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1. Introduction

During the last few years, several papers have been devoted to the study of
random functions. And though a large amount of work remains to be done in
this field, it presents some difficulties. If we try to apply in the field of random
functions—or, more generally, of random elements—some of the basic notions
of classical mathematical statistics such as sufficient statistics or maximum
likelihood, we find that conditional probabilities or probability densities do not
obviously exist, that sets and sraces are not comract or even locally compact,
and so on. The existence of conditional probabilities is a particularly important
point. I emphasize that, in this paper, by ‘“conditional probability” I always
mean a ‘‘regular conditional probability,” that is, with the complete additivity
property.

Concerning this existence of conditional probabilities, a very important ad-
vance has been made by M. Jifina [4]. Among the more general results given
in this paper, there is the following statement.

TureoreM 1.1. Let X be a metric, separable, complete space of elements x, let S
be the smallest o-algebra of subsets of X containing the spheres (or the Borel sets)
of %, let m(e) be a probability measure on (%, S), that is to say, a function of the
cet e, defined for e € S, which is nonnegative and completely additive on S, with
m(X) = 1, and let Z be any o-algebra C 8. Then there exists, associated with m(e),
at least one conditional probability u(x;e) on S, relative to =, having the following
properties.

(a) It is a nonnegative function of z € X and of e & S, which, for every fixed
e € 8, is Z-measurable as a function of .

(b) For every fixed x, it is a probability measure on S as a function of e, including
complete additivity and u(z; %) = 1.

(¢) For every A € T and every e € S,

(1.1) m(A N e) = [A w(z; &)m (dz).

Jifina has completed the preceding results in [5]. It must be pointed out that
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in his paper the condition that u(z;e) is Z-measurable as a function of z, is
weakened to u(z;e) is Z-measurable, £ being the completion of Z.

A particular application of theorem 1.1 is

TaEOREM 1.2. Let y = y(x) be an S-measurable real-valued function on X, that
s to say, a measurable mapping of X into the space R of the real numbers. If x is
random with probability law m(e), then y(x) ts a random variable with some definite
distribution function F(y). For every real number y, there is a conditional probabil-
ity law u(y; e) for x in X, which is the probability P{x € ely(x) = y}. If A is any
Borel subset of R, and e any subset of % belonging to S, we have

(1.2) Ply@) € Ax € = [ wlyse) dF(y).

Theorem 1.2 still holds, of course, if, more generally, y = y(z) is a mapping
into n-dimensional Euclidean space, that is to say, if ¥ is an n-dimensional
random variable.

Jifina’s method is a direct set-theoretic method, but we can think of another
approach. Let § be a convenient vector space of S-measurable mappings f of ¥
into the space R of real numbers. An a priori or a conditional probability meas-
ure p on (%, S) can be defined as a linear functional on &, that is, by means of
the mathematical expectations

(1.3) [ @ @),

and the proof of the existence of some conditional probability measure p can be
effected by establishing the existence of the corresponding mathematical expec-
tations (1.3); I do not think that such a method would be more powerful than
Jifina’s method, but it may be easier to handle.

As an example of such a method, in R. Fortet and 15. Mourier [2], theorem 1.2
has been proved under the assumption that X is a real separable reflexive Banach
space, S being the smallest o-field containing the Borel sets of X. In this case, F
can be restricted to be the space ¥* of the strongly continuous linear functionals
on ¥, in such a way that a probability measure p on (¥, S) is defined by its
characteristic functional

(1.4) e(e*) = L ¢l D p (de),

where 2* & X* is an arbitrary strongly continuous linear functional on X.

In particular, with this second method, it may be easier to handle the unicity
problem. In his papers Jifina says nothing on this question. In a short note by
Mourier [8], she gives a definition of the unicity property which is obviously
inadmissible. A tentative definition of the unicity property can be the following.

Two given solutions of the conditional probability existence problem, that is
to say, two given functions u(x; ), u'(x; e) having the above properties (a), (b),
and (c¢), are not considered as distinct if the set of the 2(x & X) such that there
exists an ¢ & S for which u(x; e) & p'(x;e) is of m-measure zero.
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Now let € be the family of the functions u(z; €¢) having the properties (a), (b),
and (c). We say that there is unicity if no two functions of € are distinct.

In this sense, and in the case treated by Fortet and Mourier [2], we can easily
prove unicity. With their notations the problem reduces to the following: A being
any Borel subset of R, and z* any element of X*, also ®(z*; A) being a given func-
tion and » (d\) a given probability measure on R, we look at the functions
e(x*; \) of 2* € ¥* and A € R, which have the following properties.

(1) For any fixed A we have ¢(z*;\) as a function of z* is a characteristic
functional.

(ii) For any fixed 2* € ¥* and for any Borel subset A of R,

(1.5) B(a*; A) = /’A o(z*: W)y (d)).

As ¥* is separable, we choose a dense denumerable subset ¥* of ¥* and let
25,7 =1,2,3, ---, be the elements of X*'.

Let o(a*; \) and ¢’'(z*; \) be two given arbitrary solutions of the preceding
problem. By (1.5) and by the Radon-Nikodym theorem, and excepting a set of
values of A\ of »-measure 0, o(z*;\) and ¢'(z*;7) are equal for all z* € X¥.
Since ¢ and ¢’ are continuous functions of z* on X¥* they are identical on X*,
and this proves the unicity.

2. Discrimination between two laws

Let X be areal random variable, and let us consider the two following hypothe-
ses: hypothesis H;, X obeys the probability law £,, with density fi(z) ; hypothesis
H,, X obeys the probability law £,, with density fo(x). The discrimination prob-
lem between these two hypotheses is a classical one and contains the two essential
features listed below.

(a) The likelihood ratio y(z) = fi(x)/fo(x) is a sufficient statistic. In other
words, the probability law of X, conditional on the value y of the ratio fi(z) /fo(z),
is the same with £; as with £..

(b) Starting from this likelihood ratio, methods of testing can be constructed,
following, for instance, Neyman’s point of view.

Now let us assume that ¥ is an arbitrary space of elements x and that m,
and m, are two probability measures defined on %, more precisely defined on
some o-algebra ® of subsets of X¥. A random element X with values in X obeys
either the law m; or the law m., and the question is to discriminate between
these two hypotheses by one observation or by several independent observations
of X.

There is no difficulty in introducing the analogue of the ratio y = fi(x)/fa(x).
Several authors, such as U. Grenander [3] and B. Adhikari [1], have remarked
that the measures m; and m, are absolutely continuous with respect to the
measure m = m; -+ ms, by the Radon-Nikodym theorem, with respect to m,
m; and m, have densities fi(x) and f,(z) respectively, and the ratioy = fi(z)/f2(x)
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will be the likelihood ratio. Hence methods and results like those recalled in (b)
can be easily developed (see Adhikari [1]). Here we are faced only with the
problem of actually determining y as a function of x.

Concerning point (a), the sufficiency can be handled only if, with each of £,
and £, the variable X has conditional probability laws with respect to the ran-
dom variable Y = fi(X)/fa(X). Let us assume for instance, that ¥ is a metric
complete separable space, and that ® is the s-algebra of the Borel sets of %.
Assuming also that the set {z:fi(x) or fa(x) = 0} is of m-measure 0 (it would
not be difficult to remove this assumption), let » and », be the two probability
laws for Y that correspond respectively to £, and £, so that »; and », are abso-
lutely continuous each with respect to the other. If w is any B-measurable subset
of the y-axis and ™! the set {z:y(z) € w} we have

2.1) nw) = / _ma(dx) = / h(@m de) = | ﬁgg fa(x)m (dx)

fi(@) /
mg (dz dy).
-1f2() 2( ) wyyz(y)

Let us assume that under £; the measure ui(y;e) is a probability law for X,
conditional on Y, and that under £, the measure u(y; ¢€) is a probability law
for X, conditional on Y. Such conditional probability laws exist by theorem 1.2
and we have

(2.2) [, (w3 eoa (dy) = ma(e N @)
for every e € ®. Consequently

(2.3) fm pe(y; e)n (dy) = L w(y; e)yre (dy) = L yma(e N dy)

Lyl [, f@m @] = [ f@mn @)
= mie N w),

so that u.(y;e) is also a conditional probability law for X with respect to Y
under £;.

We may admit that this result constitutes sufficiency. It will, however, have a
deeper meaning if the unicity of the conditional probability laws of X with
respect to Y under £, has been proved. In these circumstances it becomes pos-
sible to assert that the two functions ui(Y';e) and us(Y'; e) as functions of e are
almost surely not distinct. This is obtained in the case treated in Fortet and
Mourier [2].

From a concrete point of view, we may remark that a quantity like ¥ cannot
be measured with absolute precision. The only conditional probabilities having
a concrete meaning are of the following kind.

(2.4) Py = ;,T(lw—) / m(y; e)v (dy),

1
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1
2.5) P = s / way; s (dy),

where w may be, for instance, the interval (y, ¥ + Ay). In this case it is easy to
verify that, with two convenient numbers 8 and ' between 0 and 1, we have

_ytohy o,
(2'6) Pl y + 0’ AyP-
and hence, if ¥ # 0 and if Ay — 0, the ratio P,/P. tends toward 1 uniformly
in e. For this, we do not need the unicity of the conditional probability law.

3. Testing for the presence of a signal

In information theory we encounter the following problem. Let U(f) be a
Laplacian random real function of ¢ on [0, T'] with continuous covariance

3.1 I, = E[UOUT)]

and with E[U(¢)] = 0. For instance, U(t) may represent a noise. Then U(t) may
be considered as a random element U with values in the separable Hilbert
space X of the real functions of ¢ on [0, T'], the square of which is L-integrable.
Let my be the probability measure of U on X under these conditions. Let p(t) be
an arbitrary given nonrandom element of X (a signal), let V(¢) be the Laplacian
random function of ¢ on [0, T'] defined by V(t) = p(t) + U(t), and let m, be the
probability measure of V(f) considered as a random element V with values in X.
Let ® be the smallest s-algebra of subsets of ¥ containing the classical “cylin-
drical”’ sets defined by the strongly continuous linear functionals on %; it is also
the smallest o-algebra containing the spheres of X (see Mourier [8]). Then I'(¢, 7)
and p(f) uniquely determine m, and m; on ®.

Finally, we consider a random element X with values in %, so that actually X
is a random function of ¢ on [0, T']. There is an a priori probability p; that X
obeys the law m; and an a priori probability p, that it obeys the law m., where
p1 + p2 = 1. By one (and only one) complete observation of the values taken
by X(¢) for all the values of ¢t & [0, T], we have to discriminate between m,
and m, (signal or no signal).

We shall make use of the preceding sufficient statistic y(z) = fi(zx)/f2(z). In
fact, we shall see that under certain conditions m. is absolutely continuous with
respect to m, (and reciprocally), and actually we shall make use, as a sufficient
statistic, of the density y(x) of m. with respect to m;. At the same time we shall
obtain an explicit determination of y(x) as a function of z in X.

Let s;, for j = 1,2, 3, - .- be the eigenvalues, distinct or not, and u;(t) the
corresponding eigenfunctions of the following linear operator in X:

(3.2) b(t) = ﬁ) "¢, alr) dr, a,bC %,
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or synibolically,
(3.3) b= 1'(a).

As we know, I' is a Hermitian, positive definite operator, the u;(t) are mutually
orthogonal, and we assume that they are normed, that is,

T
(3.4) ﬁ) lu(t)|2dt = 1.
We have
(3.5) si; = T'(w),

where the s; are real and positive.

Supplementing the u;, if necessary, by some other unitary vectors of X, we
may assume that the u; constitute a complete orthonormal basis for X. Taking
85 = 0, (3.5) remains true for the supplementary u; introduced in this way.

We assume that the s; are numbered in nonincreasing order and we know
that 3" ;s; < 4. Let us put

(3.6) vi= [T UG a,

so that the U’ are mutually independent Laplacian random variables with
3.7 E{U?} =0, E{UIIP} = s;,

and almost surely we have

(3.8) U@y = 3 Uiu;(t)

(with strong convergence in X).

Any bounded linear functional 2* on ¥ can be defined by its components x%
corresponding to the basis {u;}, namely

3.9) k= (¥, u;).
The characteristic functional ¢;(x*) corresponding to m; is easy to find (see
Mourier [8]) and is given by
(3.10) ae®) = B 0] = oxp (=5 ),
J
because (¢*, U) = X ;a3U/.

We call p7 the components of p(f) on the basis u;, x7 the components of an
arbitrary element x of X, and we put

3.11) A= Zﬁr;’_V
(3.12) ¥@) = % %,- (x: - %)

Under the (necessary and sufficient) assumption that

(3.13) a=xr <o

7
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the series (3.12) is convergent almost everywhere on ¥ with respect to the meas-
ure m; and the characteristic functional g(z*) corresponding to m, is equal to

(3.14) enz*) = fx ¢ &) ¥ @y, (da),

this result implying in particular that, with respect to mi, the measure m, is
absolutely continuous with density

(3.15) y(x) = ¥,

Results (3.12) and (3.15) have already been obtained by Grenander [3]. In
practice, the linear functional ¥(x) = log y(z) can be used as a sufficient statistic
for the discrimination problem. The two probability laws of ¥(X) with m, and
with m. are Laplacian laws with different means — A /2 and +4/2, but with the
same standard deviation V' 4. From these properties, it is easy to construct a dis-
crimination procedure.

We now give a mathematical interpretation of condition (3.13). If T is a posi-

tive definite Hermitian linear operator, let T2 be its positive definite Hermitian
square root, so that

(3.16) Visju; = TV2(u;) i=12.
Let us denote by T'V/2(%X) the set of the b € X such that there exists at least one
a € % such that b = I'2(a). It is easily seen that condition (3.13) means that
(3.17) p € TV(X).
With the analogous notation I'(¥), if we assume that p € I'(%), it follows that
il 2

(3.18) sl < 4o,

7 83
and A can also be interpreted as the Hermitian product in X of p by any a € %
such that I'(a) = p.

4. The case of a stationary Laplacian noise

The preceding results are given with more detail in Fortet and Mourier [2].
They are applied by Bethoux in his thesis, in the following way. Let U’(t) be a
Laplacian stationary random funetion over (—e, +=) with a correlation func-
tion r(h), a null spectrum outside the bandwidth (—Q, 4+Q) and a spectral den-
sity f(w) inside the bandwidth (—Q, 4+Q). Then we have

(4.1) r(h) = [_J;“ () doo.

The assumption of a spectrum limited to a finite bandwidth (—, 4+Q) is rather
unrealistic, but is usual in communication theory. We shall add the hypothesis
that f(w) has an upper bound, and also a positive lower bound (on this last point,
the hypothesis can be weakened). We now define U(f) by

(4.2) U@ = U'(@) for 0=¢t=T.
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Again, let 5(¢) be a real function of t on (—o, +), also Wlth a null spectrum
outside the bandwidth (—Q, +Q), and of the form ;

(4.3) 5t = [ eto(w) do, —o <t < 4o,
with
(44) [5 el do < 4.
We define p(t) by
(4.5) o) = 5(t) for 0<t<T.
Putting

iy = [0 wt (@) © —o o

(4.6) o(l) = /_ﬂ o S <1< 4o,

we assume that

@7 /_“ o' @)[2 dt = 2m ] Ji;,i(‘“—%fdw 2’](;"

where
(48) N = BQUOP) = [ fw) do

and e is a given positive number. That is to say, we assume that p'(f) has a finite
total energy, which is equivalent to the fact that 5(f) has a finite total energy,
because f(w) has a positive lower bound.

Now we shall apply section 3 to the U(?) and the p(t) defined in the preceding
way, and under the stated assumptions. Here b = I'(a) is given by

(4.9) b(t) = ﬁ) "ot — Da(r) dr,
or, putting
(4.10) g(w) = ﬁ) T e—iora(r) dr,
by the expression

4+ .
(4.11) b(t) = [ e4f(w)g(w) do.

From this, the following lemma can be obtained.

LemMma 4.1. The u; corresponding to positive values of the s; constitute a com-
plete basis.

We do not need any supplementary vectors of %, and I' and I'V2 are one-to-one
mappings of %, respectively on I'(¥) and I'V/%(%X). Further results can be deduced,
such as those indicated below.

First, let us put

(4.12) giw) = jo " e=iruy(r) dr,



LAPLACIAN FUNCTIONS 297

and
(«.13 W) = [ @U@ s, —o <1< o,

that is to say, uj(t) is the Fourier transform over — < ¢t < 4 of the func-
tion of w, which is equal to 0 for |w| > @ and equal to gj(w)[f(w)]V2 for || < Q.
It follows that

N r 0 if k#y;
(4.14) f_ ) dt = 2ms; ﬁ) wi(r) us(r) dr =

27s;  if k=j.
In other words, the uj(f) constitute a (not necessarily complete) orthogonal
basis over (—ow, 4).
Second, putting

(4.15) 2SN = [_”: () W) dt,
p'(t) is necessarily of the form
(4.16) P = X Nu(t) + H), —0 <t < Fo,
7
H(t) being some function such that
(4.17) f_*;” |H()[2dt < +oo, f_’“: H@)Z() dt = 0
for every j. It appears that
(4.18) N =5,
8j
and that
(4.19) H(t) = 0.
Consequently, assumption (4.7) can be written
pi 2 .Sle
(4.20) ; 5 =y

which implies that condition (3.13) is actually satisfied by the present signal p,
and we have just to apply section 3.

Incidentally, we have found a physical interpretation of condition (3.13),
which in the context of the present section 4 is equivalent to the fact that o’ (¢),
or (t), has finite total energy.

Obviously, the disecrimination will be performed in the best conditions if A
is as large as possible; that is, if p’(¢) is such that

(4.21) f @ dt = 2n %
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B. Capacity of a channel

We now consider the same noise U((), but a number n + 1 of real signals
po(t), m(d), - - -, pa(t) over (0, T'), with the following assumptions.

(@) pi(t) is the part relative to (0, T) of a real signal p(f) defined over
(=, +), with a spectral density ¢i(w) limited to the bandwidth (-, +Q),
that is,

(5.1) () = /_J;“ tgy(w) do, —w <1< Fo.
(b) If we put
/ +e Twl ¢k(w)
(5.2) pi(t) = f_ﬂ e [f(w)}”'zdw’ —o << 4w,
we have
(5.3) [ T ol au s 27

Let m; be the probability law of the random element U(t) + pi(t). By an obser-
vation over (0, T') of the random element V(f) = U(f) + ou(t), where k is fixed
but unknown, we have to discriminate between the m;, that is, to decide on the
value of k.

Putting
(5.4) o= [ outyu) at,
(5.5) vi= [T Ve a,
o 4
(5.6) wa=>:("’*—s—_"">(vf_'%"5>, a=1,2 . n
J ¥l

it can be seen by a generalization of (3.12) that ¥ = {¥;, ¥y, -+, ¥,} is a
sufficient statistic for our problem, and it is an n-dimensional Laplacian ran-
dom variable.
The functions p(t) = 3 ;p’u;(t) for which
7|2

(5.7 > M‘ < 4w

i Si
are the elements of I'V?(¥X). This space can be considered as a separable Hilbert
space where the scalar product is defined by

1"

,:

(5.8) P =3 pip?
i Si

The characterization of the Laplacian law of ¥ = {¥, --- , ¥,}, that is to say,

the specification of the values of E{¥.} and E{¥,¥s}, depends only on the scalar

products of the signals pg, p1, - - - , pn. Hence the conditions of the test remain

unchanged if po, p1, * * « , pn are replaced by n + 1 signals pg, pi, - - - , ps derived
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from the p; by a unitary operator in I'V2(%), and the condition 3_;|p?|?/s, < Q¢/N
will also remain unchanged by such a unitary operator.

Let 3C, be the subspace of TV2(%X) consisting of all the p(f) such that p? = 0
for every j > n + 1, so that 3¢, is of dimension (n -+ 1). There is always a

unitary operator 3 in I'V2(¥) which transforms p, p1, +*- , p» into signals
po, P1, * -+ , pr belonging to 3¢,. That is, we do not lose any generality in assum-
ing that

(5.9) Pk e Gcn

fork =0,1, -+, n, or that

(5.10) ol =0

for £k =10,1,2,---,n and for every j > n + 1. Under these conditions ¥
depends only on V1, V2 ... V»tl that is, on {V?, .-, V»*1} or, in other and
better words, Q = {Visi¥/2 Vs /2 ... Vntigoli2l ig a sufficient statistic.

Clearly Q is a system of n 4+ 1 independent Laplacian random variables, with
standard deviation equal to 1. Finally, if we put
i

g
5.11 = L P= 2
(5.11) xf \/8—,- z \/s—,

our problem is the following: let E,;; be a proper Euclidean (n 4+ 1)-dimen-
sional affine space referred to an orthonormal reference system with origin 0.
In E,., in the sphere =, of center 0 and radius VA = (Q¢/N)¥2, the n + 1
points My, My, --- , M, are given, the coordinates of M, being the xi, with
i=1,2 ---,n 4 1. We make one observation of the random position of the
random point M with coordinates z{ + X7, where k is unknown, and we have
to deduce k from the observation.

Let us assume that the different possible values of k, k = 0,1,2, --- , n,
have definite prior probabilities po, P, -« *, Pn, Wwhere 3 ipr = 1. We divide E
into n + 1 disjoint subsets Ri, with £k = 0, 1, ---, n, the union of which is
E..1. We denote by R such a partition, and we take k = h if M € R;.

With such a procedure, the probability of accepting a false value of k depends
on R, on the disposition D of the M} inside Z,, on n, and on Q¢/N. We denote it by

Q
(5.12) P(R;.‘D;n;—ﬁe)
There is one and only one partition R, such that
(5.13) P(Ro;fb;n;%> = P,,.(f,D;n, %) = ming P(R; :D;n;%e),

and it is not difficult to find Ry, which has a relatively simple geometrical form.
Now there exists at least one disposition ©, such that

Qe Qe . Q
(5.14) Pm(ﬂ)o;n;ﬁ> = H(n; ﬁ) = ming Pm(.‘,D; n;NE);
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in the case where pg = p1 = -+ = p, = 1/(n + 1), intuitively such a D, seems
to be unique and to be obtained when Mg, M, - -+ , M,,; are the vertices of a
regular polyhedron ®, inscribed in =, but Bethoux gives no rigorous proof of
this fact. Let 4 be a given arbitrary positive number, and let n(Qe¢/N, 1) be the
largest integer n satisfying the inequality II(n; Q¢/N) < #n. We assume that
¢ = PT, where P is a given constant. We interpret the p; as signals emitted by a
sender, and V(t) = U(t) + px(t) as the corresponding responses received by the
receiver after transmission by a noisy channel.
The limit

1ogn§‘ﬂ-n)
(5.15) C = lim lim N’

n—+0 T>+w T

if it exists, can be interpreted as the theoretical capacity of the channel, at least
inthecasepo=p1= -+ =p,=1/(n + 1).

Classically (Shannon and Weaver [11] and several other authors), it is stated
that, at least in the case of a “white noise,” the capacity of a channel has the
value C’, where

(5.16) ¢’ = Qlog (1 + P/N).

Obviously this C’ is different from our C, and it appears from (5.15) that C
cannot depend on the spectrum of the noise. More precisely, if we put

_QPT _ . NZ;» -
(5.17) Z =5 c(n) = Zlgriw 7’ c= ,,ETO c(n),
we find
(5.18) C=c ‘;V—P-

I do not know any complete rigorous proof of (5.16), and whether or not the
classical definition of the capacity is identical with the definition that I have
adopted here is not clear to me.

G. Bethoux, in his current investigations, has not been able to compute
II(n; Q¢/N) and consequently he has not given a rigorous proof of the existence
of the limit ¢, nor the exact value of ¢, but he has proved that

(5.19) c

v
DO |

6. Sufficient statistic for an estimation

We make use of the notations of section 3. Let F be a given family of elements
p of X. We consider the random funection

(6.1) V() = o(t) + U®)
on [0, T'], where p(¢) is a nonrandom (unknown but fixed) element of .
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The problems which may arise in these conditions have different aspects
following the nature of ¥, and in sections 6 to 8 I shall always assume that
§ C I'V%(¥). The functional defined by (3.12) will be introduced in the form

(6.2) Vp; V) = L& (V" - &’>,
7 Sj 2
and I also introduce
(6.3) 0(p) = 6(p; U) = L UL
J K

We have to remark that the study of ¥(p; V) reduces to that of ©(p; U) and
that, almost surely, neither U nor V belong to T'V%(¥X). For an arbitrarily given
p € TY%(X), almost surely 6(p; U) exists, but we do not know whether almost
surely 6(p; U) exists for all the p belonging to §. The study of this point would
be connected with the study of 8(p; U) as a random function of p € T'V2(%X). We
recall that T'V/2(¥) can be considered as a (separable) Hilbert space, in which
the scalar product is defined by

-,
(6.4) ppl = ¥ 2L
i Si

and the square of the norm ||p|| is defined by
ij2
(65) Il = = 2L

the notation p X p’ will be used for the scalar product in X%.
It appears that ©(p) is a Laplacian random function of p € I'V2(¥), with the
following properties:

(6.6) E{e(p)} = 0;

(6.7 E{6(p)0(s")} = p¢/,

the scalar product in TV2(¥);

(6.8) E{l6(p) — 6(")|} = |lo — £'lI%,

the square of the norm in I'V/%(¥). It is not the Laplacian random function of a
variable in a Hilbert space considered by Lévy [6]. Some facts can be heuris-
tically deduced, but a deeper study of 6(p) on I'V2(%) is not yet available.

Actually, however, we are interested in ©(p), not in the whole space I'V/2(¥),
but only on &, and for some F the situation is quite simple, as the following show.

ExampLE 6.1. § C I'(X¥). This is possible because I'(¥) C I'V%(%). In this
case O(p; U) can be interpreted as X U, where 5 is the element of ¥ with com-
ponents p’/s;. Almost surely, 6(p) exists for every p € I'(%).

ExampLE 6.2. The parametric case. Let 7 be a variable element in a subset D
of some Euclidean space of dimension », and f a mapping of D into I'V/2(%). I
put p. = f(7) and if F is the set of the p,, I say that we are in the v-dimensional
parametric case. In such a case 6(p) reduces to an ordinary Laplacian random
function.
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7. Uniformly most powerful tests

Let po be any given element of F; let Hy be the hypothesis that p = pp; let H,
be the hypothesis that p = p’, where p’ is any element of § different from po;
and let us consider the test of Hy against the whole set of hypotheses H,. It is
easy to see that

(a) if each element p’ of F is of the form

(7.1) p' = Cpy,
where C is any real constant independent of ¢, there exists a U.M.P. test;

(b) if § C I'(X) then, for the existence of a U.M.P. test, condition (7.1) is
necessary.

8. Maximum likelihood estimators

I now suppose that our problem is, from a single observation of V, that is, the
observation of the values of V(¢) for all ¢t € [0, T'], to estimate p, knowing that
pE T

Let p be some definite element of §, and let us assume that, for the observed V
and for any element p’ of &, the functional ¥(p’; V) exists and that

(8.1) Y(p; V) Z2¥('; V).

Let 77 and m’ be the two probability measures (on X) corresponding to the two
random elements

(8.2) V@) =80 +UER, V@ =0+ UO.

Then we know from section 3 that 7 is absolutely continuous with respect to m’,
and that its corresponding density is given by

(8.3) exp {¥(4; ) — ¥(o'; )}, z EX

Consequently we can call 4 a maximum likelihood estimator of p.

Now let us suppose that there are two different maximum likelihood esti-
mators py and p.. Then we must have ¥(p;; V) = ¥(p,; V) almost surely and,
if N is the common value of ¥(5;; V) and ¥(g.; V), we can write

p 1 . 1
68 =37 + %051 = £ AR Ly Ll + )
Putting o’ = 1/2(p1 + 52), we get
8.35) N = W V) —

1[[A]}® + [18e]|® ,
5=l
/. 1 A A 2
=¥('; V) — 3 181 — 52l]%
and hence
THEOREM 8.1. If & is such that ¥(p; V) exists almost surely for every p & &,
and s also such that it contains (o1 + p2)/2 whenever it contains py and p;, then

there is at most one maximum likelthood estimator.
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Now let us assume that § C I'(X). I call 5 the element of ¥ with components
p?/sj; |z| means the norm of x € ¥ as an element of ¥; we have |5 = [|p]| = |0,
and

, 1 1
(8.6) Y(p; V) =XV =58 Xp = ol |[V] = 55 Xp;

it appears that ¥(p; V) is bounded when p varies in I'(X), and a fortiori if p
varies in §. With the use of (8.5) and a classical tool, we can prove

TreorREM 8.2. If

(a) & contains (p1 -+ p2)/2 whenever it contains p, and pe;

(b) F is closed in the sense of the strong topology in TV%(X);

(¢) §C I,
then there exists one and only one maximum likelihood estimator.

CoroLLARY 8.1.  Under assumptions (a) and (b) of theorem 8.2 and the as-
sumption that, almost surely, ¥(p; V) exists and is bounded for every p & F, there
s one and only one maximum likelihood estimator.

Incidentally, from some heuristic geometrical considerations, it can be seen
that a maximum likelihood estimator is not in general a sufficient estimator,
unless § belongs to some convenient space.

Application to the linear parametric case. For example, let us suppose that &

consists of a finite number » of functions g:(f), g2(8), - -+ , g.(f) of ¢ on [0, T],
belonging to I''/2(X), together with all the linear combinations
(8.7) o) = T Mu(0)

of the g;. Without loss of generality, we assume that the g are linearly independ-
ent. This is an example of a parametric case of order »; we shall call it the linear
parametric case.

From corollary 8.1, or directly, putting

]
(8.8) am = 2 glgt _ pgn  ba=S BV
i Si 7 S
where the gi are the components of g» on the basis {u;}, we get

THEOREM 8.3. In the linear parametric case, there s one and only one maximum

likelihood estimator p = {N\¥}, which is also an unbiased sufficient estimator, and
which 1s given by

(8.9) kz”la,.,,ik = by, h=1,2 -, »
The sufficiency results from the fact that

(8.10) V(p; V) = ¥(5; V) + [¥(p; V) — ¥(3; V)]

and that

a2 /|2 v A
8.11) ¥(p; V) —¥(p;V) = 1 > l* _ 1 > alk + X (N — A)by,
2 7 85 2 7 S o1
which, from (8.9), does not depend on V.
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Without loss of generality we can assume that the g; are orthonormed, as ele-
ments of I''/2(%); under these conditions it is immediately proved that

(8.12) E(|lp = oll>) = ».

Since p is linearly deduced from V, it follows that 3 & & is a Laplacian random
variable of dimension ». Hence we are finally concerned with classical mathe-
matical statistics in finite-dimensional space. In particular, taking into account
the fact that p is a sufficient estimator, it is easy to prove that any other un-
biased estimator 5 will be such that E(||s — p||?) > », which proves

THEOREM 8.4. In the linear parametric case, the maxtmum likelihood estimator
18 also a mingmum variance estimator.

These theoretical results can be applied effectively, for instance if we actually
know the s; and the u;, which is not difficult in some cases, for example if U(t)
is a Wiener-Lévy process. Examples of this kind have already been investigated
(see H. B. Mann [7] and C. T. Striebel [11]).

An interesting application concerns the case where the family § consists of
functions p(t) of the form

(8.13) p(t) = s(t —N),

where s(), the signal, is a given function, and A, the delay, an unknown param-
eter. In an observation by radar, the delay A will be proportional to the distance
of the target from the observing radar, and the estimation of A gives an estimate
of this distance.

A few results of sections 6 to 8 have been obtained by Bethoux and several
others have been obtained by A. Hanen, in their as yet unpublished theses.

I should mention also that these sections are substantially identical with the
paper presented by E. Parzen [10] at this Symposium.
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