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1. The problem
Let (Q, 4, P) be our probability space and let X, with or without affixes, denote a

measurable function [a random variable (r.v.) when finite] on this space. i?(X) will
represent the (probability) law of X defined by its distribution function (d.f.) F or its
characteristic function (ch. f.) f with the same affixes as X, if any. A law degenerate at a
is represented by _(a); if a is finite, it is the law of a r.v. which reduces to a with prob-
ability 1; _(-) represents the law of any measurable function which is infinite with
probability 1.

Distribution functions and, more generally, monotone functions, say, h on R=
(- c, + co), will be continuous from the left: h(x - 0) = h(x), x E R. A sequence h, of
monotone functions, say, nondecreasing ones, converges weakly to h on R, and we write
h, - > h, if hk -4 h on the continuity set of h (it suffices that hk -+ h on a set everywhere
dense inR); h. converges completely to h, and we write h, -m.- h, if, moreover, h(+ o ) -

h( + co). A sequence of laws _P(Xn) converges weakly or completely to a law }P(X) if
F- F weakly or completely, respectively.

Convention I. Throughout this paper, and unless otherwise stated,
(a) To any probability p we make correspond the probability q = 1- p with the

same affixes, if any.
(b) n = 1, 2, - - -; k = 1,2,**, k., with k -c ; all limits are taken for n- co.

(c) X," represent r.v.'s independent in k for every fixed n. For every w E Q, the
nondecreasingly ranked numbers Xrk(w) are denoted by
(1) _X"* (') X_2 (W) - - nknkn

they are values of nondecreasingly ranked r.v.'s Xn*, r = 1, 2, *, k,, of rank r and rela-
tive rank p = r/kn (with the same affixes as r, if any), corresponding to the r.v.'s Xnk.
The nonincreasingly ranked r.v.'s are denoted by *X,,, s = 1, 2, -, k., of end rank s,
so that *X. = Xn, kn+l-8-

Let the Xnk be uniformly asymptotically negligible, that is, .e(Xnk) -+ .P(O) uni-

formly in k. We know that if .l( Xnk) /X e(X), then 2(X) is infinitely decom-

posable. We recall that a law _e(X) is infinitely decomposable, that is, fl/n is a ch. f.
for every n if, and only if, for every u E R

b2 0
(2) log f (u) =iau--U2+ 1-eiU-1 lux dL(x)

+I (eiuz. 1 X2
dM (x),f0(eiux 1~+X2 +X
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where a, b E R, and the nondecreasing functions L on (- , 0) and M on (0, + cX)
satisfy the conditions
(3) L(-0) =M(+ ) =0, fx2dL(x) +f x2dM(x) <o'.

The pair (L, M) is the "P. L6vy function" of the infinitely decomposable law P(X).
One of the most awaited and beautiful results of probability theory is the normal con-

vergence theorem which, in P. Levy's form, says that if _P (ES Xnk)-c- £(X) , then

A(X) is normal if, and only if, _e(max Xnka) -.£(0) or, equivalently, _£(X*)
k

2(0) and .e(*Xi1) -.0(0). Since the infinitely decomposable law e(X) is normal
if, and only if, its P. L6vy function (L, M) vanishes identically, one may expect some gen-

eral relationship between the asymptotic behavior of _e( x-k) and of £(X*,) and

,P(*X"1). In fact, the foregoing result is a particular case of the following immediate
consequence of the Central Extrema Criterion (see p. 315 in [3]).

If -e ( X,k)c.2(X), then £(X)has P. Levy function (L, M) if, and only if,

(4) .e (xnl,) AP} (X ) -X (* Xn) 0(*X)
with
(5) F* (x) = I-e-L(Z) or , *FJ(x) =O or eM(z)

according as x < 0 or x > 0.
This proposition connects the problem of limit laws of sumsE X,a-the Central

k

Limit Problem, with that of limit laws of ranked summands-the Ranking Limit Prob-
lem. There exists a huge literature about the last problem (see, for example, the bibli-
ography in [5]). However, the results are not suited to the general Central Limit Problem,
for they appear to be confined essentially to the normed and identically distributed case:
Xnk = Xklb- a., kn = n, the r.v.'s Xk having a common andfixed d.f. F, so that FRk(x)
= F(an + bnx). Thus, the situation is similar to that of the Central Limit Problem in
1925, when it was confined to the same case.

The foregoing connections and similarities lead to the research of limit laws and of
convergence conditions for general ranked r.v.'s. However, as stated, the problem is so
wide that it has no content. For, any law _e(X) of a r.v. may be such a limit law. For
example, take, for every n, _e(Xn1) = _e(X) and .e(Xnk) = /X(n) for k > 1; then
clearly, e(X1*) - .(X). This indicates the need for some "natural" restriction. Uni-
form asymptotic negligibility seems to be a reasonable one. Yet, a look at its "raison
d'etre" shows it to be unnaturally restrictive. It has been introduced into the problem
of limit laws of sums for a double purpose. On the one hand, these limit laws are to be
essentially characterized as being those of an infinitely increasing number of summands
so that no one of them may play a privileged role in the formation of the limit laws.
This is ensured by their uniform asymptotic behavior. On the other hand, these limit
laws are to be laws of r.v.'s, that is, no positive probability may escape to infinity. To-
gether with the preceding requirement this leads to uniform asymptotic negligibility.
However, in the ranking problem the no escape requirement does not lead to asymptotic
degeneracy of the Xnk. Furthermore, we shall find that in this problem it is more con-
venient not to impose a priori that the limit laws be those of r.v.'s.
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This leads to uniformly asymptotically distributed r.v.'s X,k: there exist d.f.'s Fn such
that F,,k - F. -O0 uniformly in k; observe that we may then take F& = (1 / k,) , F,,k.

k

Uniform asymptotic negligibility is obtained by adding the condition that F,(x) -O 0
or 1 according as x < 0 or x > 0. Finally, we may state our problem as follows.

Ranking Limit Problem.
(H) Let X* be ranked r.v.'s corresponding to independent and uniformly asymptoti-

cally distributed r.v.'s X,k-
(i) Find the class of all possible limit laws for the X*r..
(ii) Find conditions for convergence to any specified element of the class.
Convention II. Throughout this paper, we set

(6) Ln= Fk, M.= z {IFnk-1 ;
k k

k(7) 9 r rn-z F*>

' ,Fnk (1-F)
rn X.,.

X.

k
(8) InkI^X In n* n= ¢

with

(9)\ I'nk (X) = I[x<z X InC (x) I

where the right-hand sides are indicators of the subscript events.

The obvious relation

(10) [X,,*<x = [I_ (x) _ r]

will play a basic role in this study (observe that it shows that the functions X* on Q as
defined in convention I are r.v.'s). This relation defines a type of inversion for random
functions (r.f.'s) I,, on R. An investigation per se of such inversions for large classes of
r.f.'s will be presented elsewhere. The present inversion problem is characterized by
the fact that the r.f.'s I,, are sums of independent indicator functions Ink which are
nondecreasing in x E R and whose (random) values are uniformly asymptotically dis-
tributed for every fixed x.

2. The individual ranking limit problem
The limiting behavior of individual ranked r.v.'s of fixed or variable ranks will be de-

duced from the corresponding behavior of P{Xn*r < x} = P{I,,(x) _ r} for fixed values
x of the argument. We require the following elementary lemma.

LEMA 1. Let J. = z J,, be sums of independent indicators for every fixed n. Set
k

pnk = EJlk = PIJ1,t = 11, so that

(11) ~~~~EJ. = Pk, * ¢n = Pnkqnk
k k

and set Jn - (Jn- EJ.)/oJn.
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If o2J then ./[(J. - EJh)/laJ] - ,(0, 1).
If p,k -- p uniformly in k, then
(i) EJ. - X - _(J) -P.(X); more precisely, either

(12) EJ,,- X < co:*_ (J.) --+p (X)

and p = 0, or

(13) EJ- > -0 (J,) (o)
(ii) _2J, P.(Jn)P(X'); more precisely,

(14) 6a2JnO- (J.) /l/t(O, 1) ,

(15) a2j.-4 02 < co=>_ (Jn) __ / (XI)
of Poisson or degenerate (at + 1, - 1, or infinity) type.

PROOF. (a) The two propositions below are immediate consequences of, say, the Cen-
tral Limit Theorem, but the direct proof is so simple that we give it.

If a2J. -+ c, then, for n sufficiently large,

(16) log E eui = log [ 1 + (Pnke,ki/IlJnk+ q,,k etn1/ffk- 1)1

= +o( 2J* 2'

where o(1) = O(1/l,J) -k 0 uniformly in k, so that log E exp (iuJ,) =-[1 + o(l)]u2/2
and, hence, _P(Jn) -- 4t(0, 1).

If pnk -+ 0 uniformly in k, then, for n sufficiently large,

(17) logEeik= log [1+ pNk(e - 1)I = [1+o (1)] pnk(e -1

where o(1) = O(pnk) O-0 uniformly in k, so that log E exp (iuJn) = [1 + 0(1)]EJn
[exp (iu) - 1] and, hence, EJn -÷ X < o _(J,,) -+/!J(x).

(b) Let pnk -- p uniformly in k. If p = 1, then EJn kn-- and, for every fixed
integer m,

(18) P J2,, m_ rj Pnlh-1
h-i

so that _P(Jl) P-+.2(o). If p < 1 and EJn co (necessarily if 0 < p < 1), then

I pnkqk - qI pnk -+X,so that for any given pair a, b E R,
kt k

(19) a -El,_- V

and, for n sufficiently large,

(20) P{Jn_ aI=P 1n _ aEJ
- J>P{J17 b}.b) J e-1"2dt.

By letting b - x, it follows that /7(Jn) -4 _P(c)
What precedes, together with (a), proves assertion (i) provided we can show that

.lJn) -/ (X) implies EJn -- X. This is proved upon taking sequences {m} and {m'}
of integers such that X = lim EJm = lim inf EJn and ' = lim EJlm = lim sup ElJm.

m n ml

For, either X = so that X' = o and hence EJnl oX, or X < - while X' . o so
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that _e(X) = p (X) and also ._(X) = p9(X') or _( co) leading to a contradiction unless
X' = X and hence EJ,,- X < co. Thus, the proof of assertion (i) is complete.

(c) Letpnk puniformly inkand let a2J, -- a2 < -, so thatp = Oor 1. Ifp = 0,
we have EJ, a2J n_ a2 < co. Then, either a2> 0 and hence, by (i), .e(X') is of
Poisson type, or a2 = 0 and, given e > 0, for n sufficiently large

(21) P{]n < - f} =P J,<O} = °
while
(22) P J, < 1 +e} =P{Jn=0 1 = r7 (I -Pnk) = e1l+0(l)]Emn+ I

k

and hence ._(X') = (- 1). Similarly if p = 1. Proceeding as above or reducing to
what precedes upon replacing J,ak by 1 - Jnk, we find that ._(X') is either of Poisson
type or is _.(+1). What precedes, together with (a), proves assertion (ii) provided it
can be shown that _e(Jn) -+ _(X') implies a22J. -_ a2, and this is proved as the corre-
sponding assertion in (i). This terminates the proof.
The following "simplifying argument" will be used, without further comment, to prove

various statements under supplementary assumptions which do not, in fact, restrict the
generality.

Let {Sn} be an arbitrary numerical sequence. Since we accept infinite limits, this se-
quence is compact. Thus, to prove that sn -- s, it suffices to show that every convergent
subsequence { s.' I c s,n I converges to s. In turn, this will follow if we show that some
subsequence {Sn"I c { sw } converges to s.
THEOREM 1. Let the r.v.'s Xnk be such that Fnk(X) - Fn(x) -O Ofor a given x E R, uni-

formly in k.
(i) Forfixed ranks r,

(2 3) An =P I Xn*r < x [ e-'dt+ 0,
and
(24) L*(x) -+L (x) =>Pi X*, < x}- f (t-), e-'dt.

If lim sup Ln(x) < , then P{X*r, < x - Ofor variable ranks rn -a .c

(i') Similarly for end ranks s and Sn, upon replacing X*, r, L, I by X, S, -M,
+co

IJ , respectively.

(ii) For variable ranks rn cc with sn = k. +1- rn cc,

(25) /n=P{Xt<X}-- /o
and
(26) g (x)-4g(x)) P{X*"<x}--4 f e-9'/2dt.

If lim sup g7n(x) < cXthen a2I,,(x) - and

(2 7) PI{ X"r < x)} > ° PI*tX", < x 1 11

for fixed ranks r and end ranks s.
PROOF. (a) We have

(28) PIX,*r<x =P{I_ (x) _ r}.
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To prove the first assertion in (i), we can assume, because of the simplifying argument,

that A.-ALA,(x) -* L(x), and Fn(x) -- F(x). Then lemma 1 applies to I"(x) since
F,k(x) = P{I,k(x) = 11 -* F(x) uniformly in k and EIn(x) =L(x) -+ L(x). There-
fore, for L(x) < co,

(29) P {X.*< xI} Lh!=f L( t-i e-tdt
and, for L(x) =+ O X
(30) P{X,* < x}- 1 =1 ( )! e-tdt.

Thus A = 0, the first assertion in (i) is proved, and the second follows from it.
Similarly for the last assertion in (i): We can assume that P{X* < x} p and

Ln(x) -* L(x) finite [since lim sup Ln(x) < co]. Then, any fixed rank r < rn from some
n on, and hence

(31) PIX*<xI <-P{X*< xx( -)e-idt.L (x)
r,n fnt J (r-1) ! er-

By letting r , we find that p = 0 and the assertion follows.
(b) We have

(32) P{XX*<<X} =P{I,(x)> rn} =P{i_(X)) grn(x) }-

To prove the first assertion in (ii), we can assume, because of the simplifying argument,
that An i, gln(x) -+ g(x), Fn(x) -* F(x), and 0r2In(x) -* q2.

Let o2 = o Then, by lemma 1, for g(x) finite

(33) P{ X,* <x }-*> J f ett/2dt,

while for g(x) = + - or - o (so that the foregoing integral is 0 or 1), given a E R,
for sufficiently large n

(34) P{XIX <x} P{I (x) 2 a} or >P{I(x) a},

so that, by letting n o and then a + - or -a, we find that P{X*. < x} 0
or 1. It follows that 1 = 0, and the first assertion in (ii) is proved when a2 = + c.

Let r2 < Co. Then F(x) = 0 or 1, for otherwise cr2In(x) knFn(x)[1 - F^(x)] -X c.

If F(x) = 0, then Ln(x) - cr21n(x) -* a2 < a) and g,n(x) = [rn(x) - L^(x)]/oIn(x) -
+co, while if F(x) = 1, then Mn(x) - - q2In(x) _-*- c2 > - - and gT,(x) =
[-Mn(x) - S1]/o-I(x) - - co. But L(x) < o or M(x) > - implies, by the last
assertion in (i), that P{X*n < x}O-0 or 1, while g(x) = + a) or - co implies thatr+c
f exp (- t2/2)dt = 0 or 1. It follows that A = 0 and the first assertion in (ii) is

proved also when a2 < a).
The next assertion in (ii) follows from the first one. The last but one assertion results,

ab contrario, from the foregoing discussion of the case a2 < co, and the last one in (ii)
results from the last one in (i) by Ln(x) a2In(x) *o and by the interchange in (i').
TIEoREm 2. (Individual ranking limit theorem.) Under (H)

I. For fixed ranks r

(i) The class of limit laws of ranked r.v.'s X*, is that of laws /7(X*) with d.f.'s

FL f ti -dt
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where the functions L onR are nondecreasing, nonnegative, and not necessarily finite.
These laws are laws of r.v.'s if, and only if, L(- co) = 0, L(+ co) = + co.

(3 6) (ii) Fn,r c> F.¾=Lf*L 5 ' L.

I'. For fixed end ranks s
(i') The class of limit laws of ranked r.v.'s *X.. is that of laws /X(*X,) with d.f.'s

(37) MFl=J (s-I)! e'dt,

where the functions M on R are nondecreasing, nonpositive, and not necessarily finite.
These laws are laws of r.v.'s if, and only if, M(- o) = - o, M(+ o ) = 0.

(38) (ii') *Fn, mF M. w M.
c c

II. For variable ranks rn -+ co with Sn = kn + 1 Ca)
(i) The class of limit laws of ranked r.v.'s X% is that of laws with d.f.'s

(39) F = I f+ e-"/2dt

where the functions g on R are nonincreasing, and not necessarily finite.
These laws are those of r.v.'s if, and only if, g(-co) = + o, g(+ o ) = c.

(40) (ii) F c Fgc g rn g.

PROOF. The second part of assertions (i) follows from the first one. Assertions (ii) and
the fact that limit laws are of the form stated in assertions (i) follow from theorem 1.
It remains only to show that given L or given g and rn, there exist d.f.'s F#k of r.v.'s

such that L. L orgrng. Take F,k = F. with k = 1,** , knO-- -

Given L, if there exists an a E R such that L(x) is finite or infinite according as
x < a or x > a, then, for n sufficiently large, it suffices to select F. such that F,(x) = 0
for x < -n, = L(x)/k. for x E (-n, a), = 1 for x > a. If L(-c -) = +co, and hence
L = + ,it suffices to select F. such that FR(x) = 0 for x < -n, 1 for x > -n.

Given g and rn-, take k. such that Sn = k. + 1 - r , and observe that
the relation

-F'-
(41) F = g

determines Fn uniquely and that 0 < F.(x) < 1 for g(x) finite while F.(x) = 0 or 1
according as g(x) = + - or -c . It suffices to select F,(x) such that Fn(x) = F.(x)
for x E (-n, +n), = 0 for x < -n, and = 1 for x > n. This completes the proof.

Remarks. 1. The foregoing proof shows that all our limit laws are also limit laws of
ranked r.v.'s corresponding to r.v.'s X,; with common d.f. F,. However, for general
functions L, M, g, we are not in the normed identically distributed case, that is, with
F,,(x) = F(an + bnx), x E R, where F is some fixed d.f. In fact, various authors, and es-
specially Gnedenko [2] and Smirnov [6], determined the particular functions L and g
which may occur in this special case. It would be of interest to determine the class of
functions L and g which may occur in the general normed case F,,k(x) = Fk(a,, + b,x).
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2. The foregoing theorems solve the problem of limit laws of ranked r.v.'s whatever
be the asymptotic behavior of the ranks. In fact, set r,, + sn = kn + 1 and observe that
if, say, r,, - r finite, then rn = r from some n on while sn -+ co. Thus, the individual
theorem solves the problem in the case r. -> r cXwith s,n-* s < co. In the case
r,, -i-+ r finite or not, the sequence r. has distinct lower and upper limits r' < r". If
r' < co and r" < co, then by I(i) the limit d.f. (if it exists) is such that

L t"-l -d
L 1"'_1- elt36t1(42) f e dt=J ( e-dt,

so that L can take at most two values 0 and + co and the limit law is degenerate. If
r' < X and r" = + co, then, by part (i) of theorem 1, for every x for which L(x) < oo,

X L(z) tr'-l

(43)~~~~~fo(r'-1)!1
so that the same conclusion holds. Thus, in all cases not covered by the individual theo-
rem the limit laws are degenerate.

3. According to the last assertion in part (i) of theorem 1, if L onR is finite [or, equiva-
lently, if, for a fixed r, P(X*r) -- _P(X) not a.s. bounded on the right], then .e(X*) -
2(+ cc) for r,,-. Similarly, if M on R is finite [or, equivalently, if, for a fixed s,
2(*Xn.) - ?(X) not a.s. bounded on the left], then p(*Xn) .L'(- co) for Sn - co -

Also, according to the last assertion in part (ii) of theorem 1, if g on R is finite [or,
equivalently, for an rn -* co with Sn = kn + 1 - rn -* co, X(X*r) _£(X) with X
a.s. bounded neither on the right nor on the left], then 2(X*r) _P(- oo) and
.2(*X.,) .-(+ Xc) for fixed r and s.

4. The limit laws of "p^-quantiles" are those of ranked r.v.'s with Pn = rn/kn-p
O < p < 1. The following propositions are immediate consequences of II.

Ifpn 4 pWith0< p< 1,then

(44) Fr* Fg Pn -F n ang,rt* c Vp(1--p) c

and then Fn(x) = Ln(x)/n -* p whenever g(x) is finite.
If, moreover, p'- p, then nondegenerate limit laws of pn-quantiles and p'-quantiles are

the same if, and only if, (Pn - pn) /kn -°0.
From II follows also that (here we do not assume that Pn p with 0 < p < 1)
If, for some a E R and every e > 0,

(45) (H.) lirn inf [p. -F. (a -e) I > O, lim sup [Pn Fn (a +e) I < O,

then X * - a.
It suffices to observe that under (Ha) rn -* co, Sn = kn + 1-rnrcc. and gr,(x)

-Xc or +cc according as x < a or x > a.
The same proposition can be proved directly and, at the same time, completed as

follows.
Under (Ha), if2 1/kn < cca then X, a > a.

n

For, take a for the origin of values of x and observe that (Ho) implies existence of a
a = B. > 0 such that, for n _ n, sufficiently large,
(46) P,-Fn(-e) > 6 , Pn-Fn(+e) <8.
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Then, by the Markov inequality, for any a > 0,

(47) P X "I >e} .P{X < e} +P{X, - e}

=P{In(-e) 2 r.}+P{In(+,e) <7rn
In(-e) -EI(-e) > a +p 1 (+e) -EIn(+e) :5

-aoka [E In(-e)-EIn(-e) Ia+EJII(+,E) -EIn(+,E) Ia.
Since, for every x E R, In(x) = InAk(x) where the summands are independent

indicators, it follows at once that there exist finite constants C2 and C4 such that the
above bracket is bounded by C2kn and by c4 k2 for a = 2 and 4, respectively. There-
fore, for every E > 0,
(48) PI X* >e} --- 0o

so that X*^ P o, and, if 1/k2 < o, then
rn

(49) :PIIX*It >e}- ft< <

so that Xrn a .

3. The joint problem
We examine now the joint asymptotic behavior of ranked r.v.'s. The method of at-

tack is the same as for the individual problem. To avoid trivial exceptions, we include
within the Poisson and the normal type, laws which are degenerate at a finite or in-
finite number. We say that a random function (r.f.) on S c R is L-Poisson, where L is
a function on S, if its values at every x E S are Poisson r.v.'s with parameter L(x).
We say that a sequence of laws _e(Xn)) of r.f.'s Xn') on S converges to the law .e(Xs)
of a r.f. X on S, and write _P(Xs)) -* _P(Xs), if _P(Xn)) -* (Xs8) for restrictions
XV and Xs, of these r.f.'s on every finite subset S' c S.
We require the following elementary lemma.
LEMMA 2. Let Jn =I Jnk be sums of indicator functions Jnk on S c R, independent

k

in k and nondecreasing in x E S, such that EJnk = pnk -* p on S uniformly in k. Let
Jn = S J,n where J,k = 1 -Jnk and let J,n = (J. - EJn)/toS,, with covariance y,n

k

on S X S.
(50) (i) EJ-*X on S-_X (J.) _

a l(J)

where J on S is an L-Poisson r.f. with independent increments; similarly for JnO.
The r.f.'s J and Jc are independent (when they exist).
(ii) If a2Jn o, then .(Jn)e(Jn') where the JV on S are normal r.f.'s with co-

variance -Yn,
(51) a2Jn x, tn 8 (JF> ] (J)
where J on S is a normal r.f. with covariance -y.
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The r.f.'s J and J or Jc are independent; in fact, the three r.f.'s J, J, Jc are independent
(when they exist).

Observe that independence of, say, J and Jc means asymptotic independence of Jn
and J-.

PROOF. To avoid repetition, it is to be understood that asymptotic relations are writ-
ten for n sufficiently large. Also we use the fact that degeneracy implies independence
from any family of r.v.'s. Furthermore, according to the definition of convergence of laws
of r.f.'s, we may and shall take their domain S to be a finite set. The method of proof
being the same whatever be this finite set S, to simplify the writing, we take S to be
composed of two points x < x', drop "(x)," and replace "(x')" by " '". Thus, we have
two sums of indicators J,n = J.,, Jn =, J', with Jnk < Jnk. Hence EJnk =

k k
Pnk ! P'nk = EJn3k, with Pnk p, p'nk -- p', uniformly in k.

(a) We prove assertion (i). Let .e(Jn) and P(Jn) converge so that, by lemma 1,
EJn - X, EJn - X'. Conversely, let EJn -- X and EJ -+ X' so that, by the same lem-
ma, (Jn) - P() and B(Jn) -+ p(X'). If X and/or X' are infinite, then the corre-
sponding limit laws are degenerate and convergence of the joint law follows from that
of the individual ones, and conversely.

Thus, let X and X' be finite and hence p = p' = 0. Since Jnk(Jnk - Jnk) = 0, it fol-
lows that

(52) log E exp [iulJ,k +iu2 (Jn- Jnk) ]

log [' + Pkl (eX1) + (Pnk-Pfk)(e 1)]

[1 o(1) ] [Pnk (eiu 1+(Pnk-dk ( eill,- 1

where o(1) -+0 uniformly in k. Therefore

(5 3) log E exp [iUl+iU2 Jn)
= [1I + o (1)]I [EJn (eiui -1) + (EJ,,-EJJ) (eiu,- 1)]

--4X(eiu--1) + (X'-X)(e-2-1)
and hence

(54) log E exp (iuJn+iu'Jn) = log E exp [i (u+ u') Jn+ iu' (Jn-IJn)]
--+ (eill- 1) +X' (eiu'- 1)

This completes the proof of the if, and only if, assertion in (i). Similarly for (JnC, Jn).
As for the last assertion in (i), from

(55) Eh+EI =EJ+EJn=kn ) oX

it follows that individual limit laws such as _L(Jn) and _L(Jn") cannot both be nonde-
generate. Thus it suffices to prove asymptotic independence for those r.v.'s whose limit
laws may be nondegenerate, say, JI and J,c. Because of the relation JnkJnk = 0, rela-
tion (53) holds with J,c and lim EJ4"C in lieu of Jn- Jn and X' - X, and the assertion
follows.

(b) We prove assertion (ii). Dropping momentarily the subscripts "nk," we have

(56) E exp [iu (J -p) +iu (T- p') ] = [ 1 + (p eiuq+ q e-ip- 1) eiu'q'

+ (p'eiu'q'+ q'e-iu"' -1) e-i"P+ (1 - e-iu) (eiu'q'-1)1
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If o2J, -c and a2J, , then, restoring the subscripts, summing over k, replacing
u and u' by u/aJl and u'/caJ, , and expanding, we find that

(57) logE exp (iuJ, + iu'JY') = + o (1) I ( 2 + Yu + 2)
where Y. = EJ,J, = aJn/aJn. This proves the first assertion in (ii). Furthermore, the
right-hand side converges necessarily to - (u2/2 + -yuu' + u'2/2) if, and only if,
-y -y. But convergence of . 'i,) to ._(J, i') where J and J' are normal r.v.'s im-
plies that individual laws converge to normal ones and hence, by lemma 1, that o2J-
c, q22Jn - c. This completes the proof of the if, and only if, assertion in (ii).

As for the last assertion, let, say, J and J' be nondegenerate. From a2J' X and
(56) with p = 0, it follows that

(58) logE exp (iuJ,,+iu'J,) = [1 + o (1)] [EJ. (eiu-1) _ U2

and hence J. and J' are asymptotically independent. Similar but longer computations
show that, say, the three r.v.'s J., J., JnC are asymptotically independent. This con-
cludes the proof.

In what follows we use the same simplifying argument as in section 2.
THEOREm 3. Let the r.v.'s Xnk be such that Fnk -FnF-O 0 on S = {x;, j = 1,*, h},

uniformly in k.
(i) For fixed ranks rj,

(59) A\*=P r [ n*r< Xj] -POr [Inp (xj)>_ rj] O-

where IP on S are L4-Poisson r.f.'s with independent increments.
If lim sup Ln(xj3) < - for some xi. E S, then for any ranks r,;with some r,j,, C,

(60) P r [x* < Xj] 0

(i') Similarly for end ranks sj and snj, upon replacing X*, r, L by *X, s, - M, respec-
tively.

(ii) For variable ranks rnj co with sn;= k. + 1 - rj;aX

(61) An<=P(? [Xr,,<xj P [In(xi) _ g,._ (x,)]-0
where IN on S are normal r.f.'s with covariance -Yn.

If lim sup gr,j (xi.) < X for some x;, E S, then for any ranks rnj with some r,j, fixed,

(62) Pr) [X*n < xj ---*.

If lim sup gr,.,(xi) < - for all xj E S, then for fixed end ranks sj,
(63) PO[*)X" j< Xj]
PROOF. (a) We have

(64) P r1 [X$n < xj] =P r [In (Xi) >_ rj].

To prove the first assertion in (i) we can assume, because of the simplifying argument,
that An -+ A, Ln - L, and Fn -- F on S. Then lemma 2 applies to the r.f.'s In so that
_?(In) -- _(I) where I on S is an L-Poisson r.f. with independent increments, while
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clearly e(If) P-+ (I). Thus A = 0, and the assertion is proved. The next assertion in
(i) follows, by the corresponding assertion in part (i) of theorem 1, from

(65) r:7 [X* < xi] c [X <x o].
Similarly, (i') results from

(66) ^ [*X.i < Xj] = r [In (xi) < Si] .
(b) We have

(67) PQ [Xr*<x1] =PQ [In(x,) 2 g7nj(x3)]

To prove the first assertion in (ii) we can assume, because of the simplifying argument,
that AL-- A, gr,j gj, Fn -+ F on S, and 'Yn,-* Y on S X S.

If some gj(xj) = + o or - c, then the probabilities of the corresponding events
[X*^ < xj] and [In(xj) > grn_(xj)] have the same limit 0 or 1. In the first case, both terms
of A. converge to 0 and hence A = 0. In the second case both events can be dropped at
the limit. Thus, it suffices to prove the assertion for finite gj(xj). But then, according to
part (ii) of theorem 1, a2I,, -+ on S so that lemma 2 applies, and hence = 0. The as-
sertion is proved. The following assertions in (ii) result from the last one in part (ii) of
theorem 1. This completes the proof.
THEOREm 4. (Joint ranking limit theorem.) Under (H)
I. For fixed ranks ri, * - * rh
(i) The class ofjoint limit laws of ranked r.v.'s X,*ri*..* X*h is that of laws .L(X*r,,*

X*h) with d.f.'s defined by

(68) P{Xr*1< lxi *-- <r xi, =P{II (xi) 2- ri-- (xi,) >rh}
X1,---, xh ER,

with I on R an L-Poisson r.f. with independent increments where the functions L on R are
nondecreasing, nonnegative, and not everywhere finite.

In particular, for two fixed ranks r < r',

(69) PI X* > x, Xr*1 < x. =f L(z')e-d ( t) _ 1) t* - ! dt'

or =0, according as x S x' or x > x'.

(70) (ii) Ln.
w L .(X*,- Xnr lX rh) (rox Xr)*

I'. Similarly for fixed end ranks, upon replacing r, X*, I, L by s, *X, IC, -M, replac-
ing nonnegative by nonpositive, and interchanging x and x'.

II. For variable ranks r,, such that ,Pnj = r,,j/kn, -+pj with 0 < pi < 1 for every
j= 1' , ,h,

(i) The class of joint limit laws of ranked r.v.'s XNI,.. I XT,,h is that of limit laws
2(X*pl * - * X*hh) with d.f.'s defined by

(71) P I Xgll < xi, X*h < xh =P{I (x) _ g1 (x1), , I (Xh) _ gh(Xh) },

xi,* x, ER ,
where

(a) the functions gj on R are nonincreasing, not necessarily finite, such that g, _ gj'
for p, < pj,, and whenever gj(x) and gi(x') are both finite then p, = p,' and
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(72) g, (x) - gj (x') = c,j, = rim V"p"-inj) Vkn
are constants independent of x.

(b) The r.f. I on R is normal with a triangular covariance defined by

(73) 'y (x, x') (x, xi =min (x, x'), X2=max (x, x'),

where the function ,B on R is nonnegative, nondecreasing, not necessarily finite, and such
that #2(X) = pJl(1- pj) whenever gj(x) is finite. When the defining ratio is undetermined,
set y(x, x') = 0.

In particular, for two limit relative ranks p, p',

(74) P{X)*g<x,X*tg <x'}
1 r+ c + 1 1

2 Vt -Sy2 (X, x') Jo(z) Jr,) xP y1-2 (X, X')

[t2 - 27 (x, x') tt' + t'2] dtdt'
if y(x, x') < 1, and

+00

(75) P{Xp*°<x, X*g <x'} = 1 et2/2dt
max tg(2), g'(Z')]

if 'y(x, x') = 1.

(76) (ii) (X*n,, , Xpnh) w. (X p ,,, X'h) g

j= 1, , h .

III. The r.f.'s {X*, r = 1, 2, }- {'*X,, s = 1, 2,* }, {X*, 0 < p < 1} are in-
dependent (when they exist).

PROOF. (a) In I, assertion (ii) follows from assertion (i). The form of the limit laws in
(i) follows from theorem 3. To prove that every law of the form stated in (i) is a limit
law, it suffices to observe that the construction for a given L in the proof of the in-
dividual theorem applies. Finally, the particular case in (i) for x > x' results from
PIX*r 2 x, X"* < x'} = 0 while for x < x' it results from

(77) PI Xr*2 x,Xr*<x'}=P{I(x) <r,I(x')> r'}
r-1

= ,P{II (x) = j} -P{I (x') -I (x) >_ r'-j}I
i-o

Li(Lz(x) [L(x_ ) -L (X) II

e Li(x) e- L (x ) L (x) .

Jo (,hrfed

fL(Z') E L (x) [t-L(x)rl 11 e-. dt

=f L( l) e-,dt[. (t -_t) r_-*-1 1t'r- dt'] .

This completes the proof of I. Similarly for I'.
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(b) In II, assertion (ii) follows from assertion (i). As for assertion (i), let -P(X*n,,, . . .

X* ) A. Then the individual laws converge and, by the individual theorem, gnj-) gj
for everyj= 1, ,h.

If pj < pi, then, from some n on, rjy < rnj, so that

(78) g1 - rn -Ln< r*1'L gr-

and hence, by passing to the limit, g, _ gji. If g;(x) and gj'(x) are both finite, then
Fn(x) -+ pj and Fn(x) - pi, so that pi = pi, and

(79) gj (X) - gi, (X) = lim (Pn- Pnj ) N/kn= cjjR
n V\Pj (1- p)-

is independent of x. Thus, the g, must fulfill the conditions asserted in (a) of part (i).
Furthermore, according to theorem 3, convergence to _(X) is equivalent to con-

vergence (weak or complete) of the d.f.'s with values an = P{IIN(x1) _g. (X1),
n(Xh) >_ grnh(x))} where every r.f. JV is normal with covariances 'yn of the r.f. In.

Select a subsequence Fm-+ F as m --a*. Then elementary computations show that
ym.--y with y(x, x') = ,B(x)/,(x') for x _ x' and j3 = F/(1 - F)}1/2, unless the ratio
is undetermined [that is, unless either F(x) = 1 and hence F(x') = 1, or F(x') = 0 and
hence F(x) = 0]. Therefore, lim an, assumed to exist (except perhaps on a countable
set in Rh), is of the form stated in II. Since finiteness of gj(x) or of gj(x') implies that
Fn(x) - pj or Fn(x') -÷ pj' and since 0 < pi, pi, < 1, it follows that in such cases -y(x, x')
is determined. Thus indeterminacy of the ratio can happen only if, say, gj(xj) is infinite
and xi isx or x'. If gj(xj) = + co, then P{IIN(Xj) _ gnj(xj)I 0and P{I(xj) _ g,j(xj)I
= 0 so that the limit value of the probability of the whole compound event under
consideration as well as of its stated limit value is 0. If gj(xj) = - X, then P{IN(xj) _
g,nj(xi) I -- 1 and P{I(xj) _ g,j(xi) I = 1 so that the corresponding events may be left
out of the whole compound events. Therefore, when the ratio is undetermined, the value
of y(x, x') is immaterial and, to fix the ideas, we may take it to be 0. This completes
the proof of the form of the limit laws -. Conversely, given _P with rnj, gi, and I fulfill-
ing the required conditions, it follows easily that the set of equations

(80) pnj-Fn' an= gj i=1 =* ,h,

determines uniquely the functions Fn on R which in turn determines d.f.'s Fnk = Fn
of r.v.'s by the construction in the proof of the individual theorem. The particular case
results at once from the properties of nonsingular and singular two-dimensional nor-
mal d.f.'s and similar expressions can be written for h limit relative ranks.

Finally, III follows from independence of the r.f.'s I, I, I (when they exist), which
results from the last assertion in lemma 2. This terminates the proof.

Remarks. 1. It would be of interest to give multi-integral forms, similar to the one given
in the particular case in I, for any finite number of fixed ranks. Also to examine the
case of variable ranks such that the limit relative ranks may be 0 or 1.

2. Since X*, and *X. are independent, it follows that -(*Xn- X*) - (*X,-
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X*) = .A(*X.) *- (-X*). In particular, the limit law of the "range" is obtained
upon taking s = 1, r = 1.

4. Ranking and summation
We can now return to the ranking problem within the setup of the Central Limit

Problem [4]. To begin with, the r.v.'s Xnk under consideration are to be uniformly
asymptotically negligible (u.a.n.). This leads to the following complements to the pre-
vious results.

I. Under the u.a.n. condition
(i) For relative ranks p,n = rn/k,, such that 0 < lim inf p, < lim sup pn < 1, X*AP 0

and if, moreover, 1/k' < co then X*ra 0

(ii) Every limit function L equals + a on (0, + o ) and every limit function M equals
-c on (- co, 0) or, equivalently, every X* is a.s. nonpositive and every *X8 is a.s. non-
negative.

The first assertion results, by u.a.n., from the last two propositions in section 2. The
second assertion results, by u.a.n., from the definition of L and M.

Furthermore, the Central Limit Theorem and the limit theorems for normed sums
yield at once the following precisions about the limit functions L and M.

II. Let _P ( Xnk)- (X) where the r.v.'s Xnk are u.a.n. and X is a r.v., neces-

sarily infinitely decomposable, with P. Levy function (Lx, Mx).
(i) The limit functions L and M of the ranking theorems exist and L(x) = Lx(x) or + a',

M(x) = - - or Mx(x), according as x < 0 or x > 0.
(ii) In the case of normed sums, L and -M are convex functions of log x on (- a', 0)

and (0, + ac), respectively.
(iii) In the identically distributed normed case, L(x) = ,3 x | on (-, 0) and M(x) =

-3'-` on (0, +ao), where 13, 13' _ 0 and 0 < y < 2, with ,B = 13' = 0 if, and only if,
_}(X) is normal.

The hypothesis of II implies, by I, II and the ranking limit theorems, that the limit
laws _(Xr* r = 1, 2, _),.(*X., s = 1, 2, *) exist. The question arises as to the con-
vergence of joint laws ofE Xnk and of ranked r.v.'s, and as to the form of limit laws

k

(if they exist). In the case of relative ranks pn, = rn/kn-- p with 0 < p < 1, the u.a.n.

hypothesis alone implies limit degeneracy at 0 of _P(Xr*ni, j = 1,-, h) and the prob-
lem is trivial. Thus we consider only fixed ranks and fixed end ranks.

Let (C) denote the following assumption: The u.a.n. independent summands Xnk

are such that _P ( X-k)- _? infinitely decomposable with ch. f. f defined by
k

(81) log f (u) =iau-- u2 (eiu- - 1I y2) dL (y)

+f/ (eiuy-1- +uy2) dM(y)

with a, b real and (L, M) a P. Levy function or, equivalently, by the Central Limit
Theorem,
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(C1) L. w>L, M.nw)-M ,

(C2) E 0-2X,'-k b2 as we let n and then e- O,
k

(82) (C3) EEXnk-a(T) =a +f Y _ dL (y) _ r Y dL (y)

.+f y2 dM (Y) fJ y2 dL (y),

where -Tr and +T are continuity points of L and M, respectively. (The right super-
scripts for X denote truncation at e and at r.)

Let XF and zf be the d.f. and the ch. f. of -X, that is, of a r.v. X given that X < x
(with same subscripts for F and X, if any). If the conditioning event is of positive prob-
ability, that is, F(x) > 0, then XF(y) = F(y)/F(x) or 1 according as y < x or y _ x
and hence

(83) f (u) f ei-dF(y).

We require the following lemma.
LEmmA 3. Under (C), for every x > 0,

(84) X fk.) f
k

where of is an infinitely decomposable ch. f. defined by
Xb2

(85) log Xf (u) =iau_- u2+
_

Y22 O

+eiuy 1- 1y d2)dZM (y)
with

(86) -Ta = a-t i+y2 dM(y), Xb= b, XL=L,

and XM(y) = M(x) or 0 according as y < x or y > x.
PROOF. Let x > 0. Since the Xnk are u.a.n. independent summands, the same is true

of the XXRk. Since Fnk(x) 1-+ uniformly in k, all Fnk(X) > 0 from some n on. Then,
by (C1),
(87) TL.= EF&k (Y) -w L

IcFk (x)
and
(88) OM. (y) = F(Y) -1 -M (y)

kc Fk (X)

for continuity points y < x of M, while XM,(y) = 0 for y > x. Similarly, by (C2), upon
taking f < x (which we may)

(89) Xb k k 2 (XXE) 2 a
2 (Xk)

kc k k(X
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as we let n-- o and then E- O. Finally, for r <x_

(90) a. (T) =IE ('X:,) E 2 ) a a
+ y dM (y)

k ~~Fk (X) 1Z_ y2
[the same limit is obtained also for e > x since then Xa(T) = za(x)].

Thus, for every fixed x > 0, the Central Limit Theorem applies to 17 zffk, and the

lemma is proved.
In what follows g is a Borel function on R.
THEOREm 5. Let the Fnk be continuousfrom some n on. Under (C) with M(+O) = + X,

(91) X *k,Xn).e (X, *X1),
with ch. f. f defined by

(92) f (u, v) =expVE f(u) eiuz+ito(z)d *Fi(x)]

where the d.f. *F1 of *XI is defined by *F1 = exp (M) on (0, + o ).
PROOF. Let us observe that, under (C), M(+O) = +co is equivalent to the con-

tinuity of *F1 at 0. Because of the continuity assumptions, we have (from some n on)

93) f (u, v) =E exp (iu Xnk+iV *Xnl)

=Y'E exp(iuXXnk+iV*X1)I1Xnk- Xnl

= fj [ri X eiuudFnj (y)] eiux+ivg(z)dFnk (y)

=I J++ [ j -fnj (u) ] ei-z+i-o(z) Fnj ( x) ] dFnk (x) + J. (u, v)
kc + jok jok

where, by the individual ranking theorem and II of this section,

(94) J. (u, v) <f -:_ rJF. (x) dFnk (X) P Xn < ° } -

As for the remaining sum, observe that, by lemma 3, rl -f,j, f for every x > 0

while

(95) | r7fn>j-Jr tfj| fnk-1j| 0
uniformly in k, and

(96) j[f FI k (y)] dFIk (y) = *F.1 (x)

with *F,, -- *F1. It follows, by elementary computations, that the remaining sum
and hence

(97) fn(u, v) -+f (u, v) = exp [f Zf (u) eiux+ivg(z)d *F (x)]
This proves the theorem.
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Remarks. 1. The same method yields the joint limit law of( Xa, *X..) for any

fixed end ranks and of( X,,,) g (*X,,) [replace u by ug(x) and v by 0]. Lengthier

computations yield the joint limit laws ofE X,, and any number of ranked r.v.'s of
k

fixed end ranks. Similarly one obtains limit laws of z X,,k with ranked r.v.'s of fixed

ranks.
2. In the normed identically distributed case, the expressions of zf and M (or L)

are sufficiently simple to enable us to find simpler forms for limit ch. f.'s. In particular,
we can obtain the forms of the limit law of( x ) /*X,, due to Darling [1].

3. It would be of interest to investigate the problem of this section without the
continuity assumptions.
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