢, a.e.(u). By Fubini’s theorem,
this inequality holds a.e.(P) on A4, a.e.(x); hence, since A € ®, we have

(6.5)  |E{I(X () — X(a), M)}
= [E{LE[®(X(®) — X(a), NI®} < eP(4),  ae(u).

This and (5.4) show that P(4) < eP(A); hence, ’(4) = 0.

LemMa 5.5. Let t be a point of (a, b) such that there is a subsequence {s.} of {t.}
converging to t from below (above). Then lim,—. X (s,) exists a.e.(P).

Proor. Without loss of generality, we may assume that {s,} is strictly
increasing (decreasing). We shall show that the series of sign-invariant random
elements > 7_; [X(sn41) — X (s.)] converges, a.e.(I’). By theorem 4.1, it is suf-
ficient to show that for ¢, 0 < ¢ < 1, the infinite product II7-; |®(X(spp1) —
X(84), v)| is greater than e on a vy-set of positive u-measure, a.e.(/?). This con-
dition is satisfied in our case. Define a sequence of partitions by

(56) t(()n) = 38y [in) =82, 0, t;{'ll = Sny tSz") =1, n=23, -,

and apply lemmas 5.2 and 5.4.

We now define a class € of complex-valued functions ¢(¢), ¢ < ¢t < b: ¢ is said
to belong to @ if it approaches a limit along any monotone subsequence of {¢.},
that is, if {s,} is a monotone subsequence of {{,}, then lim,_. g(s,) exists. The
following proposition is implicit in the proof of the martingale sample function
theorem ([2], p. 361).

LEMMA 5.6. A (complex-valued) stochastic process on [a, b], whose restriction
to the parameter set {t,} is a martingale, has the property that almost all sample
Sfunctions belonging to the class C.

Next we define a class D of functions f(t), ¢ < ¢t < b, taking values in G. The
function f is said to belong to © if it approaches a limit along any monotone
subsequence of {{,}. The next proposition relates membership of f in D to the
membership in @ of its images in T under the mappings induced by the group of
characters.

LeEmMMA 5.7. If there is a set H € 3¢, u(H) > 0, such that (f(-), 2v) belongs to
@ for all v € H, then f belongs to D.

Proor. Apply lemmas 3.1 and 3.4.
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Here is the fundamental sample function theorem for processes in G with sign-
invariant increments.

THEOREM 5.1.  Almost all sample functions of X (1) belong to ©.

Proor. We shall show that almost all sample functions satisfy the hypothesis
of lemma 5.7. :

The proof is similar to that of theorem 4.1 in the part where we show that
(i) implies (iii). Fix ¢, 0 < € < 1, and let I (¢, v) be the indicator function of the
set in @ X T, where |E{®R(X(b) — X(a), v)|®}| is greater than ¢; I(e, v), is
F X 3C measurable, by lemmas 4.1, 5.1, and 5.2.

Tor each element t’ of the sequence {t.}, we define the o-field F» C F as the
o-field generated by X(s), a < s <. For each y €T, the complex-valued
stochastic process

(5.7) (X)) — X(a), V(&)
' ERX®) — X(a), 7)[®)

restricted to the parameter set {¢,}, is a bounded (by 1/¢) martingale with
respect to the family of o-fields {®, &, te{t.}}; in fact, the proof of this assertion
is the same as the proof that (4.4) is a martingale. The sample functions of this
process are almost all elements of the class €, by lemma 5.6, for each v € T.
The process obtained from (5.7) by squaring the variables, that is, the process

X — X(@), 2v)I(, v)

5.8 - LS <t<b
58 BRE0 — X(a), 1} aish
also has almost all sample functions in the class @; in fact, the mapping z — 22
is continuous.

The stochastic process E2{®(X () — X{a), v)|®}, is nonincreasing a.e.(P) on
the parameter set {t.}; in fact, if ¢/, "’ are elements of {{,} with ¢ < ¢"/, then

(6.9)  EH{oX() — X(), v)|®}
= BH{RX (") — X (), |6} - BH{o(X () — X(a), )|®}
< BHeX () — X(a), )|®}, a.e.(l’),

by lemmas 5.2 and 5.3. It follows that almost all sample functions of the denomi-
nator in (5.8) are elements of the class @; consequently, the numerator sample
functions are almost all in @, for each v € I'. By Fubini’s theorem, we infer that
the t-functions (X (¢), 2v)I(e, v) belong to €, a.e.(u), a.e.(P). This implies that
(X (), 2v) belongs to €, a.c.(u), on the set where I(¢, y¥) = 1, a.e.(I’). The set of
v’s on which I(e, v) = 1 has positive u-measure, a.c.(P), by lemma 5.4; there-
fore, almost all sample functions satisfy the hypothesis of lemma 5.7. The proof
is complete.

a<t<h,

6. Properties of separable processes

A stochastic process X (1), a <t < b, on (Q, F, P) to G is said to be separable
relative to the class of closed sets, or simply, separable, if there exists a sequence
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{t.} in [a, b] and a sct A € F of probability 0 such that for any open interval
I C [a,b] and any closed set F C G, the w-sets {X()eF, t'e{t,} NI} and
{X(t)eF, t € I} differ by a subset of A. We may assume that {t,) is dense in
[a, b] because a separability sequence can always be enlarged without affecting
its role. In this section X (¢) will be assumed separable with a dense separability
sequence in [a, b].

LEMMA 6.1.  The sample functions of X (t) are bounded on [a, b], a.e.(?).

Proor. By theorem 5.1, X(¢) has limits along every monotone subsequence
of {t,},a.e.(P);therefore, X(t) is bounded over the sequence {t,}, a.e.(P). Separa-
bility implies boundedness over [a, b], a.e.(P).

We now relate the separability of X (#) to the separability of the complex-
valued stochastic process (X (¢), v) for each .

LemMa 6.2. Let X(t) be separable, with separability sequence {t,} and null set
A € F; then, for each v, the stochastic process (X (t), v) vs separable with respect to
the closed sets of T with the same separability sequence {t,) and null set A € §.

Proor. Let Cbea closed setin T, and C, its inverse image in G under mapping
@ — (x,v). Then C, is closed in G because the mapping is continuous. The
w-sets {X (") € C,, Ye{t.y NI} and {X(t) € C,, t € I} differ by a subset of A
because X (f) is separable in (. This implies that the w-sets {(X('),v) € C,
U e {t.; NI} and {(X(),v) € C,t €I} ditfer by a subset of A.

We now relate the local properties of X (¢) to those of the separable complex-
valued processes (X (t), v), ¥ € T. The known properties of the latter are used to
obtain those of the former.

LEMMA 6.3. Let 7 be a point of [a, b]. If for every subsequence {s.} of {t.} con-
verging from below (above) to 7 the limit of X(s,) exists a.e.(I’), then the general
one-sided limit of X(s) for s T 7 (s | 7) exists a.e.(]).

Proor. If lim, . X(s,) exists a.e.(/’), then lim,—. (X(s.), ¥) exists a.e.(’)
for each y¥ € I'. This implies the existence a.e.(/’) of the general one-sided limit
of (X(s),y)fors T 7 (s | 7),foreach v;in fact, this follows from known proper-
ties of separable complex-valued processes ([2], p. 53). (In that reference, the
separability is with respect to closed infervals; herc separability is with respect
to closed sets. The latter implies the former.) The existence of the limit a.e. () for
cach v implies its existence for all ¥ in any countable subset of T'; hence, the
limit exists for all ¥ in a dense subsct of I' because T has a countable base, and so
has a dense denumerable subset.

The existenee of the limit on a dense y-set T implies its existence for all ¥ € T.
We shall show, in fact, that the sample funetions of the process (X(¢), v), v € T,
are uniformly (in ¢) approximable by sample functions of a process (X(¢), v'),
v €1'. In the topology of I', the convergence v — v is characterized by
(z, v — %) — 1, uniformly in z on compact subsets of G ([7], p. 100). Almost
all sample functions of X (¢) lie in a compact subset of G, by lemma 6.1; hence, for
a fixed sample function, if v’ is sufficiently close to v, the absolute value of the
difference
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(6.1) |(X®, v — X0, )] =[XO®,y—) -1
is close to 0 uniformly in ¢.

An application of lemma 3.2 now completes the proof.

TueOREM 6.1. There are at most a countable number of fixed points of discon-
tinwaty of X (1), a.e.(P).

Proor. Lemmas 5.5 and 6.3 imply that the process is continuous a.e.(l’) at
cach point of [a, b]. The statement of the lemma now follows from a general
theorem that a process which is stochastically continuous at each point on an
interval has at most a countable number of fixed points of discontinuity. This
was stated and proved by Doob ([2], p. 356) for real-valued processes, and
generalized by Pakshirajan [6] to processes in a metric space. As we stated in
section 1, our group G is a metric space.

TuEOREM 6.2. Almost all sample functions of X (t) have right- and left-hand
limats at all points of (a, b).

Proor. According to theorem 5.1, almost all sample functions are elements
of ©; thus, for each v, almost all sample functions of the complex-valued process
(X(1), v) are elements of ©. The latter process is separable, by lemma 6.2;
therefore, for each v, almost all the sample functions have right- and left-hand
limits at all points of (a, b) (ef. [2], p. 361). By the argument in the proof of
lemma 6.3, almost all these sample functions have right- and left-hand limits at
all points of (a, b) for all v € T. This property of (X(¢), v), v € T, induces the
same on the sample functions of X (f), by lemma 3.2.

7. Supplementary note

After completion of the paper, it occurred to me that the above results are
valid in a modified form when I' is not connected. In this case, the properties
given above for T are, in fact, valid for the subgroup I of T' gencrated by a
neighborhood of the identity. Let G’ be the subgroup of G which is mapped onto
one under all characters in I'; then, IV is the dual of the factor group G/G;
therefore, the convergence theorems, proved above for G when T is connected,
arc valid for G/G’ when T is not connected.
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