COMPARISON OF EXPERIMENTS

DAVID BLACKWELL
HOWARD UNIVERSITY

1. Summary

Bohnenblust, Shapley, and Sherman [2] have introduced a method of comparing two sampling procedures or experiments; essentially their concept is that one experiment a is more informative than a second experiment $\beta, \alpha \supset \beta$, if, for every possible risk function, any risk attainable with β is also attainable with α. If α is a sufficient statistic for a procedure equivalent to $\beta, a>\beta$, it is shown that $\alpha \supset \beta$. In the case of dichotomies, the converse is proved. Whether $>$ and \supset are equivalent in general is not known. Various properties of \rangle and \supset are obtained, such as the following: if $a>\beta$ and γ is independent of both, then the combination $(a, \gamma)>(\beta, \gamma)$. An application to a problem in 2×2 tables is discussed.

2. Definitions

An experiment a is a set of N probability measures u_{1}, \ldots, u_{N} on a Borel field B of subsets of a space X. The N measures are considered as N possible distributions over X, and performing the experiment consists of observing a sample point $x \in X$. A decision problem is a pair (a, A), where A is a bounded subset of N-space. The points $a \in A$ are considered as the possible actions open to the statistician; the loss from action $a=\left(a_{1}, \ldots, a_{N}\right)$ is a_{i} if the actual distribution of x is u_{i}. A decision procedure f for (a, A) is a B-measurable function from X into A, specifying the action a to be taken as a function of the sample point x obtained by the experiment. With every $f=\left[a_{1}(x), \ldots, a_{N}(x)\right]$ is associated a loss vector

$$
v(f)=\left(\int a_{1}(x) d u_{1}, \ldots, \int a_{N}(x) d u_{N}\right)
$$

the i-th component of $v(f)$ is the expected loss from f if x has distribution u_{i}. The range of $v(f)$ is a subset of N-space which we denote by $R_{1}(a, A)$; the convex closure of $R_{1}(a, A)$ will be denoted by $R(a, A)$ and will be called the set of attainable loss vectors in (a, A); every vector in R is either attainable or approximable by a randomized mixture of $N+1$ decision procedures.

Theorem 1. $R(a, A)=R\left(a, A_{1}\right)=R_{1}\left(a, A_{1}\right)$, where A_{1} is the convex closure of A.
This theorem permits us to restrict attention to closed convex A, which we shall do in the following sections. The proof of the theorem will not be given here; it is straightforward except for the fact that $R\left(a, A_{1}\right)=R_{1}\left(a, A_{1}\right)$. This fact follows from the result that whenever A is closed, so is $R_{1}(a, A)$, which has been proved elsewhere by the author [1].

Following Bohnenblust, Shapley and Sherman [2], we shall say that a is more informative than β, written $a \supset \beta$, if for every A we have $R(a, A) \supset R(\beta, A)$.

It is an immediate consequence of theorem 1 that if $R(a, A) \supset R(\beta, A)$ for every closed convex A, then $a \supset \beta$.

3. Conditions equivalent to $\boldsymbol{a} \supset \boldsymbol{\beta}$

Theorem 2. The following conditions are equivalent to a $\supset \beta$.
(1) For every A and every $v \in R(\beta, A)$, there is a $v^{*} \in R(a, A)$ with $v_{i}^{*} \leqq v_{i}$ for all i.
(2) For every A and every choice of $c_{i} \geqq 0, \sum c_{i}=1$,

$$
\min _{v \in R(\mathrm{a}, A)} \sum_{i} c_{i} v_{i} \leqq \min _{v \in R(\boldsymbol{\beta}, A)} \sum_{i} c_{i} v_{i} .
$$

(3) For every A,

$$
\min _{v \in R} \sum_{i(a, A)} v_{i} \leqq \min _{v \in R(\beta, A)} \sum_{i} v_{i} .
$$

(4) For every A,

$$
\min _{v \in R(a, A)}\left(\max _{i} v_{i}\right) \leqq \min _{v \in R(\beta, A)}\left(\max _{i} v_{i}\right)
$$

Proof. The implications $a \supset \beta \rightarrow(1) \rightarrow(2) \rightarrow(3),(1) \rightarrow(4)$ are immediate. We show that (3) implies $a \supset \beta$. Let d_{1}, \ldots, d_{N} be any constants, and let T be the linear transformation $T v=\left(d_{1} v_{1}, \ldots, d_{N} v_{N}\right)$. Then $R(a, T A)=$ $T R(a, A)$ and $\min _{v \in R(\alpha, T A)} \sum v_{i}=\min _{v \in R(a, A)} \sum d_{i} v_{i}$, and similarly for β. Thus (3) yields that for all $A, d_{1}, \ldots, d_{N}, \min _{v \in R(a, A)} \sum_{i} d_{i} v_{i} \leqq \min _{v \in R(\beta, A)} \sum d_{i} v_{i}$: every supporting hyperpláne of $R(a, A)$ lies on one side of $R(\beta, A)$, so that $R(a, A) \supset R(\beta, A)$. Finally, we show that (4) implies (2). For any A and any $c_{i} \geqq 0, \sum_{i} c_{i}=1$, let $v_{0} \in R(\beta, A)$ be a point where $\sum c_{i} v_{i}$ assumes its minimum value over $R(\beta, A)$, and let U be the linear transformation $U v=v-v_{0}$. Then

$$
\min _{v \in R\left(\beta, U_{A}\right)} \sum_{i} c_{i} v_{i}=0=\min _{v \in R(\beta, U A)}\left(\max _{i} v_{i}\right) .
$$

Applying (4) to $U A$ yields $\min _{v \in R(a, U A)}\left(\max _{i} v_{i}\right) \leqq 0$, so that $\min _{v \in R(a, U A)} \sum_{i} c_{i} v_{i} \leqq 0$. Thus $\min _{v \in R^{(a, A)}} \sum_{i} c_{i} v_{i}=\sum_{i} c_{i} v_{0 i}$ so that (2) holds.

4. Reduction to standard experiment

For any a, let $p_{i}(x), i=1, \ldots, N$, be the density of u_{i} with respect to $N u_{0}=$ $u_{1}+\ldots+u_{N}$, so that for any $S \in \mathrm{~B}, u_{i}(S)=\int_{S} N p_{i}(x) d u_{0}$. Then $p_{i} \geqq 0$, $\sum p_{i}=1$ except on a set of u_{0} measure zero, and we may redefine p_{i} here so that the conditions hold identically. Let P be the set of N-tuples $p=\left(p_{1}, \ldots, p_{N}\right)$, $p_{i} \geqq 0, \sum p_{i}=1$, and define, for any Borel subset of A of $P, m_{\dot{2}}(A)=u_{i}\{p(x) \in A\}$, where $p(x)=\left[p_{1}(x), \ldots, p_{N}(x)\right]$, so that m_{i} is the distribution of p when x has
distribution \boldsymbol{u}_{i}. Since $p(x)$ is a sufficient statistic for x, considering i as the parameter, we would expect that the experiment a^{*} with measures m_{1}, \ldots, m_{N} on P is equivalent to a. This fact was noted in [2] for the case in which the set A of actions has only a finite number of extreme points, and is embodied in

Theorem 3. For every $A, R(a, A)=R\left(a^{*}, A\right)$.
Proof. We shall use the notation $f \in(a, A)$ to indicate that f is a decision procedure for the experiment (a, A). For any $f^{*}=\left[a_{1}(p), \ldots, a_{N}(p)\right] \in\left(a^{*}, A\right)$, define $f=\left\{a_{1}[p(x)], \ldots, a_{N}[p(x)]\right\}$, so that $f \in(a, A)$. Since p has the same distribution on P with respect to $m_{i}, i=0, \ldots, N, N m_{0}=m_{1}+\ldots+m_{N}$, as $p(x)$ on X with respect to u_{i}, for any Borel function $g(p)$ we have $\int g(p) d m_{i}=$ $\int g[p(x)] d u_{i}$. Choosing $g(p)=a_{i}(p)$ yields $v\left(f^{*}\right)=v(f)$, so that $R\left(a^{*}, A\right) \subset$ $R(a, A)$. For the reverse inclusion, let $f=\left[a_{1}(x), \ldots, a_{N}(x)\right] \in R(a, A)$, let $a_{i}^{*}(p)=E\left(a_{i} \mid p\right)$, the conditional expectation of a_{i} given p, with u_{0} as the basic probability measure on X, and let $f^{*}=\left[a_{i}^{*}(p), \ldots, a_{N}^{*}(p)\right]$. Then for any Borel function $g(p)$, we have $\int a_{i}(x) g(p) d u_{0}=\int a_{i}^{*}(p) g(p) d m_{0}$. Choosing $g(p)=$ p_{i} and using $\int a_{i}(x) p_{i} d u_{0}=\int a_{i}(x) d u_{i}$ and $\int a_{i}^{*}(p) p_{i} d m_{0}=\int a_{i}^{*}(p) d m_{i}$ yields that $v(f)=v\left(f^{*}\right)$; it remains to show that $f^{*} \in\left(a^{*}, A\right)$, that is, that the values of f^{*} are in A. If not, there is a linear function $L(a)$ with $L(a) \leqq 0$ for $a \in A, u_{0}\left\{L\left[f^{*}(x)\right]>0\right\}>0$. Then $\int L[f(x)] d u_{0} \geqq 0$, while $\int_{S} L\left[f^{*}(p)\right] d u_{0}>0$, where $S=\left\{L\left[f^{*}(x)\right]>0\right\}$, so that the two integrals cannot be equal, contrary to the definition of conditional expectation. Thus $f \in\left(a^{*}, A\right)$, and the proof is complete.

Thus every experiment a is equivalent in the sense of theorem 3 to be an experiment a^{*} whose outcome is a point $p \in P$. The experiment a^{*} is called the standard experiment associated with a. Note that the measures m_{1}, \ldots, m_{N} of the standard experiment a^{*} are completely determined by $m_{0}=\left(m_{1}+\ldots+m_{N}\right) / N$, since the density of m_{i} with respect to $N m_{0}$ is simply p_{i}, and that the standard experiment associated with a^{*} is simply a^{*}. Moreover, any probability measure m_{0} over P such that $\int N p_{i} d m_{0}=1$ for $i=1, \ldots, N$ is the m_{0} of a standard experiment a^{*}, with m_{1}, \ldots, m_{N} defined by $m_{i}(S)=N \int_{S} p_{i} d m_{0} ;$ the class of standard experiments is essentially equivalent to the class of probability measures over P with mean $(1 / N, \ldots, 1 / N)$. The m_{0} of the standard experiment of an experiment a will be called the standard measure of a; for two standard measures M, m of experiments a, β, the notation $M \supset m$ means that $a \supset \beta$.

The following theorems, proved in [2], are valuable tools in the actual comparison of two experiments.

Theorem 4. For two standard measures $M, m, M \supset m$ if and only if for every continuous convex $g(p), \int g(p) d M \geqq \int g(p) d m$.

Proof. Let A be the convex set determined by a finite set $a_{i}=\left(a_{i 1}, \ldots, a_{i N}\right)$, $i=1, \ldots, k$, and define $L_{i}(p)=\sum_{j=1}^{N} a_{i j} p_{j}, L(p)=\min _{i} L_{i}(p), f(p)=a_{i}$ when
$L_{j}(p)>L(p), k<i, L_{i}(p)=L(p)$. Then $f \in(a, A)$ for any standard experiment a, and for any $f^{*} \in(a, A), \sum_{j=1}^{N} p_{j} a_{j}^{*}(p) \geqq \sum_{j=1}^{N} p_{j} a_{j}(p)$ for all p, so that with

$$
\begin{aligned}
& v^{*}=v\left(f^{*}\right), v=v(f) \\
& \qquad \begin{aligned}
\sum v_{i}^{*} & =N \sum \int a_{j}^{*}(p) p_{j} d M \geqq N \sum_{i=1}^{N} \int a_{j}(p) p_{j} d M \\
& =\sum_{j=1}^{N} v_{j}=N \int L(p) d M
\end{aligned}, l
\end{aligned}
$$

that is, if a has standard measure M,

$$
\min _{v \in(a, A)} \sum v_{j}=N \int L(p) d M
$$

Thus for a pair of standard experiments a, β with standard measures M, m, condition (3) of theorem 2 holds for every A determined by a finite set if and only if $\int L(p) d M \leqq \int L(p) d m$ for every $L(p)$ which is the minimum of a finite number of linear functions, that is, if and only if $\int c(p) d M \geqq \int c(p) d m$ for every $c(p)$ which is the maximum of a finite number of linear functions. It is readily shown by approximation that if condition (3) of theorem 2 holds for every A determined by a finite set, it holds for all A, and that $\int c(p) d M \geqq \int c(p) d m$ for all $c(p)$ which are maxima of a finite number of linear functions implies the same inequality for all convex $c(p)$, and the theorem follows.

Theorem 5. If $N=2, M \supset m$ if and only if $\int_{0}^{y} F_{M}(x) d x \geqq \int_{0}^{y} F_{m}(x) d x$ for all y, where $F_{M}(x)=M\left\{p_{1} \leqq x\right\}, F_{m}(x)=m\left\{p_{1} \leqq x\right\}$.

Proof. Define $c_{y}(x)=y-x$ for $x \leqq y, c_{y}(x)=0, x \geqq y$. Every convex function $c(x)$ on $(0,1)$ can be uniformly approximated by a linear function plus functions of the form $\sum_{i=1}^{K} a_{i} c_{\nu i}(x)$, where $a_{i} \geqq 0$, so that, from theorem $4, M \supset m$ if and only if $\int c_{y}(x) d M \geqq \int c_{y}(x) d m$ for all y. Now $\int c_{y}(x) d M=\int_{0}^{y}(y-x) d M$ $=\int_{0}^{y} F_{M}(x) d x$, integrating by parts, and similarly for $\int c_{\nu}(x) d m$, so that the proof is complete.

5. Sufficiency

A standard experiment a with measure M is said to be sufficient for a standard experiment β with measure m, written $a>\beta$ or $M>m$, if there is a function $Q(p, E)$, defined for each $p \in P$ and each Borel set E of P such that (1) for fixed p, Q is a probability measure over P, (2) for fixed E, Q is a Borel function of p, and (3) for every $E, m_{i}(E)=\int Q(p, E) d M_{i}(p), i=1, \ldots, N$, where m_{1}, \ldots, M_{N}, M_{1}, \ldots, M_{N} are the measures over P associated with m, M respectively, that is, if there is an experiment γ over the space $P_{1} \times P_{2}$ with measures m_{i}^{*} such that
the distributions of p_{1}, p_{2} with respect to m_{i}^{*} are M_{i}, m_{i} and that p_{1} is a sufficient statistic for (p_{1}, p_{2}) with respect to $m_{1}^{*}, \ldots, m_{N}^{*}$. That the second formulation is equivalent to the first follows from an unpublished result of Doob that conditional distributions of real or vector variables with respect to real or vector variables can always be defined so as to be probability measures; we shall use this fact several times in what follows. Essentially, $M>m$ means that, if p is the result of experiment M, then a vector p^{\prime} selected according to the distribution $Q(p, E)$ will be as informative as a p^{*} resulting from experiment m, in the sense that for each i, p^{\prime} and p^{*} have the same distribution.

Theorem 6. $M>m$ if and only if there is a function $D(p, E)$ such that (4) for fixed p, D is a probability measure over P, (5) for fixed E, D is a Borel function of p, (6) $\int p_{i} d D\left(p^{*}, p\right)=p_{i}^{*}$, and (7) for every $E, M(E)=\int D(p, E) d m(p)$.

Proof. Suppose $M>m$, and let i, p_{1}, p_{2} be chance variables whose joint distribution is specified as follows: $i=1, \ldots, N$, each with probability $1 / N$; the conditional distribution of p_{1} given i is M_{i}; and the conditional distribution of p_{2} given i, p_{1} is $Q\left(p_{1}, E\right)$, a function of p_{1} only. Then p_{1}, p_{2} have distributions M, m respectively, and m_{i} is the conditional distribution of p_{2} given i. There is a determination of $D\left(p_{2}, E\right)$, the conditional probability given p_{2} that $p_{1} \in E$, such that for each p_{2}, D is a probability measure over P, and for any $g\left(p_{1}\right), E\left(g \mid p_{2}\right)=$ $g(p) d D\left(p_{2}, p\right)$. This D then satisfies conditions (4), (5), and (7) of the theorem, and (6) will be proved if we show that $p_{2 i 0}=E\left(p_{1 i 0} \mid p_{2}\right)$ for $i_{0}=1, \ldots, N$, where $p_{k i}$ is the i-th coordinate of $p_{k}, k=1,2$.

We first verify that the probability $\operatorname{Pr}\left\{i=i_{0} \mid p_{k}\right\}=p_{k i 0}$. This is equivalent to the statement that, for any $S, \operatorname{Pr}\left(i=i_{0}, p_{1} \in S\right)=\int_{S} p_{i 0} d M$, and a similar statement with M replaced by m for $k=2$. Since $N_{p i o}$ is the density of M_{i} with respect to M,

$$
\int_{S} p_{i_{0}} d M=\frac{1}{N} M_{i}(S)=\operatorname{Pr}\left\{i=i_{0}\right\} \operatorname{Pr}\left\{p_{1} \in S \mid i=i_{0}\right\},
$$

and similarly for $k=2$. Moreover, $\operatorname{Pr}\left\{i=i_{0} \mid p_{2}\right\}=E\left\{\operatorname{Pr}\left(i=i_{0} \mid p_{1}, p_{2}\right) \mid p_{2}\right\}$, so that to show that $p_{2 i 0}=E\left(p_{1 i 0} \mid p_{2}\right)$, it is sufficient to show that $E\{\operatorname{Pr}(i=$ $\left.\left.i_{0} \mid p_{1}, p_{2}\right) \mid p_{2}\right\}=E\left(p_{1 i} \mid p_{2}\right)$, and this will follow from (8) $\operatorname{Pr}\left\{i=i_{0} \mid p_{1}, p_{2}\right\}=$ $\operatorname{Pr}\left\{i=i_{0} \mid p_{1}\right\}$. We postpone the proof of (8).

Now suppose there is a function D satisfying the conditions of the theorem. Let i, p_{1}, p_{2} be chance variables whose joint distribution is specified as follows: p_{2} has distribution m; the conditional distribution of p_{1} given p_{2} is $D\left(p_{2}, E\right)$; and the conditional probability that $i=i_{0}$ given p_{1}, p_{2} is $p_{1 i 0}$, a function of p_{1} only. Condition (6) says that $E\left(p_{1 i} \mid p_{2}\right)=p_{2 i}$, so that $\operatorname{Pr}\left\{i=i_{0} \mid p_{2}\right\}=E\{\operatorname{Pr}(i=$ $\left.\left.i_{0} \mid p_{1}, p_{2}\right) \mid p_{2}\right\}=E\left(p_{1 i} \mid p_{2}\right)=p_{2 i}$, and condition (7) guarantees that p_{1} has distribution M. We next show that $\operatorname{Pr}\left\{p_{1} \in \dot{E} \mid i\right\}=M_{i}(E), \operatorname{Pr}\left\{p_{2} \in E \mid i\right\}=m_{i}(E)$, that is, that $\operatorname{Pr}\left\{i=i_{0}, p_{1} \in E\right\}=\operatorname{Pr}\left\{i=i_{0}\right\} M_{i}(E)$ and $\operatorname{Pr}\left\{i=i_{0}, p_{2} \in E\right\}=\operatorname{Pr}\{i=$ $\left.i_{0}\right\} m_{i}(E)$. Since $\operatorname{Pr}\left\{i=i_{0} \mid p_{1}\right\}=p_{1 i o}, \operatorname{Pr}\left\{i=i_{0}, p_{1} \in E\right\}=\int_{E} p_{i 0} d M=M_{i}(E) / N ;$ similarly, $\operatorname{Pr}\left\{i=i_{0}, p_{2} \in E\right\}=m_{i}(E) / N$, so that we need simply note that $\operatorname{Pr}\{i=$ $\left.i_{0}\right\}=\int p_{i 0} d M=1 / N$, since M is a standard measure.

Let $Q(p, E)$ be the conditional distribution of p_{2} given p_{1}. Then requirements (1), (2) hold. Requirement (3) may be written $\operatorname{Pr}\left\{p_{2} \in E \mid i\right\}=E\left\{\operatorname{Pr}\left(p_{2} \in E \mid p_{1}\right) \mid i\right\}$, or $E\left\{\operatorname{Pr}\left(p_{2} \in E \mid p_{1}, i\right) \mid i\right\}=E\left\{\operatorname{Pr}\left(p_{2} \in E \mid p_{1}\right) \mid i\right\}$ which will follow from (9) $\operatorname{Pr}\left\{p_{2} \in E \mid p_{1}, i\right\}=\operatorname{Pr}\left\{p_{2} \in E \mid p_{1}\right\}$.

The proof of the theorem is now complete except for (8) and (9), which are special cases of

Theorem 7. If x, y, z are chance variables such that the distribution of z given x, y is a function of y only, then the distribution of x given y, z is a function of y only.

Proof. If $h(y, z)$ is the characteristic function of a set depending only on y, z and $g(x)$ is the characteristic function of a set depending only on x, we must show that $E(g h)=E[E(g \mid y) h]$. We prove the equation when $h(y, s)=$ $h_{1}(y) h_{2}(z)$; the general result follows by approximation. We have $E\left[E(g \mid y) h_{1} h_{2}\right]=$ $E\left\{E\left[g h_{1} E\left(h_{2} \mid y\right)\right] \mid y\right\}=E\left[g h_{1} E\left(h_{2} \mid y\right)\right]=E\left[g h_{1} E\left(h_{2} \mid x, y\right)\right]=E\left(g h_{1} h_{2}\right)$. This completes the proof.

Theorem 7 asserts essentially that a Markoff chain is also a Markoff chain in reverse, a fact noted in varying degrees of generality by several writers. The proof given here seems particularly simple.

Theorem 6 can be restated as follows: $M>m$ if and only if there are chance variables p_{1}, p_{2} with distributions M, m such that $E\left(p_{1} \mid p_{2}\right)=p_{2}$.

Theorem 8. If $M>m$, then $M \supset m$.
Proof. For every continuous convex $g(p), \int g(p) d M=\int\left[\int g(p) d D\left(p^{\prime}, p\right)\right]$ $d m\left(p^{\prime}\right)$, where D is the set of measures whose existence is asserted by theorem 6. Since g is convex, $\int g(p) d D\left(p^{\prime}, p\right) \geqq g\left[\int p d D\left(p^{\prime}, p\right)\right]=g\left(p^{\prime}\right)$, so that $\int g(p) d M \geqq \int g(p) d m$ and $M \supset m$.

Thus theorems 4 and 6 reduce theorem 8 to a special case of the fact, noted by Hodges and Lehmann [4] and Doob (unpublished manuscript) that for any continuous convex g and any chance variables $x, y, E[g(x)] \geqq E\{g[E(x) \mid y]\}$.

6. Equivalence of $>$ and \supset for $N=2$

In this section we consider only the case $N=2$, so that $P=\left\{\left(p_{1}, p_{2}\right)\right\}, p_{i} \geqq 0$, $p_{1}+p_{2}=1$. For simplicity of notation, we denote the point $\left(p_{1}, p_{2}\right)$ by the number $x=p_{1}, 0 \leqq x \leqq 1$, so that a standard measure becomes simply a probability measure defined for Borel subsets of $(0,1)$ such that $\int_{0}^{1} x d M=\frac{1}{2}$. For any standard measure M, we write $F_{M}(y)=M\{x \leqq y\}, c_{M}(y)=\int_{0}^{y} F_{M}(x) d x$. Then c_{M} is a nondecreasing convex function of $y, c_{M}(0)=0, c_{M}(1)=\frac{1}{2}$, and, according to theorem $5, M \supset m$ if and only if $c_{M}(y) \geqq c_{m}(y)$ for all y.

A class of measures $D(x, E)$ such that D is for each $x \in(0,1)$ a probability measure over $(0,1)$, for each E a Borel function of x, and $\int_{0}^{1} y d D(x, y)=x$ is called a transformation T, and for any standard measure m, the standard measure $M(E)=\int D(x, E) d m$ will be denoted by $T m$. Theorem 6 , for $N=2$, asserts that $M \supset m$ if and only if there is a transformation T with $T m=M$.

Theorem 9. For any sequence of transformations T_{1}, T_{2}, \ldots, there is a transformation T such that for any standard measure $m, F_{m k}(y) \rightarrow F_{T_{m}}(y)$ at every point of continuity of $F_{T m}$, where $m_{k}=T_{k} \ldots T_{1 m}$.

Proof. Let Ω be the space of sequences $\omega=\left(x_{0}, x_{1} \ldots\right), 0 \leqq x_{i} \leqq 1$. For any $a, 0 \leqq a \leqq 1$, there is a probability measure P_{a}, defined for Borel sets of Ω, such that $P_{a}\left\{x_{0}=a\right\}=1$ and $P_{a}\left\{\left(x_{k} \in E \mid x_{0}, \ldots, x_{k-1}\right)\right\}=D_{k}\left(x_{k-1}, E\right)$, where D_{k} is the set of measures defining T_{k}. Then $E\left(x_{k+1} \mid x_{0}, \ldots, x_{k}\right)=x_{k}$, so that, by induction on $j, E\left(x_{k+j} \mid x_{0}, \ldots, x_{k}\right)=E\left[E\left(x_{k+j} \mid x_{0}, \ldots, x_{k+j-1}\right) \mid x_{0}, \ldots, x_{k}\right]=$ $E\left(x_{k+j-1} \mid x_{0}, \ldots, x_{k}\right)=x_{k}$ for all $j \geqq 1$. Thus, x_{0}, x_{1}, \ldots is a martingale; since $0 \leqq x_{k} \leqq 1$, a theorem of Doob [3] asserts that there is a chance variable x such that $x_{k} \rightarrow x$ with probability 1 , and that $E\left(x \mid x_{0}, \ldots, x_{k}\right)=x_{k}$. In particular $E(x)=E\left(x_{0}\right)=a$. Let $D(a, E)=P_{a}\{x \in E\}$. We shall show that the set of measures $D(a, E), 0 \leqq a \leqq 1$, is the required transformation T.

For any Borel function $g\left(x_{0}, \ldots, x_{k}\right)(10) \int g d P_{a}=\iint \ldots \int g\left(x_{0}, \ldots, x_{k}\right)$ $d D_{k}\left(x_{k-1}, x_{i}\right) \ldots d D_{1}\left(x_{0}, x_{1}\right) d I_{a}\left(x_{0}\right)$, where I_{a} is the measure concentrated at a, so that $\int g d P_{a}$ is a Borel function of a. The class \mathcal{S} of sets S for which $P_{a}(S)$ is a Borel function of a is a normal class [7, p. 83] which includes all $\left(x_{0}, \ldots, x_{k}\right)$ Borel sets, so that $\mathcal{S}\left[5\right.$, p. 83] includes all Borel sets of Ω. In particular, $P_{a}\{x \in E\}=$ $D(a, E)$ is a Borel function of a, so that $D(a, E)$ is a transformation T. For any standard measure m, define, for all Borel subsets S of $\Omega, P_{m}(S)=\int P_{a}(S) d m(a)$. Then for every $g(\omega), \int g d P_{m}=\int\left\{\int g d P_{a}\right\} d m(a)$. Letting g be the characteristic function of an x_{k}-set and using (10) shows that the distribution of x_{k} is m_{k}. Also the distribution of x is $T m$, and $x_{k} \rightarrow x$ with P_{m}-probability 1, so that $F_{m_{k}}(y) \rightarrow$ $F_{T m}(y)$ at all points of continuity of $F_{T m}$.

Theorem 10. For $N=2$, if $M \supset, m$, then $M>m$.
Proor. We shall construct a sequence of transformations T_{1}, T_{2}, \ldots such that $c_{m k}(y) \rightarrow c_{M}(y)$ for all y, where $m_{k}=T_{k} \ldots T_{1} m$. Then $c_{M}(y)=c_{T_{m}}(y)$ for all y, where T is the transformation whose existence is asserted in theorem 9 , so that $M=T m$. For any subinterval (a, b) of $(0,1)$, let $T(a, b)$ be the transformation defined by

$$
\begin{aligned}
D(x, E) & =\frac{b-x}{b-a} I_{a}+\frac{x-a}{b-a} I_{b} & \text { for } a \leqq x \leqq b, \\
D(x, E) & =I_{x} & \text { for } x \text { outside }(a, b) .
\end{aligned}
$$

It is easily verified that for any measure $m, c_{T(a, b) m}=c_{m}$ for x outside (a, b),

$$
c_{T(a, b)_{m}}=\frac{b-x}{b-a} c_{m}(a)+\frac{x-a}{b-a} c_{m}(b) \quad \text { for } a \leqq x \leqq b .
$$

Since $M \supset m, c_{M}(x) \geqq c_{m}(x)$ for all x. At any point $\left[t_{1}, c_{m}\left(t_{1}\right)\right]$ of the curve $y=c_{M}(x)$, draw a tangent, intersecting $y=c_{m}(x)$ say at $x=a_{1}, x=b$, where $a_{1} \leqq t_{1} \leqq b_{1}$. Then, with $T_{1}=T\left(a_{1}, b_{1}\right), c_{T_{1 m}} \leqq c_{M}$ with equality at $x=t_{1}$. Applying the same process to $y=c_{T_{1 m}}$ from a point $\left[t_{2}, c_{M}\left(t_{2}\right)\right]$ and continuing in this way, using a sequence t_{1}, t_{2}, \ldots dense in $(0,1)$, yields a sequence T_{1}, T_{2}, \ldots such that $c_{m_{k}}(y) \rightarrow c_{M}(y)$ for all y.

Theorems 6 and 10 combine to yield the following partial converse of the result of Hodges and Lehmann and Doob mentioned in section 5: If M, m are standard measures in $(0,1)$ such that $\int g(x) d M \geqq \int g(x) d m$ for every continuous convex g, then there are chance variables p_{1}, p_{2} with distributions M, m such that $E\left(p_{1} \mid p_{2}\right)=p_{2}$. The requirement that M, m be standard measures on $(0,1)$ can be immediately weakened so that M, m can be any probability measures over a bounded interval (a, b). The extension to probability measures over $(-\infty, \infty)$ has not been carried out, and the extension to N-dimensional vector variables which, in view of theorem 6 , would imply the equivalence of $>$ and \supset, remains unsolved. It has been pointed out by S. Sherman that theorems 5,8 , and 10 , for the special case of measures concentrated at a finite number of points, are given, somewhat disguised, in [5 , theorem 45 and associated results].

7. Combinations of experiments

For two experiments α, β, the combination (a, β) is the experiment defined by the space $X \times Y$ with the N probability measures $u_{1} \times v_{1}, \ldots, u_{N} \times v_{N}$, where $a=\left(X, u_{1}, \ldots, u_{N}\right), \beta=\left(Y, v_{1}, \ldots, v_{N}\right)$.

Theorem 11. If a^{*}, β^{*} are the standard experiments for a, β, then the standard experiment for (a^{*}, β^{*}) is the same as that for (a, β).

Proof. If $N p_{i}(x), N q_{i}(y)$ are the densities of u_{i}, v_{i} with respect to u_{0}, v_{0}, then $d_{i}(x, y)=N p_{i}(x) q_{i}(y) / \sum_{i} p_{i}(x) q_{i}(y)$ is the density of $u_{i} \times v_{i}$ with respect to $w_{0}=N^{-1} \sum_{i} u_{i} \times v_{i}$. The measure m for the standard experiment for (a, β) is the joint distribution of d_{1}, \ldots, d_{N} with respect to w_{0}. The function $D_{i}(p, q)=N p_{i} q_{i} / \sum_{i} p_{i} q_{i}$ is the density for the measure $m_{i} \times M_{i}$ on $P \times Q$ with respect to the measure $\gamma_{0}=N^{-1} \sum_{i} m_{i} \times M_{i}$, where $a^{*}=\left(P_{1}, m_{1}, \ldots, m_{N}\right)$, $\beta^{*}=\left(Q, M_{1}, \ldots, M_{N}\right)$, and the measure M for the standard experiment for (a^{*}, β^{*}) is the joint distribution of D_{1}, \ldots, D_{N} with respect to γ_{0}. Now for each i, p has the same distribution with respect to m_{i} as $p(x)$ with respect to u_{i}, and similarly for $q, M_{i}, q(y), v_{i}$, so that (p, q) with respect to $m_{i} \times M_{i}$ has the same distribution as $[p(x), q(y)]$, with respect to $u_{i} \times v_{i}$. Since D_{i} is the same function of p, q that d_{i} is of $p(x), q(y)$, the joint distribution of d_{1}, \ldots, d_{N} with respect to w_{0} is the same as that of D_{1}, \ldots, D_{N} with respect to γ_{0}.

Theorem 12. If $a_{1}>a_{2}$ and $\beta_{1}>\beta_{2}$ then (α_{1}, β_{1}) $>\left(a_{2}, \beta_{2}\right)$.
Proof. Since $>$ is transitive (this follows from theorem 6), we may suppose that $a_{1}=a_{2}=a$; the general result would follow from this case, since $\left(a_{1}, \beta_{1}\right)>$ $\left(a_{1}, \beta_{2}\right)>\left(\beta_{1}, \beta_{2}\right)$. Let a, β_{1}, β_{2} have standard measures $m, m^{\prime}, m^{\prime \prime}$ and let $X=$ $P_{1} \times P_{2} \times P_{3} \times P_{4}$; we define a measure w_{i} on X by the following specifications: $\left(p_{1}, p_{2}\right)$ have distribution $m_{i} \times m_{i}^{\prime}$, and the conditional distribution of $\left(p_{3}, p_{4}\right)$ for fixed p_{1}, p_{2} is given by $\operatorname{Pr}\left\{p_{3} \in S, p_{4} \in T \mid p_{1}, p_{2}\right\}=g\left(p_{1}\right) Q\left(p_{2}, T\right)$, where g is the characteristic function of S and Q is the function whose existence is implied by $\beta_{1}>\beta_{2}$, so that $m_{i}^{\prime \prime}(T)=\int Q(p, T) d m_{i}^{\prime}$. Then (p_{3}, p_{4}) have dis-
tribution $m_{i} \times m_{i}^{\prime \prime}$ with respect to w_{i}. The standard experiments for (a, β_{1}), $\left(a, \beta_{2}\right)$ have measures $\left(M_{1}, \ldots, M_{N}\right),\left(M_{1}^{*}, \ldots, M_{N}^{*}\right)$, where M_{i}, M_{i}^{*} are the distributions of $d=\left(d_{1}, \ldots, d_{N}\right)$ and $D=\left(D_{1}, \ldots, D_{N}\right)$ with respect to w_{i}, where $d_{i}=p_{1 i}, p_{2 i} / \sum_{i} p_{1 i}, p_{2 i}$ and $D_{i}=p_{3 i}, p_{4 i} / \sum_{i} p_{3 i}, p_{4 i}$, and it is sufficient to show that the conditional distribution of D given d is independent of i. For any function $f(D)$, in fact for any function of ($\left.p_{3}, p_{4}\right), E\left(f \mid p_{1}, p_{2}\right)=h\left(p_{1}, p_{2}\right)$ is independent of i, so that we need show only that $E(h \mid d)$ using measure $m_{i} \times m_{i}^{\prime}$ on $P_{1} \times P_{2}$ is independent of i. Since the density of $m_{i} \times m_{i}^{\prime}$ with respect to $\frac{1}{N} \sum m_{i} \times m_{i}^{\prime}$ is d_{i}, a function of d, we conclude by Neyman factorization [4], that d is a sufficient statistic for the N measures $m_{i} \times m_{i}^{\prime}$, so that $E(h \mid d)$ is independent of i.

The extension of the concept of combination of two independent experiments and of theorem 12 to the case of combination of n independent experiments is straightforward, and we obtain that if $a_{1}>\beta_{1}, i=1, \ldots, n$ then $\left(a_{1}, \ldots, a_{n}\right)>$ $\left(\beta_{1}, \ldots, \beta_{n}\right)$. In particular if $a>\beta$, then the experiment yielding n independent α 's is sufficient for the experiment yielding n independent β 's. It would be interesting to know whether conversely $(a, a)>(\beta, \beta)$ implies $a>\beta$.

8. Binomial experiments

If the space X consists of two points, say 0,1 , an experiment a is simply the specification of a vector $a=\left(a_{1}, \ldots, a_{N}\right), 0 \leqq a_{i} \leqq 1$, where $a_{i}=m_{i}\{x=1\}$. For the case $N=2$, a simple computation shows that the standard measure M for $\left(a_{1}, a_{2}\right)$ assigns measures $d, 1-d$ to the points $\left(p_{1}, 1-p_{1}\right),\left(p_{2}, 1-p_{2}\right)$, where $d=\left(a_{1}+a_{2}\right) / 2, p_{1}=a_{1} / 2 d, p_{2}=\left(1-a_{1}\right) / 2(1-d)$. Thus if $a_{1} \leqq a_{2}$, we have

$$
c_{m}(x) \begin{cases}=0 & \text { for } 0 \leqq x \leqq p_{1} \\ =d\left(x-p_{1}\right) & \\ =d\left(p_{2}-p_{1}\right)+\left(x-p_{2}\right) & \\ \text { for } p_{1} \leqq x \leqq p_{2} \leqq x \leqq 1\end{cases}
$$

if $a_{2} \leqq a_{1}$, we interchange a_{1}, a_{2} and replace d by $1-d$ in the above description. For two binomial experiments $\left(a_{1}, a_{2}\right)=a,\left(b_{1}, b_{2}\right)=b$ with standard measures M, m, the relation between c_{M} and c_{m} is geometrically clear:

$$
a>b
$$

if and only if
$\min \left[p_{1}(a), p_{2}(a)\right] \leqq \min \left[p_{1}(b), p_{2}(b)\right]$ and $\max \left[p_{1}(a), p_{2}(a)\right] \geqq \max \left[p_{1}(b), p_{2}(b)\right]$.
As an application of the comparison of binomial experiments, we consider the following 2×2 table problem. There are two characteristics H, S, whose proportions h, s, in the general population are known. Moreover it is known that the proportion of $H S$ in the general population is either $h s$ or a definite alternative c. A sample of size k is to be selected, after which some action is to be taken, whose worth depends only on whether $\operatorname{Pr}\{H S\}=h s$ or $\operatorname{Pr}\{H S\}=c$. Suppose that, for each observation, the statistician may select an individual at random from H or S or non- H or non- S; he has a choice among four binomial experiments which we denote by $a_{H}, a_{S}, a_{C H}, a_{C S}$. If it should happen that one of these, say a_{H}, is more informative than each of the other three, then it follows from the extension of theorem 12 that a sample of k individuals from H is more informative than any
other combination of k experiments from $a_{H}, a_{S}, a_{C H}, a_{C S}$ (a sample of k individuals from H can then also be shown to be more informative than any other sequentially selected set of k experiments from $a_{H}, a_{S}, a_{C H}, a_{C S}$, where the decision about which of the four experiments to do next depends on the results already obtained, but we shall not go into this).

The four experiments are $a_{H}=(s, c / h), a_{s}=(h, c / s), a_{C H}=[s,(s-c) /(1-h)]$, and $a_{C S}=[h,(h-c) /(1-s)]$. Computation of p_{1}, p_{2} for each of the four experiments and using the condition given above for $a>b$ yields the following conditions:
For

$$
\begin{aligned}
H & >S: h \leqq s \\
H & >C H
\end{aligned}: h \leqq s, h+s \leqq 1 . h(h+s \leqq 1 .
$$

Without loss of generality, we may suppose that h is the smallest of the four numbers $h, s, 1-h, 1-s$. Then $a_{H}>a_{s}>a_{C H}, a_{H}>a_{C s}>a_{C H}$ and $a_{s}, a_{C S}$ are not comparable unless $h=s$ or $h=1-s$. Thus the procedure which always selects the characteristic which is rarest in the general population is more informative than any other procedure of the class considered. The experiment $a_{C H}$ is the least informative of the four, while $a_{s}, a_{C S}$ are intermediate.

A second example, which suggests that for $N>2$, the concept \supset is quite strong (and $>$ is at least as strong as \supset), is the binomial experiment $\left(0, \frac{1}{2}, 1\right)=a$. The standard measure M for a assigns measure $\frac{1}{2}$ to each of $Q_{1}=\left(0, \frac{1}{3}, \frac{2}{3}\right)$ and $Q_{2}=\left(\frac{2}{3}, \frac{1}{3}, 0\right)$. Theorem 4 shows that the measures $m \subset M$ are exactly those concentrated on the line segment joining Q_{1}, Q_{2}; the binomial experiments $\beta=\left(a_{1}, a_{2}, a_{3}\right)$ whose m is concentrated on this line are those for which $a_{2}=$ $\left(a_{1}+a_{3}\right) / 2$. Thus a is not more informative than $\left(0, \frac{1}{2}, \frac{1}{2}\right)$ or than $\left(\frac{1}{2}-\epsilon, \frac{1}{2}, \frac{1}{2}+2 \epsilon\right)$, $\epsilon>0$ for instance, and for any $\beta \subset a$, a suitable arbitrarily small perturbation of the a 's destroys the relationship.

REFERENCES

[1] David Blackwell, "The range of certain vector integrals," submitted to the Proc. Amer. Math. Soc.
[2] H. F. Bohnenblust, L. S. Shapley and S. Sherman, private communication.
[3] J. L. Dоов, "Regularity properties of certain families of chance variables," Trans. Amer. Math. Soc., Vol. 47 (1940), pp. 455-486.
[4] P. R. Halmos and L. J. Savage, "Applications of the Radon-Nikodym theorem to the theory of sufficient statistics," Annals of Math. Stat., Vol. 20 (1949), pp. 225-241.
[5] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge University Press, Cambridge, 1934.
[6] J. L. Hodges, Jr. and E. L. Lehmann, "Some problems in minimax point estimation," Annals of Math. Stat., Vol. 21 (1950), pp. 182-197.
[7] S. Saks, Theory of the integral, Hafner, New York, 1947.

