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1. Introduction

This paper is concerned with a two-hit model for the initiation of neo-
plasia. The model is related to those discussed by H. G. Tucker [5], and
by J. Neyman and E. L. Scott [4] in this Symposium, and also in recent papers
by D. G. Kendall [1] and J. Neyman [3]. I should like to take the opportunity
to thank Mr. Kendall for drawing my attention to these problems. The papers
just mentioned all treat Markovian models, and this requires that the life lengths
of cells be random variables with a negative exponential distribution. The main
purpose of this paper is to discuss a model in which the probabilities for repro-
duction, mutation, and death of individual cells are supposed to have a general
distribution, that is, to be functions of the ages of the cells, so that the process
is non-Markovian.

2. Description of the model

We shall suppose that there are three types of cells, and for convenience we
shall call them normal, gray, and black. Clones of black cells form malignant
growths, while the gray cells are supposed to represent an intermediate stage
between normality and malignancy. By mutation, a normal cell can be converted
into a gray one, or a gray cell into a black one. We suppose that the population
of normal cells is so large that its fluctuations can be ignored. The incidence of
first-order mutations, from normal to gray, produces during a time interval
(t1,t2) a number of gray cells which is a Poisson variable of expectation

(2.1) f 2f(t)dt,

where f(t) is a function expressing the intensity of the carcinogenic action which
causes the first-order mutations.
A gray cell will generate a clone of gray cells developing independently of

one another according to the following age-dependent birth, death, and mutation
process. Any individual when newly born has probability 1 - G(t) to live for a
time longer than t, where 0 _ G(t) _ 1 and G(t) T 1. Its life will be considered
to end when it reproduces by binary fission, or ceases to be a gray cell as a result
of mutation, or dies. Note that the probability for a cell's life to end is treated
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as a function of its age, but that this probability is otherwise independent of the
time at which the cell is newly born. This condition ensures that the process,
though non-Markovian, is stationary. It corresponds to a system in which the
gray cells grow in an unchanging environment.

If a gray cell's life ends at age t there are then three alternatives.
(a) It may be replaced by two newly born gray cells (reproduction by binary

fission) with conditional probability q2(t).
(b) It may die, ceasing to be counted as a member of the population, with

conditional probability qo(t). This may also include the possibility of mutation
back to normality.

(c) It may be replaced by two newly born cells, one gray and one black, with
conditional probability ql(t). Other possibilities may be considered. For example,
a convenient way to treat the occurrence of mutations at times other than the
epochs of cell division is to suppose that the gray cell is replaced by a single
black cell.
A black cell will generate a clone of black cells developing by an age-dependent

birth and death process. The difference between the two types of clone will be
that the rates of birth, and of removal by death or mutation, for the gray cells,
will be such that the process is subcritical; while for the black cells the birth and
death rates will be such that the process is supercritical. That is to say, the prob-
ability of ultimate extinction for the gray clones is 1, while it is less than 1 for
the black clones, and so after sufficient time some of those clones which we
regard as malignant will grow indefinitely large. Conditions for this in terms of
the birth and removal rates are known [6], and will be considered in detail later.
Now let us consider what might happen if the growth of gray and black clones

took place as part of an experiment. At the end of a period of exposure to car-
cinogenic agents the experimenter might attempt to count the gray and black
clones, but he would probably miss some, and it seems more likely that he would
miss small clones than large ones. We suppose that C,(n) is the conditional
probability that a gray clone is detected, given that its size is n; similarly Cb(n)
relates to black clones. In order to solve the integral equations for the probabil-
ities for the observation of a gray clone and the black clones that may arise
from it we are obliged to consider a particular form for CO(n) and Cb(n) as well
as for the generation time distribution G(t), but the equations will be written
down before these assumptions are introduced so that we shall be able to consider
alternatives. We require one other conditional probability. Suppose a black cell
is newly born at time t = 0, and let q(t) be the probability that the resulting clone
is detected when observation takes place at time t. Clearly q(t) will be a function
of the birth and death rates for the black cells, and of the conditional probabilities
Cb(n).
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3. Progeny of a single gray cell; integral equation

Suppose a single gray cell is newly born at time t = 0. Let gt be the number of
gray cells, Bt be the number of black clones, and Bt be the number of detected
black clones when observation is made at time t. Let

(3.1) p(z, w; t) = E{zg', wBS}.
We shall obtain an integral equation for this double generating function by

considering possible events during the period (0, t). Suppose the initial gray
cell's life ends during the time interval (u, u + du), which is an event of prob-
ability dG(u). If 0 < u < t, then with probability q2(u) two newly born gray
cells may replace it and give rise to two independent subpopulations, each devel-
oping under the same system of probabilities for the period t - u. The generating
function for the total numbers of gray cells and detected black clones that result
is sp2(z, w; t -u). In a similar way the other alternatives, including that of
survival of the initial individual beyond the period (0, t), contribute the other
terms to the equation, which is

(3.2) p(Z, w; t) = f0 {q2(u)O2(z, w; t -u) + qo(u)

+ ql(u)[1 - (1 - w)q(t - u)]sp(z, w; t - u)}dG(u) + z[1 - G(t)].

In order to obtain detailed information about p(z, w; t) from equation (3.2),
it is necessary to make some assumptions about the nature of the functions
qj(t) and G(t), and about the system of growth and detection of the black clones,
which determines q(t). In the present work we shall concentrate on the limiting
behavior of the system after a long period of development, and attempt to
solve for age-dependent processes the same problems as were investigated by
Kendall [1] for Markovian processes. To do this it is sufficient to make quite
general assumptions.

Let us first consider the black clones. Suppose the generation time distribution
for a black cell is H(t) and the probabilities for fission or death at the end of its
life are r2(t) and ro(t) respectively. Let

(3.3) M f= ro(t)dH(t) and L= r2(t)dH(t)-

Then it is known that the probability of ultimate extinction for a black clone
starting from one newly born black cell is M/L (see [6]). Henceforward we shall
suppose that the detection probabilities have the form suggested by Neyman
and used by Kendall [1]; that is, CO(n) = 1 - yn and Cb(n) = 1 - on where
0 < y < 1 and 0 < # < 1. As in Kendall's work, this makes it possible to use
generating functions. Let be be the number of black cells in a clone that started
at time t = 0 and let 4(z; t) = E{zbl}. Then clearly the probability of detection
for such a clone, at time t, is given by q(t) = 1 - #(i3; t). An argument exactly
similar to the one that leads to (3.2) gives
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(3.4) (z; t) = ft {r2(u)#2(z; t - U) + ro(u)}dH(u) + z[l - H(t)]
and we can put z = d in this.

Letting t -*oo in (3.4), and using (3.3), we get
(3.5) i4'(#; X0) = L#2(#; X0) + M,
which is the same as the equation for the probability M/L of ultimate extinction.
By analytical methods similar to those in section 4 of [6] it can be shown that
4,6(; t) must converge to M/L, but we will merely note the obvious interpreta-
tion, that after a long period of time a black clone either becomes extinct or
becomes so large that its detection is virtually certain. Thus q(oo) = 1 - M/L.

Returning to the problem of the offspring of a gray cell, suppose

(3.6) oi = fo qj(u)dG(u), j = 0, 1, 2.

Once again applying the analytical methods of [6], we can show that 4'(z; w) =
limt-. (p(z, w; t) exists and satisfies the equation that we get by letting t -oo
in (3.2) and by replacing q(t - u) by q(oo) under the integral sign. This gives

(3.7) o42(z; w) + [wal(1 - L - ( - al L (z; W) + 0o = O.

In this quadratic the coefficients are functions of w alone and hence we have
(3.8) 4(z, w) = C(W),
say, which is independent of z. This result corresponds to one given by Kendall
[1] for his Markovian model of carcinogenesis, and he has given an interpretation
of it. After a long time, the gray clone will have died out, but before doing so it
may give rise to some black cells, from each of which a black clone may develop.
Some of these may become extinct but others may survive and grow very
large. The latter will be those that the experimenter counts, and the number of
them will have the probability distribution generated by c(w). We have

(3.9) c(w) = 1 1 - a, M) - Wci(1 -M
1 r M\ / M)]2 1/2y-2 lL-wal ) -l L) - 40.2o}

which clearly can be expanded in powers of w.
The coefficients are complicated but it can be seen that the limiting probability

of the gray cell giving rise to no detected black clone is

(3.10) 2 (1 - - {1 - 4ofw-o(1 - 1 L

and the probability of just one is

(3.11) a2(1- L)[{1 - 4a2cro(1 - a L )2} -/ 1],
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while it is clear that the probability of n, where n > 2, will involve a factor d.
Now a, is the probability that the life of a single newly born gray cell will end
in mutation and it will usually be very small, so that it is almost certain that a
single mutation of a normal cell to a gray one will give rise, if at all, to just one
detected black clone.

It is of interest to consider an alternative model here. Suppose the effect of
mutation, instead of being as described under (c) of section 2, is to change a
gray cell instantaneously into a black cell at any period of its life. It is conceivable
that this accident might speed up or delay its reproduction or death. In general
we shall have to consider the conditional probability q(t) as being replaced by
q(tlv), for a black clone to be detected at time t, given that it started with the
mutation of a gray cell at time zero, the gray cell then being of age v. The equa-
tion (3.2) will be replaced by

(3.12) p(z, w; t) = JO {q2(u)1P2(z, w; t - u) + qO(U)

+ q(u)[1 -(1 - w)q(t - ulv)]}dG(u) + z[1 - G(t)].
Unfortunately we cannot let t Xo in this equation as we have done in (3.2)

because q(t - ulv) does not depend only on the difference t - u. One can imagine
various situations in which it tends to a limit independent of v, for example in
the special case when the black cells reproduce in a Markovian manner. In that
case the limiting function 4b(z, w) must satisfy

(3.13) 4 = 0T42 + 0ao + a, - (1 - w)(1 L)- ]

which is equivalent to Kendall's equation (2.8A) in [1].

4. The general problem

In section 3 we have investigated the growth of the gray and black offspring
of a single gray cell supposed to have been born at time zero. Returning to
section 2 we recall that gray cells are supposed to come into existence in a random
manner so that the number appearing between times t1 and t2 is a Poisson
variable of expectation t'f(u)du. We must now investigate the result of the
complete process in which such gray cells appear and give rise to clones. We
shall suppose that the gray cells that appear are newly born, which, as in section
2, corresponds to a situation in which a mutant appears at the instant of fission.
Let Xi be the number of gray clones and Yt be the number of black clones that
are detected at time t. Let

(4.1) #(z, w; t) = E{zxt, wy"}

be the double generating function for the joint distribution of these variables.
Then it can be evaluated, and moments of Xi and Y, obtained from it, in
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exactly the same way as in Kendall's paper [1]. For convenience we shall re-
produce the results since they are to be used in what follows.
Suppose a gray cell is formed during (u, u + du), an event which has prob-

ability f(u)du, and that at time t it yields g gray cells and B' detected black clones.
Suppose it yields G' detected gray clones, where G' = 0 or 1. Then

(4.2) E{zG', wB'g, B'} = (1 - yg)zwB' + ygwB,
whence
(4.3) E{zG', WB'} = P(y, w; t - u) + z[,p(1, w; t - u) - Po(Y, w; t - u)].
Thus the contribution to the double generating function for the distribution
of the numbers of gray and black clones formed during (0, t) and detected at
the epoch t, due to the possibility of a gray cell being formed during (u, u + du),
is
(4.4) 1 - f(u)du + E{zG', WB'}f(u)du + o(du).

Forming a product-integral from this we obtain

(4.5) #,(z, w; t) = E{zXs, wy'} = exp{-R(w, t) - (1 - z)S(w, t)},

whence

(4.6) R(w, t) = f [1 - o(l, w; t - u)]f(u)du
and

(4.7) S(w, t) = f0t[,(1,w; t-u) -o(y, w; t-u)]du.
From these we can obtain the moments of X, and Yt as follows

(4.8) E{X,} = S(1, t) = J0 [1 - p(-y, 1; t - u)]f(u)du

(4.9) E{Yg} = a--R(1, t) = [,w(l1,w; t-u)]w-. f(u)duOw

(4.10) E{X2} = [S(1, t)]2 + S(1, t)

(4.11) Var (Xt) = E{Xt}

(4.12) E{Y,2} = [c- R(1,t) - R(1, t) - R(1, t)
/aw I w0

(4.13) Var (Y) =-( a2 + dw) R(1, t)

= tn [5p..(1, w; t - u) + p (1, w; t - u)]w-l f(u)du
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(4.14) Cov (Xe, Yt) = S(1, t)

= lo [p(l w; t - u) - (,w; t - u)].=if(u) du.

In order to use these formulas we need to know

(4.15) o(,y, 1; t),
(4.16) po.(1, w; t) and p..(1, w; t) when w = 1,
(4.17) Pw(Y, w; t) when w = 1.

The obstacle to further progress is (4.15). Explicit evaluation of this function,
equivalent to q(t) in sections 2 and 3, is possible in the case of Markovian growth.
In even the simplest generalization, where the generation time distribution is
supposed to be of xA form, y(y, 1; t) can be shown to be the solution of a higher
order nonlinear equation which has been treated elsewhere [2], [6], and the most
promising line of approach seems to be to linearize it and calculate moments.
This is precisely what is wanted for (4.16) and (4.17), so we can go further with
(4.9) and (4.12). An alternative, which has been used before in studies of muta-
tion, is to suppose that one type of clones (in this case the gray ones) grow in a
Markovian manner while the others grow in an age-dependent manner. If this
is done, however, the results are almost identical with those already obtained
by Kendall [1]. Solutions for finite time would involve explicit solutions of the
linearized equations for (4.16) and (4.17) but in view of the difficulty over (4.15)
we shall simply consider (4.9) and (4.13) for large values of time t. We have,
differentiating (3.2)

(4.18) (p'(z, w; t - u) = fo {2q2(u)w(z, w; t -u)wP(z, w; t -u)
+ ql(u)q(t- u)p(z, w; t - u)
+ ql(u)[1 - (1 - w)q(t - u)]'pw(z, w; t - u)}dG(u).

Putting z = w = 1 and letting t-+ oo, we have

(4.19) po.(1, 1;om) = 292Vpw(l, 1; m) + ao[i - M + 1;oo).

In (4.9) we see that E{Yt} depends on the feeding function f(u), as well as
on the solution of (4.19). In the case where f(u) is equal to a constant f, we
obtain

(4.20) lim E{Yt/t} = f [1[ -].
tx-+. a' -O-2L L

We can differentiate (4.18) again to obtain an equation for .,,(z, w; t - u) and
once again consider the limit as t -* o, when z = w = 1. Together with (4.13)
and (4.19) this gives
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(4.21) lim t Var(Yi) = f 2 1 + 2f _L

Some qualitative deductions made by Kendall [1] for the Markovian case
can be reproduced for the present model; for instance, obviously Xi is a Poisson
variable and Cov (Xe, Yt) is positive. Also his remarks on the subject of a
"threshold" require only trivial changes in the formulas, which are due to the
present model being worked out for the case where mutation takes effect at the
instant of fission.

5. Model involving more than two hits

We can extend some of the preceding results to a model in which there are
two (or in general n) types of gray cells, and the course of mutation can be
schematically represented by normal -- gray, -4 gray2-- black. We shall outline
the generalization of section 3 to this model. Let J(t) be the generation time
distribution for a gray, cell, that is to say, the probability that a gray1 cell newly
born at time t = 0 lives longer than time t is 1 - J(t). Let s,(t), where j = 0, 1, 2,
be the conditional probabilities for what follows the end of life of a gray1 cell.
In particular, si(t) is to be the probability that the gray, cell is replaced by a
newly'born pair consisting of a gray, and a gray2 cell. Let git be the number of
gray1 cells, 92t be the number of gray2 cells, and B' be the number of detected
black clones when observation is taken at time t, there being a single newly
born gray, cell at time 0.

Let

(5.1) x(x, y, z; t) = E{xgt, y92t, ZB1}.
Referring back to the argument leading to (3.2) it can be seen that the double

generating function for g2t and Bt', when it is supposed that one newly born gray2
cell is in existence at time t = 0, is the same function (p(y, z; t) as appears there,
provided that we replace gt by g2t. Note that the dummy variables are now y
and z. A similar argument then shows that x(x, y, z; t) and p(y, z; t) are connected
by the equation

(5.2) X(x, y, z; t) = f0 {s2(U)X2(X, y, z; t - u) + sO(u)

+ sl(u)x(x, y, z; t - u)p(y, z; t - u)}dJ(t) + x[1 - J(t)].

The equation (5.2) can be treated by limiting operations such as have been
used before. Let

(5.3) x(x, y, z;°o) = lim x(x, y, z; t),
and
(5.4) fo0 sj(t)dJ(t) = Zj, j = 0, 1, 2.

Then
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(5.5) X(X, Y, Z; o) = 2X22(X, Y, z; 0) + 2O + ZlX(X, y, z; )P(y, z; ),

whence it follows that x(x, y, z; 00) is a function of z alone, given by

(5.6) X(X, y, Z; 00) = 22 (1 -2ZC(Z) - {[1 -2C(Z)]2 -4222}1/2),
where c(z) = p(y, z; x) is the limiting generating function obtained in section 3.
This argument can clearly be repeated to cover more than two types of gray cells.
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