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1. Introduction

The majority of the goodness-of-fit problems arising in practice involves
nuisance parameters. On the other hand, the majority of the results which have
appeared within this field deal with simple hypothesis testing only. Among the
relatively few results concerning the first-mentioned, more general problem, the
most known and applied one is the modification given by R. A. Fisher to Karl
Pearson’s x*-test (see for example, [4], pp. 424-434). As it is well known, this
modification consists of replacing the unknown parameters by their estimates;
the distribution of the modified test statistic (at least its approximate distribu-
tion) was determined. The same way was followed by Kac, Kiefer, and Wolfowitz
[7] and Darling [5] concerning the Cramér-von Mises test and the Kolmogorov
test. Computational difficulties, however, prevented them from providing tables
having sufficient range and accuracy for practical purposes.

But even if these difficulties could be overcome in the future, neither they
nor Fisher’s method work in some nonsimple sample cases.

Considering this fact as well as the disadvantages of the x2-test (see [7],
pp. 191-192), other solutions of problems of this type seem to be of particular
interest. The straightforward way is to find an equivalent simple hypothesis.

The basic theory and the most important results of this approach are dealt
with in another paper appearing in this volume [12].

Solutions of this type form the subject of the present paper, but it is confined
in a rather special direction. This specialization may be characterized by the
aim of avoiding theoretical and computational difficulties and of utilizing the
known results of the theory of goodness-of-fit tests as much as possible.

Therefore, we are interested in such equivalent (substitute) hypotheses which
are of the form of goodness-of-fit problems. In other words, we want to provide
a set of random variables which are distribution-free and independently and
identically distributed in the case of the null hypothesis.

As a further specialization, we require that each of these transformed values
should represent, in the same way, one of the original sample elements. The
purpose of this restriction is that the test statistic made with the transformed
variables should approximate the correct test one could form with the knowledge
of the unknown constants. Therefore, the properties of the combined test, con-
sisting of the transformation and the testing of the simple hypothesis, will be
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near that of the test concerning a simple original hypothesis, and this indirect
information is the more important since exact investigations of properties of
tests relating to the original hypotheses seem very difficult.

Since the test statistics which we can apply are of different types, the problem
of what to consider a good representation is the matter of an arbitrary decision.
We shall apply, in the cases to be considered (sections 2-5), the correlation
coefficient of the original and transformed values (in the case of null hypothesis)
as the measure of goodness of representation. Similarly, the minimum value of
these measures will be considered the measure of the goodness of the representa-
tion if we replace the original set or its subset by a set of transformed variables.
In these cases—and in any case when the nuisance parameters are location and

- scale parameters—this measure does not depend on the nuisance parameters.
Furthermore, in these cases the maximization of the correlation coefficient is
equivalent to the minimization of the square of difference between the trans-
formed values and the standardized original values.

In section 8 the goodness of representation in a special case is numerically
investigated.

The question whether the substitute simple hypothesis is strictly equivalent
to the original null hypothesis in the sense that the latter is not only |sufficient
but also necessary to the former, is important from the point of view of the
biasedness of the test. The conditions of this property, in the case of normal
distribution with unknown variance, were stated by Prohorov [12].

Solutions of the problem using the method outlined above have been given
until now by Durbin [6], Stérmer [15], and the present author [13] independ-
ently. The purpose of this paper is the comparison, investigation, and improve-
ment of these results.

The main difference between the method of Durbin and that of the other
two authors is that Durbin uses random numbers. Consequently, the number
of the transformed variables is the same as that of the original variables in
Durbin’s method, whereas the other method of transformation decreases the
number of variables by the number of unknown constants.

Here we deal with the latter method mainly. But first, in section 2, we make
a comparison between the two methods in the case where the underlying dis-
tribution is normal, with both parameters unknown, and where the transforma-
tion is linear for any sample realization. This is the case considered in [6] in
detail.

In sections 3-5 some “optimal’ transformations are derived for the case of
normal distributions. In section 6 the possibilities of generalization are discussed,
and section 7 deals with practical applications.

2. Comparison with Durbin’s method

Durbin’s method is the following [6]: let x3, - - , 2, be independent, normally
distributed random variables with unknown expectation and variance, u and
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o?, respectively. Let T and s? be the sample mean and empirical variance,
respectively.

Durbin considers the transformation where the transformed values y1, - - - , ¥
are independent N(0, 1) variables and fulfill the relation

i ri — .
@2.1) ys,y= — (G=1,-,n).

The variables 7 and s’? are independent and are distributed as the sample
mean and empirical variance of a sample of size n from a standardized normal
parent population, that is, 7 has the distribution N(0, 1/n), and (n — 1)s'? has
x2-distribution with n — 1 degrees of freedom.

Durbin generates the values of 7 and s’ by the help of random numbers.
Similarly, they may be generated as functions of the sample elements (of those
defined above and of additional ones) according to the alternative method.

Given 7 and s’, y1, - - - , ¥» can be determined by (2.1).

Durbin proved that the ), ---, y. so defined are, in fact, independent
N(0, 1) variables. Below we give an alternative, simple proof for this fact. We
suppose that 7 and s’ are independent, have the above mentioned distribution,

and [y, s'] is independent of [(z; — Z)/s, - -+, (. — E)/s].
Let
X = [1‘1, ;xn]r
(2'2) y= [yl; Tty yn]s

T —Z T, — T
vV = 1 ’...’n y
8 S

and let us denote by 1, an n-way vector with unit components. As it is known,
%, s, and v are completely independent. Let us consider the two following
identities:

(2.3) y =175+ vs,
(2.4) (x - Fln) — 1n(z - ”’) + _v_s.

g g g

If v and [7, s’] are independent, the right-hand sides are identical in distribution;
therefore, y has the same distribution as (x — ul,)/o, that is, 3, <+ , Y. are
independent N (0, 1) variables.

Clearly, condition (2.1) can be expressed equivalently as follows: for any
given sample realization, there is a linear relation between the sequences
Zy, -+, Znand 31, - -+, Y. This seems a very reasonable property of the trans-
formation which preserves the shape of the empirical distribution function.

Denoting v; = (z; — T)/s, we obtain for the correlation coefficient of z; and y;,

(2.5) r(xi, ¥:) = + D2(v,) I:Eg(s,) + cov (s, s’)].

o
In the case of Durbin’s transformation, cov (%, 7) = cov (s,8’) = 0. Both
quantities are positive by appropriate choice of the functions defining 7 and s’

cov (%, 7)
g
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according to the alternative method. This means that the use of the additional
sample elements is not merely an alternative way to generate random numbers,
the information involved in them is utilized to improve the goodness of the
transformation.

3. The case of unknown expectation

In this section we formulate our problem somewhat more generally than in
the other cases. Namely, we include cases where the difference of the number of
the original and transformed values is larger than 1, the number of unknown
parameters.

Let us suppose we have n + k random variables z;, -- -, #.;r which are
independently normally distributed with common unknown expectation x and
known variance ¢2, and we want to provide the transformed variables y{", - - - ,
y which have the expectation and variance o2.

Similarly to (2.1), a possible way of defining the variables y{* is to define
them by the equation

(3.1) W -0 =2, -2

where 7© has the distribution N(0, (¢2/n)) and T= (1 + --- + z.)/n as
before. The variable 7 may be suitably defined by the formula

(3.2) JO = @ — 7) \/;ﬁ

whereas
3.3) A

It is shown below that the transformation (3.1) is optimal in the adopted
sense.

TaEOREM 3.1. Let 2y, - -+ , Zotx be independent random variables with common

distribution, having the expectation u and variance o2, and let yi°, --- , y be
defined by (3.1) and (3.2). Let z; = zi(x1, + ++ , ZTusr), & = 1, « -+ , m) functions of
Ty, ** , Ttk Such that if x1, -+ | Tatr are normally distributed, then 2z, --- , 2,
are independent with the common distribution N (0, o?).

Then if 21, *++ , Tutr are normally distributed or z,, - - - , 2, are linear functions
of X1, *++ , Tusr, then
(3.4) min r(z;, z;)) < min r(y®, z:).

1<i<n 1<i<n

If in (3.4) equality holds, then it is valid not only for the minima, but for any .

ProoF. Suppose i, - -+, Tutr are normally distributed. It follows from a
theorem of Lukéacs [8] that 2; has constant regression on the mean

v _ it o+ Tk

(3.5) X = B S

and therefore, E(2;X) = E(XE(z2:)) = 0.
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Since #;, - - - , 2, are independent random variables, we have for any random

variable u,
(3.6) 3 [z W] < 1.
It follows that for some 2, (1 < 7 < n),
3.7 r(zi, u) < n12
where strict inequality holds unless equality holds for any . We choose
(3.8) u= f z; — nX.

i=1
We have

, k
(39) ’l'(xi _ Y, u) = m?

X) = [E(z, 2 _ntk

(3.10) r(es 20— X) = [Exs 2)/0] [T =1

Using the triangle inequality which is valid to any triplet of random variables
(see [13], p. 271)

(3.11)  are cos r(z: — X, 2) > lare cos r(u, z;)) — arc cos r(u, z; — X)|,

we obtain

(3.12) T(x,', Z,-) = E(x'.z'.)a- < VE + (n - 1) Vn + k

wVn+k

1
_n+k+\/k(n+k)’

which proves (3.4), provided zy, - -+ , 4% are normally distributed. If z;, - -+ , 24
are linear functions of 2y, « -+ , z,, the left-hand side of (3.4) does not depend
on the distribution of z;, - - - , z,. Thus theorem 3.1 is proved.

In the case of transformation (3.1) the substitute simple hypothesis is equiv-
alent to the original one; in other words, y{*, - - - , yi* are normally distributed
if and only if x1, - - - , Znsx are. This follows easily from the theorem of Cramér.

We remark that the normality of z;, - -+ , To4x i8 necessary for the independ-

ence of ¥, .-+, y" as well. This follows from a theorem of Skitovich [14].

4. The case of unknown variance

Let us consider now the case when (according to the null hypothesis) i,
-, Zns1 are independently normally distributed with common expectation 0
and unknown variance ¢2(> 0). We want to obtain independent N(0, 1) nor-

mally distributed variables »{®, - - - , y2. The way corresponding to (2.1) is to
define them by the equation

¥ _
@.1) yio_ % G=1,--,m)

86 So,
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where

—
(4.2) 8o = \/M'Zl,

n

and sg is a function of s and x,,,, and nsi has x2-distribution with n degrees
of freedom.

Heuristic arguments lead to the choice

(4.3) 55 = o (22221)
So

where ¢,.(t) is a monotone decreasing function. This condition, and the distribu-

tion of |Zn41]/s0 and sp, determine the function y,.(f) completely (see formula

(7.4)).

The transformation gives an indefinite result in the case when z, = --- =
2, = 0; the probability of this event is 0 under the null hypothesis. For this
case let us define y{® = ... =y = 0.

The result we give below concerning the optimality of (4.1) is of weaker
character than that of the preceding section. Now the class of admitted alter-
natives is more restricted ; we suppose both linearity for any sample realization
and scale invariance. The latter supposition means, equivalently, that the trans-
formed values are of structure dy+1 (see [2]).

TueoreM 4.1. Let xy, - -+ , Zpy1 be independent N (0, ¢2) random variables, and

(2)

let y@, - - , Y2 be defined by (4.1), (4.2) and (4.3), and let z,, - - - , 2, be defined by

2 x; .

(4.4) s—(':'=?;’ i=1---,n)
where s§ = s§/(x1, *++ , Tny1) 18 a scale invariant function of z1, -+ , Tayr; that s,
(4.5) sll)l(xh Sy Tpgr) = 8(’)’(6231, ) an.H) for any ¢ >0,

and the function is such as to assure that sy is independent of the vector
[21/80, *+ , Tn/50) and its distribution is a x*-distribution with n degrees of freedom.
Then

(4.6) r(zi, 2:) < r(y®, zs), (i=1,---,n).
Proor. Let us denote

4.7) Teg G=1,---,n+1)

and

4.8) ¢ =ns§ + 2hs1

It follows from (4.5) that

(4.9) 86 (@, o0y Tarr) = 80 (&1, -+ 0 Ena)-

It follows further that the following pairs of random variables (vectors) are
pairwise independent:
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¢ and [Ely ] £n+1]’
(4.10) & and [£n+1; g-]y (7' = 1) N n))
£ and s('(&, -, Enr1), @=1,---,n).

(However, £; and the vector [£n44, s¢'] do not have to be independent.)
One has

RPN S S

@11 v= & n+ &1
) (2) = ﬂl’n(|£n+1‘),
zi = £s0(&y » 0, Enr).
Therefore, o]
412 E@y®) = B@EE (linl )
”(El; ) En—l—l)
(4.13) E(e) = B )E(;m)E( (0_____ g))
+ £n+1 l

- The distribution of Y.(|¢.41|) = so agrees with the distribution of
(4.14) so/(y -+ s Ena)- :
Since £; is independent of sy'(&, + -+, £.41), the conditional distribution of

(4.14) given £; is the same. Therefore, since E(£) > 0, E(¢1/2) > 0, it suffices to
prove for the conditional correlation coefficient of (4.14) and (n + £4+1)~1/2
given £; that

(4.15) (g (B +++ y Enpr)y (0 + B410)72E) < r(WallEaral), (0 + E41)712).

This follows, however, from a theorem of Fréchet and Bass ([1], p. 640)
according to which in case of a two-way variable having given marginal dis-
tributions, the correlation coefficient is maximal if one of the marginal variables
is a monotone increasing function of the other. This is, however, the case between
Yn(|€nsa]) and (n + £241)712, and thus, (4.15) is true, and theorem 4.1 is proven.

6. The case of two unknown parameters

Let n be given and let k = 2. Let us join to the transformation (3.1), where
7D is defined by (3.2), the equality

(6.1) Yr1 = 27V (Zpys — Tara),

and let us denote this transformation by 7,

(5.2) i, -+, yiha] = Thla, -+ -, Tagal.

Let us denote by 7’ the transformation (4.1) where s; is defined by (4.3), that is
(5.3) [y?, -,y = Tolzy, + -+, Tnga]-

Let y®, - -+, ¥ be defined by the formula
(54) [y(s) : ) y;:i) T2T1[xl’ Tty xn+2]-
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Alternatively, (5.4) can be written in the form of (2.1):
(3)

— 77(3) R
(5.5) W —g®_ w2

@ = G=1,---,n)

where

(5.6) TP = (2% — Tpp1 — Tny2)q(2[n + 2])7172,

s® = s,
while
(5.7) nz = _il z (- Det =3 (@— D)}
- _ n(n + 2)
(58)  g=4¥n (“"”“ Zaal \/2(7» "D F 28 1% — gon = xwz)z)
x 2n(n + 2)

2(n — 1)(n + 2)s* + 12T — Tapr — Tnya)®
Now we have the following result characterizing the property of the above
transformation.

THEOREM 5.1. Let 1, - - - , Toys be independent N (u, o) random variables, and
let y, -,y be defined by (5.4) and let 2, - - , 2. be defined by the relation

U; .
59 G EE s e U, @=1 )
where Uy, -+ , Unya are linear functions of 2, - - - , Tate Such that they are independ-

ently distributed with the common distribution N(0, o2), and ¢(u1, «+* , Uny1) 98 @
scale invariant function (forany ¢ > 0, o(uy, * = , Uns1) = @(CUy, ** * , CUn4s1)), and
such that 21, -+ - , zn 18 a sequence of independent N (0, 1) random variables. Then

(5.10) min 7(z;, ;) < min r(¥®, z.).
1<i<n 1<i<n

If in this formula equality holds, then it is valid not only for the minima but for
any 1.
Proor. Let us introduce the following notation:

yiP
(511) Ei='§o—, (i=1’...’n+1)
where y{?, - -, y$? are defined by formula (4.1), yz}: by formula (5.1),
’ umlﬂ . . 1
£1l_.(u%-l'-----}-,,,,,’2‘)1/2’ G=1,---,n+1),
— _xl-l- “ e +x"+2
(5.12) xomt st

n+2 —
¢ =Y 7 — nX2
i=1
It follows (as in the proof of theorem 3.1) that X is independent of us, - -+ , Un4a
which implies that z; may be written in the form
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n+1 —
(5.13) T = z a;Uj + aian (1' = 1} tre, N + 2)
7=1
and that u + --- + 42, = ¢
Moreover, we have (see the proof of the preceding theorem) that

(5'14) ¢(u17 ftty un+l) = ‘P(f{’ ) E;z+l)'

And further, the following pairs of random variables (vectors) are independent
forz=1,.--,n):

[X,¢] and [&, -, &,
[X,¢] and [, -+, &as1),
(5.15) & and  [£an, 8],
& and £,
& and o(f, -+, &)

Evidently E(¢:£;) = E((&) =0fori #j5;4,j=1,---,n+ L
We have

< jél ¢ ¢ v: o __

610 w=\6- e arom) (rEn) tF
41 , g— 1/2 —_—

-2 a.-fzi( ) + X,

i= n + E:lz-l-l
(6.17) Y2 = tn(Ennal)
(5'18) 2 = g:‘P(E;: Tty gt-i-l)/nlm; (i =1-.--, n)‘

Therefore, for ¢ =1, --- , n),
(5.19) E(zy®)

= [1 = @+ 2+ 2 + D1)EE) B E (Ll ),

(6200  E@z) = aBEDEGE (E (H ) )

Now ai; = r(ui, z;) and E() = E(&?). Using (3.4) and (4.15) we obtain
(5.10). The last assertion of the theorem follows from the similar assertion of
theorem 3.1.

6. The general case

This section deals briefly with the possibilities of extending the method to
more general cases.

In general, let z,, - -+ , T.,x be independent random variables, having under
the null hypothesis the distribution F(zx, u;), i = 1, --- , n + k). Suppose the
shape of the function F(x, -) is known, and the parameter vectors u; are to be
known functions of the unknown constant vector 6,
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6.1) i = pi6)
where 6 is a point of the parameter space ©, (0 € ®). Let us suppose there
exists a @ € O for which u:(6:) does not depend on %, that is

(6.2) 1i(8o) = po, =1, ,n+k).
In other words, if @ = @, the variables x;, - - - , 2, are independent, iden-
tically distributed random variables.
Let us suppose, further, the existence of a distribution-free statistic on the
first n sample elements. Let us denote it by T = T(X), where X = [y, - - - , 2.].
Let © be a random vector whose distribution is known. Let us define the
function Y(T, 2) in such a way that (cf. [6])

6.3) “cond. distr. of Y(T, 2) given T”
= “cond. distr. of X given T, 6,.”

This is in general possible, in many ways. Computational difficulties, however,
may arise in determining the conditional distribution of X.

Since, according to (6.3), the conditional distributions of X and Y agree for
all given values of T, the unconditional distributions have to agree too; that is,
its components i, --- , ¥» are independent, identically distributed random
variables having the distribution F(z, po).

The random vector 2 may be generated by random numbers, or it may be
a function of the variables x;, - - - , Znyz, such that its distribution is independent
of T and 6.

Thus the original null hypothesis may be replaced by the simple hypothesis
that the variables 4y, - -+ , ¥, are independently distributed with the distribution
F (x, 00).

The adequateness of representation of the original hypothesis by this substi-
tute may be investigated in the particular cases. Clearly, it depends on the forms
of the function F(z, u) and the distribution-free statistic T.

Exampres. (a) Gamma-distribution. Let xy, - - - , Tn41 be independent random
variables with the common density function
0 for <0,
(6.4) F(z,p) =

_L xx—l—t
oy Ot e st dt for = > 0.

Here A is known and u is the nuisance parameter.
The appropriate transformation is

@ _ Zs Tntt , -
©5 o —x1+---+x,."’*-“(xl+--.+x,,+l) G=1,2-,n)

where the function ¥, .(f) is a monotone decreasing function assuring that

(6.6) ¥rn (Wmm)
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has the same distribution as z; + - -+ + z, if 4 = 1. This eondition determines
the function y» .(f) completely (see formula (7.13)).

Equality (6.5) yields independent gamma variables with the original shape
parameter and unit scale parameter, that is, having the distribution function

0 if L0,
(6.7) Fx) =< 1 SN )
.mjot e~tdt if z>0.

A theorem similar to theorem 4.1 can be proved concerning the optimality
of this transformation.

(b) Small subsamples. In the case of normal null hypothesis, if we have several
small subsamples with different nuisance parameters, the transformations given
in sections 3-5 can be separately applied for each subsample.

(e¢) Analysis of variance model. In [13] a transformation was given for the
case of a two-way classification, one observation per cell, when the distribution
of the error term is normal, according to the null hypothesis [13], (2). If the
variance is unknown as well, we may apply transformation (4.1) as a second
step.

Also, this transformation enables, as mentioned there, to test the homogeneity
of variances as well in the mentioned cases. In the cases of alternative hypothesis,
the variances of the transformed variables will differ from that of the cor-
responding original ones, but the transformation preserves the magnitude order
of the variances so that the hypothesis concerning the homogeneity of variances
in the original and transformed date are equivalent.

An alternative solution for this problem has been given by N. L. Johnson [3].

7. Practical applications

It is convenient to make some slight modifications on the formulae given in
sections 3-7 for the purpose of practical application. In the modified formulae
we denote by n the original sample size.

(a) If we have a random simple sample z;, - - - , z,, which comes, according
to the null hypothesis, from a normal distribution (expectation and variance
being unspecified), apply the following transformation:

1) v = x,-TS:‘c %_2(Ixn_l —ijévn— 2\ Gl n—2

where

(72) xr = . ’

(7.3) S = i xi — ” (i xi>2 - % (T — 2,)?
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and the funection y»(t) is defined by the relation

(7.4) QY. 1) = 2P(t]y) — 1,
while ¢,(¢) > 0, ( )
v+ 1
T ¢ s+1
2 u¥\ -

(7.5) P() = v—/_ (1 + —;) 2 du,

r(3) v
(7.6) Q) = —2 T3 uT du.

12 E/;
2o (5)

The functions P(f|») and 1 — Q(¢|») are the distributions of the Student dis-
tribution and the x?-distribution, respectively, each with » degrees of freedom.
The notations (P(t|») and Q(t|») agree with that of the Biometrika Tables [9],
tables 9 and 7, respectively, where they are tabulated. These tables may be
used in applications of (7.1). (The formula (7.1) is an equivalent form of formula
(5.4)).

(b) If, according to the null hypothesis, our random simple sample z;, - - - , z,
comes from a normal distribution with specified variance (expectation being
unspecified), then we have to use the transformation

7.7 Yi = s — z
where

il Ti + x,.\/;c
7.8 o=t .
@8) n + Vn

This transformation was given in [13] as formula (1) and is the special case
of formula (3.1) of the present paper.

(c) If, according to the null hypothesis, our random simple sample z;, « -+ , Z,
comes from a normal distribution with expectation 0 (variance being unspecified),
then the transformation to be used is

o z: " ( |za|Vn — 1 >
ey 2" \Ver ..o xa2/

the definition of ¢, (f) being given in (7.4).

(d) Let zi, -+, Zin;, ¢ =1,2,---,m) be independent random variables.
For each given 7 the n; random variables have the common distribution function
Fi(z). Some of the variances of the distributions are supposed to be equal but
unknown.

The hypothesis to be tested is that the distributions F;(x) are normal. The
unknown variance is not specified in the null hypothesis.

In this case we apply the transformation (7.7) for all but one subsample. It
is suitable to choose the notation so that n, > n;, ¢ =1, ---,m — 1) and to

(7.9)
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apply transformation (7.7) for each of the series zy, -+, Zin,, 6 =1,2, -+,
m — 1) and the modified form of (3.1) with & = 2, that is the transformation
yi=z; — 3"
(7.10) Loy — Tn
Ve = T

for the series Zmi, *** , Tmna. Here '’ is the same as in (7.2). As a second
step we apply (7.9) for the sequence of the resultant 3 7., n; — m variables

(7.11) yll, ctty ylﬂl—l, yﬁl’ A ymn..—2, ymna.—l-

(e) Gamma distribution. The suitable form of the transformation (6.5) is
the following:

=% N
(7'12) Y = LN SECRRIE S L (-’El + -+ -Tu)
where the function i ,(t) is defined by the relation

(7.13) =1 (\—/"’—;_@_—1 A — 2) = L\, o),
o —
whereas
/ ot e~ttrtl dt
(7.14) I(u,p) = 2

J, et d
is a gamma distribution function, tabulated in [11], and
/0: 2711 — z)rldx
(7-15) I!(pv Q) = /l

A 211 — z)elde

is a beta dis*ribution function, tabulated in [10].

8. A comparative example

The aim of the following example is to illustrate in a special case that the
transformation fulfilling our optimality criterion gives, in fact, better representa-
tion than the previously known ones.

Let za, T, (i = 1, -+, m) be independent random variables with distribu-
tions

®.1) Pz, = a) = %,

Pz, = —2a;) = %, (a;>0), @=1,---,m;j=12).

The first three columns of table I show the distributions of the transformed
values yielded, by (4.1) and (3) of [15], respectively, (n = 2):
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TABLE 1
Probability Possible valqes of the transfprmed
values using transformation
4.1) (3) of [15]
2/9 —1.047 —1.447
1/9 — 675 — .319
2/9 378 457
4/9 .675 1.150

(The second factor in the right-hand side of formula (4) of [15] should be
read om(ym/ Wi + -+ + yR)V3).)

If, according to [6], we use random numbers, the distribution of the trans-
formed values will be a continuous distribution, the mixture of four x-distribu-
tions. The density of this distribution is

(8.2) f—; e~ 5%/8 | 2391; e~ /4 for z >0,
(8.3) —g—g e—57%/16 1_x8 e~/ for =z <0.

Apparently the first of these three distributions gives the best representation
for the original ones.
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