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1. Introduction
In 1944 Wald' considered the problem of classifying a single multivariate

observation, z, into one of two normally distributed parent populations, Wr
and 7r2, when the only information available about the populations is contained
in two samples of sizes Nj and N2, one drawn from each population. In order
to obtain a classification technique, Wald assumed that the populations 7r, and
r2 have the same covariance matrix but unequal means and used the Neyman-
Pearson2 most powerful test for the hypothesis that z belongs to 7r, against
the single alternative hypothesis that z belongs to 7r2. The most powerful
test for this hypothesis is given by the critical region U _ d, where U =

ZZaiizi(v -,j) and -aijI denotes the inverse matrix of the covariance
ii

matrix -aijfl, zi the ith variate of the single observation, vj and gj the means of
the jth variate for the populations 7r, and 7r2. The critical region U _ d is then
approximated by R > d, where R is the statistic obtained from U by replacing
vii,xj, and gj by their optimum estimates obtained from the two samples. In

order to determine d corresponding to a given probability of an error of the
first kind (classifying z in r2 when z belongs to irl) and the associated probabilty
of an error of the second kind (classifying z in ir, when z belongs to 7r2) for the
case when N, and N2 are large, Wald used the fact that R can be approxi-
mated by means of the normal curve with means and covariance matrix ob-
tained from the two samples.

In this paper we shall consider the problem of classifying an observation of
a single variate into one of two normally distributed populations where the
assumption of equal variances need not necessarily be valid. We shall dis-
tinguish this single-variate problem from the multivariate one by referring
to it as simple classification.

2. Statement of the problem
We consider two variates x and y and assume that each is normally distrib -

uted and that each is independent of the other. A sample of size Nj is drawn
from the population wr, the x-population, and a sample of size N2 from the pop-
ulation 7r2, the y-population. Denote by xi the ith observation on x (i = 1, 2,
* N1) and by yj the jth observation on y (j = 1, 2, * . . , N2). Denote by
1 Abraham Wald, "On a statistical problem arising in the classification of an individual

into one of two groups," Annals of Math. Stat., vol. 15 (June, 1944).
2 J. Neyman and E. S. Pearson, "Contributions to the theory of testing statistical hypoth-

eses," Stat. Res. Mem., vol. 1 (London, 1936).
[345]
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Pi, a, and P2, 2 the mean and standard deviation respectively of 'r, and 7r2. Let z
be a single observation where it is known a priori that z has been drawn from
either 7ri or mF2.
Our problem is to test the hypothesis H1 that the population from which z

was drawn was wi on the basis of the observations xi, yj, and z (i = 1, 2,*
N1)(j= 1,2, *. * ,N2).

3. The statistic to be used for testing the hypothesis H1
Neyman and Pearson' have shown that in the case of testing a hypothesis

H1 against a single alternative hypothesis H2, the critical region that is most
powerful is given by the inequality

p2(z) > k,
pl(z)

where Pi(z) denotes the probability of z under the hypothesis Hi, and k is a
constant determined so that the critical region should have the required size.
The critical region to be used in our test of the hypothesis H1 (z belongs to
ri) against the alternative hypothesis H2 (z belongs to mr2) depends upon the
assumption that we make about the parameters Pi, a,, and V2, a2. We shall con-
sider three cases:

(i) al = 02 = a, Pi 76 P2;

(ii) 0l = P2 = v, al 7 02;

(iii) Pi Fd P2, al Fd 0a2

In each case we shall follow the Wald procedure of approximating the critical
region arising out of these assumptions by using in place of the v's and a's
their optimum estimates obtained from the two samples.

Case (i). 0l = 02 = a, V1 6 V2.

In this case
1

-_V)2

Pi1) e 2o2

1 ~(2-i')2

P2(Z) = e 2al

The critical region is given by the inequality
(Z- v)2- (Z -_v)

P2
' op. cit.
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or, if Pi < v2, the inequality reduces to

z _ d. (1)

In order to determine d and the probability of making errors of type I and
type II, we use the optimum estimates of the parameters Pi, P2, and a2, as
obtained from the two samples, namely,

Ni Ni

EXi Eyj
X= i=1 , y = j=1 ,

N1 N2
Ni N2

(X.-X)2 + FE (yi3-)2i2= i_1 j= 1

N1 + N2 -2

If we set d = x + Xs, we would have

P(z > x + Xs | zc7i) = e -/2 dt = P (2)

and

P(Z < x + Xs zcw2) = -J e -ti/ dt = P11. (3)

Thus, if we assign a value to PI, then equation (2) is used to evaluate X; and
equation (3) determines the value of PI, corresponding to that value of X.
The efficiency of this type of classification may be measured by the prob-
ability P = 1 - PI = 1 - P1. In order to determine the value of X corre-
sponding to the case PI = PI,, we have from the symmetry of the normal
curve

x + X8 -M

or

2s

and the corresponding critical region is given by

x~+ y7,
z > x + Xs =

2

Wald's multivariate case would simplify to give as the critical region associated
with this problem,

R = (-)z _ d.12
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By using the fact that the distribution of R can be approximated by the

normal distribution with mean value it, = x(y- x) if H1 and mean value

a2 = 2 Y -X) if H2 and standard deviation s= - -), the values of d,

PI, and PI, corresponding to this critical region can be determined. The Wald
critical region is the same as the critical region given by (3), since if

1 1 1
-2(Y )-Z-S2t( x) + X )-

then z _ x + X s.
The efficiency of this classification technique can be judged by means of

table 1 below.
TABLE 1

VALUES OF PI AND Piu FOR THE CRITICAL REGION z 2 d
CORRESPONDING TO VARYING DinmRzNcEs IN MEANS

PI

PI -fl J i-f-j-28 41!-j _38 :2-9-48 e-j 6

.01 .91 .63 .25 .05 .01

.05 .74 .36 .09 .01 ...

.10 .61 .24 .04 ...

.20 .44 .12 .02 ...

.50 .16 .02 ... ...

.70 .06 .01

.90 .01 ... ..

= 1 -P .69 .84 .93 .98 .99

C:ase (ii). pi = pz = V, alI P6 O2.

The critical region in this case is

- =- e -2[ 0 0 _ k,
P1 Oa2

or, if ,22 > u,2,
(z - V)2 _ d2. (4)

Let Ni N,
EXi + Ewy
i-1 j-1

M = VN1+ N2

Ni N2
E(X -M)2 E(yj M)2

S2 =
1 2 j- 1
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We shall then take for our critical region

(z - M)2 2 d2

and assume that the sampling distribution of (z - M)2 can be approximated
by the x2 distribution. That is,

p(X2) = c(x2)f'- e-"x
where

(z-m)2 =s2x2, f = 1, if H1,
and if s22 = h2s,2,

(z - m)r2 = h2s12, x2, f = 1, if H2.

In order to evaluate d2, PI, and Pi,, we have the following relationships:4

P [(Z - M)2 > d H11 = p(X2)dX2 = PI, (5)

and
rh-lxO

P [(Z - M)2 < d2IH2] = p(x2)df2 = PI,. (6)

For a given value of PI, equation (5) determines the corresponding value of
xo2 which yields the value of d2 to use in the critical region from the relation-
ship d2 = su2 x2. Relationship (5) would then be used to determine the corre-
sponding value of PII
The efficiency of this method of classification can be judged from table 2

below.
TABLE 2

VAL1US, OF PI AND Pn FOR TRE CRITICAL REGION (z - m)2 2 d2
CORRESPONDING TO VARYING DInmRwNcES IN STANDRmw DEVIATION

[a-hsa, (h > 1)]

PH

h-2 h - 3 h - 4 h-5 h- 10 h -20 h-S h=- 100

.01 .80 .59 .48 .37 .20 .10 .05 .02

.05 .66 .48 .36 .30 .15 .07 .04 .01

.10 .57 .40 .31 .25 .12 .06 .03 .01

.20 .48 .32 .25 .20 .10 .05 .02 .01

.50 .26 .17 .12 .10 .05 .02 .01 ...

.70 .14 .10 .07 .06 .03 .01 ... ...

.90 .05 .03 .02 .02 .01 ... ... ...

.95 .02 .02 .01 .01 ... ... ... ...

P - 1 -P .65 .72 .77 .80 .88 .93 .96 .98
=1-P

'We could use the normal curve to determine d', PI, and PIT. This method is illustrated
in case (iii).
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Case (iii). v ;i2, 0al 02.

The critical region is given by the inequality

P2 e1[(k, ) ~(a') ] _ck.
Pl 02

If we assume P2 > Pi and 02 > a1, this can be reduced to

(z-1)2 _ (Z 2>2k)2

and finally
[z _ P102 - P2 0a12 2

2

22-012 J d2.
If we let

Ni N2

Exi _ zyj
X=i=l, y = j-l

N1 N2
N, N2

(xi- )2 E(yj -)2
812 = i1 822 j=l

N, - N2- 1

X822-
a =822- S12

we can approximate the critical region by the inequality

[z - a 2> d2.

In order to determine d2, PI, and PI, we have

P[(z a)2 > d21Hil = P[|z-al _ dIHil (7)
d -(-a)

1 -- e t/dt = P

V'2r -d-(x-a)
81

and
P[(z - a)2 < d2IH21 = P[Iz- a ddIH2I = (8)

d - (f-a)

f 82 e-t 2dt = PI,.
82
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The efficiency of classification associated with this case is given in table 3
below.

TABLE 3

VALUES OF PI AND PII FOR THE CRMICAL REGION (Z - a)" 2d.
CORRESPONDING TO VARYING DIFFERENCES IN MEANS AND STANDARD DEVIATIONS

W7 - i! + hex, (h > 0); 82 - Asi, (X > M)

h = 1 h =3

pi PIP P

PI x-2 X-a x-4 X-5 X_1 PI _2 A-a X-4 X-_5 X-1I0

.01 .72 .55 .46 .38 .20 .01 .37 .40 .37 .33 .19

.05 .61 .48 .38 .31 .16 .05 .25 .30 .29 .26 .15

.10 .51 .40 .30 .25 .13 .10 .19 .25 .24 .22 .12

.20 .41 .31 .24 .20 .08 .20 .14 .19 .18 .17 .08

.50 .23 .16 .13 .09 .05 .50 .06 .10 .10 .09 .05

.70 .12 .10 .07 .06 .03 .70 .03 .06 .06 .05 .03

.90 .06 .03 .02 .02 .01 .90 .01 .02 .02 .02 .01

.95 .02 .01 .01 .01 ... .95 .01 .01 .01 .01 ...

P=1 -P .67 .73 .77 .80 .88 P=1 -PI .84 .81 .81 .82 .89
= 1 -Pu _ 1 - Pui

h=2 h=4

P11 Pu,
~PII piPI

X=2 X-3 X=4 X-5 X=10 X -2 X - 3 X - 4 X - 5 X _ 10

.01 .56 .52 .43 .36 .19 .01 .20 .29 .31 .29 .19

.05 .43 .39 .34 .29 .16 .05 .12 .19 .23 .22 .14

.10 .36 .34 .29 .24 .13 .10 .09 .17 .19 .19 .12

.20 .27 .26 .22 .19 .08 .20 .06 .13 .15 .15 .08

.50 .14 .14 .12 .10 .05 .50 .02 .07 .08 .07 .05

.70 .08 .08 .07 .05 .03 .70 .01 .04 .05 .04 .03

.90 .03 .03 .02 .02 .01 .90 ... .01 .02 .01 .01

.95 .01 .01 .01 .01 ... .95 ... , .01 .01 .01 ...

P 1 - P, .76 .76 .79 .81 .88 P 1 -P .91 .85 .83 .83 .89
= i-PuI = 1 -Pul

4. Comments and conclusions
A study of the efficiency tables given in section 3 leads one to the following

observations:
a) Within the range of values most frequently encountered, a unit increase

in either mean differences or standard deviation differences (the unit being
taken as the smaller of the two standard deviations) results in about a 5 per
cent increase in efficiency in classification.

b) The larger the difference between standard deviations the less effective
the difference in means. In fact, if the standard deviation difference is ex-
tremely large, the effect of the mean difference virtually disappears.
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c) For a constant difference in means there is a standard deviation differ-
ence which minimizes the efficiency of classification.
Although the techniques of classification presented are but approximate

methods and hence need further study and refinement, only two considera-
tions will be mentioned here:

a) In the event N1 and N2 are not large, what statistic should one use in
classification, and what is the probability distribution of this statistic? It
may happen that some modification of the exact statistic would yield satis-
factory results and greatly simplify the distribution problem.

b) A method of computing the index of efficiency P directly needs to be
developed for the various distributions encountered in classification problems.


