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The theory of stellar systems begins with the study of our own Galaxy and the
approach must at first be mainly of a descriptive kind. The study of the distribu-
tion of stars in space and of the distribution of stellar velocities forms a part of
astronomy which is named stellar astronomy, or in a more restricted sense, stellar
statistics, and serves to describe the properties of our galactic system. The first
great pioneer in this field on an empirical basis was William Herschel and, after
him, pioneer work was carried out by F. G. W. Struve, Gylden, Seeliger and others.
A modern era in the study of stellar motions may be said to begin with Kap-

teyn's discovery of the two star streams, and with the subsequent development of
the mathematical statistical methods of describing stellar motions. Schwarzschild
introduced the theory of the velocity ellipsoid, which was later developed in a more
general way by Charlier. Attempts to develop a dynamical theory of stellar systems
on the basis of the ellipsoidal velocity function were made by Eddington, Schwarz-
schild and Jeans.
A revolution in our ideas concerning the dimensions of our stellar system oc-

curred by Shapley's investigations of the distribution of the globular clusters.
These studies definitely expanded the domain of our galactic system wide over the
limits of the system devised by Kapteyn, and showed that our Sun is situated
very far from the center of the Galaxy. The direction of this center, in the rich
region of the Milky Way in Sagittarius, was also clearly indicated.
A corresponding revolution in the domain of stellar motions occurred in the

study of large stellar motions relative to the Sun. If we consider physical groups of
increasing internal velocity dispersion, the mean motion relative to the Sun in-
creases in a direction which lies in the galactic plane at right angles to the direc-
tion towards the center of the Galaxy. This is the phenomenon which has been
called the asymmetrical drift of large stellar velocities. The writer showed that this
phenomenon, which had been studied in detail by Str6mberg, could be interpreted
in terms of a general motion of rotation of the system. The stellar system may be
divided up into "subsystems" of different angular motion of rotation and different
internal velocity dispersion. The maximum angular speed occurs at a vanishing
internal velocity dispersion, and is equal to the angular speed of the circular orbits
in the galactic plane. This corresponds nearly to the state of motion of the clouds
in the Milky Way. With decreasing motion of rotation the internal velocity dis-
persion increases and the distribution in space assumes a less flattened formation.
The globular clusters represent a subsystem of very small angular speed of rotation
and of a nearly spherical distribution in space.
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Parallel with the exploration of our own Galaxy, the last decades have produced
an enormously increased knowledge concerning the external galaxies. In Hubble's
system of classification the series of spheroidal galaxies of increasing general flat-
tening ("elliptical nebulae") is followed by a series of types showing spiral structure
of increasing width. The spiral types are divided into two parallel series, the "ordi-
nary" spirals in which the central parts have approximately symmetry of rotation,
and the "barred" spirals, in which there appears a concentration of matter towards

FIGURE 1

The rotating subsystems in the Galaxy

a certain diameter of the system. A theory of the spiral structure must be able to
explain the appearance of these two series. Among later developments of great im-
portance for problems concerning the evolution of the galaxies, and for stellar
evolution in general, is Baade's segregation of two population groups of different
physical characteristics among the stars, type I appearing preferably in the spiral
structure, and type II in a more smoothed formation of smaller concentration
towards the equatorial plane, but with strong concentration towards the nucleus.

In the study of the orbital motions in a stellar system like our own Galaxy we
may start with the assumption that the potential of gravitation has symmetry
of rotation. We introduce a rotating coordinate system t, q, r following the circu-
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lar motion at a certain distance from the center. The relative orbits in this coordi-
nate system are a kind of epicyclic orbits of the type shown in figure 2.

The character of the orbits depends on six arbitrary parameters, which appear
as constants of integration. If we write the frequency distribution in {, t, r and
in the velocities t', 7', D',

f (Q, ,7 r, t', 7', r', t) dtdodrdt'd,7'dr',

we know by Liouville's theorem that the function f must be a function of these
parameters. Three of these parameters contain the time t explicitly. In a steady

FIGURE 2

Relative orbit in a rotating coordinate system following a circular orbit

state f must therefore be a function of the remaining three parameters. On this
basis we may build up a theory of the ellipsoidal distribution of stellar velocities in
our neighborhood. In a steady state the velocity ellipse in the galactic plane will
have its long axis pointing towards the center of the system and the ratio of the
two axes has a certain relation to the properties of the potential field, which con-
nects the velocity ellipsoid in an important way with the phenomenon of differen-
tial rotation discovered by Oort.

The spectrographic investigations of galaxies indicate that in the "main body"
of the system, including the principal part of the spiral structure, the angular
speed of rotation is nearly uniform. I have therefore introduced the term "quasi-
spheroidal" stellar system to define a system in which the angular speed wx of the
circular orbits is nearly constant. In this case the relative "epicyclic" orbits in t, I
are to the first approximation circles in which the particle moves with the angular
speed 2wc in the retrograde direction. At a given point, the density, the mean mo-
tion, and the dispersion of the velocities, will be determined by the amount of mat-
ter carried by the relative orbits intersecting at the point in question. Considering
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the stars of mass between m and m + dm, we may write the frequency along an
orbit

4mdmdtJdf7dgdVt'dZ'.;
Figure 3 gives the projection on the t, q-plane of a certain orbit passing through
the origin 0. C is the center of the stellar system. The center of the projected orbit
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write for the density function
P = Po + Pi

where po corresponds to a steady state of motion, and pi is the deviation from this
state. For the gravitation potential sp we assume correspondingly

'p = 'Po + (p1-

We are in the first place interested in large condensations, of dimensions comparable
with the system itself, and we assume that the variation in potential may be re-
solved into a sum of harmonic variations of the type

(Pi = X (Q, X, t) eia".

We assume the condensation to be large compared with the relative orbits of the
particles, and that in the vicinity of 0 we may disregard variations of the phase of
the oscillation, so that we may assume x to be a real function. With a suitable
choice of epoch for t we may then write

(Pi = X (Q, X, 0) cos at.

For t, 7i, ¢ small we may then develop x as follows

x = ao + alt + a27 + a3¢ + 2a4 2 + 4astj2 + 2a6¢2 + a7t?7 + a80¢ + a977q +....

By Poisson's equation
V2VsI = -47rGpi

we have at the origin 0
(a4 + a5 + a6) cos a-t = -4irGp1.

The equations of motion are to the first order

_ 2 wddt-4oA c

-dt'l+2cd d rt
d2 + k2 =dldt2 dt

where
2c=-drO' A

4
= (2+ ar2' Xd2

and where r is the projection of the radius vector from the center of the system C on

the t, I-plane.
In the case of a quasispheroidal system we assume A, = 0, and may then turn

the coordinate system so that a7 = 0. We assume as= 0, ag = 0, and further
that terms of higher order may be neglected.
We consider a cylinder of unit cross section with its axis parallel to the axis of

rotation. The amount of matter in such a cylinder may be t7, and we write

a= tyo + t1.
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We have then by the law of continuity

61 + 90 (28t + 08=
where At and An are the disturbances in t and i, according to the equations above.
After deriving the expressions for At and Afl, this gives as final result

01 =-o a42+2 Cos at.

In a steady state the velocity dispersion in the t- and -,-directions are assumed to
be of equal amount a, and the dispersion in the D-direction to be y. In the varied
state the dispersions may be al, a2, ryi. We find

a1a2 a4 + as
a2 1 -42_2Cos at,

and thus we have
ala2 a

a2 t7o

An analogous relation between density variation and velocity dispersion is valid
at 0 for the motion along the i-axis, and in the special case when

a = y, al= a2 Yl,
we have

a2( p)2/3
a2 Po}

The relations derived have therefore a certain analogy with the conditions of
adiabatic variations in a monatomic gas. This is remarkable, because in our case
we disregard entirely the effects of encounters or mutual disturbances between in-
dividual stars.
By taking into consideration Poisson's equation in the form given above we

may derive approximately the frequency o as follows
2 = 4W2 - 47rGpo a4+ a+Ca4+a5+a6

Po is a mean of po defined by

po= f p20dr.

For a deeper analysis of the fluctuations it is necessary to make use of the gen-
eral equations of mass motion. We employ a rectangular coordinate system x, y, z,
rotating with the angular velocity w about the z-axis. The density function is
p (x, y, z) and the potential of gravitation y (x, y, z). The mean motion at the
point x, y, z is characterized by the vector v with the components u, v, w along the
axes x, y, z. The components of velocity of individual particles relative to the mean
motion are U, V, W. We then have the general equation of mass motion

Ov 19+vpV=K--divHl,49t, ~~p
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and the equation of continuity

- +'.gradp+pdivv =0.

K is a vector with the components

2 V + + (dx'+ dyX dz'

and H is the dispersion tensor

pU2 pUV pUW

pUV pV2 pVW

pUW pVW pW2.

We compare the actual system with an ideal system in equilibrium, in which the
density and potential functions and the components of mean motion are

Po (x, y, z), (Oo (x, y, z), uo, vol woI
and further

gO = poo + IW2 (X2 + y2)

In the actual case we assume wo = 0, and that uO, vo are small quantities. The dis-
persion tensor in the steady state is assumed to be characterized by a generalized
velocity ellipsoid with the axes

a, 3, y,
thus
-21 22+2y XyP 12 (22 yUo' -(a2x2+ 2y2) UVo= (a2-iB2)-j Vo= 2ja2x2+c2y2)

Wo y2 , UWO= 0, VWO = 0.

In considering the interstellar gas we may take the mean motion and mean den-
sity over fairly large regions and include the turbulent velocities in the dispersion
tensor. Moreover, as we are considering "large" fluctuations, we must take into
account that with increasing size of the fluctuations the mass forces are likely to
prevail over the frictional forces.

For the actual system we have

p= Po+Pi, o= o+''o ,'P =o+

u =uo+u1 , V= Vo+ Vi, W=Wo+Wi

U2= U2+AU2, V2= V2+AV2X UV= UVo+AUV.

We define here ul, v1, w1, P1, (p, Q1, when folowing an element in its motion, so
that we ascribe to the elements certain displacements Ax, Ay, Az.

As before we define a = to + j to be the mass in a cylinder of unit cross sec-
tion parallel to the z-axis, and define

v =-.0o0
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We further define the mean values

2h=a Xf ul pod z vi =vXflvpodz
We may now apply the "adiabatic" theorem derived above, ignoring the difference
between a, and a2, and assuming

AU2 =A V2 = a2,q, AUV= 0

The equations for the two dimensional motion in x and y may then be written

d f4l _ (jv a21 2 .2 917 _1 a2a-gd 7/ aa2

di dx X 49 x ax *

d ii c_o 2 2071 2 lg6~ Oca 2

We define a functionf such that

IV12%= ar2+ a2 2=47rGfpi.

Coutrez has shown that the function f has the property

V12P = V2 (fpl)

which may serve to estimate f when P1 is given as a function of x, y, z.
We apply the equations above to a "standard stellar system," for which we as-

sume
all2 = a2 r1-2) 'Y' = (o°) (I -r2)1/

The velocity dispersion is thus assumed to vanish at a certain limiting radius
r = a, and the quantity tO varies in the same way as for a homogeneous spheroid.
If the polar coordinates in the equatorial plane are r, 0, and if v is assumed to be a

harmonic variation, thus

we find for the amplitude function -(r) the equation,
{1r2\{ 17 .

I a S2 7 a 242 - 4w C s 3- =

a2J0r2 r d r r2 )J 2c2 r+ \ 2 a2 a a2!

where
(2 = -2 47JGf po .

Setting
(o2 - 4A2) a2 S-

2aa2 _i+ S2=in2f-0ini

a solution which is finite for r = O is

X=A. (-r
F ( a, r 2)ei(ot+80)
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where F is the hypergeometric series with

a= 2 (n+s+O, ,=4(2+s-n), y= s+ 1.

F is not convergent, and in order that the series shall terminate, we must have

n = s + 2],

where j is a positive integer. The most important mode for a given s is j = 1, in
which case

7 = A.,(8r)e i(ot+80)
a

The frequency a- is determined by an equation

a3 + qa + r = 0.

This equation will have a pair of complex roots, if

WI< I [3s2/3x4/3-( 6+ 7 s)x2]
where

X= ao
ca

In this case there will exist a wave of type

= A8 (-) et cos ( O t+ s +e)

where -y > 0. The amplitude of the variation will therefore increase exponentially
with the time. The angular speed of the wave is

Oro

We have ao < 0, and an important fact is that at the point of instability a wave
of this type follows closely the angular speed xc of the circular orbits in the system.

From the properties of a "standard stellar system" the condition of instability
may be investigated quantitatively for systems of different degrees of flattening.
In figure 4 the abscissa is the ratio of the effective axes c and a of the system and
the ordinate a quantity A(WI/W)2 which is positive in the case of instability and
negative in the case of stability. The curves drawn represent the cases s = 1, 2, 3.
It is evident that with increasing flattening of the system, when we move from right
to left in the diagram, instability occurs first for s = 1. This represents a simple
asymmetry of the system, which may often be traced in nature. Instability occurs
next for s = 2, which corresponds well to the appearance of a "barred" structure,
as it means an increase of density along a certain diameter. For higher values of s
instability will occur at higher degrees of flattening. These modes of variation will
have a greater number of maxima and minima in 0, and the amplitude will further
increase very considerably towards the edge of the system. On account of their
greater complication they will be less readily identified in nature. The most im-
portant case is thus s = 2. The distribution of a at a certain stage of development
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FIGURE 4

The condition of instability for different degrees of flattening and for different values of s

FIGURE 5
The distribution of density in the presence of a wave s = 2
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of the wave s = 2 is shown in figure 5, and illustrates the "theoretical bar."
A deviation from rotational symmetry like that of the theoretical bar, which

follows closely the circular orbits in the system, has a very considerable disturbing
action on particles which originally follow circular motions. These disturbances
are of such a nature that they appear to explain essential features of the spiral
structure in the galaxies.

If the bar grows slowly, the resulting displacement of a particle following origi-
nally a circular motion will occur at right angles to the disturbing force (figure 6).
The direction of displacement is obtained, if we turn the disturbing force 900

D

FIG(.URE 6

The relationi between the disturbing force F and the displacement D

against the direction of rotation. In fact, if the disturbing force at a certain point
of the i, 77-system is

= X I T _ X

where Xi and X2 are considered as constant, we get for A., = 0 and( fy small the
displacements

= X2 er' A, i
=

- e't

We have assumed here zXt = 0, AiA = 0 for I = -r, where r is large. In the quad-
rants following the bar in the rotation the motion will be mainly outwards, and in
the preceding quadrants inwards. Some possible tracks of motion are shown by
the (lotted curves in figure 5.

In a great many cases it is evident that the system has consisted originally of a
wide central lens with a ring of matter, presumably containing matter of Baade's
type I, at the periphery. When the bar forms and contracts, this ring will be
broken up in a very characteristic way. If the bar is pictured vertical, one si(le of
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the nebula will move upwards and the other downwards. This "breaking of rings"
is a very characteristic feature in the barred spirals, as shown in the typical barred
nebula NGC 1300 (figure 7).

The detached matter is likely to proceed out into regions where the density
gradient of the remaining matter of the system is very steep, and where, therefore,

FIGURE 7

The barred spiral nebula NGC 1300. (McDonald Observatory)

circular motions will be unstable. The orbits of individual particles will then be of
the "asymptotic" class, extending widely from the original system. The detached
matter will, therefore, be dissolved into a fanlike formation, which will propagate
a disturbance along the edge of the system against the direction of rotation. The
disturbance will "peel off" the outermost matter, and this process will continue,
until the peeled off "arm" meets the detached matter on the other side of the
nebulae. This disturbance, which will combine with the direct disturbance on the
ring, may be called "the edge effect."

In many cases there will be a region about the center in which A,, > 0, and
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the angular velocity of the circular orbits increases towards the center. If our co-
ordinate system (, m, r follows the angular motion of the outer regions, the circu-
lar orbits of the innermost regions will show a certain circular relative motion.
We assume this motion to be slow, and we assume further that the bar has con-
tracted to a fairly narrow formation as we often observe in nature. The disturbance
will be a downward motion on one side of the bar, and an upward motion on the
other side, in both cases in the direction of the relative motion. The result will be
a spiral motion which resembles the motion of a charged particle in a cyclotron
under the disturbance of the changing electric field. The inner part of a type I popu-
lation will, therefore, have a tendency to arrange itself in a spiral pattern, which
will combine with the spiral pattern of the outer regions. All the three types of

FIGURE 8

Theoretical picture of a barred spiral

disturbance discussed above have been combined in the schematic picture of a
barred spiral nebula in figure 8. In the comparison with objects in nature it'is of
importance that the inner relative motions are in many cases very well revealed
by clouds of dark matter, which often form extended dark lanes along the paths
of relative motion.

The ordinary type of spiral structure may in many cases be explained by analogy
with the barred spirals as systems in which the wave s = 2 has produced a dis-
symmetry of the gravitational field, but without producing a well marked bar.
The breaking of rings, the edge effect, and the spiral motion of inner particles will
still be present and produce the spiral structure. Especially the "edge effect,"
causing a wide extension of spiral arms, and proceeding from the outer regions in-
wards, is likely to be active here. A great number of nebulae show actually a state

of transition between the barred and ordinary type. A beautiful example among the
large nebulae is Messier 83 (figure 9). The great Andromeda nebula Messier 31 ap-
pears to show traces of a bar (figure 10), and the run of the spiral arms, when
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reconstiructed as they would appear if the nebular plane were at right angles to the
line of sight, shows many analogies with the barred spirals. Messier 81 is a nebula
in which the edge effect prevails, probably produced originally by a density varia-
tion of the type s = 2, which may still be traced.

In some cases, as for instance the nebula Messier 51, the dissymmetry of the
gravitational field is produced by the tidal action of a companion. If the flattening

FIGURE 9

The spiral nebula Messier 83. (Mount Wilson Observatory)

of the system increases, the deformation by the tidal effect of the companion may
reach a critical stage, after which the disturbing potential field of the deformation
itself dominates. We may then expect very strong effects analogous to the breaking
of rings and the edge effect in the barred spirals. The spiral structure may ultimate-
ly penetrate more and more towards the nucleus.
An investigation of the time scale of the spiral phenomenon shows that the

spiral structure is likely to have developed during a few revolutions of the system,
so that the present theory appears to be entirely in accordance with the "short"
time scale. The part played by a process of increasing flattening in producing the
necessary conditions for an instability, leading to the formation of spiral structure,



DYNAMICS OF STELLAR SYSTEMS 40I

connects the dynamics of stellar systems with the problems of stellar evolution.
The process in question may well be a transition of a system from a "prestellar"
to a "stellar" state. A condensation of "primitive," highly turbulent gas into clouds
of dust, and into stars, will be a process of condensation and dissipation of internal
kinetic energy, and must involve an increasing degree of flattening of the system,

FIGURE 10

Above: Theoretical picture of Messier 81. The fine dotted curves indicate lanes of dark matter.

Below: Diameter of maximum intensity in Messier 31. The dashed curves indicate clouds of
dark matter. Only the principal parts of the spiral structure are indicated.

if the system has at least a moderate angular momentum. If the angular momen-
tum surpasses a certain minimum value, the equilibrium form may become quasi-
spheroidal in the way assumed here. A state in which the angular velocity cW, of
the circular orbits remains approximately the same out to an effective limit r = a,
where the velocity dispersion becomes very small, and outside of which the density
decreases rapidly, will be much favored by the presence of gas and dust in the
outer regions of the system. It is possible that the stars of type II prevailing in the
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inner regions are considerably older than the stars of type I in the outer regions,
which may be largely of a more recent origin.

In the course of the further development the system will enter into a phase in
which it is unstable against the density waves of low s, which may lead directly to
the formation of a system of the barred type. The bar may not become apparent, if
the "edge effect" prevails. This is likely to take place in systems of very consider-
able angular momentum. The ordinary type of spiral structure should therefore
prevail in the late types of Hubble's classification, as actually observed.

It is evident to what high extent the amount of angular momentum will decide
the course of development of a stellar system, and it is therefore evident that the
systems cannot be ordered into a single line of evolution, but that a great number
of parallel series of evolution will exist side by side. This fact tends to explain the
great variety of form among the systems. It is of great interest, however, that in
spite of extremely great individual variations in structure, certain characteristic
features make possible a very general grouping of the objects, and enable us to
trace analogies between groups which at first glance seem morphologically quite
(lifferent. It is on these common features the attention has to be fixed in an ap-
proach to a dynamical theory of the systems.


