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IN THE FIRST PART of this paper the general problem of describing statistically
the constitution of our stellar system will be outlined. In the second a par-
ticular problem, the distance distribution of stars in a limited area of the sky,
will be taken up to indicate the kind of mathematical statistical problems
met with in stellar statistics.

I
Although our galaxy contains in addition to ordinary stars many peculiar
objects such as variable stars, binary and multiple stars, star clusters, nebulae,
and highly rarefied interstellar matter, we shall limit ourselves here to the dis-
tribution of ordinary stars. The statistical description of the system then in-
volves the following eight variables:
Three polar coordinates with the sun as origin define the position in space

Galactic longitude 1
Galactic latitude b
Distance r

Two parameters are needed to describe the physical constitution of ordinary
stars. We choose for these parameters

Spectral class S
Absolute magnitude M

If the stars are classified according to the pattern of absorption lines shown
in their spectrum, the spectral classes for the great majority of stars form
a continuous sequence. The spectral class S may thus be considered as a
variable. Among the ordinary stars we include only those whose pattern
of spectral lines fits into this sequence. The absolute magnitude is a loga-
rithmic measure of the amount of light radiated by the star.

The velocity of a star relative to the sun is given by its three components
in a rectangular coordinate system

ix, y,

The description of the stellar system as far as ordinary stars are concerned
is then supplied by the distribution law

F(l, b, r, S, My , y, i)dl db dr dSdM di dy di,

which gives the number of stars for any combination of infinitesimal inter-
vals of the eight variables.
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There are three main difficulties with which the astronomer is confronted
in trying to establish this complete distribution law.

1. Only for relatively few stars in the immediate vicinity of the sun can the
distance r be measured directly by the parallax method, and only for these
stars is it possible to obtain the values of all the variables. For the more dis-
tant stars the three variables 1, b, S alone are directly observable. For these
stars, however, certain functions of the descriptive variables are accessible to
observation. These are
Apparent magnitude m, a logarithmic measure of the apparent brightness,

which is a function of the absolute magnitudeM and the distance r.
Apparent color index c, a function of S, M, r.
Radial velocity vr, the velocity component in the line of sight.
Proper-motion components gu,, p2, giving the star's angular motion, which

are functions of the distance r and the velocity components perpendicular
to the line of sight.

2. The second difficulty arises from instrumental limitations. An observa-
tional quantity can be measured only for stars bright enough to make possible
their observation with available telescopes. Apparent magnitude m, position
coordinates 1, b, and color index c can be determined for stars as faint as the
20th magnitude, spectral classes to the 14th magnitude, and radial velocities to
the 12th magnitude. The limits for the material actually available for statis-
tical studies, however, are much lower.
The limit of apparent magnitude, which is a function of r and M, introduces

a very complicated selection in the data.
3. The errors of observation are a third cause of trouble. We may for in-

stance determine the proper motions of the stars in a given area by comparing
two photographs taken several years apart. All proper-motion results will then
have approximately the same probable error. For the larger motions this error
may not amount to more than a few per cent, but for the smaller motions the
error may be larger than the motions themselves. The observed distribution
of proper motions can be statistically corrected for observational errors; but
for the small proper motions this correction becomes very uncertain. The use
of proper motions is thus limited by their accuracy.
So far only partial solutions of our general problems have been attempted,

and these partial solutions may be divided into three groups.
1. The study of the stars in the vicinity of the sun. In a small homogeneous

volume surrounding the sun the distribution of the last five variables
F(S, M, x, y, i) is to be determined. This problem is usually divided into
two parts.

a) The absolute magnitude-spectral class distribution F(S, M) giving the
number of stars per unit volume for different spectral-class and abso-
lute-magnitude intervals.

b) The velocity law 4sm (±, P, i) and its variation with S and M. The
velocity distribution is generally represented as a normal frequency
function, the so-called ellipsoidal distribution, and the nine parameters
of this function vary with S and M.
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The principal difficulties in this study are to find among the millions of stars

observable the few which are in the vicinity of the sun, to allow for incomplete
and selective discovery, and to remove the effects of observational errors in
the parallax measures. A fair approximation of these two distribution laws has
been obtained.

2. The study of the space distribution of stars irrespective of their velocities:

F(l, b, r, S, M).

Most solutions of this problem are based on the assumption that the distribu-
tion of absolute magnitudes is independent of the position in space:

F(1, b, r, S),ps(M),

where fs(M) is known from the study of stars in the vicinity of the sun.
Since 1, b, S are directly observable, the procedure is to select a number of

sample areas of given 1, b, and within each area to determine the distance dis-
tribution F(S, r) for stars of different spectral-class intervals. However, for
the fainter stars for which no spectral classes are available only the distance
distribution F(r) of all stars can be determined.

Unfortunately the distance r is not directly observable, and its distribution
law must be derived from star counts according to apparent magnitude m, the
latter being a function of the distance r and absolute magnitude M.
From the distribution of distances in a given area the star density as func-

tion of the distance in the direction of the area is calculated. If many sample
areas with different 1 and b are investigated, the surfaces of equal star density
can be constructed which describe the structure of the stellar system.

3. The theory of galactic rotation is concerned with the state of motion in
different parts of the star system. The study of this problem involves not only
statistical but also dynamical considerations.

II

The main problem in the study of the space distribution of stars is to find the
distribution of distances

F(r)

for a given area of the sky from star counts made according to apparent magni-
tude m which give the distribution

A(m)-

We shall at first make the assumption that interstellar space is perfectly
transparent so that the apparent brightness of a star is inversely proportional
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to the square of its distance from the observer. Translated into magnitudes
this leads to the relation

m = M + 5 log r,

where r is measured in units of 10 parsecs.
In order to make a solution of the problem possible it is further necessary to

assume that the distribution of absolute magnitudes

KpM)

is independent of r and is known from the study of the stars in the vicinity of
the sun.
The determination of F(r) from the two known distribution laws A (m) and

wo(M) leads to an integral equation. I want to show that this fundamental equa-
tion of stellar statistics is merely an application of the following general sta-
tistical problem: Given the distribution law b(x, y) of two variables x, y; given
also the relation between a quantity t and the two variables: t = t(x, y); find
the distribution law pio(t) of t.
The distribution D(x, y) is transformed to two new variables of which one

is t. We may choose as new variables x and t, or t and y, or t and u, where u is
an arbitrary function of x, y. The distribution soi(t) is then obtained by inte-
grating the transformed distribution ( over the variable other than t.

If t, y are chosen as the new variables we have

=(t)4-J4Px = x(t, y), y] axt, Y dy,

where x(t, y) is found by solving t = t(x, y) for x.
Of particular interest is the case where x and y are not correlated, so that

D(X, Y) = P2(X)4P3(Y),
and

(oi(t) = o[X =x(t, y) 3(y) dy.at

Here we have an equation relating the three distribution laws (o1, w2, p3, and
when any two of these are known, the third can be determined. If the distribu-
tion of one of the independent variables (P2(x) or p3(y) is the unknown, this is
an integral equation.

Evidently our problem of finding F(r) from A (m) and (p(M) is of this type,
stice r and M are uncorrelated. It is convenient to introduce instead of r an
auxiliary variable

y = 51ogr
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which is called the distance modulus. The relation between m, M, and y then
is very simple

m = M + y,

and the distribution F(y) of distance moduli is found from the integral
equation

A(m) = F(y),p[M = m - y]dy,

which is generally solved by numerical integration in successive approxima-
tions. F(y) may then be transformed to the original variable r or translated
into star densities at distance r.
The discovery that the passage of star light through interstellar space is ob-

structed by highly rarefied dark matter has made this solution obsolete. Since
the distribution of the absorbing matter within our stellar system is rather
irregular, the increase of absorption with distance in the direction of the area
must be introduced as an additional unknown.
We designate by a(r) the absorption in magnitudes between a star at dis-

tance r and the observer; the absorption coefficient at distance r is then the
first derivative of a(r). Since the absorption varies with the wave-length of
light, both the absorption law a(r) and the distance distribution of stars F(r)
can be determined if we measure the apparent magnitudes of the stars in two
different wave-length intervals. The visual magnitude m. measures the bright-
ness of a star in yellow light (for faint stars it is generally obtained from photo-
graphs taken through a yellow filter); the photographic magnitude m%
measures the brightness in the blue-violet.
The relations between apparent magnitude and distance are now

m. = M. + 5 log r + a(r),
% = M, + 5 log r + (1 + x) a(r) .

a(r) represents the absorption in visual light; 1 + x is the ratio between photo-
graphic and visual absorption. x appears to be constant and its value is fairly
well known.

Star counts according to visual magnitude and according to photographic
magnitude give the distribution laws

A (m.) and A (mr).

Assuming that M, and M, are not correlated with r, we know their distribu-
tions

.p(M,) and K(M,)

from the study of stars in the vicinity of the sun. The problem is to find

F(r) and a(r).
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The distance modulus is now defined as

y = 51ogr+ a(r),

and the absorption when represented as a function of y is designated as a(y).
The relations between the variables then become

MW = M1 + y.
Mp = Mp + y + xa(y) = M, +f(y).

The first of these is the same as in the former case when absorption was neg-
lected, and the distribution F(y) is determined from the star counts A (m.) by
the same integral equation as before; the only difference is that the distance
modulus y has now another meaning and that its relation to the distance r
is unknown.
As we take up the photographic magnitudes mp, to which the second relation

applies, we know the distributions of all three variables: A (m) from the star
counts, p(Mp) from the study of the nearest stars, and F(y) from the solution
of the visual star counts; what is unknown, however, is f(y), that is, the func-
tional relation of the variables.
The general statistical problem before us is the reverse of that discussed at

first: Given the distribution 4(x, y) of two variables, given also the distribution
Sol(t) of a function t of these two variables, what is the functional relation of
t with x, y?

This problem can be solved under the following restrictions:

a) When the functional relation is of the form

f(t) = g(x, y),
where g is known;

b) When the functional relation is of the form

f(y) = g (t, x),

where g is known, and when x and y are not correlated so that ((x, y) =
"°(X) "o(y).

The latter case, where sl(t), (o2(x), 40a(y) are given whereas f(y) is unknown,
corresponds to our astronomical problem. The solution is obtained by intro-
ducing an auxiliary variable s defined by

)7 = f(Y)-

The relation between q, t, x is then known:

7 = g(t, x),
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and the distribution law of a, Va(X1) is found by solving the integral equation

p1(t) = {3(X)9[X = x(t, n) d( 'Aat

in which soi(t) and (P2(x) are known.
Since q is a function of y only, the frequency for corresponding intervals of

11 and y must be the same:

+3(n)-= '3 (Y)-
dy

If i/' and p3 are given in analytical form, this is a differential equation for the
determination of X = f(y). One pair of corresponding values of X and y must
be known to obtain the integration constant.
When At3 and " are given numerically as tables, as is generally the case in

astronomy, each distribution is integrated numerically

F(rq) f=" (q)dq

G(y) .p (y)dy,

where flo, yo are given by the initial condition. Corresponding values of 11 and y
are then found by interpolating pairs of arguments for which F = G.

This method has been successfully applied to determine the distance distri-
bution F(r) and the absorption law a(r) from star counts according to visual
and photographic magnitudes.

February, 1946


