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1. Introduction

“Monte Carlo” investigations, that is (at least in the present context), the
simulation of real phenomena, or idealized models of them, involving a random
or probabilistic element in their structure, by the deliberate use of “random”
(or pseudorandom) numbers, have already played an important role in many
applications of stochastic models and processes, both by way of background
material in understanding qualitatively some of the properties of such models,
and more quantitatively, in the study of particular problems that are not amen-
able to complete mathematical solution. The advent of electronic computers has
especially facilitated the extension of such investigations to include more real-
istic conditions not easily incorporated into tractable mathematical models; and
in physics, for example, a growing use of Monte Carlo studies is evident.
However, it is in biology that some of the most important developments are
being realized, partly because of the often complex situations to be studied, but
also because no genuine progress can be made until biologists themselves accept
some of the consequences and predictions to be deduced from theoretical
models. Such acceptance is often more convincing to them if the properties of
the models are demonstrated numerically in typical cases than if presented in
abstract mathematical terms; often, as already noted, the latter results are
unavailable anyway.

In the study of biological populations changing over time, two types of process,
one involving discrete units of time (or generations), and the other continuous
time, are conveniently separated. In the first type, the probability f(n,) of the
vector number n (a scalar if only one type of individual is involved) at time
r is given in the model in terms of the number n,_; at time » — 1; the model is
for simplicity assumed Markovian in n,, though not necessarily homogeneous as
regards the time, and the Monte Carlo study consists of generating one or more
random series of the vector n as the time r increases. In the second type, the
process (again assumed Markovian) is usually specified by infinitesimal transi-
tion probabilities g(n;, m) dt for n, changing to m(>n,). While this process is
sometimes conveniently approximated by an appropriate process in discrete time
steps 8¢, a precise realization (first suggested, I believe, by D. G. Kendall [14])
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is obtained by noting (a) that the random time interval T' before the next
transition occurs is exponential with mean 1/G(n.), where

(1) G(nt) = %g(nb m)l

and (b) that the relative odds of the different possible transitions, when the
transition occurs at time ¢ + T, are proportional to g(n,, m). Note that (b) still
holds if the process is not time-homogeneous, but the random time interval T is
then no longer strictly exponential, having a distribution

@) P{T > u} = exp [— ﬁ*" G(n; 7) df],

where the transition probabilities g(n,, m;?) df and their sum G(n;; t) dt, now ex-
plicitly vary with the time. The vector formalism covers a population specifi-
cation over a discrete spatial lattice, but not more general specifications over a
continuous spatial region.

One of the most quantitatively precise fields of mathematical biology is in
genetics, and in particular in the evolutionary study of genetic populations; it
is therefore interesting to see the recent development of Monte Carlo studies in
this general domain (see [17] and [11]), for example, to check approximate con-
clusions from somewhat complicated mathematics. In the fields of ecology and
epidemiology, both quantitative, and more qualitative or illustrative, studies
have proved important. Thus in epidemiology, some of the earliest Monte Carlo
demonstrations of the development of an epidemic appear to be those of Reed
and Frost (compare Bailey [1]). The purpose of the present paper is to report
the current position of Monte Carlo studies with which I have been associated;
some of these are in ecology, but the most extensive so far are in epidemiology,
and the latter field will therefore be discussed first.

2. General purpose and outline of the epidemiological studies

My own epidemiological investigations have been largely concerned with a
stochastic theory for a certain class of recurrent epidemic, typified in measles,
and defined and developed in detail in my last Berkeley paper [4]. In that paper
I illustrated with artificial series the contrasting behavior of (i) a small com-
munity in which the level of susceptibles dropped low enough after each epidemic
to ensure extinction of infection until this could be replenished from outside
([4], figure 6); (ii) either a larger community, or a disease with different para-
metric values, for which epidemics were likely to recur for a considerable time
before fade-out of infection ([4], figure 10). The first type of behavior had also
previously been illustrated [2] by a model representing measles incidence in a
boarding school. The possibility of recurrence of epidemics depends of course on
the renewal of susceptibles. The extinction of infection, however, is associated
with the stochastic behavior in a closed population of a level of susceptibles
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above or below the “threshold” value; and logically this should be studied first.
Some empirical studies on this problem were reported by D. G. Kendall [15] at
the last Berkeley Symposium (compare also Horiuchi and Sugiyama [13]).

Later Monte Carlo work of my own has concentrated on studying more quanti-
tatively, with particular reference to measles, the critical community size
required to maintain recurrent epidemics in & community closed to further infec-
tion from outside. The more qualitative early results have been supplemented by
further (i) investigation of actual measles statistics [6], [7]; (ii) theoretical
though approximate calculations [8]; (iii) Monte Carlo results, some of which
have been provisionally referred to in previous papers, but which are more fully
reported in the present paper.

The basic epidemiological model is defined in [3] or [4], but is repeated here
for completeness. In its continuous-time (C) formulation it is defined by the
infinitesimal transition probabilities:

Type of transition Transition probability
S—>8+1,I-1 vdl
S—8, I-I-1 ul dt
S—»8—-1,I-1+1 AS dt

S and I here denote numbers of susceptibles and infective persons, respectively.
The analogous discrete-time (D) formulation is

(3) Sr = Sf—l + m — Ir,

where I, is a binomial random variable with probability per ‘“trial” 1 —
(1 — p)I*, and number of trials, S,. The use of (C) was started for comparison
with theoretical results, but the greater rapidity of (D), together with its probable
closer resemblance to the true situation in measles (with its fairly well-defined
incubation period), resulted in a later switch to (D). Two other complications
have also been introduced. The first was the spread of actual communities over
an area, so that diffusion (d) of infection in space had to be allowed for. The
Monte Carlo results with this variant of the model are hardly feasible except
on an electronic computer, and the series obtained are of considerable interest
in illustrating the extent to which different regions in the model remain in phase.
The model (Cd), which was described in detail in [6], incorporated a 6 X 6 grid
or lattice of cells, diffusion of infectives taking place between adjacent cells. In
the analogous discrete-time version (Dd), the spread of infection was more con-
veniently achieved by allowing infection across the common frontier of adjacent
cells. The precise details are given in the Appendix.

However, with regard to the problem of time to fade-out of infection, the
effect of spatial extension of the community appears less important than I
thought at first; and a considerable number of series (D) ignoring spatial spread
was obtained “manually.” This last set was finally extended to cover some al-
lowance for seasonal variation in infectiousness (Ds), the coefficient of infectious-
ness \ being modified to A[1 + 0.1 cos (27t/52)], where ¢ is in weeks.
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3. Further discussion of results

It is of course impossible to present here all the individual series in detail,
these including the figures for each of the 36 cells in the electronic computer
results. Some of them are depicted graphically, including the total notifications
both for the continuous-time series as far as this was taken (figure 1) and for
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FIGURE 1

Continuous-time series
(total notifications per week, with m = 108).

one of the discrete-time series up to extinction (figure 2). The separate notifi-
cations for the four quarters of the grid in the case of those latter series are shown
in figures 3 and 4 for two series obtained for two-thirds the original population
size, that is, m = (2/3) X 108 = 72. They both terminated after two epidemics,
and the random variation not only between the individual quarters but also
between the two series is well depicted by these two figures. The times to fade-
out, which are of course very variable for the individual series, are summarized
in figure 5. The series obtained manually were extended to rather small popula-
tions to try to obtain a reasonable range of population sizes, though for very
small community sizes with rapid fade-out, the times to extinction are more
strongly conditioned by the epidemic cycle and the starting conditions used.
The empirical line

“4) logie T = 2.1 + 0.005m
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Discrete-time series
(total notifications per fortnight, with m = 108).
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Discrete-time series
(notifications for separate quarters of the grid, with m = 72).
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(shown on figure 5) was suggested [7] as a rough summary of all the results with-
out seasonal variation. These last results with seasonal variation in A are useful
in providing a check on the theoretical calculation of the resulting seasonal vari-
ation in notifications based on the deterministic form of the model [this having
been used to check that the 0.1 cos (27t/52) component should be sufficient to
ensure a realized seasonal variation comparable to that observed for real
measles series]. The effect of the seasonal term on average notifications during
the year is shown in figure 6, and is of the order anticipated. Its effect on fade-out
is less clear-cut; the suggestion, especially for m = 27 and 54, is that times to
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Discrete-time series
(notifications for separate quarters of the grid, with m = 72).

fade-out are reduced on the average, though the variability between points for the
same value of m unfortunately makes the exact quantitative effect still rather
doubtful, and a further set, say for the seasonal coefficient doubled, would be use-
ful. This variability is rather strikingly illustrated by one of the series form = 54,
shown for interest in figure 7 (compare figure 10 of [4]) and lasting for 981 fort-
night units or about 38 years.

The final figure depicted in this set, figure 8, is one of the series with seasonal
variation. In spite of the average seasonal effect shown in figure 6, it is doubtful
whether the individual series with and without seasonal variation could easily
be separated by eye.

The full series should of course be of use for various further statistical analyses
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(compare the remarks on the ecological Monte Carlo series in the next section).
Some of these, which could be concerned with investigation of realized marginal
distributions, say of the number of infectives, are not at first sight directly
relevant to the fade-out problem, but it will be remembered that one theoretical
difficulty with this problem is that no very accurate distributions are yet avail-
able theoretically, and further information from the series should, when properly
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Times to extinction (7") plotted against m.

assessed, lead to more accurate estimates of extinction times than do direct ob-
servations on fade-out.

An indication of this kind of information is given in figure 9, which shows the
marginal distribution of new notifications each fortnight for the long series of
figure 7. The skew character of the distribution is of course not surprising, but
stresses the inappropriateness of any crude normal approximation for this dis-
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tribution. The observed mean of the distribution is 53.4. The standard de-
viation is 34.7, which is rather less than the theoretical first approximation 43.1
calculated from the formula [m(1 4+ n/m)]V?, with m = 54, n = 1800, for the
continuous-time model; but how far this is accounted for by the use of the
discrete-time model and also by the distribution coming from a series with a
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Seasonal variation in notifications over the year
(continuous line for series with 109 variation in ),
dotted line for series with A constant).

rather anomalously long lifetime (and hence probably with a somewhat undersize
variance) has not yet been estimated. It is, however, noted that the overall
notifications for the first of the electronic computer discrete-time series (which
includes of course the transmission of infection from cell to cell) gave an observed
mean 103.9 and standard deviation 57.1, the latter for this series being much
closer to the value 60.9 obtained from the formula quoted above. An interesting
problem that has arisen here is the theoretical relation between variance (condi-



‘(#G = w YA ‘A[[Bnusw pours}qo) soLIes jseduory

1 FUOOLT

086 096 ove 026 006 088 098

ovs oz8 008 082 09L ovL oz 00L 089 099

o8l
089 0e9 019 06$ 0LS 0SS 0€S (1] (14 oLt oSt (2134 ol
1 i ¥ LS R T

06¢ 0LE 0Se Ofe

02E 00 082 092 ove 022 002 081 091 obl o2l 00! 08

47



48

FOURTH BERKELEY SYMPOSIUM: BARTLETT

200
1601
g 120
-
<
o
=
5 80
&z
40
0
‘I‘ ¥ ‘I‘l T T i ‘l‘ ¥ T I l‘l‘ I T
o 20 40 60 80 100 120 140. 160 180
TIME UNIT, ONE FORTNIGHT
FIGURE 8
" Example of series with 109, seasonal variation in A (with m = 54).
The arrows indicate times of maximum infectivity.
80 -
40 -
. —
Q
Z30
3 ]
w
& N
20 |
0
o 1 !I T LN l 1 T L L L
O 9 19 29 39 49 59 69 79 89 99 109 U9 (20 139 49 159 169 179 189

NUMBER OF NOTIFICATIONS
F1GURE 9

Marginal distribution of notifications for series in figure 7.



ECOLOGY AND EPIDEMIOLOGY 49

tional on observed lifetime) and “lifetime” for these “quasi-stationary” series,
as I have called them.

4. Ecological studies involving two species

Among Monte Carlo studies of an ecological character must be included the
various empirical investigations by plant ecologists of the statistical distri-
butions, Poisson or otherwise, obtained from various artificial procedures such
as throwing counters and the like. However, the theoretical problems in this
field are usually “static’’ in character, and problems in animal ecology are closer
to the epidemiological ones discussed above. In [5] I gave Monte Carlo realiza-
tions of simple stochastic models for (i) host and parasite, and (ii) competition
between two species. Leslie and Gower [16] took up the latter problem, making
use of a discrete-time version proposed by Leslie, and generating series exem-
plifying the situations both of a stable equilibrium point and of an unstable one.
Where ‘“‘stable” distributions were generated, the results could under appro-
priate conditions be quite well predicted by approximate theoretical formulas
[10], and were bivariate analogues of the series generated for one species alone.
The latter series were tested somewhat more precisely in the paper [10] just
referred to, making use of second-order approximations for such quantities as the
mean and skewness of the distribution of population size.

The points in common between some of these ecological situations and the
epidemiological problem of sections 2 and 3 should be noticed. Thus in [5] I
showed that the simple host-parasite (or prey-predator) relation was ‘“neutral”
as regards stability, but could be made more, or less, stable by introducing
immigration, or age lag to maturity, respectively. The epidemiological model
defined above is stable (deterministically), but this does not prevent, with the
full stochastic version of the model, extinction of infectives in small communities.
For larger communities what I have termed a quasi-stationary series can be
generated, the “lifetime” of which can be very long. This situation is analogous
to the series generated for the stochastic logistic model, for which the passage
time to zero once the population size has reached the neighborhood of its equilib-
rium value can be effectively infinite for a small enough variance; on the other
hand, for conditions conducive to a large dispersion, the extinction probability
can become appreciable.

Monte Carlo results obtained for the competition problem where the deter-
ministic equilibrium point does not exist or is unstable seem more useful, for
no approximating theory is available. In the simplest case of a continuous-time
model with transition probabilities:

Type of transition Transition probability

NoN+1LM—oM AN, M) dt
NoN—-1L,M>M BN, M) dt
M—>M+1,N—>N C(N, M) dt

M>M—-1,N—>N D(N, M) dt
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where N and M represent the numbers of the two species, it is straightforward
to write down the equation for the extinction probability p.(n, m), say for the
first species, for initial numbers Ny = n, My, = m; and hence to have the equation
satisfied by its limiting value p(n, m), namely

(5) [A(n; m)An - B(n; m)A,,E,,‘l + C(n’ m)An — D(n) m)AmET;l]p(n: m) = 0,

with p(0, m) = 1, p(n, 0) = 0, where n, m > 0 and A,p(n, m) = p(n + 1, m) —
p(n, m), E;'p(n, m) = p(n — 1, m), and so on. However, it seems in practice
still most convenient to obtain solutions by Monte Carlo means. This was first
done systematically (using an electronic computer) by Leslie and Gower [16]
for a discrete-time model, in some particular cases which were analogues of a
continuous-time model with functions 4, B, C, D of the form

(6) A(N, M) = alN - a11N2 - alzNM,
B(N,M) = BN + BuN? + BuNM,

and so on. The “birth” probability A(N, M) is defined as zero when the above
expression kecomes negative, and this ensures a ‘‘ceiling”’ to the numbers N, M
(and hence no mathematical complications due to escape of N or M to infinity).

The extent to which a model of this last type is representative of the ecological
situation described in, say, [18] when two Tribolium species “compete,” has
been discussed in [5] and [9], and some comments about this are also made
below. For the moment I shall merely define a model by the functions

A(N, M) = 0.11N — 0.0007N? — 0.001N M,
B(N, M) = 0.01N,

C(N, M) = 0.08M — 0.0007NM — 0.0007M2,
D(N, M) = 0.005M,

with the remark that this model, while grossly oversimplified for the purpose,
was considered relevant to the Tribolium competition problem (at 29°C, 70%,
humidity) with N representing Trtbolium castaneum and M Tribolium confusum.
It has been studied by V. D. Barnett, to whom I am very grateful for the sum-
mary (table I) of his results on the estimation of the extinction probabilities
p(n, m). These were obtained by analogous methods to those of Leslie and Gower
for the discrete-time model, a large number of stochastic paths on the N, M
graph being run off for varying initial numbers n, m. (It should be recalled that
for these stochastic paths the random time intervals between successive events
are not needed.) It was found that over the limited range of initial conditions
shown in table I the theoretical formula

@)

8) logl—_in = —1.71477 log n + 1.00638 log m — 2.01481 — 0.349612 n

+ 0.139616 m

fitted fairly well when the calculated probabilities were compared with the ac-
tual extinction relative frequencies, although some systematic discrepancies can
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5 488  .170  .067 030 .015
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44/103  4/46  0/26  0/25
3 302 .085 032
34/90  2/44  0/22
2 200 051
15/62  0/30
1 098
4/39

be noticed in the regions of small p and 1 — p. When considering these discrep-
ancies, it should be remembered that each stochastic path contributes to several
“initial” starting points, the accumulated frequencies for which are thus not
independent. One interesting feature of the use of the Manchester electronic
computer to obtain these results was the possibility of photographing typical
paths from an oscilloscope, two such paths being reproduced as accurately as
possible in figure 10. These two paths were both for the initial conditions n = 2,
m = 12, which (with p ~ 0.568) represented a point from which the outcome
was very uncertain. For n =4, m = 4, on the other hand, the proba-
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bility of survival of N (representing Tribolium castanewm) was near unity
1 — p~0.979).

Before comparing such results with those reported by Professor Park for
Tribolium, two points must be stressed. The first is that the above model has
telescoped all the stages of the flour-beetle into one, whereas the development
from egg to larva to pupa to mature adult (which eats some of the eggs) is a
process over time which should (and obviously does from the records) lead to
oscillatory waves in the population growth. Such oscillations, especially at the
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Two paths from the same starting point n = 2, m = 12
(based on photographs).
Path to right 2497 steps; path to left 1142 steps.

initial stages of growth of the population, must be very relevant to the extinction
phenomenon when two species are put together, and should consequently be
incorporated, for example, by some appropriate age lag to maturity, into any
model aiming at quantitative agreement.

The second point is that the results already published by Park (for example,
an estimated probability 1 — p(4,4) = 0.86 at 29°C, 70% humidity) are in
process of revision, as Professor Park has subsequently isolated different strains
of each species with differing behavior, and any final comparison must wait
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until the results of his further investigations are available and properly assessed.

Before concluding this section I will note one further property of some ecologi-
cal models possibly relevant to the first point above of the effect of age lag to
maturity. Nicholson [19] reported a very regularly oscillating population of
sheep blowfly (Luctlia cuprina), attributable to the dependence of the production
of eggs on the density of the adult population. Suppose we consider a very simple
deterministic model with two stages of growth with numbers P (say eggs) and
A (adults), using discrete time to emphasize the age lag to maturity (the time
unit being taken to correspond to the maturing of P to A). Let

(9) Pr = ()\ - aA‘r—l)lqr—l;
Ar = Ar—l(l - 6) + Pr—l,

where in the first equation we take P, = 0 if the expression on the right becomes
negative. The “equilibrium” values of P and A are

_ (Ao _A—e
(10) P, = PR A, = 5
but if we put P = P.(1 4 p), A = A.(1 + a), we find for small a and p
-2
(11) pr = — >\ < ar—l, a, = ar~—l(1 - 5) + epr-—l;
whence
(12) a = a,4(1 —¢) — (N — 2¢)a,.

This recurrence relation gives instability if A — 2¢ > 1. With regard to models
for Tribolium, note that this conclusion is unaltered if in (9) we insert a ‘“can-
nibalism” term —pA, P, as well as, or instead of, the direct density-depend-
ence term —3A?_,. But owing to the restriction of P, to zero if A,_; increases
above N\/§, then A,.; decreases by the second equation. This leads to a self-
regulating cyclic mechanism even with the deterministic model, and stochastic
fluctuations with such a model would be unimportant. This conclusion does not
depend on the abrupt change in the behavior of the production of eggs, when
A, = \/3, as the first equation may be replaced if desired by

(13) P, = M, _ie=4r,

6. Concluding and summarizing remarks

While a general approach to Monte Carlo studies in biology has been made by
way of introduction, the specific results discussed have tended to center on two
problems: (i) that of a model for recurrent epidemics, with particular reference to
fade-out of infection for measles, (ii) that of competition between species in
ecological models, with particular, though not very quantitative, reference to
Park’s Tribolium data.

The series obtained should still yield a good deal more information than has
yet been extracted, at least in the direction of further summarizing of empirical
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distributional and other results. This emphasizes the very valuable secondary
function of investigations of this kind, that even when they are still rather
provisional in regard to a specific purpose, such as fade-out times for measles
or extinction probabilities for Tribolium confusum vs. Tribolium castaneum, they
also yield useful artificial series as background material, the results from which
are available for comparison with theory if or when the latter becomes available.

I am much indebted to the following persons for help in obtaining the various
Monte Carlo series: J. C. Gower, for the continuous-time spatial epidemic model;
E. Kerr, for the discrete-time spatial epidemic model; Christine Caley, for the
discrete-time epidemic series obtained ‘‘manually”; and V. D. Barnett, for the
competition between species model.

o O % % O
APPENDIX

In [6] the coefficients used for a continuous-time model with a 6 X 6 grid
were (scheme II):

A = 0.005 (rate of infection per week per infected person per susceptible
person in one cell);

v = 1.5 (rate of entry per week of new susceptibles into one cell);

= 0.5 (rate of removal or recovery of infectives per week per infected person);

e = 0.125 (rate of migration per week per infected person in one cell to any
one neighboring cell with common boundary).

This gave n = 36u/\ = 3,600, m = 36v/u = 108.

In the corresponding discrete-time model the unit of time was a fortnight,
and the effective number J of infectives in any interior cell (with an obvious
adjustment for boundary cells) available for infecting the susceptibles in that
cell was assumed to be

(14) J =31+ HI® + 10 4 16  I©]

where I was the actual infectives in the cell, and I@, I® 1@ and I'® the num-
kers in the four relevant adjacent cells.

To drop the population size down to two-thirds its previous value, the rate
of entry of susceptibles per cell per fortnight was dropped from 3 to 2, the prob-
ability p increased from 0.01 to 0.015, and the formula for J modified to

(15) J = i[ + %[I(a) 4+ I® 4 [ 4 [@],

One series was attempted with a change in the extent of cross-infection, the
expression for J (for the larger population size) being

(16) J = %1 + %[Im +I® 4 [@ 4 [@],

Unfortunately, owing to a machine fault this series had to be curtailed.
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It should be noted that the basis of comparability of cross-infection used in
the continuous- and discrete-time models is that diffused infectives in the
continuous-time model will on average only be available in the cell they have
migrated to for half the total (small) time-interval under consideration.
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