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1. Introduction

During the last few years, several papers have been devoted to the study of
random functions. And though a large amount of work remains to be done in
this field, it presents some difficulties. If we try to apply in the field of random
functions-or, more generally, of random elements-some of the basic notions
of classical mathematical statistics such as sufficient statistics or maximum
likelihood, we find that conditional probabilities or probability densities do not
obviously exist, that sets and spaces are not compact or even locally compact,
and so on. The existence of conditional probabilities is a particularly important
point. I emphasize that, in this paper, by "conditional probability" I always
mean a "regular conditional probability," that is, with the complete additivity
property.

Concerning this existence of conditional probabilities, a very important ad-
vance has been made by M. Jirina [4]. Among the more general results given
in this paper, there is the following statement.
THEOREM 1.1. Let X be a metric, separable, complete space of elements x, let S

be the smallest ar-algebra of subsets of X containing the spheres (or the Borel sets)
of X, let m (e) be a probability measure on (X, S), that is to say, a function of the
Fet e, defined for e E S, which is nonnegative and completely additive on S, with
m (X) = 1, and let 2 be any o-algebra C S. Then there exists, associated with m.(e),
at least Gne conditional probability ,u(x; e) on S, relative to M, having the following
properties.

(a) It is a nonnegative function of x E X and of e E S, which, for every fixed
e E S, is Z-measurable as a function of x.

(b) For every fixed x, it is a probability measure on S as afunction of e, including
complete additivity and ,u(x; X) = 1.

(c) For every A C 2 and every e E S,

(I.1) m(A l e) = JA M(x; e)m (dx)-
Jirina has completed the preceding results in [5]. It must be pointed out that
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290 FOURTH BERIKELEY SYMPOSIUM: FORTET

inl his paper the condition that ,(x; e) is :-measurable as a funetioni of x, is
weakened to ,u(x; e) is 2-measurable, ! being the completion of I.
A particular application of theorem 1.1 is
THEOREM 1.2. Let y = y(x) be an S-ineasurablc reeal-valued functionl onl X, that

is to ,ay, a 7reasurable mapping of X into the space R of the real numbers. If x is
randomi with probability law o/(e), then y(x) is a random variable with some definite
distribution function F(y). For every real numnber y, there is a conditional probabil-
ity law ,u(y; e) for x in X, which is the probability P-{x E ely(x) = y}. If A is any
Borel subs,et of R, and e any subset of ? belonging to S, we have

(1.2) P{y(x) C A, x E e} f A(y; e) dF(y).

Theorem 1.2 still holds, of course, if, more generally, y = y(x) is a mapping
into n-dimensional Euclidean space, that is to say, if y is an n-dimensional
random variable.

Jirina's method is a direct set-theoretic method, but we can think of another
approach. Let 5 be a convenient vector space of S-measurable mappings f of X
into the space R of real numbers. An a priori or a conditional probability meas-
ure p on (I, S) can be defined as a linear functional on i, that is, by means of
the mathematical expectations

(1.3) f|f(x)p (d.x),
and the proof of the existence of some conditional probability measure p can be
effected by establishing the existence of the corresponding mathematical expec-
tations (1.3); I do not think that such a method would be more powerful than
Jirina's method, but it may be easier to handle.

As an example of such a method, in R. Fortet and IF. Mourier [2], theorem 1.2
has been proved under the assumptioni that 3E is a real separable reflexive Banach
space, S being the smallest a-field containing the Borel sets of X. In this case, 3V
can be restricted to b)e the space ?.* of the strongly continuous linear functionals
on X, in such a way that a pro)ability measuie p on (?, 5) is definied b)y its
characteristic functional

(1.4) p(x*) = ei (r I) p (dxt)

where x* C ?(* is aII arbitiaiy strongly continuous linear functionlal oil X.
In particular, wvith this second method, it may be easier to handle the uillicity

problem. In his papers Jirina says nothinig onl this (uestion. In a short note by
Mourier [8], she gives a definition of the unicity property which is obviously
inadmissible. A tentative definition of the unicity property can be the following.
Two given solutioins of the conditionial probability existence problem, that is

to say, two given functions u(x; e), ,u'(x; e) having the above properties (a), (b),
and (c), are not considered as distinct if the set of the x (x E X) such that there
exists an e C S for which ,u(x; e) D ,U'(.x; e) is of ni-measure zero.
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Now let e be the family of the functions u(x; e) having the properties (a), (b),
and (c). We say that there is unicity if no two functions of e are distinct.
In this sense, and in the case treated by Fortet and Mourier [2], we can easily

prove unicity. With their notations the problem reduces to the following: A being
any Borel subset of R, and x* any element of X*, also 4(x*; A) being a given func-
tion and v (dX) a given probability measure on R, we look at the functions
so(x*; X) of x* C X* and X E R, which have the following properties.

(i) For any fixed X we have so(x*; X) as a function of x* is a characteristic
functional.

(ii) For any fixed x* E X* and for any Borel subset A of R,

(1.5) 4(x*; A) fJ| o(x*;X)v (dX).

As X* is separable, we choose a dense denumerable subset X*' of X* and let
x;, j = 1, 2, 3, * , be the elements of X*I.

Let ,o(x*; X) and (p'(x*; X) be two given arbitrary solutions of the preceding
problem. By (1.5) and by the Radon-Nikodym theorem, and excepting a set of
values of X of v-measure 0, so(x*; X) and 5ot(x*; X) are equal for all x* E X*'.
Since p and yp' are continuous functions of x* on X* they are identical on X*,
and this proves the unicity.

2. Discrimination between two laws

Let X be a real random variable, and let us consider the two following hypothe-
ses: hypothesis H1, X obeys the probability law 2l, with density fi(x); hypothesis
H2, X obeys the probability law 22, with density f2(x). The discrimination prob-
lem between these two hypotheses is a classical one and contains the two essential
features listed below.

(a) The likelihood ratio y(x) = f1(x)/f2(x) is a sufficient statistic. In other
words, the probability law of X, conditional on the value y of the ratio fi(x)/f2(x),
is the same with 2L as with 22.

(b) Starting from this likelihood ratio, methods of testing can be constructed,
following, for instance, Neyman's point of view.
Now let us assume that X is an arbitrary space of elements x and that ml

and M2 are two probability measures defined on X, more precisely defined on
some a-algebra (B of subsets of X. A random element X with values in X obeys
either the law ml or the law M2, and the question is to discriminate between
these two hypotheses by one observation or by several independent observations
of X.

There is no difficulty in introducing the analogue of the ratio y = fl(x)/f2(x).
Several authors, such as U. Grenander [3] and B. Adhikari [1], have remarked
that the measures mi and M2 are absolutely continuous with respect to the
measure in = ml + M2, by the Radon-Nikodym theorem, with respect to mi,
mij and m2 have densities fi(x) and f2(x) respectively, and the ratio y = fi(x)/f2(x)
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will be the likelihood ratio. Hence methods and results like those recalled in (b)
can be easily developed (see Adhikari [1]). Here we are faced only with the
problem of actually determining y as a function of x.

Concerning point (a), the sufficiency can be handled only if, with each of el
and £2, the variable X has conditional probability laws with respect to the ran-
dom variable Y = f1(X)/f2(X). Let us assume for instance, that X is a metric
complete separable space, and that (3 is the' a-algebra of the Borel sets of X.
Assuming also that the set {x: fi(x) or f2(x) = O} is of m-measure 0 (it would
not be difficult to remove this assumption), let vi and V2 be the two probability
laws for Y that correspond respectively to L1 and £2, so that vi and vi are abso-
lutely continuous each with respect to the other. If w is any B-measurable subset
of the y-axis and w-l the set {x: y(x) E w} we have

(2.1) v1(w) = ml (dx) = f fi(x)m (dx) = f i f2(x)m() (dx)

= f fi(x) m2 (dx) = f YV2 (dy).

Let us assume that under xL the measure IA,(y; e) is a probability law for X,
conditional on Y, and that under £2 the measure 42(y; e) is a probability law
for X, conditional on Y. Such conditional probability laws exist by theorem 1.2
and we have

(2.2) f 2(y; e)v2 (dy) = M2(e n w)

for every e C (3. Consequently

(2.3) f M2(y; e)v, (dy) = f 2(y; e)yv2 (dy) = f yM2(e nl dy)

y Ff[ dYfi(x)m (dx)] = fenwflx)n (dx)

= irni(e n w),
so that 92(y; e) is also a conditional probability law for X with respect to Y
under £i.
We may admit that this result constitutes sufficiency. It will, however, have a

deeper meaning if the unicity of the conditional probability laws of X with
respect to Y under .L has been proved. In these circumstances it becomes pos-
sible to assert that the two functions ,ui(Y; e) and ,2(Y; e) as functions of e are
almost surely not distinct. This is obtained in the case treated in Fortet and
Mourier [2].
From a concrete point of view, we may remark that a quantity like Y canlot

be measured with absolute precision. The only conditional probabilities having
a concrete meaning are of the following kind.

(2.4) Pi = () jIA (y; e) vl (dy),
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(2.5) P2 = vI(W) 1 1.2(Y; e)V2 (dy),

where w may be, for instance, the interval (y, y + Ay). In this case it is easy to
verify that, with two convenient numbers 0 and 0' between 0 and 1, we have

(2.6) Pi = Y + ,AY P2
y + 0' Ay

and hence, if y F, 0 and if Ay -O 0, the ratio P1/P2 tends toward 1 uniformly
in e. For this, we do not need the unicity of the conditional probability law.

3. Testing for the presence of a signal

In information theory we encounter the following problem. Let U(t) be a
Laplacian random real function of t on [0, T] with continuous covariance

(3.1) r(t, r) = E[U(t)U(T)]
and with E[U(t)] 0_ . For instance, U(t) may represent a noise. Then U(t) may
be considered as a random element U with values in the separable Hilbert
space X of the real functions of t on [0, T], the square of which is L-integrable.
Let ml be the probability measure of U on X under these conditions. Let p(t) be
an arbitrary given nonrandom element of X (a signal), let V(t) be the Laplacian
random function of t on [0, T] defined by V(t) = p(t) + U(t), and let m2 be the
probability measure of V(t) considered as a random element V with values in X.
Let B be the smallest a-algebra of subsets of X containing the classical "cylin-
drical" sets defined by the strongly continuous linear functionals on X; it is also
the smallest a-algebra containing the spheres of X (see Mourier [8]). Then r(t, T)
and p(t) uniquely determine ml and m2 on (B.

Finally, we consider a random element X with values in X, so that actually X
is a random function of t on [0, T]. There is an a priori probability pi that X
obeys the law ml and an a priori probability P2 that it obeys the law M2, where
P1 + P2 = 1. By one (and only one) complete observation of the values taken
by X(t) for all the values of t & [0, T], we have to discriminate between mi2
and ml (signal or no signal).
We shall make use of the preceding sufficient statistic y(x) = f1(x)/f2(x). In

fact, we shall see that under certain conditions M2 is absolutely continuous with
respect to ml (and reciprocally), and actually we shall make use, as a sufficient
statistic, of the density y(x) of M2 with respect to ml. At the same time we shall
obtain an explicit determination of y(x) as a function of x in X.

Let sj, for j = 1, 2, 3, * * be the eigenvalues, distinct or not, and uj(t) the
corresponding eigenfunctions of the following linear operator in TE:

(3.2) b(t) = T0 r(t, r)a(T) di, a, b E X,
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or sylbl)olically,
(:3.3) 1) l (a).

As we know, I' is a Hermitian, positive definite operator, the uj(t) are mutually
orthogonal, anid we assume that they are normed, that is,

(3.4) fT IUj(t)12 dt= l.

We have
(3.5) jQUj = rF01j),
where the s; are real anid positive.

Supplementing the uj, if necessary, by some other unitary vectors of X, we
may assume that the uj constitute a complete orthonormal basis for .1. Taking
Sj = 0, (3.5) remains true for the supplementary uj introduced in this way.
We assume that the sj are numbered in nonincreasing order and we know

that _jsj < +X. Let us put

(3.6) Ci = foT U(t)uj(t) dt,

so that the Ui are mutually independent Laplacian random variables with

(3.7) E{UP} = 0, E{jUiI2} = sj,
and almost surely we have
(3.8) U(t) = E Uiuj(t)
(with strong convergence in X).
Any bounded linear functional x* on I can be defined by its components x*j

corresponding to the basis {lu,j}, namely
(3.9) -, (x*, utj).
The characteristic function-al p1(x*) corresponding to w1l is easy to find (see

Mourier [8]) and is given by

(3.10) 01(x*) = E[Ci Kz*Jt )] = expH sjz j

because (x*, U) = _jx*Ui.
We call pi the components of p(t) on the basis ttj, xi the components of an

arbitrary element x of X, and we put

(3.11) A= EP ,
- ~~~~~jsj

(3.12) *(X) EPi( P

Under the (necessary and sufficient) assumption that

(3.13) A = E (PT <
i Si
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the series (3.12) is convergent almost everywhere on I with respect to the meas-
ure ml and the characteristic functional 92(x*) corresponding to m2 is equal to

(3.14) <P2(x*) = | ei (x*,x) e*(z)ml (dx),

this result implying in particular that, with respect to ml, the measure m2 is
absolutely continuous with density
(3.15) y(x) = e+(z).

Results (3.12) and (3.15) have already been obtained by Grenander [3]. In
practice, the linear functional *(x) = log y(x) can be used as a sufficient statistic
for the discrimination problem. The two probability laws of *(X) with ml and
with m2 are Laplacian laws with different means -A/2 and +A/2, but with the
same standard deviation VA'. From these properties, it is easy to construct a dis-
crimination procedure.
We now give a mathematical interpretation of condition (3.13). If r is a posi-

tive definite Hermitian linear operator, let r1/2 be its positive definite Hermitian
square root, so that
(3.16) \j uj= rP/2(Uj) j= 1,2,.*-
Let us denote by r1/2(X) the set of the b E X such that there exists at least one
a E X such that b = rP"2(a). It is easily seen that condition (3.13) means that

(3.17) p E rl2( ).
With the analogous notation r(l), if we assume that p E(-r(), it follows that

(3.18) 2Sy <++0,

and A can also be interpreted as the Hermitian product in I of p by any a E
such that r(a) = p.

4. The case of a stationary Laplacian noise

The preceding results are given with more detail in Fortet and Mourier [2].
They are applied by Bethoux in his thesis, in the following way. Let U'(t) be a
Laplacian stationary random function over (- oo, +00) with a correlation func-
tion r(h), a null spectrum outside the bandwidth (-Q, +Q) and a spectral den-
sity f(co) inside the bandwidth (-Q, +Q). Then we have

(4.1) r(h) = f-n eiwhf(cw) dw.

The assumption of a spectrum limited to a finite bandwidth (-Q, +Q) is rather
unrealistic, but is usual in communication theory. We shall add the hypothesis
that f(w) has an upper bound, and also a positive lower bound (on this last point,
the hypothesis can be weakened). We now define U(t) by
(4.2) U(t) = U'(t) for 0 . t < T.
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Again, let p(t) be a real function of t on (-oo, +Xo), also with a null spectrum
outside the bandwidth (-Q, +Q), and of the form

(4.3) -(t) J+f eip(w) d _o < t < +oo,
with

(4.4) fJQk(W) 12 dw < +0.
We define p(t) by
(4.5) p(t) =(t) for 0 _ t < T.
Putting

(4.6) p (t) = | e" 2 d@, -o < t < +oo,

we assume that

(4.7) Ip'(t)I2dt = 27r lQ 0) 'co <

where

(4.8) N = E(IU(t)12) = fnf(w) dw

and e is a given positive number. That is to say, we assume that p'(t) has a finite
total energy, which is equivalent to the fact that p(t) has a finite total energy,
because f(X) has a positive lower bound.
Now we shall apply section 3 to the U(t) and the p(t) defined in the preceding

way, and under the stated assumptions. Here b = r(a) is given by

(4.9) b(t) = f0 r(t - r)a(T) dT,
or, putting

(4.10) g(W) = f| e iwra(r) dT,
by the expression

(4.11) b(t) = f+ ei4f(w)g(w) dw.

From this, the following lemma can be obtained.
LEMMA 4.1. The uj corresponding to positive values of the sj constitute a com-

plete basis.
We do not need any supplementary vectors of X, and r and r"'2 are one-to-one

mappings of X, respectively on r(l) and rF2(X). Further results can be deduced,
such as those indicated below.

First, let us put

(4.12) gj(w) = fT e w'Uj(r) dr,
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and

(4.13) uj(t) = f+S2 eiagj (w)[f(wI)]II2dw, -o < t < +co,

that is to say, uj(t) is the Fourier transform over -X < t <+0 of the func-
tion of w, which is equal to 0 for lwl > Q and equal to g&(o)[f(co)]"I2 for Iwl . U.
It follows that

ro if 1c O j;
(4.14) f uj(t)uk(t) dt = 27rsj fo ui(T) Uk(T) dr =

{27rsj if k =j.

In other words, the u(t) constitute a (not necessarily complete) orthogonal
basis over (-oo, +oo).

Second, putting

(4.15) 2rsjXi ff+ p'(t) 7i(t) (It,

p'(t) is necessarily of the form

(4.16) p'(t) = Xiu(t) + H(t), -00 < t < +00,

H(t) being some function such that

(4.17) f|+ H(t)12dt < + f,f+ H(t)j(t) dt = 0

for every j. It appears that

(4.18) =

and that

(4.19) H(t)_ 0.

Consequently, assumption (4.7) can be written

(4.20) E i: < Re

ji sj N'
which implies that condition (3.13) is actually satisfied by the present signal p,
and we have just to apply section 3.

Incidentally, we have found a physical interpretation of condition (3.13),
which in the context of the present section 4 is equivalent to the fact that p'(t),
or p(t), has finite total energy.

Obviously, the discrimination will be performed in the best conditions if A
is as large as possible; that is, if p'(t) is such that

(4.21) I p'(t)lIdt = 27r
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5. Capacity of a channel

We now consider the same noise IJ(t), but a number n + I of real signals
po(t), pi(t), * * *, p.(t) over (0, T), with the following assumptions.

(a) pk(t) is the part relative to (0, T) of a real signal pk(t) defined over
(-oo, +oo), with a spectral density Ok(W) limited to the bandwidth (-Q2, +Q),
that is,

(5.1) pk(t) = IfQ eiwLSPk(w))d -oo < t < +00.

(b) If we put
(5.2) pi(t) = j ei.t('k d(w, -00 < t < +oo,

we have

(5.3) kp d(t)j2dt _ N

Let nlk be the probability law of the random element U(t) + pk(t). By an obser-
vatioiu over (0, T) of the random element V(t) = U(t) + pk(t), where k is fixed
but unknown, we have to discriminate between the Mk, that is, to decide on the
value of k.

Putting

(5.4) P= uj(t) dt,

(5.5) i= fo V(t)uj(t) dt,

(5.6) ipa, = PL v.( PC ) a = 1, 2, ..* , n,

it can be seen by a generalization of (3.12) that T = {'1, I2, *nI,* IXW} is a
sufficient statistic for our problem, and it is an n-dimensional Laplacian ran-
dom variable.
The functions p(t) = E_jpiuj(t) for which

(5.7) E z! < +
j Si

are the elements of rl/2(j). This space can be considered as a separable Hilbert
space where the scalar product is defined by

(5.8) p.p E=

j si

The characterization of the Laplacian law of I = {4, * , TI1}, that is to say,
the specification of the values of E{'IT'} and E{ IJI'} depends only on the scalar
products of the signals po, P1, * * X Pn. Hence the conditions of the test remain
unchanged if po, pi, * * *, Pn are replaced by n + 1 signals PO, p', * * *, p' derived
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from the pj by a unitary operator in rm2(X), and the condition Fj|pi|2/s, . Qe/N
will also remain unchanged by such a unitary operator.

Let 3Cn be the subspace of r"2(j) consisting of all the p(t) such that pi = 0
for every j > n + 1, so that JCn is of dimension (n + 1). There is always a
unitary operator a in rl/2(j) which transforms po, pi, *- -, Pn into signals
pO, pi, * , pn belonging to JC,,. That is, we do not lose any generality in assum-
ing that

(5.9) Pk (E 3Cn
for k 0, 1, * , n, or that
(5.10) pI = 0
for k = 0,1, 2, * , n and for every j > n + 1. Under these conditions '
depends only on V1, V2, ... , Vn+i, that is, on {V', * , Vn+'} or, in other and
better words, Q = {Vlsi 1/2, V2S- 1/2, Vn, VI's,-/2} is a sufficient statistic.
Clearly Q is a system of n + 1 independent Laplacian random variables, with
standard deviation equal to 1. Finally, if we put

(5.11) ~~~xi= PI,X xi = U,
our problem is the following: let E.+, be a proper Euclidean (n + 1)-dimen-
sional affine space referred to an orthonormal reference system with origin 0.
In En+1, in the sphere Mn of center 0 and radius VA = (9Qe/N) 1/2, the n + 1
points Mo, M1, * * * , M. are given, the coordinates of Mk being the xi, with
j = 1, 2, * * *, n + 1. We make one observation of the random position of the
random point M with coordinates xJ + Xi, where k is unknown, and we have
to deduce k from the observation.

Let us assume that the different possible values of k, k = 0, 1, 2, ,n,
have definite prior probabilities po, pi, * * *, pn, where Fkpk = 1. We divide En+,
into n + 1 disjoint subsets Rk, with k = 0, 1, *--, n, the union of which is
En+l We denote by R such a partition, and we take k = h if M E Rh.
With such a procedure, the probability of accepting a false value of k depends

on R, on the disposition S of the Mk inside 2X,, on n, and on Qe/N. We denote it by

(5.12) P (R; 59; n;-NE)-
There is one and only one partition Ro such that

(5.13) P(Ro; ; n; ) = Pn(D;n ) = minR P(R; D; n; UE),
and it is not difficult to find Ro, which has a relatively simple geometrical form.
Now there exists at least one disposition Do such that

(5.14) Pm(So;n;-N) = H(n; N-) = min2 P.. D; n;



300 FOURTH BERKELEY SYMPOSIUM: FORTET

in the case where po = pi = *.* = p,n = 1/(n + 1), intuitively such a Do seems
to be unique and to be obtained when Mo, M1, * * *, M,,+1 are the vertices of a
regular polyhedron 6',, inscribed in Z, but Bethoux gives no rigorous proof of
this fact. Let q be a given arbitrary positive number, and let n(Q2E/N, r) be the
largest integer n satisfying the inequality H(n; Qe/N) . q. We assume that
E = PT, where P is a given constant. We interpret the pk as signals emitted by a
sender, and V(t) = U(t) + p1(t) as the corresponding responses received by the
receiver after transmission by a noisy channel.
The limit

/QPT\logn N''T
(5.15) C = lim lim N

v-+0 T--++- T

if it exists, can be interpreted as the theoretical capacity of the channel, at least
in the case po = pi = ... = p.= 1/(n + 1).

Classically (Shannon and Weaver [11] and several other authors), it is stated
that, at least in the case of a "white noise," the capacity of a channel has the
value C', where
(5.16) C' = Q log (1 + P/N).
Obviously this C' is different from our C, and it appears from (5.15) that C
cannot depend on the spectrum of the noise. More precisely, if we put

= PT,i N(Z; 7),(5.17) Z = cNC(7) = lim ( c = lim C(17),
we find

(5.18) C = c
up
N

I do not know any complete rigorous proof of (5.16), and whether or not the
classical definition of the capacity is identical with the definition that I have
adopted here is not clear to me.

G. Bethoux, in his current investigations, has not been able to compute
H(n; Qe/N) and consequently he has not given a rigorous proof of the existence
of the limit c, nor the exact value of c, but he has proved that

(5.19) c > 2

6. Sufficient statistic for an estimation

We make use of the notations of section 3. Let ~F be a given family of elements
p of X. We consider the random function
(6.1) V(t) = p(t) + U(t)
on [0, T], where p(t) is a nonrandom (unknown but fixed) element of W.
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The problems which may arise in these conditions have different aspects
following the nature of 5, and in sections 6 to 8 I shall always assume that
5 C rlI2(x). The functional defined by (3.12) will be introduced in the form

(6.2) *(p; V) = E 1- -

and I also introduce

(6.3) o(p) =(p; U) = -

, Si

We have to remark that the study of *(p; V) reduces to that of 0(p; U) and
that, almost surely, neither U nor V belong to rlI2(X). For an arbitrarily given
p E rl/2(1), almost surely 0(p; U) exists, but we do not know whether almost
surely O(p; U) exists for all the p belonging to 5:. The study of this point would
be connected with the study of 0(p; U) as a random function of p E rI/,2(1). We
recall that rl/2(I) can be considered as a (separable) Hilbert space, in which
the scalar product is defined by
(6.4) p.p, = pipi

j Sj

and the square of the norm IIpI is defined by

(6.5) 11p112 = 12aL
the notation p X p' will be used for the scalar product in X.

It appears that 0(p) is a Laplacian random function of p E rl/2(I), with the
following properties:

(6.6) E{9(p)} 0;
(6.7) E{0(p)O(p')} = p-p',
the scalar product in rlI2(I);
(6.8) E{lo(p) - 9(p')j2} = IlP - p'l[2,
the square of the norm in rlI2(I). It is not the Laplacian random function of a
variable in a Hilbert space considered by Levy [6]. Some facts can be heuris-
tically deduced, but a deeper study of 0(p) on rl/2(I) is not yet available.

Actually, however, we are interested in 0(p), not in the whole space rl/2(I),
but only on 5, and for some 5: the situation is quite simple, as the following show.
EXAMPLE 6.1. 5: C r(l). This is possible because r(l) C r1/2(X). In this

case 0(p; U) can be interpreted as p X U, where p is the element of X with com-
ponents pi/sj. Almost surely, 0(p) exists for every p C r(l).
EXAMPLE 6.2. The parametric case. Let T be a variable element in a subset 1)

of some Euclidean space of dimension v, and f a mapping of O into r112(X). I
put pr = f(r) and if 5 is the set of the pr, I say that we are in the v-dimensional
parametric case. In such a case 0(p) reduces to an ordinary Laplacian random
function.
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7. Uniformly most powerful tests

Let po be any given element of 5; let H0 be the hypothesis that p = po; let H,
be the hypothesis that p = p', where p' is any element of a different from po;
and let us consider the test of Ho against the whole set of hypotheses Hp. It is
easy to see that

(a) if each element p' of 9 is of the form
(7.1) p' = CpO,
where C is any real constant independent of t, there exists a U.M.P. test;

(b) if aV C F(l) then, for the existence of a U.M.P. test, condition (7.1) is
necessary.

8. Maximum likelihood estimators

I now suppose that our problem is, from a single observation of V, that is, the
observation of the values of V(t) for all t E [0, T], to estimate p, knowing that
pC a.

Let p be some definite element of 1, and let us assume that, for the observed V
and for any element p' of i, the functional T(p'; V) exists and that

(8.1) T(P; V) >~: TVp; V).
Let mh and m' be the two probability measures (on X) corresponding to the two
random elements
(8.2) f(t) = p(t) + U(t), V'(t) = p'(t) + U(t).
Then we know from section 3 that mh is absolutely continuous with respect to m',
and that its corresponding density is given by
(8.3) exp{TI(A;x) - T(p';x)} x CE .

Consequently we can call p a maximum likelihood estimator of p.
Now let us suppose that there are two different maximum likelihood esti-

mators Al and P2. Then we must have TI(Aj; V) = I(P2; V) almost surely and,
if X is the common value of I(Pi; V) and TI(A2; V), we can write

(8.4) x =
1 ['(Al; V) + T(P2; V)] = E Pl2+ P Vi l(- 1ll + IrA2112)-2 ~~~~~~2sj 4 P1

Putting p' = 1/2(Al + P2), we get

X=~4i(I; -1 IlPill2 + IIP212Ilp12(8.5) T(P') 2 2 - lp

T '; V) - 1 11^ - ^ 12

and hence
THEOREM 8.1. If 3F is such that '(p; V) exists almost surely for every p C Y,

and is also such that it contains (P1 + P2)/2 whenever it contains P1 and P2, then
there is at most one maximum likelihood estimator.
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Now let us assume that o; C r(X). I call p the element of X with components
pi/sj; lxl means the norm of x E X as an element of -X; we have IPI _ IPIlI > IpI,
and

(8.6) I(P;pV) = p X V -2 X p ._ Jp IVI- p X p;
it appears that *(p; V) is bounded when p varies in r(X), and a fortiori if p
varies in 5. With the use of (8.5) and a classical tool, we can prove
THEOREM 8.2. If
(a) 5F contains (pI + p2)/2 whenever it contains Pi and P2;
(b) f is closed in the sense of the strong topology in r1/2(X);
(C) 5 C r1(X),

then there exists one and only one maximum likelihood estimator.
COROLLARY 8.1. Under assumptions (a) and (b) of theorem 8.2 and the as-

sumption that, almost surely, '(p; V) exists and is bounded for every p E 5, there
is one and only one maximum likelihood estimator.

Incidentally, from some heuristic geometrical considerations, it can be seen
that a maximum likelihood estimator is not in general a sufficient estimator,
unless 0f belongs to some convenient space.

Application to the linear parametric case. For example, let us suppose that a
consists of a finite number v of functions g1(t), g2(t), * * *, gv(t) of t on [0, T],
belonging to rFl2(X), together with all the linear combinations

(8.7) p(t) = E Xkgk(t)
k=1

of the gk. Without loss of generality, we assume that the gk are linearly independ-
ent. This is an example of a parametric case of order v; we shall call it the linear
parametric case.
From corollary 8.1, or directly, putting

(8.8) ahk = E g = ghgk, b h = 1-V,
I sj j Sj

where the gh are the components of gh on the basis {u,}, we get
THEOREM 8.3. In the linear parametric case, there is one and only one maximum

likelihood estimator A {k}, which is also an unbiased sufficient estimator, and
which is given by
(8.9) aahk k bh, h = 1, 2, ,v.

k=1

The sufficiency results from the fact that
(8.10) *(P; V) = I(A; V) + [J(p; V) - I(A; V)]
and that

1 + k)bk(8.11) T(P; V) -p;V) = 2 F_2 (12-Xk )kwhich, s 2 jo sj k-1

which, from (8.9), does not depend on V.
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Without loss of generality we can assume that the g9 are orthonormed, as ele-
ments of rP12(i); under these conditions it is immediately proved that

(8.12) E(Ilp - pi12) = v.

Since A is linearly deduced from V, it follows that A Cz 5 is a Laplacian random
variable of dimension v. Hence we are finally concerned with classical mathe-
matical statistics in finite-dimensional space. In particular, taking into account
the fact that A is a sufficient estimator, it is easy to prove that any other un-
biased estimator p will be such that E(I I - plI 12) > v, which proves
THEOREM 8.4. In the linear parametric case, the maximum likelihood estimator

is also a minimum variance estimator.
These theoretical results can be applied effectively, for instance if we actually

know the sj and the u;, which is not difficult in some cases, for example if U(t)
is a Wiener-L6vy process. Examples of this kind have already been investigated
(see H. B. Mann [7] and C. T. Striebel [11]).
An interesting application concerns the case where the family f3 consists of

functions p(t) of the form

(8.13) p(t) = s(t -),
where s(t), the signal, is a given function, and X, the delay, an unknown param-
eter. In an observation by radar, the delay X will be proportional to the distance
of the target from the observing radar, and the estimation of X gives an estimate
of this distance.
A few results of sections 6 to 8 have been obtained by Bethoux and several

others have been obtained by A. Hanen, in their as yet unpublished theses.
I should mention also that these sections are substantially identical with the

paper presented by E. Parzen [10] at this Symposium.
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