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1. Introduction

The concept of signl-invariant ranidomii variables was recently introduced by
the writer in [1]: Xi, * * *, Xk are called sign-invariant if the 2k joint distributions
corresponding to the sets (ElXl, * * *, 'EkXk), El 4± 1, * *, Ek = 4-1 are all the
same. A family of random variables {Xt, t e T}, where T is some index set,
is called sign-invariant if every finite subfamily consists of sign-invariant random
variables. An example is a family of independent random variables with sym-
metric distributions.
During the last several years, probabilists have been extendilig their interest

from random variables and vectors in Euclidean space to raiidom elements in
abstract spaces, particularly topological groups. Grenander's monograph [3]
contains a large bibliography of work up to 1963. In this paper we shall gen-
eralize some of the properties of sign-invariant random variables on the real
line [1] to sign-invariant random elements in a commutative, locally compact
topological group G having a countable base. This may be read independently
of the previous paper. The definition of sign-invariaint raiidomii elements is a
direct extension of the definition given above for random variables: the X's are
elements of the group, and -X is the inverse of X under the group addition.
The Fourier transform was the maini tool in the study of signi-invarianit random

variables on the line; this suggested the generalizationi to a commutative,
locally compact group, which is the natural domain of Fourier analysis.

Section 2 contains the fundamental structure lemmas of sign-invariance. One
of the main ones is that sign-invariant random elements are conditionally
independent and symmetrically distributed, given a nontrivial sub-a-field. IT
section 3 we present some group-theoretic results which characterize the con-
vergenice of a sequence of elements in a group G in terms of the convergence of
their images unlder the map)p)ings induced by the character group. The funda-
metntal convergenice theorem for series of sign-inivariant randomil elemelnts is
given in section 4.
The main part of this paper, sections 5, 6, and 7, is about the stochastic process

with sign-invariant increments: a stochastic process in G with a real interval
parameter set such that increments of the process over nonoverlapping intervals
are sign-invariant. An example is a process with symmetric independent inere-
Research supported in part by National Science Foundation (rant NSF-GP1-3694 at

Columbia University.
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miieC1ts. We showv that a process in G(,vit1h sigii-invarianit increments has the saille
sample function characteristics as real-valued semimaltinigales and processes
with inidependent incremenits. First we definie separability for processes in G;
then we show that almiiost all sample functions of a sel)arable versioni of the
plocess are bounded and have right- anid left-hand limits at each point of all
interval where such imiits are definable; fturthermiore, there are at mlost a
countable number of fixed points of discontinuity oni ani initerval. These plop)el-
ties are found by studyinig the image of the sample funcetionis under the mappings
iniduced by the character groul). These images are complex-valued plrocesses
closely related to martinlgales. This method of analysis was first used by Dool
for processes on the real linie ([2], p. .389).
We now formally state ouI assuml)tions. First, (Q, F, P) is a p)robability space,

where Q is a set of points w. Second, G is a commutative, locally comlpact topo-
logical group having a countable base. The latter assumption, which happens to
make G a separable mietric space ([7], 1). 13), idenitifies the class of Baire sets
in G with the class of Borel sets ([4], p. 220). A ranidom elemeiit in G is a func-
tioIn X = X(w), co E Q, from Q inlto G such that the inverse imiiage of every
Borel set in G is in 5. The sumi of two randomii elemnents is a random elemenit
because the Borel sets are the Baire sets ([4], p- 222). The argument c of X(CO)
will be understood but not explicitly recorded. Properties wlhicll are valid for
all co c Q, with the except ion of a set of 1-measuie 0, will be said to hold a.e.(l).

Let r be the character group of G: the set of all represenitationis -y of G into
the set of complex numbers of modulus one, denoted by T. Also r is commuta-
tive, locally compact, and has a countable base ([7], ). 100). By the measure
space (r, IC, IA) we shall mean the groul) r with the a-field 3C of Borel sets anld
Haar measure IA. A prop)erty holdinig for all -y except for a set of ,u-measure 0
will be said to hold a.e.(,u). We shall assxumie one more prol)erty for F, iiaimiely,
that r is coInInected; tlixs wvill be used from tiiie to time. However, G canniiot be
comi-pact, for then r is discrete, and cannilot be conniected.

2. Structure of sign-invariance

The followiing are generalizationls to G of several real line propositions in [1].
LEMMA 2.1. Let X1, *- , Xk be sign-invariant and let fj(x), gj(x) be bounded

continuous, complex-vaIlue(lffunctions on G sich that gj(a) = gj(x), j = 1 t * * * A-,
x e G; then,

(2.1) 1E {II1fj(X.j)Yj(X)} = E { [2(fj(X) +}

PROOF. Changing the sign of XI and using sign-invariance, we have

(2.2) E ff(XI)gl(Xl) II fj(Xj)gj(Xj)l{=2

D fi(_Xj)g/(Xl) H fj(Xj)gjGA`,)}
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helnec, the latter is also e(ual to the average of the (quanitities on either side of
the equality sign, namely, to

(2.2)) 11 2 [f(1 f(X1]J(l fj(xj)rlj(xj)}
j=29

W1e ohtain (2.1) by successively chaniginig signls and averaginig over X2, , Xk..
Let (x, y) deniote the value in T of the character -y at the point x, x c G, -y C r;

let z be the complex conjugate of z and Mz the real part of z. Firom (2.1) and the
relation (-x, -y) = (x, -y), we get

(2.4) {'ll(X, ij)gij(Xj)} EH(R(Xj, ij)gj(Xj)}f i* , y& C F.

When x is real, lxJ is the ftuncetion which idenitifies r with iiax (-x, x). In [1],
we made fundamental use of conditioninig sign-inivarianit ranidom variables with
respect to their absolute values. Sinee the "positive" member of the pair (x, -x)
is not distinguished in an unordered grou), we shall definie the above coniditioniiig
for sign-invarianit random1 elemenits in a miiore genieral Nvay, as follows: let £ be
the class of all "even" complex-valued Borel functions onl G, that is, g is in g,
if and only if g(x) = g(-x), x e G. We definie the a-field generated by
IX1, * -, lXkl as the a-field generated by the coml)lex-valued random vari-
ables g1(X1), * , gk(Xk), gl, * - *, g. G 8. We define conditional expectation
given IX11, -, lXkl as conditional expectation with respect to that o-field.
Then e(quiation (2.1) is idenitical with the following:

(2.5) E j{.11fj(Xi) Xi1*, -XkI}= I [fj(j) +fj(-Xj)];

in fact, (1)[f(a) + f(-x)] is a functioni belongiiig to * Firom (2.4) we conclude:
LEMMA 2.2. T'he elements X1,i , Xk are sign-invariant if and only if they

are conditionally independent, given IX1I, Xk!,Xt, with the conditional joint
characteristic function HY=l (Xj, -yj).

Puttiing -yj in (2.4) equal to the idenitity of r, j = h + 1, k,w,we obtaini:
LEMM.A 2.3. The conditional characteristic function of X1,i , X,, given

IX11, * k*, X,J 1 < h < k, is independent of lXh+1l, * k,
The conditioiial characteristic functioll of XI + X2 anid X3 + X4, giVenI

IXI + X2l and JXi + X41, is equal to the coiiditional characteristic funcetioii
given IX11, lX2l, JX3l, IX4!, lXi + X2l, JX3 + X41; this call be verified by the
kind of calculationi in the Proof of lemmila 2.1. AMore genierally, we have:
LEMMA 2.4. Let Xij, i = 1, * * *, nj, j = 1, * *, k I)e signt-invariant; then the

conditional joint characteristic function oJ the k sums _', 1 Xij, j = 1, * - , k given
their absolute values is the same as the conditional joint characteristic futnction given
their absolute values as well as those of all their sutmmands an(d partial sutmmands.
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3. Convergence in topological groups

Here are several propositions relating convergence of elements in G with con-
vergence of their images in T under the mappings induced by the characters
of G.
Lemmas 3.1 and 3.4 appear on the real line in the following form in

([2], p. 335): if {x,} is a real sequence such that lim, -. ei-" exists for all u in
a set of positive Lebesgue measure, then limnx xn exists and is finite. We now
generalize this result.
LEMMA 3.1. Let {x,j} be a sequence in G. If linlx (Xn, -Y) exists for all -y,

then lim- xn exists in G.
PROOF. Let a = G U {o } be the one-point compactification of G. The neigh-

borhoods of {oo } in G are the complements of compact subsets of G because G is
locally compact ([5], p. 150). Either all elements of {xj are in a compact subset
of G or some subsequence converges to {oo }. We shall show that the latter is
impossible.

Let {x'} be a subsequence converging to {oo }, and let f be a real-valued
continuous function on r with compact support. We have

(3.1) lim f (n, )fQy) d(y) = 0

by the Riemann-Lebesgue theorem ([7], p. 116). Here the interchange of order
of limit and integration is permitted by dominated convergence; hence,

(3.2) J lim (x', y)f(y) dA(y) = 0.

The validity of this equation for every f implies that limn (x', y) = 0, a.e. (u);
however, we have I(x4',y)l =1, a contradiction. This negates the possibility
that x' oo.

In accordance with the first alternative, the elements of {x,,j belong to some
compact subset of G and so must have at least one point of accumulation. We
shall show that there is at most one such point: this will finish the proof. If
yi and Y2 are accumulation points, then, as the hypothesis implies, they must
satisfy the equation (yr, y) = (y2, -y) identically in -y E r. This implies y, = Y2
([7], p. 99).
LEMMA 3.2. Let f(t) be a function on a real number set S to G, and r a point of

accumulation of S from below (above). If lim (f(t), 7y), t t T (t J, T), t E S, exists
for all -y E r, then the corresponding limit of f(t) exists in G.

PROOF. It is enough to prove thatf(t) approaches a unique limit along every
sequence in S converging to T from below (above), because G has a countable
base. The discussion in ([2], p. 409) demonstrates that it is even enough to
show the existence of a limit along each monotone sequence in S converging to r.
The existence of such a limit is a consequence of lemma 3.1 and the hypothesis
of our lemma.
We use the connectedness of r to strengthen our results.
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LEMMA 3.3. Let 2H be the image of a set H c r under the mapping

(3.3) y -y + y = 2y.
If ,u(H) > 0, then any subgroup of r containing 2H is identical with r.
PROOF. Any subgroup containing H is identical with r; in fact, H - H is a

neighborhood of the identity in r, and since r is connected, it is generated by
such a neighborhood ([7], pp. 13, 50). This implies that a subgroup containing
2H also contains the subgroup 2r. To complete the proof, we show that r = 2r.
Let G' be the annihilator of 2r, that is, the subgroup of G defined by the relation
G' = {x: (x, 2y) = 1, y E r}. If xo E G', then we have the following chain of
implications: (2xo, y) = (xo, 2y) = 1 for all Py e r; 2xo = 0; xo is an element of
finite order; xo = 0 ([7], p. 110); G' contains only 0; r = 2r.
LEMMA 3.4. The hypotheses of lemmas 3.1 and 3.2 are fulfilled if the limits of

(x., 2y,) and (f(t), 2,y) are assumed to exist for all y in some set H, H E 3C,
g(H) > 0.

PROOF. The y-set for which such a limit exists is a subgroup of r. Lemma 3.3
applies to such a subgroup.

4. Convergence of sums of sign-invariant random elements

As is well known, a series of independent random variables converges in distri-
bution if and only if it converges with probability 1. In [1], we proved this
relation for a series of sign-invariant random variables. The proof depended in
part on some facts from the theory of series of independent random variables.
Now we prove a general theorem for series of sign-invariant random elements
in G, one which does not depend on the case of independence. The method used
is an extension of a martingale analysis first used by Doob on the real line
([2], p. 335).

In the following, all random elements are defined on the common probability
space U.
LEMMA 4.1. The complex-valued function (X, y), where X is a random element

in G and y is in r, is measurable with respect to the product a-field 5Y X JC in Q X r.
PROOF. ThemappingfromQX r intoG X r definedbyw, 7-X, Y is 3Y X SC

measurable; and the mapping of G X r into T defined by x, y -3 (x, y) is con-
tinuous; therefore, the composite mapping is 5: X aC measurable.
THEOREM 4.1. Let {Xn, n = 1, 2, * * ,} be a sequence of sign-invariant random

elements in G. The following three conditions are equivalent:

(i) En- l Xn converges in distribution;
(ii) for every e, 0 < e < 1, the 7-set for which In- 1 R(Xn, y)I > e has positive

j,-measure, a.e.(P);
(iii) En-l Xn converges a.e.(P).
PROOF. It is well known that (iii) implies (i); we shall prove that (i) implies

(ii), and that (ii) implies (iii).
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By the cotitiuity thleoiemi foIr characteiistic functions [3], (i) implies that
thc characteristic funietiolt of XI + ±+ X,, inalm-ely, E Hk';=l% (R(Xk,-Y)))
converges to a characteristic fuinetioni p(-y), -y E I'. Applyiilg the bounded Cotil-
vergeilce theorem to flk =I (0I(Xk, aY), wve get

(4.1) L ( y) } > i ] {')} = ) e I.
n1 f x k=l1 1

Let A be a set in 5 with inidicator funietioni IA, anid let 6 be the ideiitity of IF;
then, by (4.1), -we have

(4.2) lin P(A) E {IA H 6(X,, y) }

filin 'll 1 1 - H1 t(X,, i) n< lm F _()] 0.

Now let A deniotc the w-set for\whiCh flr=1 61(X,,, y) I < e, a.e. (A). T'lhe set A
)elonIgs to 5 b)y lemiiima 4.1 anld FUtbiiii's thelorem. rThl latteli also ilml)lies thiat,
IW7=i !((Xn /)| < e, for almiiost all w e A, a.e.(,); therefore,

(4.3) o'{I.HIdI (X, < wo)) a. .J(()

Comparing this with (4.2), wc see thal P)(A) < EPl(A), so thlat 1'(A) = 0; thus
(i) inipllies (ii).
We niow plrove (iii). Let l(E, -y) be the indicator funcetioni of the 5f X SC-

lmeasural)le set where ][In= 1(R(X,,, y) > e. The se(juenee

(4.4) (k Xk, ' I(E, ) {l (XI, 7)} it = 1, 2, * ,
k=1 / k=lI

is b)ounded by l/e, so that all its expectationis exist for each 'y. Let a,, deniote
thle o-f.eld in Q genierated Xi, * r/XX, 11X 'X,,+2!, * * * n = 1, 2, * *.we
hlave 911 C 5--l C 5 for every n. For each -y, the sequence in (4.4) is a martinigale
with respect to the se(luellee of a-fields {5,,'. In fact, appli2atioil of tlle coiidi-
tional expectationi operator E(-1I,,) to the n + IPt elentwit in (4.4) leaves
I(E, y) anid the deniominator unchlaniged, anid traiisforms (+tliYXk, -) illtO
61(X1L+1, 7Y) n1X=I y) by lemmiia 2.3. Trlle martiilgale conlvergence theorem
applies to the se(luenice in (4.4) hecause it is bounided: for each -y the limit exists
a.e.(l'). FIrom this, lemma 4.1, and Fubini's theorem, we infer the existenice of
the limit a.e.(u), a.e.(P). The sequenice obtainied from (4.4) by s(luarinig each
elenmeint, itamely,

(4.5) X(., 2-) I(E, -Y) /{ rI t2(XY, -Y)

also has a limit a.e.(,), a.e.(P). By definiitioni of I(e, -y), the limit of the deniomi-
nator exists and is greater than e2 for almost eveery pair c, 'Y for which I(E, -y) = 1;
therefore, the limit of (Y;k = 1 Xk, 2,y) exists for all such pairs. The latter exists on
a set of positive p-measure, a.e.(P); ill fact, the set of Y's foI- hicl I(e, Y) = 1
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lhas positive ,.-measurc, a.e.(P), by (ii). From this and from lemmas 3.1 and 3.4
(iii) follows.

5. Stochastic processes with sign-invariant increments

Let X(t), a < t < b, be a stochastic process on (Q, T, I') to G. Thle process is
said to lhave sign-inivarianit increments if for every finite set of disjoint intervals
(a1, b1), , (ak, bA.), in [a, b] the random elements X(b1) - X(al),
X(bk) - X(ak) are sign-inivarianit. An importanit example of such a process is one
with indepenident symmetric incremenits.

Let {t,, n = 1, 2, } be a se(luence of distinct poinits in [a, b]; assume
ti = a, t2 = b. F'or n > 2, let ti, ,n),t * *, t(n) be the first n + 1 elements of
,t,,' arranged so that a = t= K tVn < < tn b. Define the followingg:

iy}= X(t(n)) - X(t(n,) )1 , *,

(5.1) (3n = u-field in P2 generated by IX,A, 1; = 1, * n,
(WO = a-field in Q2 geneiated b)y (0,,, (6+*,*

1= 1

' hese u-fields aie all containied in a.
L,EMMAt 5.)1. For every y G F, n > ) te have

(5.2) E{(X (b) - X(a), -y) I61,,'_ = `6((X(b) -X(a), y)|2
n

= Ed(X (b) X (a), Iy)I6d3'&- = 17 (i(i\ nk y), a.e. (P).

PRtOOF. WN'I-ite X(b) - X(a) as Xn1 + *-- + Xnn; then the first equality in
(5.2) follow-s from lemma 2.4 (for the case = I). Lemma 2.2 implies the equality
of the first and last members of (5.2).

W1'e now link the third member of (5.2) to the others. For any integer in > 0,
the conditional characteristic functioni of X(b) - X(a) given (613n is the same as
the conditional characteristic functioni given 613,,, ,* 6 nm by lemma 2.4. The
latter converges a.e.(l1) to the conditionial characteristic function, given I(n) for
m-*oo, by the martinigale theorem for conditionial expectations ([2], p. 331).
LEMMA 5.2. For y G r, ,e have

(5.3) E{A'(¶(X (b) - X(a), cY) = lim 11 (it(X,,k, 'Y), a.e.(l)
n- k=1

PROOF. Let n x in (5.2) and apply the previously mentioned martingale
theorem.
LEMMA 5.3. Lemmas 5.1 and 5.2 remain valid if a and b are replaced by any

two elements t' and t", t' < t", of the sequtence t4, and the prioduct of (R(X,k, -Y) is
restricted to Xnk-increments over subintervals of [t', t"].
PROOF. By Lemma 2.3, the conditionial characteristic function of a subset of

{X,k, k1 = 1, ** ,7n}, given all of the absolute values IXkl, depends only on
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those absolute values corresponding to members of the subset. This makes it
possible to prove our lemma in the same way as lemmas 5.1 and 5.2.
LEMMA 5.4. For E, 0 < e < 1, the y-set for which IE{(R(X(b) - X(a), -y)l>3}

E has positive ,-measure, a.e. (P).
PROOF. For A e 5, we have, by bounded convergence,

(5.4) P(A) = limE{IA(X(b) - X(a), -y)}.

Here we are permitted to interchange the order of limit and expectation because
F has a countable base, and, consequently, the convergence -y - 0 may be defined
as sequential convergence.
The proof is now similar to that of the first part of theorem 4.1. Let A be the

co-set for which JE{R(X(b) - X(a), -y)IB) < E, a.e.(,u). By Fubini's theorem,
this inequality holds a.e.(P) on A, a.e.(u); hence, since A E 63, we have

(5.5) IE{IA(X(b) - X(a), y)}
= E{IAE[6I(X(b) - X(a), -y)1a]}I < eP(A), a. e.(,)

This and (5.4) show that P(A) < EP(A); hence, P(A) = 0.
LEMMA 5.5. Let t be a point of (a, b) such that there is a subsequence 's,,} of {t,,}

converging to tfromnbelow (above). Then limn:- X(sn) exists a.e.(P).
PROOF. Without loss of generality, we may assume that 's4,' is strictly

increasing (decreasing). WVe shall show that the series of sign-iiivariailt ranldom
elements _n'= [X(s,+1) - X(s,)] conveiges, a.e.(P). By theorem 4.1, it is suf-
ficient to show that for e, 0 < e < 1, the infinite product HII= II 61(X(S.,)-
X(sn), -y)L is greater than E on a y-set of positive A-measure, a.e.(l'). This con-
dition is satisfied in ouI case. Define a sequence of partitionis by

(5.6) t1n)= , t(n) = S2 * tn-1 =Snn t (" = t, n = 2, 3, *,

and apply lemmas 5.2 and 5.4.
We now define a class e, of complex-valued functionis g(t), a < t < b: g is said

to belong to e if it approaches a limit along any monotone subsequence of {t,,j,
that is, if {s4} is a monotone subsequence of {tn', then limn-- g(sn,) exists. The
following proposition is implicit in the proof of the martingale sample function
theorem ([2], p. 361).
LEMMA 5.6. A (complex-valued) stochastic process on [a, b], whose restriction

to the parameter set {t,,} is a martingale, has the property that almost all sample
functions belonging to the class C.

Next we define a class D of functionsf (t), a < t < b taking values in G. The
function f is said to belong to 0D if it approaches a limit along any monotone
subsequence of {t,}. The next proposition relates membership of f in O to the
membership in C of its images in T unider the mappings induced by the group of
characters.
LEMMAk 5.7. If there is a set H e 3C, ,4(H) > 0, such that (f(.), 2-y) belongs to

e for all y e H, then f belongs to JD.
PROOF. Apply lemmas 3.1 and 3.4.
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Here is the fundamenital sample function theorem for processes in G with signl-
invariant increments.
THEOREM 5.1. Almost all sample functions of X(t) belong to D.
PROOF. We shall show that almost all sample functions satisfy the hypothesis

of lemma 5.7.
The proof is similar to that of theorem 4.1 in the part where we show that

(ii) implies (iii). Fix e, 0 < e < 1, and let I(e, -y) be the indicator function of the
set in Q X P, where IE{(R(X(b) - X(a), y)jaS}I is greater than e; I(e, -y), is
5 X 3C measurable, by lemmas 4.1, 5.1, and 5.2.
For each element t' of the sequence {t4,j, we define the a-field gt' C 5: as the

a-field generated by X(s), a < s < t'. For each y G r, the complex-valued
stochastic process

(5.7) (X(t) - X(a), -y)I(e, -y) a < t < b,E{GIR(X(t) - X(a), y)I~} a t<

restricted to the parameter set {t4, is a bounded (by l/e) martinigale with
respect to the family of o--fields { 5,it, te{tt}}; in fact, the proof of this assertion
is the same as the proof that (4.4) is a martingale. The sample functions of this
process are almost all elements of the class C, by lemma 5.6, for each -y c r.
The process obtained from (5.7) by squarinlg the variables, that is, the process

(5.8) (X(t) X(a), 2-y)I(E, -y)
E2{R(X(t) - X(a), -y)1} a < t < b

also has almost all sample functions in the class C; in fact, the mapping z z-
is continuous.
The stochastic process E2{1R(X(t) - X(a), 7)!63}, is nonincreasing a.e.(P) on

the parameter set {tn}; in fact, if t', t" are elements of {t"} with t' < t", then

(5.9) E2{R(X(t") - X(a), -y)j(B}
= E2{&(X(t") -X(t'), y)j63} E2{i(X(t') - X(a), -y) 16}
< E2{R(X(t') -X(a), -y)163}, a.e.(P),

by lemmas 5.2 and 5.3. It follows that almost all sample functions of the denomi-
nator in (5.8) are elements of the class e; consequently, the numerator sample
functions are almost all in C, for each cye F. By Fubini's theorem, we infer that
the t-functions (X(t), 2y)I(f, -y) belong to C, a.e.(u), a.e.(I'). This implies that
(X(t), 2-y) belongs to C, a.c.(u), on the set where I(e, -y) = 1, a.e.((P). The set of
,y's on which I(e, -y) = 1 has positive n-measure, a.c.(P), by lemma 5.4; there-
fore, almost all sample functions satisfy the hypothesis of lemma 5.7. The proof
is complete.

6. Properties of separable processes

A stochastic process X(t), a < t < b, oni (P., i, P) to G is said to be separable
rielative to the class of closed sets, or simply, separable, if there exists a sequence
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{t,} in [a, b] and a set A E i of probability 0 such that for anly openi interval
I C [a, b] and any closed set F C G, the w-sets fX(t'),EF, tE{t,,} fn I} and
{X(t)EF, t e I} differ by a subset of A. Wte may assume that ft,,, is dense in
[a, b] because a separability secluence can always be enlarged without affectingo
its role. In this section X(t) will be assumed separable wvith a dense separability
sequence in [a, b].
LEMMA 6.1. The samiiplefitnctions of X(t) are boutnded on [a, b], a.e.(P).
PROOF. By theorIem1 5.1, X(t) has limits along every monotonle subse(luenice

of -t,,' , a.e. (P); therefore, X(t) is bounded over the se(luence It,', a.e. (P). Separa-
bility implies boundediiess over [a, b], a.e.(P9).
We iiow relate the separability of X(t) to the separability of the complex-

valued stochastic process (X(t), -y) for each -y.
LEMMA 6.2. Let X(t) be separable, with separability sequtence ftt ancd ntull set

A c iY; then, for each -y, the stochastic process (X(t), y) is separable with respect to
the closed sets of T with the same separability sequence {12 and null set A E i.

PROOF. LIet C be a closed set iii T, and C, its inveirse image il G under mapping
x -> (x, -y). Then CQ is closed in G because the mapping is continuous. The
w-sets {X(t') e Cz, t'E{t,, n I,- and {X(t) e (C, t e J' differ by a subset of A
because X(t) is separable in G. This implies that the c-sets {(X(t'), y) C C,
t' e ,t,J n I) and {(X(t), -y) G C, t e I' differ by a subset of A.
We inow relate the local properties of X(t) to those of the separable complex-

valued processes (X(t), y), -y E r. The knowvn properties of the latter are used to
obtain those of the former.
LEMMA 6.3. Let r be a point of [a, b]. If for every sutbsequtence -s,,} of {tt con-

verging from belowl (above) to r the limit of X(s,,) exists a.e. (1), then the general
one-side(l limit of X(s) for s T T (s 4 T) e.rists a.(. (IP).

PIROOF. If lim,,ix X(s,,) exists a.e.(P), thenlieii (X(s,,), -y) exists a.e.(P)
for each y E I'. This implies the existence a.e.(P) of the geneial one-sided limit
of (X(s), y) for s T r (s 4 T), for each y; in fact, this followvs from known proper-
ties of separable complex-valued processes ([2], p. 55). (In that reference, the
separability is with respect to closed intervals; here separability is with respect
to closed sets. The latter implies the former.) The existence of the limit a.e. (P) for
each y implies its existence for all y in any countable subset of F; hence, the
limit exists for all -y in a demnse subset of I' because I' has a countable base, and so
has a denise denumerable subset.

T'he existeince of the limit ozi a denise y-set F' implies its existence for all ay G '.
We shall show, in fact, that the sample functions of the process (X(t), ay), -y G F,
are uniformly (in t) approximable by sample functions of a process (X(t), y'),
-y' G l". In the topology of F, the convergence -y' -> -y is characterized by
(x, -y - 'y') -* 1, uniformly in x on compact subsets of G ([7], p. 100). Almost
all sample functions of X(t) lie in a compact subset of G, by lemma 6.1; hence, for
a fixed sample function, if -y' is sufficiently close to -y, the absolute value of the
dliffelellce
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(6).1) I(X(t), -Y) - (X(t), y')j = (X(t), -Y - y') -
is close to 0 uniformly in t.
An application of lemma 3.2 now completes the proof.
THEOREM 6.1. There are at most a countable number of fixed points of discon-

tintity of X(t), a.e.(]).
PRtOOF. Lemmas 5.5 aiid 6.3 imply that the process is continuous a.e. (P) at

each poinit of [a, b]. The statement of the lemma niowv follows from a general
theoiem that a process which is stochastically conitiniuous at each poilnt oln all
initerval has at most a countable number of fixed poinits of discontinuity. This
was stated and proved by Doob ([2], p. 356) for real-valued processes, and
generalized by Pakshirajan [6] to processes in a metric space. As we stated in
section 1, our group G is a metric space.
THEOREM 6.2. Almost all sample functions of X(t) have right- and left-hand,

limits at all points of (a, b).
PROOF. According to theorem 5.1, almost all sample funictionis are elements

of D; thus, for each -y, almost all sample functions of the complex-valued process
(X(t), y) are elemenits of (. The latter process is separable, by lemma 6.2;
therefore, for each -y, almost all the sample functioins have r-ight- and left-hand
liimits at all poinlts of (a, b) (cf. [2], p. 361). By the argumenit in the proof of
lemma 6.3, almost all these sample ftunctions have riglht- and left-hand limits at
all poinits of (a, b) for all -y E r. Tlhis property of (X(t), ay), -y G r, induces the
same oni the sample funietions of X(t), by lemma 3.2.

7. Supplementary note

After completioin of the paper, it occurred to me that the above results aie
valid in a modified form when F is not conniected. In this case, the properties
given above for F are, in fact, valid for the stubgrouip r' of r generated by a
neighborhood of the identity. Let G' be the subgroup of G which is mapped onto
one under all characters in F'; then, F' is the dual of the factor group G/G';
therefore, the convergence theorems, proved above for G when F is connected,
are valid for GIG'Ahen r is not connected.
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