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1. Introduction

It is well known that many applications of the theory of probability require the con-
sideration of general random elements. We are mainly interested in generalizing laws of
large numbers and central limit theorems, so we must consider random elements in topo-
logical vector spaces. As a first approach we study random elements in Banach spaces
and in the first part of this paper give the definitions and results we have obtained (see
[1] and [9]). The case of Banach spaces may seem very limited; however, we show in the
second part that it allows many applications. Finally, in the last part, we indicate a new
point of view and the results we have established in this way.

2. Definition of L-random elements in Banach spaces and their mathematical ex-
pectation

Let (U, 42, m) be a fundamental probability space of elements #, let ¥ be a Banach
space of elements x, and x(#) a function on U to X. We call X = x(«) a random element
in ¥, that is, the “value” of the random element X is x(x) € % if the outcome of the
experiment is # € U.

Let X* be the dual space of ¥, that is, the space of all continuous linear functionals x*
on X. We shall write (x*, x) for the number obtained by applying the linear functional
x* € X* to x € X. The mathematical expectation of X is the element E(X) of %, if one
exists, such that, for all x* € X*,

(2.1) (a*, E(X) )=E({x* X)).

If E(X) exists, it is unique [6], and E(X) is the Pettis integral [11], f x(u)dm, of x(u)
with respect to the measure m. v

Such a definition of mathematical expectation implies that, for all x* € X*,
{x*, x(u)) is a measurable function of ». We call L-random elements those random ele-
ments for which this property is fulfilled, and in this section we shall consider only
L-random elements.

It is easy to prove (see [9]) the following:

(a) If a is a given number and if E(X) exists, then E(aX) exists and E(aX) = aE(X).

(b) If X is almost surely (a.s.) equal to a given element x, then E(X) exists and
E(X) ==

(c) If X isalmost surely (a.s.) equal to a given element x, and if 4 isa random variable
such that E(A4) exists, then E(AX) exists and E(AX) = xE(A).
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(d) If E(X,) and E(X.) exist, then E(X; + X,) exists and E(X; + X,) = E(X)) +
E(X,).

(e) If F is a linear function on X to a Banach space ) and if E(X) exists, then E[F(X)]
exists and E[F(X)] = F[E(X)]. '

(f) If || X|| is measurable and if E(X) exists, then ||E(X)|| £ E(||X])).

If X is a separable Banach space and if X = x(«4) is an L-random element, then
||(2)|| is measurable. More generally, any continuous numerical function of «x is meas-
urable. If X is a reflexive, separable Banach space and if E(||X|]) = m < 4+ , then
E(X) exists. We shall see, as a consequence of the strong law of large numbers, that this
property is true even if ¥ is not a reflexive space.

3. Laws of large numbers

3.1. Strong law of large numbers. If ¥ is a separable Banach space and { X ;} is a strictly
stationary sequence of L-random elements in % such that E(|| X ;||) < + =, then almost sure-

ly (1/n) E X;tends, as n— + o, o a limit Y which is an L-random element such that
i=1

E(||7]l) < 4 «. Asa particular case let us suppose that {X} is a sequence of independ-

ent L-random elements with the same probability law and with E(||X|) < +=. If a

sequence converges strongly to a limit it converges weakly; therefore, for all x* € %*,

(3.1) (o A x> =15 cor, xpoam, 1, as.
i=1 =1

Hence, by Kolmogoroff’s theorem, (1/#) E ({x*, X;» — E({z* X)) a.s. Thus, ¥ =
i=1
E(X;), and this proves that if % is a separable Banach space, E(||X|]) < 4+« implies
that E(X) exists.
3.2. Law of large numbers in mean of order a. If % is a separable Banach space and
{ X} is a strictly stationary sequence of L-random elements in % such that E(|| X jj|*) < + =,
1S a <+, there exists in X an L-random element ¥ such that E(|Y||*) < + =,

E(Y) = E(X,) and lim E[||(1 /m x—- Y"] = 0. The proof is based o an ergodic
7% —r®0 ,-1
theorem of Yosida and Kakutani [12] and on the study [9], [1] of an auxiliary Banach
space. This theorem reduces to an important classical theorem when X is the real line
and a = 2. However, the theorem for any a = 1 is new. It is obvious that the theorem
includes the case of multidimensional random variables.
3.3. Rapidity of convergence in the mean. It is very useful to know with what rapidity

E[”(l/ n) Z X;— er] tends to zero as # tends to infinity.
i=1
Let us suppose in addition that the X ; are independent L-random elements; then we
can suppose without loss of generality that EX; = ¥ = 6 (the symbol g denotes the null
element of the space %). If X* is separable and if a = 2, there exists a positive number p
such that, for all ,

(3.2) E (H%E_: X

G)Zp,'.-w.
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Obviously it would be particularly interesting to have an inequality in the other direc-
tion. To get such a result it seems necessary to make some assumptions on ¥. Let us
say that a Banach space ¥ is a @-space if there exists a positive number K and a func-
tion g on X to X* such that forallx, y € ¥

(3.3) g ==,
(3.4) (g(x), )= «|2,
(3.5) lg(x) =g || S kllx—y].

In particular, spaces L., a = 2, are @-spaces.

If X is a separable ®-space and if X, - -+ , X, are independent L-random elements
in ¥, with the same probability law or not, such that, forall j, E(X;) = 6and E(||Xj||*) <
<+ o, then, for all #,

(3.6) (|3 %

i=1

DseXrax.

If we suppose that »— + o« and thatz E(|X;||?) = O(»f) with B < 2, it follows

=1

from (3.6) that, as » tends to infinity, (1/%) E X ; tends to 6 in mean of order two and
i=1

also a.s. tends strongly to 8. Thus, not only do we have information about the rapidity
of convergence, but also we get laws of large numbers under different assumptions: ¥ is
a separable @-space, the X ;are independent but not of the same law. Then the inequality
(3.6) is very important and we shall show now how it may be proved and why we have
to make assumptions on ¥X. Let X3, - -- , X, be independent L-random elements such
that E(X;) = 0, E(|Xj|>) < +,j=1, ---,n, and let X be a separable -space.
We have

G X%+ Xt XalP =g X+ Xt + X), X+ Kot + Xad
=D X+ Xt + X)), XD
i

Let us write T,'= X1+Xz++X,_1+X,+1++ X,. so that X1+Xg+
+X,=T;+ X; Letusput g(Xi + X2+ -+ X,) = g(T;) + X* and, since X isa
®-space, we have || X*/|| £ K||X}||. Then

3.8) [ Xi+Xat o+ Xallr=D e @), X+ D (X, X,

=1 =1

L 2
and to evaluate the mathematical expectation of ”2 X; “ we have to evaluate the
=1

mathematical expectation of (g(T'), X ;> and of (X*/, X,>. We shall prove below that,
if % is separable, then E({g(T;), X») = 0, so that

% ul)-2(E o m)se e ().

i=1 =1

(3.9) E(
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3.4. Mathematical expectation of (X*, X). Let us suppose that X and X* are inde-
pendent random elements in a Banach space % and in its dual space X* respectively.
Let uand u* be the probability measures of X and X* respectively. The product measure
p X p* defines a measure in X X %*. Let us consider the random variable

(3.10) A4=(X* X).

THEOREM 3.1. Let X be an L-random element in X such that E(X) = 0 and let X* be
any random element in X*. If A, as defined by (3.10), is p X u*-measurable and if E(| A|)
<+, then E(4) = 0.

This follows immediately from Fubini’s theorem.

Sufficient conditions for A to be p X p*-measurable and E(|4|) < 4+ = are

1) ¥* is separable,

2) spheres of ¥* are u*-measurable,

3) E(| X*) < + and E(|X])) < + .

It is sufficient to note that {x*, x) is a continuous function (with the strong topology)
on X X X*. Obviously, if there exists a complete vectorial subspace ¥'* of ¥* such that
almost surely X* € X'¥, it is sufficient that the above conditions hold on ¥'*.

THEOREM 3.2. If X* is an L-random element in X* such that E(X*) = 6* (the null
element of X*), and X is any random element in %X, and if A is u X u*-measurable and
E(|A]) < +w, then E(4) = 0.

This again follows immediately from Fubini’s theorem.

Sufficient conditions for 4 to be g X p*-measurable and E(| 4|) < + = are

1) %* is separable (then || X*| is u*-measurable and ¥ is separable),

2) spheres of ¥ are u-measurable (then || X|| is y-measurable),

3) E(|X]) < 4+ and E(|X*) < + .

Theorems 3.1 and 3.2 have been given in [9], but the conditions of validity—conditions
which allow us to apply Fubini’s theorem—were not specified there. In fact, in [9], theo-
rems 3.1 and 3.2 were used in a separable Hilbert space and in this case all the necessary
conditions are fulfilled.

Let us now come back to the computation of E({g(T’;), X;>). With the previous nota-
tion and under the conditions stated above, g(T';) and X are independent random ele-
mentsin ¥* and X respectively, and X;isan L-random element in ¥ such that E(X;) =
0 and E(||X,||*) < + «. Further, ¥ is a separable ®-space and {g(T;), X, is a con-
tinuous function of the X ;’s and is therefore measurable. Moreover,

(3.11) [Ke T, X1 =g @) -1 X0 = 1750l - 1| X5
and, therefore,

(3.12) E(CgT), X)) <+
Consequently, from theorem 3.1 we get

(3.13) E(g(Tp, X;)) =0.

In the same way we see that E((X*/, X)) exists, and

(3.14) E(X*, X;3) SKE(|X;l]».

The inequality (3.6) follows immediately.
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4. Characteristic functions

It is well known that the characteristic function is a very useful tool in the case of
real-valued random variables, particularly to study sums of independent random vari-
ables and to get central limit theorems. Kolmogoroff [8] gave the definition and some
properties of the characteristic function of an L-random element in a Banach space, but
at that time he did not carry the study of such elements very far. The definition of the
characteristic function is as follows. Let X be an L-random element in a Banach space X
and x* any real, continuous, linear functional on X. We call the ckaracteristic function
of X the function

(4.1) ¢ (z*) =E (el %)

defined for all real x* € X*. We now list the properties of this function.

Property 1. With the strong topology in X*, ¢(x*) is a uniformly continuous function
of x*, and it is a continuous function of #* with the weak topology in X*.

Property I1. If E(X) and E(||x||?) exist, then

(4.2) (&%) =1+«z*E(X) )—3E(I{s*X>|?) + [ 2*|?w (2%,

where w(x*) — 0 as ||z*|| = 0.

Given any positive integer #, any %, - -, xx € X* and any B-measurable set E, in
n-dimensional Euclidean space we call a cylinder set, £,, the set of all x € X such that
(o, %), -+, ok, x)) € E,. Let B denote the smallest Borel field which contains the
cylinder sets. If ¥ is separable, B contains the spheres and all the open sets in X.

Property I11. The characteristic function determines the L-measure on 5.

Property IV. Any characteristic function ¢(x*) is a positive definite function with
¢(6%) = 1. In the present context a positive definite function ¢(x*) is a numerical-valued
function such that

(a) it is continuous with the strong topology in X*,

n
(b) z o(xf — 2%)ajas is real and greater than or equal to O for any positive integer
i, &
n, any «},- - -, % € X* and any complex numbers aj," * *, @n.

Property V (Generalization of Bochner’s theorem). It is well known that, in the case
of an ordinary random variable, the characteristic function is a positive definite function
and that, conversely, any positive definite function such that ¢(0) = 1 is the character-
istic function of a random variable. This holds also for an #-dimensional random variable,
for any positive integer #. If X isan L-random element in a Banach space ¥, property IV
shows that the characteristic function of X is a positive definite function. But in this
case it is ot true that any positive definite function ¢, with (%)= 1, is the charac-
teristic function of an L-random element in X. And this is the case even if X is a separable
Hilbert space. If ¥ is a reflexive, separable Banach space, we have obtained a necessary
and sufficient condition—condition C in [9]—for a positive definite function ¢, with
#(6*) = 1, to be the characteristic function of an L-random element. From condition C
we can deduce the following one, which is more useful in practice. If X is a reflexive, sepa-
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rable Banach space, and if ¢,(x*), ¢2(x*)," - -, oa(x*)," - - is an infinite sequence of char-
acteristic functions such that

(a) there exist a > 0 and s > 0 such that for every positive integer n
(4.3) E, (| X]|9) < s*

(b) o(x*) = lilil on(x*) exists,

(c) there exists an 4 such that |g,(x*) — ¢(x*)| — 0 uniformly for all * € X* for
which ||2*| < 4,
then o(x*) is the characteristic function of an L-random element in X.

Property VI (Addition of independent L-random elements). If ox(x*); ov(x*) are
the characteristic functions of two independent L-random elements in %, the characteris-
tic function of X + V' is

(4.4) px+v (2%) = ox (%) -0y (2%).

Obviously the property extends to any given humber of independent L-random ele-
ments.

A detailed proof of the above properties is given in [9].

5. Laplacian L-random elements; central limit theorems

5.1. Laplacian L-random elements. An L-random element X in a Banach space X is
called by M. Fréchet [4] (see also [9]) a Laplacian L-random element if (x*, X) is a
Laplacian random variable for all x* € X*.

If X1, -, X are independent Laplacian L-random elements in %, if x, is a given
element in %X, and if ao, a1," ', @, are given numbers, then Z = a0+ a1 X1+ -
+a,X, isa Laplacian L-random element. Conversely, if Z = #,X; 4+ @:X:isa Laplacian
L-random element and if X, and X, are independent L-random elements, then X; and X,
are Laplacian L-random elements. A necessary and sufficient condition that X be a
Laplacian L-random element in ¥ is that there exists in X an L-random element Y, in-
dependent of X, such that X + ¥ and X — Y are independent L-random elements.

The characteristic function of a Laplacian L-random element X is

(5.1) @ (2*) =exp{iE (=* X)) —3Ez* X)—E(x* X)) 1?}.

And, conversely, if X is an L-random element whose characteristic function is (5.1), then
it is Laplacian.

Different problems arise. If X is a Laplacian L-random element, then E({x*, X))
exists for all x* € ¥*; this is a necessary but not a sufficient condition for the existence
of E(X). Then what about E(X)? And E(||X||?)? If X is a Laplacian L-random element
in a separable Hilbert space, then E(X) and E(||X||*) do exist.

Replacing X by ¥ in (5.1) we see that it is possible to say that the characteristic func-
tion of a Laplacian L-random element X is a function of the form

(5.2) f(x*) =expliE (x*, V7)) —3E[%* V) —E =%V ]},

where ¥ is an L-random element in X such that (5.2) has a meaning. Conversely, for
any L-random element ¥ in ¥ such that (5.2) has a meaning, the function f(x*) defined
by (5.2) is obviously a positive definite function, and if it is a characteristic function it is
the characteristic function of a Laplacian L-random element X, which, in general, is
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different from Y. A criterion is needed for knowing whether or not (5.2) is a characteris-
tic function. We have obtained the following.

THEOREM 5.1. If ¥ is a reflexive, separable &-space and if E(|Y||?) < + =, then (5.2)
is the characteristic function of a Laplacian L-random element X such that E(|| X|?) < 4.
Since % is separable, this implies furthermore that E(X) exists.

This theorem leads us to distinguish among the functions (5.2) those that are of a
particular kind: for ¥ any Banach space, ¥ is an L-random element in ¥ such that E(Y)
exists and such that E(|| ¥||?) exists and is finite. Then we can suppose without loss of
generality E(Y) = 6. We shall call

(5.3) f(x*) = e~/ E*, T)*

a normal, positive definite function.

5.2. Central limit theorems. Let X be any Banach space and Xi,* -+, Xj- -+ be an in-
finite sequence of independent L-random elements in X with the same probability law
such that E(X;) = 6 and E(||X;||?) < + . Let us put

1 n
(5.4) ZFWZ X;.

THEOREM 5.2. The characleristic function of Z, tends, as n— -+, to a limit which is
a normal, positive definite function.

THEOREM 5.3. If % is a reflexive, separable ®-space, the characteristic function of Z,
tends, as n— -+ o, to the characteristic function of a Laplacian L-random element Z such
that E(||Z|]?) < 4. '

THEOREM 5.4. If X is a reflexive, separable ®O-space which has a basis, the distribution
Sunction of ||Z.|| tends, as n— + o, to the distribution function of || Z||. More generally, if
f(x) is @ numerical-valued function of x € X, uniformly continuous in x (with the strong
topology %) on any finite sphere of %, the disiribution function of f(Z,) tends,asn— + =,
to the distribution function of f(Z).

Under some conditions these theorems may be extended to the more complicated case
where the X;’s do not have the same probability law {3].

6. Applications

6.1. Preliminary remarks. The preceding results may be applied to several important
problems. We have considered [2] the convergence of empirical probability distributions
to theoretical distributions and used the central limit theorems in a Banach space to
study the addition of independent random functions and functionals of random functions
derived from a Poisson process [3]. We shall now give a new application of the theory of
L-random elements in a Banach space, the study of the “statistical functions” of von
Mises [10]. This application will be deduced from the following statements. Let X be a
separable Banach space and X3," - -, Xj,* - - be an infinite sequence of independent L-ran-
dom elements in X with the same probability law. Let % be any topological Hausdorf
space and a(x) be a function on ¥ to ¥.

TaEOREM 6.1. If E(|| X;|) < + = with E(X;) = 0, and if a(x) is continuous at x = 6
(with the sirong topology in %), then

(6.1) lim a(%ZX,~>=a(0), a.s.

it =1

This follows immediately from the sirong law of large numbers in Banach spaces.
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THEOREM 6.2. Let E(|| X;||*) < + ® where a = 1, let E(X;) = 0, and let A be a metric
space in which we shall denote by [a', a'’] the distance between two elements o’ and o''. Final-
ly let there exist two positive numbers N and M such that [a(x), a(6)] < M «||x|*. Then

. 1¢ o/
(6.2) n_lir}wEi[a(—’;;X,-), a0 ]"}=o0.

This theorem follows immediately from the law of large numbers in mean of order a
in Banach spaces.

If X is a separable @-space and if @ = 2, then we have more precisely

1 2/ 1
l ; /A 2y . =
(6.3) E{ [a(n;X,), a0 "} <aerRE(XD -
Let us suppose that we have such a case and that, moreover, ¥ is a reflexive, separable
©-space which has a basis. Finally let us assume that the function a(x) is differentiable
atx = 0. By this we mean that there exists a continuous linear function 7 on X to ¥ and
a positive numerical-valued function 2(a) on the positive number a, with lim Q(a) = 0,

a—0+}

such that, if we put

(6.4) a(x) —a(0) =T (x) +|x|w(x),
we have
(6.5) flo @) | =2 l=]).

Under these assumptions, if

(6.6) a=a (A3 x)-0 0,

i=1
we can write

_ 1 1@
6.7) \/nA,.-—-T/—;i_ElT(X,-) +"W; X;

1 n
w (;’-21 X,) .
Almost surely “ %i X; " — 0 as # — -+ = ; therefore,
=1

(6.8) im [|o (330 %,)[=0, as.

n—r+® =1

On the other hand, E (H 1/ vm 3 x; ||2) is bounded [it is less than KE(| X *)]. If

i=1
we put
el 5wl (5 %),

l n
(6.10) Zn=-\7—;2T(Xj)7

=1
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||R4]| tends in probability to zero as # — + . Let f(a) be a numerical-valued function
defined on ¥, uniformly continuous (with the strong topology in %) on any finite sphere
of . From the central limit theorems we know that if E(||T(X;)||?) < + = there exists
a Laplacian L-random element Z in Y such that the distribution function of f(Z,) tends,
asn — + o, to the distribution function of f(Z). Then, obviously, the distribution func-
tion of f(v/n4,) = f(Zs + R,) tends also, as n— + =, to the distribution function of
).

6.2. Application to von Mises’ statistical functions. Let us consider an infinite sequence
of independent, numerical-valued random variables U;, j = 1, 2, - -, with the same
probability distribution F(x). Without significant loss of generality we shall suppose
that the U;’s are uniformly distributed on (0, 1), that is, that

[0 fus0,
(6.11) F(u) ={u i#0<u=1,

11 ifu>1.
Let us put

0 ifu=U;,
(6.12) X; (u) ={

1 ifu>U;,
and

l n

(6.13) Fo(w) =237 X;(u).

i=1

The X;(u)’s and F,(») may be considered as random elements in the space L.(0, 1),
which is a separable ®-space if a = 2. On the other hand, let #f be the space of distri-
bution functions on (0, 1) obtained by putting the weight 1/ on each of any % points on
(0, 1), where & is any positive integer. Here F,(«) is a random element in 4f. Let a(m)
be a function on f to the space  of real numbers. Von Mises [10] has considered, and
called statistical functions, random variables which possess the property that, as n —
+ =, a.s. a[F.(4)] tends to a[F(«)] and v/n{a[F.(4)] — a[F(u)]} is asymptotically a
Laplacian random variable. Such results may be obtained immediately from the above
theorems. For instance, let us consider the quantity

(6.14) =13 (v,-13 0w,

which may be used to estimate the variance of the U/’s. It appears as a statistical func-
tion when we write (6.14) in the following way,

(6.15) A,,=/oq[u—'/o.lvdF,.(v)]zdF,.(u)

=[[Bwan] =2 f [u=1+ [ Fu(n) do]Fu ) du.

The corresponding function e(m) may be extended to a function a(p) of the space
L»(0, 1) to the space ¥ by the formula

(6.16) a(p) =[f0‘¢(u) du]z—Z./o.l[u-—1+./o.l¢(u)dv]¢(u) du,
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where ¢ is any function in L,(0, 1). Let us look at the continuity and differentiability of
a(p) at ¢ = @, where go(u) = F(u) = u on (0, 1). For this, let us compute a(po + ¢).
We find

617 alpote) =dp—2f @w—Doedu—2[ [o(ndr].

In (6.17) the first two terms on the right are linear and continuous with the strong topol-
ogy in L,(0, 1), and the last term is less than or equal to ||¢||* where ||¢|| denotes the
norm of ¢ considered as an element in L,(0, 1). Then, obviously, the function a(yp) is
differentiable at ¢ = ¢, (in the sense indicated above), and we have

(6.18) An—a(F) =a(F,) —a(F) =alpo+ (Fa—F)] —a (o).
It follows that, as # — 4,

(a) a.s. A, — a(F) = 1/12,

(b) v/n[A, — a(F)] is asymptotically Laplacian.

Of course, this example is given not for its own interest but to point out how the method
works.

7. L*-random elements in Banach spaces

In problems involving random elements in a Banach space it may happen that the
Banach space is defined directly. This is the case, for instance, in the application to ran-
dom functions mentioned above. But it may also happen that the Banach space is more
conveniently defined as the dual space of another Banach space. This is the case, for
instance, in the application mentioned above of the convergence of empirical probability
distributions to theoretical distributions. The results given in the preceding sections con-
cern the case where the Banach space is defined directly. When the Banach space is
defined as the dual space of another, we can obviously apply these results, but it is more
convenient to introduce somewhat different definitions.

Let X* be the dual space of a separable Banach space ¥; this does not imply that X*
is separable. A random element in X* is a function £*(#) = X* on the fundamental prob-
ability space 2¢ to X*. We shall say that X* is an L*-random element if (x*(%), x) is
measurable for all given x € %. It is natural to compare this definition with the defini-
tion of an L-random element in X*. Let X** be the dual space of ¥*, that is to say, the
bidual of ¥; it is known that ¥ ¢ X**, but generally X is smaller than ¥**. For x** any
given element in X**, the above definition of an L*-random element X* means that
{(x** X*)> must be measurable for any fixed ** belonging to X. In order that X* be
an L-random element in X* it would be necessary that {(x**, X*) be measurable for
all x** ¢ ¥** even for 2** not belonging to X¥. Hence, under the present conditions
(that X* is the dual of a separable Banach space), the definition of L*-random elements
is less restrictive than that of L-random elements. Obviously, the two definitions become
equivalent if ¥ = X**, that is to say, when ¥, and therefore X*, are reflexive.

The mathematical expectation of an L*-random element in ¥* is the element E(X*) €
%*, if one exists (and then it is unique), such that

(7.1) (E(X*),z)=E(X* x)),

forallx € X. We have proved that if an L-random element takes its values in a separable
Banach space, then its norm is measurable and a sufficient condition for the existence
of its mathematical expectation is that the mathematical expectation of its norm be
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finite. We shall prove now, without any restriction on %* (the dual space of a separable
Banach space ¥), that the norm of an L*-random element X* is measurable. Indeed, let
%1, **, %5, -+ be a denumerable sequence dense on the sphere ||| = 1 in X, and let R
be a positive number. The condition || X*|| = ||x*(«)|| < R is equivalent to

(7-2) ‘<x*(“)1xi>|<Ra j=1)2s"'-

Moreover, the condition E(||X*||) < + o implies that E((X*, x)) exists, since
[<X* 23| < ||X*-[[«[. Let us put '

(7.3) l(x) =E((X*, 2));
then
(7.4) 1) | SE([X*D -]l =].

Hence I(x) is a bounded, linear, numerical-valued function of x and there exists a linear
functional E(X*) € %* such that

(7.5) CE(X*),z)=1l(x) =E({X*, x)).
This proves that the condition E(||X*||) < + « implies that E(X*) exists and that
(7.6) IEX* | =EX*]).

This property enables us to avoid the assumption of separability on ¥*. Let X3, -,
X%, - be a strictly stationary sequence of L*-random elements in X* such that
E(||X%) < 4 =. Let us consider

(7.7) zi =23 X1

i=1
There exists an L*-random element Z* in ¥* such that E(||Z*||) < 4+ « and such that
almost surely Z tends weakly to Z* as n — + . By this we mean that

(7.8) lim ((Z¥, £)) =(Z*, ), 2.

for all x € X. It is natural to ask whether it is possible to find strong laws of large num-
bers or laws in mean of order a, as in section 3, without assuming that ¥* is separable.
Some counterexamples show that this is impossible.

By definition the characteristic function of an L*-random element X* is the function
¢(x) defined for all x € X by

(1.9 - ¢ (2) =E(eix% ),

Here ¢(x) is a positive definite function, with ¢(f) = 1, and defines a measure on a Borel
field B* in X*. Conversely, a given positive definite function is the characteristic function
of an L*-random element in X* if a certain condition C*, analogous to the condition C
of section 4, is fulfilled. But this condition C* does nof assume either that X* is separable
or that it is reflexive but merely that X* is the dual space of a separable Banach space.

These are the first results concerning this second point of view, which needs further
development.
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