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1. Introduction and summary

The consistency of a maximum likelihood estimator has been established under
very general conditions by Wald [6] and Wolfowitz [7]. Much more stringent
conditions are needed for it to be asymptotically efficient, that is, consistent and
asymptotically normal with variance equal to the Cram6r-Rao lower bound.
Typical conditions are given by Cramer [2], Gurland [3], Kulldorf [4], all of
which restrict the behavior of at least the second derivative of the likelihood
function. Authors such as, for example, Le Cam [5] and Bahadur [1] discuss
large sample estimation in a more general context but still require regularity
conditions on the second derivative of the likelihood for the maximum likeli-
hood estimator to be asymptotically efficient.

However, cases are known which are not covered by these regularity condi-
tions. The density function f(x, 0) = (1/2) exp -lx -Al provides an example.
The sample median is a maximum likelihood estimator of 6. It is known to be
asymptotically normal with variance n-1, which is the Cram6r-Rao lower bound.
But a log f/a9 is discontinuous and a2 log f/la2 is zero for almost all x.

In the present paper weaker conditions for asymptotic efficiency are given
which do not involve the second derivative of the likelihood. Two sets of suf-
ficient conditions are stated. From the first, asymptotic efficiency can be proved
directly without appeal to the Wald-Wolfowitz result but there is a convexity
requirement which is frequently not satisfied. The second set of conditions dis-
penses with this requirement at the cost of some specialization elsewhere, but
consistency has to be established by the Wald-Wolfowitz method. Finally a
more general situation is considered where a modified maximum likelihood
procedure is shown still to yield an asymptotically efficient estimator. The rela-
tion of this modified estimator to a class of smoothed estimators is indicated.

2. First set of sufficient conditions

We consider for simplicity a univariate distribution which has a probability
density f(x, 0), where 0 is a parameter which can take any value in an open
interval 0. With obvious changes the discussion will apply to discrete distribu-
tions also. Let xl, x2, - , x. be a random sample S from such a distribution.
Write l(x, 0) = logf(x, 0) and let L(S, 0) = _rn=. l(x,, 0) denote the log-likeli-
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hood of the sample S. The statistic 0 is said to be a maximum likelihood estimator
of 6 if L(S, 6) < L(S, 6) for all 6 in 0. It is not necessarily unique.
The asymptotic efficiency of 6 is now proved under the following conditions

on l(x, 6) which are suggested by the example f(x, 0) = (1/2) exp - Ix -Al.
The symbol Oo refers to the true parameter value being estimated. The nota-
tion E{g(x) 6} = 3 g(x)f(x, 6) dx is used.

CONDITIONS I.
(1) 1(x, 6) is continuous in 0 throughout 0. At every 6o there is a neighborhood

such that for all 0, 6' in it,
(2.1) l(x, 0) - I(x, 6')I < A(x, 6o)16 - O'l
where E{A2l6o} < so.

It is not difficult to show that this implies

(2.2) (x, 6') -1 < B(x, 0,)l6 6'l E {B2'o} < x.

(2) At every 6, dl(x, )/daO exists and is continuousfor- almost all x. It is not almost
everywhere zero.

This is satisfied, as in the example quoted, when al/daO has a finite set of dis-
continuities at 6 = Oj(x) where each doj/dx exists and is not zero. On the other
hand, it is not satisfied if the discontinuity points of al/daO are independent of x,
as in the following example

((27r)-1/2 exp {2 (x -)2}, 6 _> ,

(2.3) A(x, 0) = f-
I

(27r)-/2 exp (x + 6)2} 0 < 0.

Conventionally, al/daO is assumed to be continuous on the right in 6 at every 6
and x.
The third condition is of a more restrictive character.
(3) dl(x, 6)/do is a nowhere increasing and somewhere decreasing function of 6.
We first observe that as a consequence of conditions I(1) and 1(3), 1(x, 6) is a

convex function of 6, and so therefore is L(S, 6). Because of this, every 6 has the
property that aL/da > 0 when 6 <6 , and aL/dO < 0 when 6 _ 0. There must
be a random interval (6L, OR) such that aL/do > 0 when 6 < L, while aL/da = 0
when AL < _< OR, and aL/d0 < 0 when 6 > 6R. Every point of the interval is a 6
and every other point is not. Then

P{6L > 616o} = P {d > 0INo}
(2.4)

P{6R <oIo} = P {dL <OlOo}
We next show that I(1) and 1(2) are sufficient to ensure the following results

holding for every 0, O0 in 0
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(a) E{ lao(Go) =}=

(b) O < E {ro(x ) G=o) < O

(c) E{0l(X4)G} = (6 - o)I(Go) + o(G - Ge).

(d) E{(1( °)) G1o} = I(o) + o(1).

The Lebesgue dominated convergence theorem is used; see, for example,
Cramer [2], theorems (7.3.1), (7.3.2).

(a) Since E{B2jGo} < Xc implies E{BlGo} < Xo it follows from I(1) that

(2.5) 0 = lim I f(x, 0) - f(x, G) dx = df(x, O dx
JO 00oJ- o dao

(b) I(0o) exists and is finite since [f(x, 6) - f(x, Go)]2/(0 - Go)2f(x, Go) is dom-
inated by B2f(x, Go). I(Go) > 0 since 0l/lao is not almost everywhere zero.

(c) Under the standard regularity conditions this result is most naturally
proved by differentiating f [al(x, 6)/00]f(x, Oo) dx with respect to 6 under the
integral sign. But al/la may now have discontinuities and the operation is not
allowable. However, we may still differentiate the integral with respect to Go,
obtaining

(2.6) EGo 1O 0Jj El061 O|o

For in a neighborhood of 0o containing 0, Al, 02, the integrand of

(2.7) [f(x, Al)-f(x, 0)] [f(x, 02) -f(x, Go)] dx(Oi - G)f(x, 6) (02 - Go)
is dominated in modulus by B2f(x, Go) and the limit as 01 -- 0, 02 -+ 0omay be
taken. Moreover, since dl(x, 6)106 is continuous in 0 for almost all x we also
have with similar justification

(2.8) lim E -- o = I(Go).
0-bf as9 ao0

Hence

(2.9) E }OoJ E -01 - (6 - o)I(Go) + o(G - 00).

The first term on the right vanishes by (a) and (c) follows. In a similar way (d)
is proved.

These results are now applied to (2.4). By (c) and (d),

E {8LlOo} = -n(6 - Go) {I(Oo) + o(1)},
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(2.10)

Var t> lo} = n{I(Oo) + o(1)}

and by the central limit theorem, for any fixed w = [n I(Oo)]1/2( - o),

(2.11) e e { > o10o} c1(w) = e1/2'2 dt

as n becomes large. Hence

(2.12) P{OL > 0100} - 1 - P{OR < 010o} ' -4{[n I(0o)](0 - Oo)
Since P{OL > 010o} _ P{O > OIOo} - P{OR >_ 010} it follows that P{O > 010o}
tends to the same limit for every 0, and we have proved
THEOREM 1. Under conditions I every maximum likelihood estimator 0 is as-

ymptotically efficient.

3. Second set of sufficient conditions

Conditions I are satisfied by f(x, 0) = (1/2) exp - x - 01 and by similar
densities such as

3ex x < 0,

(3.1) f(x, 0) = 0a x < 0 + 1,

&,3e+', a + 1 < x.

(In this case 6 is never unique.) But the convexity of l(x, 0) imposed by I(3)
is a severe restriction and does not hold even in such regular cases as mixtures
of normal densities. Moreover, convexity is not necessarily preserved under a
transformation. For example, if 0 in f(x, 0) = (1/2) exp - Ix - 0 is converted
to a scale parameter 4 by the transformation y = ex, 0 = el, the density be-
comes

(3.2) g(yl1=
20

and the log-likelihood is not convex in 4.
The purpose of I(3) was to enable (2.4) to hold for all 0, which ensured both

consistency and asymptotic normality. But consistency was established under
very general conditions by Wald [6] and if his conditions are satisfied we need
only a local and possibly weaker equivalent of 1(3) to hold near Oo. Consider
the following example.
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(3.3) f(x, 0) = (1+0)' O <<,

(I + ) exP (0x), 0_ x <oo,

where 0 < 0 < . In this case

(3.4) da (1+0)' <0<x 30 = -(1+ )' x < <,
and l/d6 is an increasing function of 0 except at the discontinuity point 0 = x.
Nevertheless I(1) and 1(2) still hold and imply (a), (b), (c), (d). Also, Wald's
conditions are satisfied and 6 is consistent.
The graph of (1/n) aL/do against 0 has the character of a random walk of n

downward steps of 1/n at 0 = xr superposed on a continuous upward trend
61(1 + 0). As n increases, the jumps become less severe and more numerous,
and (1/n) aL/00 tends near Oo to be contained within a narrow band of slope
-I(0O). It can be shown that as n increases the width of the band decreases
rapidly enough for a result similar to but weaker than (2.4) to be stated and
the asymptotic efficiency of 0 deduced. We use this idea to prove that 0 is as-
ymptotically efficient under the following conditions.
CONDITIONS II.
(1) 1(x, 0) is continuous in 0 throughout 0. At every 0o there is a neighborhood

such that for all 0, 0' in it

(3.5) 1l(x, 0) - l(x, 0')I < A(x, Oo)I0 -'

where E{fA3Oo} <00.
This is stronger than I(1) and is introduced to impose some extra smnoothness

on E{dl/dljo}, though a weaker condition would probably suffice.
(2) At every 0, dl(x, )/daO exists for almost all x and is not almost everywhere

zero. It is continuous in 0 except at a finite nuniber of discontinuity points at which
it has finite jumps of either sign.

(3) The probability that the interval (0, 0') contains a discontinuity point of
al/do is 0(0' - 0) for any true value 00.

Conventionally, al/da is again assumed continuous on the right. Thus al/da =
c(x, 0) + h(x, 0) where c(x, 0) is continuous at every 0 and h(x, 0) is a step func-
tion. We require a further condition on c(x, 0).

(4) Ic(x, 0') - c(x, 0)I < G(x, Oo)lI' - 01, Eh{G210o} < X

Since 11(2) and 11(3) together imply 1(2), 11(1) to 11(3) are sufficient for (a),
(b), (c), (d) to hold. Later, (c) will be replaced by a stronger result (c').
We first appeal to the known consistency of 0. Wald proved under mild condi-

tions that every 0 maximizing L(S, 0) almost certainly lies in a preassigned
interval (Oo - 6, Oo + S) as n -- 00. His conditions are more than covered by I
or II, provided the end endpoints of 0 are taken care of by an additional condi-
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tion to ensure compactness, since Wald assumes 0 to be a closed interval. Wald's
proof depends on the inequality
(3.6) E{l (x, 0) - I(x, Oo)6o' < 0, 0 6 #0o.
The strong law of large numbers then makes L(S, 6) < L(S, Oo) almost certainly
true as n -x c for every 0 54 Oo. With the reasoniable extra assumption that (3.6)
still holds in the limit as 0 tends to the possibly infinite endpoints of 0 it can be
deduced that

(3.7) sup L(S, 0) < L(S, G(O)
lO-°ol >3

with probability 1 as n -x c. Thus every 0 must ultimately lie in (6o - 6, Go + 3)
and so 0 is strongly consistent.
Weak consistency, which is more relevant to asymptotic efficiency, means

that P{Oo - 3 < 0 < Oo + blo} -* 1 for every 0 as n -x o. This was established
by Wolfowitz [7] in a similar way, using instead the weak law of large numbers.
Conditions I or II allow the result to be strengthened somewhat. It is permissible
by I(1) to integrate (c) with respect to 6 and obtain

(3.8) E{l(x, 0) - I(x, o)lo} = -2 (6 -0o)2{I(0o) + 0(1)).

Also from (h),

(3.9) E{[l(j, 0) -I(X, Go)]fl0o} = (0- o)2I(Oo) + ((I).
The central limit theorem then gives

(3.10) P IL(S, 0) - L(S, <o) < 0 1 -6 -ol[n6t2
so that for each 0 such that an-112+e < 10- ol < 3, with a > 0, E > 0, we have
P{L(S, 0) - L(S, Oo) <Klo} -4 1 as n -- x. It can then be deduced as before
that for any preassigned a > 0, E > 0, and for every 0,
(3.11) P{Oo - an-1/2+e < 0 < Go + an-112+00} 1

as n oo. In the subsequent discussion we may therefore confine our attention
to values of 6 in the interval (o- an-al2+±e, Oo + an-l1/2+,) which we denote by g..

4. Approximate local monotonicity of aL/aO near Oo

The next objective is to establish that as 0 varies over 4., then aL/06 tends to
lie within a band of slope -n I(6o) which is narrow compared with the standard
deviation of aL/la as n becomes large. The strongest result of this kind could
evidently be deduced from random walk theory under suitable regularity con-
ditions, since the probability of a jump in al/ao is approximately uniformly
distributed over 4Jn. However, we adopt a more elementary approach leading
to a weaker result which is adequate for our purpose. The method has the
advantage that it carries over to a more general situation discussed later.
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Let {Cm} be a discrete set of values of a dividing g4, into N equal subintervals
9n,m of length Cm+i - Cm = 2an-12+E/N, where N is taken to be a function of n
such that the subdivision of -4n becomes increasingly fine as n becomes large. It
will be shown that if we choose N nl/8+e and e < 1/16 all differences OL/O0m -

aL/aC, tend simultaneously to lie within 0(n318) of their expectations. Fluctua-
tions of this order are vanishingly small compared with [n I(Co)] 1/2, which is the
approximate standard deviation of each aL/a_m. By disposing of "end effects"
the same result is shown to hold for all aL/aO - aL/C where C, C' range con-
tinuously over 4,.

Consider the behavior of a1/la over the subinterval 4n,m. If n is sufficiently
large, 4n m is small enough to contain at most one discontinuity point of 1/0ll
since there is only a finite number of them. If gn,m contains a discontinuity,
IOl/d0m+i - al/laoI < K < o by 11(2), and this will occur with probability less
than M(1m+l- Cm), where M < oo, by 11(3). If there is no discontinuity

(4.1) a_i - -Cm < (Cm+1 - Cm)G(x, Ca)
by 11(4). So we have

(4.2) E ( 0 d ) | < (Cm±i - m)K2M + (Cm+1 - 0m)2E{C~(9g}

= 0(Cm+i - 0m)
and hence

<(8@m+l ddim 109o} ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=O[fl(Cm+i-m)]<RN(4.3) Var -Oo00LO+l-OL )]<Rn
for some R < o which may be taken the same for all 4n,m-

Let N -ln8+1, in which case n(Cm+i - Cm) = 0(n318). By the central limit
theorem, for X > 0 and large no,

(4.4) P{ aL - CIL a[L0m+ dt1m IC] N

> 2N(R-l12no'/16-e) 1

for all n > no. We require that the inequalities on the left shall hold simultane-
ously for all m, that is, that

(4-5) max a C-d9m E -a-LCoa
° < N

m 0Cm+i 49 0Cma,,+i 0Cm N

since this implies the result we want, namely

(4.6) max aL--L _- E {---CL} < n318.
m, p aCm 06,p a0m 06,

By Boole's inequality the probability of (4.5), and hence that of (4.6), exceeds
1 - 2N(1 - 4) with 4 as in (4.4). Assuming e < 1/16 this probability tends
to 1 asn-Co.
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We now consider the "end effects" which come in when 0 is allowed to vary
continuously over 4. With the same K as before, define a random variable
zm(x) to take the value K if 4n m contains a discontinuity of 0l/00, and the value
(Om+i - 0m)G(x, t0) if it does not. Then

(4.7) max l - <Z(x),

and hence if Zm(S) z=i=Zm(xr),

(4.8) max |L _ dL < Z (S).

From 11(3) and II(4), both E{Zml0o} and Var {ZmjOo} are

O{n((Om+ - am)} = 0(n3/8).
It follows easily from the central limit theorem and Boole's inequality that if
Iu > 0, then JaL/ao - aL/aom < /An318 holds, in probability, uniformly for all 0
in .n,m, and all Am as n -> oo. So the extra terms introduced by allowing 0 to vary
continuously can be absorbed by adjusting X, and we can assert that for
some X > 0,

aL aL rL OL
o

(4.9) P 4max -- - E
9L

< Xn3/800 1.

Finally we examine the behavior of E{OL/a0 - OL/00'10o} over 9n using a
stronger form of (c). From (2.6) we have

(4.10) E { }oj (- - 00o)E j91 GiJl}
for some 01 between 0 and 0, since E{(cl/O)(c(l/00o)J0o} is continuous in Oo by
the previous argument. By 11(1) the procedure may be repeated to give

(4.11) E a 91
01

~~,90(01001 I1010
E OoJ + (01 -Oo)E O ± o(-O)

so that we now have

(4.12) E { |} (0 - o)E{ -{ o ± °{(0 - Oo)2} *

As before, II(3) and 11(4) imply that E{[(0l/l0) - (l/0ao)]2l0o} = 0{10 - Ool}
and it follows on applying the Schwarz inequality that

(4.13) E{fa' o} = I(^o) + {Il - 00ol2}).

Hence we can replace (c) by
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(c') E{ ef (=-( -6o)I(0o) + °{(1 - -0 }

For all 6 in J,, we have 60 - ol O(n-vl12+E) so that

(4.14) E {aL -
aL jj| = -n( - 6')I (6o) + O(n 14+3d/2).

Since E < 1/16 this is more than enough to enable us to say that for some X > 0,

(4.15) P {max OIL -OaL + n( -0')I (do) I< Xn318160}
asn x, which is the re(uired result.

5. Completion of proof of theorem 2

We are niow ill a position to apply ani argumeent similar to that used for
theorem 1. Let OL, OR be the least and greatest maximum likelihood estimators.
Notice that it is now not necessarily true that every point in the interval (9L, OR)
is a 6. The inequality

(5.1) aL
-

dL
+ t(6 0-')I(6o) < Xn318

may be written

(5.2) a - Xn3/8 < dL + n(0' _ 0)I( ) < aL + Xn3/8.

Suppose (5.2) to be satisfied for every 0, 6' in 9_ Then aL/aO < -Xn3/8 implies
aL/a0' < O for every 6' > 0, and since L(S, 0') is continuous in 6' this in turn
implies OR <6. Similarly aL/a > Xn3/8 implies aL/a6' > 0 for every 6' < 0 and
this implies OL > 0. Also OR < 0 implies OL < 0. Hence, conditional on (5.2)
which holds in probability for all 0, 6' in 9,l,

(5.3) P {d9 < -Xnl3/8|0} < P{'Ole < Ol6ol

_ P{L{0L 61o} .-P {a < Xn 3/8I00

Both P{OL/I3 <K Xn31810o} and P{aL/aO < Xn3'816a} tend to

(5.4) {(d- 6o) [n I (0o) 1/2}

as n - oo for fixed n"/2( - 00). So therefore does P{O _ Ol6o} for every 0 and we
have proved
THEOREM 2. Under conditions II every maximum likelihood estimator is as-

ymptotically efficient.
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6. A more general situation

Though the class of densities for which 0 is asymptotically efficient has been
considerably widened there remain cases where the Cram6r-Rao lower bound is
neither zero nor infinite, but which are not covered by conditions I or II. Con-
sider the example

(6.1) f(x, 0) = ()e exp {-Ix - 01"}, < K < 1,

where -O- < x < oo, -X < 0 < oo. In this case 01/l0 = K(X, 0)(1x) for0 < x;
al/la = - (0 - x)-(1-') for x < 0. Not only is 0l/00 an increasing function of 0
where it is continuous, but it has an infinite discontinuity at 0 = x. If the ordered
observations are x(l) < X(2) < * *- < x(n), then aL/aG increases from -oo to oo
as 0 goes from each x(r) to X(,+±). It has n infinite discontinuities separated by
intervals whose average width is of order n-1.

Nevertheless I(Oo) = Kr(2 -1/K)/r(1 + 1/K) is finite if K > 1/2. Notice that
the asymptotic efficiency of the median is sin wr(l/tc - 1)/7r(l/K - 1), which
decreases from 1 to 0 as K decreases from 1 to 1/2. Also

(6.2) E{ >|0o} = (0 - o)I(oo) + 010 - ol2,

(6.3) E 1Y-0 i)210oj = 0{10_ '12,1}

So in spite of its irregular behavior, 0l/la has quite reasonable average properties,
and is actually more than continuous in mean square. We now show that in
cases of this type an asymptotically efficient estimator of Oo can be found by
maximizing L(S, 0) over a discrete set of values of 0 separated by intervals which
decrease faster than n-1"2, but not too fast, as n -+ oo.

In the example, 1(x, 0) is continuous in 0 and it may also be verified that
Wald's conditions are satisfied. We shall assume this to be true throughout the
rest of the discussion. To avoid unnecessary complications the following condi-
tions are stated in terms of differences rather than derivatives. They are satisfied
by (6.1) with p = 2K -1. We need only consider 0 < p < 1.
(6.4) E{[l(x, Go ± w) -- (x, Oo)]210o} = W21(0o) + o(W2),

(6.5) E{l(x, Oo + ) - 1(x, Go) Io} = -2A)I(0o) + 0(W2+P),2

(6.6) E{[l(x, 0 + 2w) - 21(x, 0 + w) + I(X, 0)]2100} = O(co2+P).
The argument used to prove theorem 2 is pursued as far as possible. Consider

a mesh of equally spaced values {om} ranging over the entire interval e with
.m+i - Gm = yn'12- 8, where y > 0. The true value 0o is not necessarily on the
mesh. Since E{l(x, 0a,) - 1(x, Oo)10ol < 0 for all G9m 5# Go, it can be shown as
before that
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(6.7) max L(S, 0m) < L(S, Oo)
lem-sol >an-112+4

with probability tending to 1. Let O,, be the value of Am nearest to 0o. Then (6.7)
is also true in probability if L(S, Oo) is replaced by L(S, O,), since l(x, 0) is con-
tinuous and E{l(x, 0) - 1(x, Oo)IOo} cannot approach arbitrarily close to zero
except near Oo. Hence if 0 is a value of Am such that L(S, 0m) < L(S, 6) for all Om.
(6.8) P{Oo - anll2+E < 0 < Oo + an-1/2+EI1o} -+ 1

and again it is only necessary to consider values of Am in -Jn.
Let N - n,/IS+E and y = 2ca, so that Om+1-a = 2an-112+E/N as before. The

discussion now proceeds as for theorem 2 but with differences replacing deriva-
tives. Write

dm(x) = l(z, m) - l(x, am)
Gm+1 Am

(6.9)
n

Dm(S) = E dm(xr).
r=1

From (6.6) we have E{(dm+l - dm)2[0} = O{(01m+ - Om)P} and hence
(6.10) Var {Dm+1 - DmIOo} = O{n(6n+l- Om)P} = 0(n1-p/2-p1/8).
So however large no we have for some C > 0,

(6.11) P{Dm+, - Dm - E{Dm+ - DmIO}I < N
l 8o}

> 24b(CnoP'/16-0) - 1

for all n > no. If e < p2/16 it follows as before that for all Om, Olp in gn,
(6.12) max IDm- Dp - E{D - D,10o}I < Xnl12-PI8

m,p
in probability, as n -+ oo. Also from (6.5),
(6.13) E {l(x, Om+i) -1(x, 0m) IGo}

= (Om+l - Om)(Gm - o)I(Go) + O{(Gm - Go) +P}
and it may be deduced that

(6.14) E{Dm - Dplo} = -n(Gm - Gp)I(Oo) + O{nl12-3PI8+(2+P)E}
The remainder is less than O(n1/2-p/8) and we can therefore state that for some
X > 0,
(6.15) max 1Dm - Dp + n(G. - Op)I(Go)I < Xn'12-p/8
with probability tending to 1.
The argument used for a can now be applied in the same way to the discrete

set {Oim} to prove that if 91 and JR are the least and greatest values of j,
(6.16) P{Dm < -Xn1/2-P/810o} < P{6R < G1Go}

< P{L < Go} _ P{Dm _ Xn1I/2-p/810}
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and hence that

(6.17) P{( .< rA{' -0) [nI(2o)]12
for every 6. 'T'huis every J is asymptotically efficient.

7. Smoothed maximum likelihood estimators

It is clearly not possible to complete the argumeint of theorem 2 in the more
general situationi, and the asymptotic efficiency of 0 itself remains an open ques-
tion. The choice of N -nPIl8+ was to some extent arbitrary, but,N must certainly
increase moie slowly than nll2 for the proof to go through. Roughly speaking,
the reasoni why 6 is easier to handle than 6 is that by maximizing over the mesh
instead of over 0 wve reduce the chance of selecting one of the erratic cusps of
the likelihood function. In fact 6 is related to a class of smoothed maximum
likelihood estimators defined in the following way. Let

(7.1) T,,(s, 0) = f L(S, 0 - u )gq,Q(,t) d?,.
where g,in(it) is a inoriialized weight fuinetioni suclh that fu2gn(u) dcu- 0 as n ->

.

We call 6 a smoothed maximum likelihood estimator if Ln(S, 0) < In(S, 6) for
all 0. For the uniform weight ftunctioii gn(2u) = 1/2an, Jul < a., gn(u) = 0,
ituI > an, we have

(7.2) ('(S, ) Jo anL( )(t
and

(7.3) dT, = L,(S, 0 + a,,) - L(S, 0 + a,,))-a36 2a,,
'l'he estimator 6 is evidently closely related to O for a uniiforin weighlt funictioln
wvith a, = (l/2),yn-121P-S. The averaging of L ovei the interval will cause Ln to
vary smoothly as 0 goes fromn am to 0n,±1 so that the ml-aximizatioiis leadinig to 0
and 6 should give nearly the same result. Estimators of this type wvithl a genieral
wveight fuinction seem worthy of further study.

I have profited greatly from discussions with D. V. Lindley oIn the subject of
the paper.
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