RANDOM VARIABLES FROM THE
POINT OF VIEW OF A GENERAL
THEORY OF VARIABLES

KARL MENGER
ILLINOIS INSTITUTE OF TECHNOLOGY

1. Introduction

In his great book Sequential Analysis, Wald defines (see p. 5 in [1]) a random vari-
able as a variable x such that “for any given number ¢ a definite probability can be
ascribed to the event that x will take a value less than ¢.” As a first example of a random
variable, Wald mentions the outcome x of the experiment of weighing an object selected
at random from a lot of # known objects. He calls x a random variable “‘since a proba-
bility can be ascribed to the event that x will take a value less than ¢, for any given ¢.”
If n. is the number of objects in the lot whose weight is less than ¢, that probability
is n./n. On page 11, Wald says that “statistical problems arise when the distribution
function of a random variable is not known and we want to draw some inference con-
cerning the unknown distribution function on the basis of a limited number of observa-
tions.” He then mentions, as an example, the random variable x assuming the value 0
if a unit selected from a completely unknown lot of products is nondefective, and the
value 1 if the unit is defective.

In 1947, I submitted to Wald the following two observations: (1) the concept “vari-
able” on which the notion of random variable is based (see p. 5 in [1]) does not appear
to be that of a numerical variable, the only one then clearly defined; (2) the statement
and example on page 11 seem to be at variance with the definition of random variables
on page 5.

I believe that I carry out Wald’s intentions by saying that he fully agreed with both
remarks and expressed the hope to clarify the statistical concept of random variables
at a later occasion. His untimely death in 1950, after the completion of his fundamental
book on statistical decision functions (in which he essentially retained the treatment of
random variables of Sequential Analysis) prevented him from carrying out this plan.

For the past few years I have tried to analyze the ideas behind the general term “vari-
able”—a term that, in spite of its frequent and heretofore indiscriminate use, has never
been introduced by a comprehensive definition (either explicitly, in terms of other con-
cepts, or implicitly, by postulates). As a result of these studies [2], [3], [4], and especial-
ly [5], it appears that there is not one comprehensive concept of variable. The underlying
material has been resolved into an extensive spectrum of concepts. That array begins in
mathematical logic; it traverses algebra, analysis, the various types of geometry, and
physical science; it touches social science, and it ends in statistics. Some of those concepts
have only one common bond—the name variable. In content, they differ about as much
as do the tangent of an angle in trigonometry and the tangent to a curve in geometry.
But whereas no one has ever confused the latter two ideas because of a flimsy equivoca-
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tion, the equivocal use of the term “variable” has indeed resulted in confusion. Some of
those ambiguities account for the obscurity in the foundations of pure analysis, others
for the lack of articulate rules concerning certain applications of analysis to science.
“Variables” will be discussed in sections 2-5.

The term “random,” which is widely used in statistics and the theory of probability,
is in a condition that very much resembles that of ‘‘variable.” It will be analyzed in
section 6.

In sections 7-11, these results are applied to random variables. Various types must be
distinguished even within the realm of these “variables.” In the last section, the relation
between random variables in statistics and in the theory of probability will be shown in
a new light.

2. Logico-mathematical variables

In pure mathematics, the only concepts of variable that possess clear traditional defi-
nitions are of the type of the so-called numerical variables. The latter concept may be
illustrated as follows. The formulas
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and countless other formulas can be synthesized in one formula containing a letter and
accompanied by, as it were, a legend with directions concerning the use of the letter. Such
a general statement is

2) 2 1 1

-1 x—1 x+1'

where x may be replaced by the designation of any number #1 and — 1. Usually, the
legend is abbreviated to “for any number x # 1 and —1.” The class of all numbers %1,
—11is called the scope of the numerical variable x in (2). If x is replaced by 3, e, and other
numbers, specific statements result, namely, (1) and other formulas.

The statement

3) (x4 3y)2=x*+6xy+9y? foranyxandanyy

involves two numerical variables. The meaning of (2) and (3) is not changed if x is re-
placed by any other letter (except e), or x and y by any two nonidentical letters, say, by
a and b or by a and y, and even if they are interchanged as in

(4) y+3x)2=y?*+6yx+9x? foranyxandanyy.

If the scope of a numerical variable consists of a single number, then the letter desig-
nates a specific number as, for instance, does e.

In this paper, all numbers and numerical variables are printed in roman type, while
italics are reserved for functions, function variables to be defined presently, and con-
cepts introduced in subsequent sections.

Analysis abounds in laws of the following type:

©) D(f-g) =f-Dg+g-Df,

where f and g may be replaced by the designations of any two differentiable functions,
such as log, cos, etc. The letters f and g in (5) are called function variables each having
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the class of all differentiable functions as its scope. The following statement,! which is
equivalent to (5), involves numerical as well as functional variables:

(6) D(frgdx=fx-Dgx+gx-D fx

for any f, g, and any x for which f, g, and f.g have derivatives.

More generally, if a formula contains a letter and is accompanied by a legend concern-
ing the replacement of the letter by the designations of elements of a certain class, then
logicians and mathematicians refer to the letter as a varigble, and call the said class the
scope of the variable.

In examples (2) to (6), each replacement results in a statement. In such a case, I shall
say that the variable is used indicatively. One of the numerous other uses of variables is
illustrated in the following definition.

7 Let log be the class of all pairs (x, log x) forany x>0 .

If, in the formal part of (7), x is replaced, say, by 3, the result is an element of the class
defined by (7), namely, the pair (3, Jog 3), and not a statement. I shall refer to this use
of x as conjunctive.

3. Consistent classes of quantities

The transition from logico-mathematical variables to the objects of statistics (the
height, the weight, etc.) and to what scientists call variables (the mass of radium, the
time, etc.) is a step into a different world. This contrast is what I had in mind when com-
paring ‘‘variables” in various fields with “tangents” in the fields of trigonometry and
geometry.

A simple scheme that is useful in the mathematical treatment of scientific and statisti-
cal material is supplied by the following concept of qguantity: an ordered pair in which the
second member (the value of the quantity) is a number, whereas the first member (the
object of the quantity) may be anything. I shall call two quantities consistent unless their
objects are equal, and their values are unequal. For instance, if A is a certain resident of
Chicago, then (A, 69) is a quantity. Here 69 may be A’s height in inches. If B is another
resident of Chicago, (B, 71) and (B, 169), where 71 may be B’s height, 169 his weight in
pounds, are two inconsistent quantities, though either is consistent with the quantity
(A, 69).

Consider the class of all pairs (C, & C) for any resident C of Chicago, where & C de-
notes C’s height in inches. I shall designate this class by A. It is what statisticians study
under the name of the height in inches within the population of Chicago. Any two
quantities belonging to % are consistent. I shall call a class with this property a consistent
class of quantities—briefly, c.c.q.

In the definition of 4, the letter C is a logico-mathematical variable (used conjunc-
tively) whose scope is the population of Chicago. Replacing C by A or B, one obtains
the quantities (A, 2A) = (A, 69) and (B, £B) = (B, 71) belonging to 4. But the
class &, as a whole, is totally different from a numerical variable. It is not a symbol
that may be replaced by designations of specific numbers. It is a class of pairs whose

1 The typographical convention mentioned above (that is, the use of roman type for numbers and
numerical variables, and of italics for functions and function variables) makes it unnecessary to say in
the legend to (6): for any “functions” f, g and any “number”’ x. Moreover, without any danger of con-
fusion, f(x) can be abbreviated to fx.



218 THIRD BERKELEY SYMPOSIUM: MENGER

second elements are numbers; and it is a specific class, just as 3 is a specific number and
log is a specific function. That /& and, in fact, any object of statistical studies is totally dif-
Serent from numerical variables is the first point that I wish to stress in this paper.

Another example of a consistent class of quantities is w, the weight in pounds of the
population of San Francisco—the class of all pairs (D, w D) for any resident D of
San Francisco, where w D denotes the weight in pounds of D. Also the union or set-
theoretical sum of the classes £ and w is a consistent class of quantities, though it is
not likely ever to be practically significant.

Among the highly significant notions covered by the concept “consistent classes of
quantities” are all those to which scientists refer as “variables” and ‘“‘variable quan-
tities.” (In this connection, I shall avoid the former term to forestall confusion with
logico-mathematical variables.) That this vast material actually comes under the heading
of consistent classes of quantities is the second point that I wish to emphasize. Since
those concepts are not usually defined as classes of ordered pairs, the preceding remark
will be illustrated by two examples.

Consider decaying radioactive substances and let # be the mass in grams. This mass
is a consistent class of quantities whose objects are instantaneous specimens of the sub-
stance or substances under consideration, that is, pieces of the material at a definite in-
stant. If m p denotes the mass in grams of the specimen p, then m may be defined as
the class of all pairs (u, m u) for any instantaneous specimen p.

If P is a specific swinging pendulum, denote by a the angle in radians between the
pendulum and a vertical line. The variable quantity a is the class of all pairs (¢, ¢ o)
for any state o of P, where ¢ ¢ is the said angle in the state o.

The class of all objects—all specimens, all states, etc.—is called the domain of the
variable quantity; the class of all values of a variable quantity is referred to as its range.

A c.c.q. whose domain consists of numbers (that is, a class of ordered pairs of num-
bers) is called a function—by mathematicians as well as scientists. An example is the
logarithmic function or the function log as defined in (7). More generally, for any posi-
tive integer p, a consistent class of quantities whose objects are ordered p-tuples of
numbers is universally called a p-place function. Examples include the maximum, the
sum, the average, and weighted means of ordered p-tuples of numbers.

While some mathematicians propose to call any c.c.q. a function—even the mass m,
a function whose domain is the class of specimens—all physicists and many mathema-
ticians refer to m (by itself) as a variable quantity and not as a function—a term that
they reserve for log, the exponential function, the sum, etc. The difference is purely
terminological and, therefore, utterly unimportant.

However, even mathematicians who refer to the height % and the mass m as functions
need a specific term for what every scientist calls functions. They may refer to log, to
the exponential function, etc., as “functions in the narrow sense of the word” or in some
other cumbersome way. But they must refer to them somehow, because—and this has
nothing to do with terminology, but is a fact and, I believe, a rather significant fact, and
the third point that I wish to stress in this paper—thkere is an important difference be-
tween functions (such as log and exp) and other consistent classes of quantities. Not only are
functions the only c.c.q.’s for which derivatives and integrals can be defined—even the
most general theories of integration are inapplicable to the height 4 and the mass m—
but functions are the only c.c.q.’s into whick other c.c.q.’s can be substituted. One can de-
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fine the logarithm of the mass and the logarithm of the cosine, but there is no mass of
the height nor a mass of the logarithm.

In discussions, algebraists usually deny the significance of the last point. The point
was questioned also in the discussion following the presentation of this paper. Opponents
claim that even the mass lends itself to substitutions, namely, of “functions” whose
values are instantaneous specimens. And indeed, if with each block 8 of pitchblende one
associates the specimen u(B) of radium that can be extracted from 8, then he can sub-
stitute this “function” into m and thereby define the class of all pairs [8, m u(B)] as
the mass of radium in blocks of pitchblende. But he has not substituted a consistent
class of quantities, since the values of a c.c.q. are numbers and not specimens of radium.
Moreover, since Galileo, most quantitative laws of science are in terms of substitutions
such as that of m into log. These laws express the connections between scientific c.c.q.’s
by means of functions, for example, the connection of the time with the mass by the
function log.

The applicability of numbers and functions to the most diverse quantities and c.c.q.’s
is the very reason for the omnipresence of the former in science, whereas specimens of
radium and m occur only in certain branches of physics, and inhabitants of Chicago
and % are studied only in sociology. What some modern algebraists, in a spirit of hyper-
formalism, seem to overlook is the specific role of mathematics as a universal tool—a role
which is epitomized in the characterization of functions among consistent classes of
quantities.

4, Constant variable quantities. Observations. Consistent classes of pairs

In contrast to numbers, variable quantities can be divided into those that are constant
and those that are not. A partial realization of this distinction is probably what has
prompted some analysts to contrast ‘“‘constants’” and ‘‘variables,” even though in the
absence of an explicit definition of variable quantities they usually express that distinc-
tion in an obscure way.

I shall call a c.c.q. constant if its range consists of one single element, and nonconstant
otherwise. For instance, the mileage as well as the speed of a specific car is constant while
the car is parked. At least the former is nonconstant while the car is moving. In a parked
car, the range of the speed consists of the single number 0; that of the mileage consists
of the value attained when the car was parked.

In particular, of course, there are constant and nonconstant functions. The constant
function 3 (designated by an italic) of the value 3 (in roman type) is the class of all
pairs (x, 3) for any number x.

Useful in a mathematical treatment of statistical and probabilistic material is also the
following concept of observation: a pair in which the first member is an act of observa-
tion, and the second member is the result of that act. Essentially, this concept is due to
von Mises who refers to an act as “Beobachtung” and to the result as “Merkmal” (char-
acteristic).

If the result is a number, for example, a scale mark, then the observation is a quan-
tity. But there are acts of observation the results of which are p-tuples of numbers, for
example, the p numbers of points observed when p dice have been rolled. There are also
acts with altogether nonnumerical results, such as head and tail observed when a coin
has been tossed.
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The domain of m is also the domain of other variable quantities: an instantaneous
specimen u has also a volume, a temperature, etc. In contrast, an act of observation has,
in general, only one result. (If the mass of u is being observed on scales calibrated in dif-
ferent units, then the results are different, but so also are the acts.) Hence any two ob-
servations are consistent.

With most scientific variable quantities, such as m and ¢, there correspond classes of
observations. For instance, there is a class m* of mass observations in grams consisting
of all pairs (8, m*B) for any act 8 directed to a scale (calibrated in grams) on which a
specimen of a decaying substance is being weighed, where m*8 denotes the result of the
act B.

Various acts of observation B, Bs,* - - may be directed to the same instantaneous speci-
men u; for example, acts of various observers or, if the decay is a quasi-stationary
process, successive acts of the same observer. The results m*B;, m*Bs, - - may well be
unequal, in which case the class of all quantities (u, r) for any specimen and any result r
of an act directed to u is not consistent. In fact, each specimen p gives rise to a variable
quantity m}, of all mass observations directed to u, and the value mpu of m is somehow
derived from the variable quantity .

As Dr. M. A. Woodbury pointed out in the discussion of the present paper, the pre-
ceding remarks apply to a certain extent also to functions. For instance, with the func-
tion log there corresponds a variable quantity logarithmic computation: the class of all
pairs each consisting of an act of computing the logarithm of a number and the result
of that act.

Clearly, the actual domain of a class of observations consists of a finite number of
acts, the potential domain (including the acts that may still be carried out) may be either
finite or what I shall call indefinite. Similarly, one has to distinguish the actual range
(that is, the class of all actual results) and the potential range (including the possible re-
sults of acts belonging to the domain). In a class of at most five observations of a die
(and in some larger classes) the range consists of at most five numbers, the potential
range of six. The potential range is what von Mises called “Merkmalmenge” (mis-
translated into “‘sample space”—neither are the elements samples nor is, in general, the
range a space). The actual range of the class of all observations directed to the gravi-
tational acceleration at a certain place consists essentially of one number. The accelera-
tion at the particular place is constant.

Classes of observations are special consistent classes of pairs. A c.c.p. is a class of pairs
(of any kind) not containing two pairs whose first members are equal and whose second
members are unequal.

5. C.C.P. variables

Just as (3) is valid for any two numbers, and (5) for any two functions, the following
statement is valid for any two consistent classes of quantities of a certain kind:

dw 1
(8) If'w=log u, then a; =;
for any two c.c.q.’s w and w, if the range of # consists of positive numbers.
The letters % and w in (8) are symbols accompanied by a legend according to which
u and w may be replaced by the designations of specific c.c.q.’s. For instance, one may
replace % by m, the mass present in a chemical reaction, and w by the time; or % by 7,
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the distance from a certain charge, and w by p, the potential due to the charge. One thus
obtains the statements: If ¢t = log m, then d¢/dm = 1/m; and if p = log r, then dp/dr
= 1/r. In other words, # and w are logico-mathematical variables—but variables whose
scopes consist of c.c.q.’s. I therefore shall call # and w in (8) c.c.q. variables. (Such vari-
ables must not be replaced by numbers. If, in (8), # were replaced by 1, and w by 0, the
implication would be nonsensical even though the antecedent would be valid.)

The confusion in the literature is epitomized in the traditional misstatement that the
following formulas (often presented without legends) have the same meaning:

!
& d :5 “ =% for any c.c.q. # whose values are positive ;
(10) D 108x=§ for any number x > 0.

Actually, (9) deals with the rate of change of the c.c.q. variable log  with %, and (10)
with the value for x of the derivative of the function log. (If w is connected with % by
the function f, then the rate of change of w with % is connected with % by D f, the de-
rivative of f.)

It is clear how c.c.p. variables are to be defined.

The development of the idea of c.c.q. variables is the fourth point that I wish to em-
phasize in concluding the discussion of “variables” in analysis and science. Traditional-
ly, the term ‘““variable” has been used indiscriminately in the sense of

(1) numerical variable;

(2) consistent class of quantities (in particular, for scientific variable quantity);

(3) c.c.q. variable.

6. Various meanings of the term “random”

The following descriptions include five of the most important uses of the term “ran-
dom” in statistics.

(A) Randomness is often attributed to samples from a population, that is, to sub-
classes of a class. Analysis reveals that the subclasses cannot be divided into those that
are, and those that are not, random samples or even potential random samples, since in
many cases every subclass is a possible random sample. Randomness in connection with
samples is a property of selections of subclasses from the population rather than a prop-
erty of subclasses. Its rigorous treatment (of which no example is known to me) would
present exceedingly difficult problems, since a sound theory would have to be formulated
in terms of (a) acts of selection, (b) aims of selections, (c) information available—as
shown by the following simple examples. One cannot regard the selection of those who
are over six feet tall from the people passing a busy corner as a random selection in a
study of height or even weight, though one might regard it as such for other purposes,
for example, possibly in a study of income. Neither would the former purposes be served
by the selection of every one-hundredth passer-by if one should know that arrangements
have been made as a result of which the 100th, 200th, 300th,- - - passer-by would be
over six feet tall. Without such knowledge, however, one might regard the choice of every
one-hundredth as a random selection.

(B) The word “random” is used with regard to certain sequences, namely, to irregular
sequences of the type of von Mises’ collectives (a concept made precise and consistent
by Wald’s relativization to a definite set of principles of selection) and to sample numbers.
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(C) Numerous references are made to random events and, in a related sense, to ran-
dom experiments. Random and nonrandom events in the sense in which these words are
used by a man on the street will be contrasted in a simple example. Suppose that a man
were offered a game based on the following understanding. Unobserved by the man, two
coins are tossed. A reliable friend of the man inspects the outcome. If no tail turns up,
the friend will say ““zero”’; if at least one tail appears, he will, at his discretion, say either
“one” or “two.” The man on the street will attribute random character to the two events
“zero”” and either “‘one” or “two.” But he will not refer to any of the four events “one,”
“two,” either “zero” or “‘one,” and either “‘zero” or “two”’ as random events. The formu-
lation of general principles guiding the man on the street in attributing random charac-
ter to some events and not to others is an important (and, to my knowledge, unsolved)
problem—important, because it might suggest postulates for the implicit definition of
random events.

(D) Randomness is attributed to processes, such as Brownian motion and diffusion.
The partly obscure relations of the meanings (A), (B), (C) with each other and with (D)
will not here be investigated. But agreement seems to exist in the literature as to the re-
lation between (D) and the following type (E). Random processes are generally con-
sidered as classes or families of random variables.

(E) Thus the consideration of the various uses of the terms ‘“variable” and ‘“ran-
dom” has finally led to the concept discussed in the introduction to this paper. In the
literature, random variables (or, briefly, r.v.’s), in contrast to the types (A) and (C) of
randomness, are introduced by definitions. Besides the one quoted in the introduction,
there is the well-known measure-theoretical definition of a r.v. But are these two defini-
tions equivalent? And do they cover all that statisticians actually study under the name
of r.v.’s? For reasons discussed in the following sections, I do not believe that these ques-
tions can be answered affirmatively.

A r.v. in either sense will be seen to be a consistent class of pairs, and consequently
general statements that are valid for eny r.v. may conveniently be expressed in terms
of c.c.p. variables. With numerical variables, r.v.’s have, notwithstanding frequent re-
marks to the contrary [6], [7], nothing whatever to do.?

7. Probabilistic and statistical random variables

The fifth point here to be stressed is the fact that, in the literature, two different con-
cepts have been studied under the name of “‘random variable.” A r.v. as defined by Kolmo-
gorov and others in the theory of probability (that is, a measurable function on what Ney-
man calls a fundamental probability set, briefly, f.p.s.) is not identical with a r.v. as
envisaged by Wald and others in statistics (that is, a consistent class of pairs for which a
distribution function is known). A r.v. of either type is a consistent class of pairs that is
related to a fundamental probability set, but with the basic difference that a probabilis-

? This point was clearly recognized by Halmos who, in his excellent treatment of probability, says,
“A random variable is a function, a function whose numerical values are determined by chance. ..in
other words, a function attached to an experiment” (see p. 188 in [8]). However, I fail to see the basis of
Halmos’ factual statement, “Ever since rigor has come to be demanded in mathematical definitions, it
has been recognized that the word ‘variable,’ particularly a variable whose values are ‘determined’ some-
how or other, means in precise language a function” (see p. 187 in [8]). On the contrary, the classical
treatises by de la Vallée Poussin, and G. H. Hardy, as well as recent books by R. Courant and A. A.
Albert, take positions that are the direct opposite of what Halmos calls the recognized point of view.
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tic r.v. has a f.p.s. as its domain, whereas a statistical r.v. has a f.p.s. as its range. More
precisely, the two concepts can be defined as follows:

A probabilistic r.v. is a triple R, p, v consisting of

(1) a o-field, R, of sets (called random events) including a maximal set Rpax, that is,
a set that contains each element of & as a subset;

(2) a s-additive function p (called probability) whose domain is i and which assumes
the value 1 for Ruyax;

(3) a consistent class of quantities » whose domain is Rpex and which has the follow-
ing property: If R,, x denotes the class of all elements a of Ryax such that va < x, then
R,, x belongs to R, for any number x. (This property is also expressed by saying that the
event that » assumes a value less than x is a random event.)

The function p, assuming the value p,(x) = p(R,,x) for any number x is called the
probabilistic distribution function of the random variable R, p, ».

A statistical r.v. is a triple w, &, ¢ consisting of

(1) a consistent class of pairs w;

(2) a o-field & of subsets of Ran w (the potential range of w) that includes Ran w it-
self (the elements of & are called statistical random events);

(3) a o-additive function ¢ (called siatistical probability) whose domain is & and which
assumes the value 1 for Ran w.

An example of a probabilistic r.v. is the triple &, r, f ;where ¥ is the field consisting
of the four sets: the empty set, {0}, {1, 2}, and {0, 1, 2} (the maximal set); 7 is the addi-
tive function whose values for the afore-mentioned random events are 0, 1/4, 3/4,and 1,
respectively; and f is the consistent class of quantities (0, 0), (1, 1), and (2, 1), that is,
the function assuming the value x+(3 — x) for any x in {0, 1, 2}.

If r is replaced by the function 7’ assuming the values 0, 1/3, 2/3, and 1, one obtains
a different probabilistic r.v. A third is &y, n, f, where £, consists of all eight subsets of
{0, 1, 2} and r, is the additive function assuming the values 1/4, 1/2, and 1/4 for the
sets {0}, {1}, {2}, respectively.

If j is the c.c.q. consisting of the three pairs (0, 0), (1, 1) and (2, 2), that is, the identity
function on {0, 1, 2}, then neither ¥, , j nor T, 7/, j is a probabilistic r.v. Indeed, the
event that j assumes a value <3/2 is the class {0, 1}, which does not belong to T. How-
ever, the triple &, ry, j is a probabilistic r.v.

An example of a statistical r.v. is the triple a, &, r, where ¢ is the outcome of the game
described in section 6 (C), that is, the class of all pairs (a, ¢ a) for any act a of the man
listening to the announcements “zero,” “one,” and “two” of his friend, where ¢ a is the
result of e, and the announcements are labeled 0, 1, and 2, respectively. The triples a,
<, 7 and q, T,, n; are different statistical r.v.’s.

Let % be the function assuming the values 0, 1, and 2 for all numbers between —
and —w/3, between — /3 and w/3, and between 7/3 and , respectively. If 1 is the
class of all Borel subsets of the sum of the three open intervals, and ¢ is the Borel-Lebes-
gue measure, then &, U, ¢ is a statistical r.v., while €, 7, % is a probabilistic r.v. (just as
e, T, r is a statistical r.v., while &, r, f is a probabilistic r.v.).

On a roulette that is divided into three sectors each subtending 27/3 radians, one
can play a game such that for its outcome, g, the triple g, 1, # (where 7’ has its previous
meaning) is a statistical r.v. Any game of dice or cards in conjunction with a class of ran-
dom outcomes and their probabilities gives rise to a statistical r.v.
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8. Qualitative random variables

Neyman and other outstanding statisticians, after defining what in the preceding sec-
tion has been called probabilistic random variables, emphasize that the most interesting
problems concerning r.v.’s arise in so-called hypothetical cases, where the probability
and distribution functions are unknown. For the same reasons that prompted observa-
tion (2) mentioned in the introduction, I cannot quite accept this point of view. How
can one, after having defined r.v. relative to a o-field of sets as well as to a s-additive
function p (even if p enters only into the definition of the distribution function of the ran-
dom variable) discuss random variables for which no function p is known?

One must not answer that even where p is unknown, this function exists. This answer
would be mathematically significant only if the assumption of the mere existence of a
g-additive function on a o-field R imposed restrictions on R. This, however, the as-
sumption does not do. There exist s-additive functions (assuming the value 1 for Ruex)
on every o-field with a nonvacuous maximal set. An example is, if s denotes any element
of Rpax, the function assuming for a set R in &R the value 1 or 0 according to whether
R does or does not contain s. Hence no restriction whatever is imposed on & by assuming
that a probability function exists.?

It rather appears—and this is the sixth point that I wish to emphasize—that statisti-
cians frequently study (especially in problems to which they attach particular interest)
a more rudimentary concept than random variables, namely, mere pairs R,% or w,& rather
than triples including also a ¢-additive function on the o-field of sets. I shall refer to
such pairs as gualitative random variables. Particularly important are statistical quali-
tative r.v.’s.

Let g be the class of all pairs (a, g a), for any act a of reading the points that turn up
in a game of dice, where g a is the result of the act a. Let & be the class of all subsets of
Ran g, for instance, if the game is with one die, the class of the 2% subsets of {1, 2, 3, 4,
5, 6}. If I am told that the die is loaded but not given any other information (in particu-
lar, no records of past outcomes), then I may well decide to consider g, & a qualitative
statistical r.v.

If a, T and § have the same meaning as in section 7, and T’ denotes the class of all sub-
sets of {0, 1, 2}, then ¢,3’ and ¥, j are not even qualitative r.v.’s.

9. R.V. variables

After what has been said in section 5, two examples will sufficiently illustrate the
concept of r.v. variables.

If R is the o-field of all subsets of Dom %, then R, % is a qualitative probabilistic r.v.
for any c.c.q. #. If Dom « is finite, and p is the additive function assuming equal values
for any two subsets consisting of a single element of Dom % (‘“elementary events”),
then R, p, u is a probabilistic r.v. Similarly, if & is the o-field of all subsets of Ran w,
then w, & is a qualitative statistical r.v. In the preceding statements, % and w are c.c.p.
variables.

Also the following somewhat curious general statement deals with concepts that be-
long to the category of r.v. variables. The probability of denumerably many incidents all

3 This point was brought out in a discussion with Dr. R. Seall and Mr. M. McKiernan. The assump-
tion that a probability function of & certain kind exists may impose restrictions of R. For instance, the
existence of a function p assuming infinitely many values obviously presupposes that i contains infinite-
ly many elements.
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of which give rise to random events 1is itself a probabilistic random variable. More precisely,
assume that 3 includes all subsets of Rpax, and that Ry is denumerable. Then, for any
o-additive function p on R, one can define a function p* on Rmex assuming for any “in-
cident” (that is, for any element r of Rpax) the same value that p assumes for the corre-
sponding ‘“‘elementary event” (that is, the set {r}). The triple R, p, p* is a probabilis-
tic r.v.

10. Four types of statistical studies concerning consistent classes of pairs

The definition and the treatment of probabilistic r.v.’s in the literature have been
considerably more precise and lucid than those of statistical r.v.’s. The reason is that, in
the case of the former, nothing conceptually different has to be added to the ideas of
o-field and ¢-additive function on which mathematicians have concentrated for a long
time. In contrast, statistical r.v.’s have domains whose elements (such as acts of ob-
servation or physical objects) are, as it were, one step closer to reality, and concerning
elements of this kind pure and even applied mathematics have been rather inarticulate.
Yet an analysis reveals that most statistical studies actually deal with those domains
and their elements.

(1) In the case of some variable quantities, all a safety engineer wishes to ascertain
is the maximum and/or minimum value. (The difference between these two numbers is
what most statisticians call the “range” of the variable quantity.) Such studies do not
require references to the domains of the variable quantities.

(2) The typical statistical investigations of individual c.c.p.’s, which are concerned
with frequencies, cannot be confined to the ranges and do require references to the do-
mains of the c.c.p.’s. For instance, all that can be said about the range R of a class of
observations in relation to an element r of its potential range is either that R does, or
that R does not, contain r. (In any class or set, any element has, as it were, the frequency
10r0.) It cannot be correctly said (although it sometimes is said) that R contains r, say,
3 times. The frequency 3 is associated with r if and only if the domain of the class
of observations contains exactly three acts with the result r. Thus all significant proc-
esses of counting (and, in more complicated cases, measuring) in statistical investigations
are performed within the domains of c.c.p.’s. Subsequently, the numerical results of the
processes are paired with the elements of the ranges, whereby the latter are transformed
into what might be called weighted classes. Oddly enough, no traditional term (such as
weighted and relatively weighted class) exists for the concept of a class with a frequency
or relative frequency defined for the elements, in spite of the paramount importance of
this concept in statistics and, incidentally, in algebra.

(3) Typical order statistics (the theory of runs, etc.) are sequences of observations
or quantities. It was in his study of sequences of a certain kind (“collectives”) that von
Mises introduced the distinction between acts and results. Just for sequences of pairs,
however, frequency studies do not really require references to the first members of the
pairs. Consider, for instance, the sequences of observations

an (al; rl) ’(a2: I'g), T 1(%3 Ta) .

All frequency studies concerning the sequence (11) can be based on the sequence rj, r3,
+++, Iy of the results. One associates the frequency 3 with the result r if there are exactly
three indices, say, 2, 3, and 7, such that r; = r3 = r; = r. Thus the indices (which con-
stitute, as it were, the domain of the sequence and are attached to the results as well as
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to the acts) may take over the role of the acts (which constitute the domain of the
class of pairs belonging to the sequence).

(4) In investigations into the correlation of two c.c.p.’s and the regression curve of a
variable quantity w on a variable quantity 7, references to the domains of the c.c.p.’s
and to Dom v and Dom w are absolutely essential. What one primarily pairs are elements
of those domains. Subsequently one studies pairs of elements of the ranges and pairs of
values of v and w, induced by that primary pairing.

Summarizing one can say that few statistical investigations—essentially only those
in order statistics—can dispense with references to the domains of c.c.p.’s. In frequency
studies concerning nonsequential c.c.p.’s, for instance, concerning one variable quantity as
well as connections between two variable quantities, references to the domains are indis-
pensable. This is the seventh point that I wish to emphasize.

The remarks about correlation and regression curves bring out an important eighth
point. The questions as to what is the correlation coefficient or the regression line of w on v
are unanswerable since they are incomplete. In problems of this kind, references not only
to the elements of Dom » and Dom w but to specific pairs of elements (one element be-
longing to Dom v, and one to Dom w) are indispensable. 4 definite pairing of the domains
(or of subclasses of the domains) must be given, and only relative to that pairing can the
afore-mentioned questions be investigated.

Pairings are mentioned by statisticians. To physicists, since Galileo and Boyle, pair-
ing of simultaneous acts of observation has become second nature and is tacitly under-
stood. If m* is weight observation, say, with regard to a piece of radium that in 1900
weighed 1 gram, and ¢* is time observation, then Dom m* consists of acts of scale read-
ings, and Dom ¢* of acts of calendar readings. In the formula

(12) 1*=1900—2.3-10% log m*,

it is perfectly, if implicitly, understood that the values of * and m* for simultaneous
scale and calendar readings are being connected. Formula (12) is an abbreviation for

(13) t*r=1900—2.3-10%log m*8,

for any pair (B, 7) of simultaneous acts of scale and calendar readings.

Formula (12) does not connect any value of £* and any value of m*. Hence it is complete-
ly misleading when some mathematicians claim [9] that laws such as (12) deal only with
the values of quantities, and not with quantities themselves; that /* and m* are numeri-
cal variables, and the like. If m* and ¢* were numerical variables, they could be inter-
changed as can x and y in (3).

But if P and P, are two pendulums, and ¢ and g, are their angles with a vertical line
(compare section 4), then the relation between ¢ and g, relative to the class Z of all
pairs (o, 01) of simultaneous states may not be of particular significance. One may be
more interested in the class 2’ of pairs (o, o}), where o is the state of Py, one quarter
of a period after ¢;. The results of pairing a and g, relative to 2’ and = are quite differ-
ent. It may well be that ¢, = —a relative to 2/, while g, is not at all a function of ¢ rel-
ative to = and a different function of a relative to another pairing =" of the domains.

The omission of references to the pairing of the domains and even to the domains
altogether accounts for the lack of articulate rules concerning the application of analysis
to science.

The need for a pairing of the domains as one of the data becomes perfectly obvious on
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the level of c.c.p. variables. For, what pairing of Dom » and Dom w—of one abstract
-set with another abstract set—is “natural’”’? To be applicable to radioactivity as well
as to sociology, general statistical statements must contain not only c.c.p. variables,

“such as v and w, that may be replaced, say, by m* and #* in one case, and both by the
height of men in Chicago, in the other. They must contain also a pairing variable II that
may be replaced by the pairing, say, according to the simultaneity in one case, and ac-
cording to the father-son relation, in the other. That this procedure has been neglected
in the literature is due to the lack of an explicit definition and of a clear treatment of
c.c.q. variables.

11. What are statistical random events?

Modern statisticians have derived ingenious methods for the translation of a fre-
quency record concerning the domain of a qualitative statistical random variable w, &
into a definition of a probability function ¢ on &. Theories guide the statistician in
choosing g.

Less attention seems to have been paid to the problem of defining &, even though
guiding principles in this respect would be equally desirable.

Suppose the man on the street plays a long series of games with his friend, as de-
scribed in section 7 (C). If, at the outset, he is told that the coins are unbiased, then, on
the basis of past experience with unbiased coins, he will assume the probabilities 1/4 and
3/4 for 0 and 1 or 2, respectively. If he is told that the coins are somehow biased without
being given further information, he will set up a frequency record on the basis of which
a statistician will advise him. But concerning the outcomes 1 and 2 which, according to
his understanding with his friend, are entirely left to the latter’s discretion, no frequency
record will be significant. Even if the friend should seem to speak the truth (which would
give the probabilities 1/2 and 1/4 to 1 and 2, respectively) or if he should use random
sample numbers to simulate probabilities 3/8 for both 1 and 2, the man on the street
will not make predictions even on averages of future outcomes since he knows that his
friend may change his policy at any time.

If the friend plays the same game also with a second person, who was told (rightly
or wrongly) that the friend would always speak the truth, then the same frequency
record that was insignificant to the first man will appear to be significant to the second.

12, The connection between probability and statistics

Many authors have likened the relation between probability theory and statistics to
that between postulational and physical geometry. Postulational geometry and prob-
ability are based on unproven assumptions concerning undefined concepts, whereas
physical geometry and statistics deal with phases of reality that approximately satisfy
the postulates. If chalk dots and chalk streaks on a blackboard are called “points” and
“lines,” then Euclidean geometry, dealing with undefined points and lines is approxi-
mately valid. If the outcome of rolling a die is called “incident” and the relative fre-
quency of an outcome in a long series of trials “probability” of the incident, then the
theory of a certain probabilistic random variable (whose domain consists of six unde-
fined elements called “incidents”) is approximately valid.

Besides postulational and physical geometry, there exists a third theory dealing with
points and lines, namely, pure analytic geometry. There (in contrast to physical ge-
ometry), points, lines, etc. are defined, but (in contrast to physical geometry) they are
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defined without any reference to reality, namely, as ordered pairs of numbers, as classes
of such pairs satisfying linear equations, etc. As a concluding ninth point, I wish to
emphasize that, besides the postulational probability theory and statistics, there exists
a third theory dealing with incidents, events, probability, etc. In it (in contrast to the postu-
lational theory) events and probabilities are defined; but (in contrast to statistics) they are
defined without any reference to reality.

I shall illustrate this idea in the case of the weak law of large numbers: The proba-
bility is close to 1 that, in a sufficiently large sequence of independent trials of the same
kind, the relative frequency of success is very close to the a priori probability of success
in each trial. The purely mathematical background of the (more colorful than lucid)
traditional formulation of this important law is the following:

FirsT CoMBINATORIC LAW OF LARGE NUMBERS. Let B be a finite set, A a subset of B,
and let a and b denote the numbers of elements in A and B. For any sequence I'y of k
elements belonging to B, let a(I'y) denote the relative frequency in I of elements be-
longing to A, that is to say, the number of those elements in Iy divided by k. For any
two numbers, c and ¢/, call Fi(c, ¢’) the number of all sequences I'y for which

(14) cSa (M) =c¢,
so that, in particular,
(15) F,(0,1) =b<foranyk=1,2,--.

Then, for any pair of positive numbers x and y (no matter how small), there exists a
number N(x, y) such that

(16) k> N (x, y) implies Fk(%—x, —E+x)> (1 —y) - b*.
An example of such a number N(x, y) is Cantelli’s number

2 4
(17) = log x—z-y+ 2.

In words: If k is sufficienily large, then among the b* sequences of k elements of B those
in which the relative frequency of the elements belonging to A differs from a/b by less than
x have a relative frequency > 1 — y.

To the chalk dots in physical geometry and the undefined elements called points in
- postulational geometry, there corresponds in analytic geometry the purely mathematical
definition of a point as an ordered pair of numbers. Similarly, to the repeated trials and
observed frequencies in statistics and the undefined elements called events and prob-
ability in the postulational probability theory, there correspond in the combinatoric
probability theory the following purely mathematical definitions.

A trial is an element of a finite set B. A success is an element of a subset A of B. The
a priori probability of success in a trial is the ratio of the numbers of elements in A to
that of the elements in B; a sequence of independent trials is a sequence of elements of B.
An event is a class of such sequences having the same length. The probability of an event
is the ratio of the number of sequences in the class to the total number of sequences of
the same length. Clearly, any two sequences of the same length are considered as equally
probable.

That the first combinatoric theorem differs from the traditional law is clear not only
from the absence in the former of references to reality but from the fact that the com-
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binatoric theorem covers only cases with rational a priori probability, whereas in the tra-
ditional law the a priori probability might well be 1/4/2 or 1/e. However, one can ob-
tain a Second Combinatoric Theorem covering any (rational or irrational) a priori
probability p. For this purpose a Poisson setup is needed; that is to say, a sequence of
finite sets B;, Bs,* - - and a sequence of respective subsets A;, As,* * - must be given with
a./ba converging to p.

Clearly, the combinatoric method can be extended to the multinomial case, in which
each set B, has k™ mutually disjoint and jointly exhaustive subsets A}, - -, Af*—the same
m for any n. The method can further be extended to sampling theory, confidence limits
and, to a certain extent, to continuous distributions.
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