APPENDIX. SOME RESULTS FOR PLANAR GRAPHS.

In this appendix we prove several graph theoretical, or point-set topological results, in particular Propositions 2.1-2.3 and Corollary 2.2 which were already stated in Ch.2. The proofs require somewhat messy arguments, even though most of these results are quite intuitive. We base most of our proofs on the Jordan curve theorem (Newman, (1951), Theorem V. 10.2). Some more direct and more combinatorial proofs can very likely be given; see the approach of Whitney (1932, 1933). Especially Whitney (1933), Theorem 4, is closely related to Cor. 2.2., Prop. 2.2 and Prop. A.1, and has been used repeatedly in percolation theory.

Throughout this appendix $m_{1}$ is a mosaic, $\mathcal{F}$ a subset of the collection of faces of $m_{1}$ and ( $\mathcal{q}, \mathcal{q}^{\star}$ ) a matching pair based on ( $m, \mathcal{F}$ ). These terms were defined in Sect. 2.2. $\mathcal{C}_{p \ell}, \mathcal{q}_{p \ell}^{\star}$ and $\mathcal{H}_{p \ell}$ will be the planar modifications as defined in Sect. 2.3. We fix an occupancy configuration $\omega$ on $m$ and extend it as in (2.15), (2.16). $W(v)$ and $W_{p \ell}(v)$ are the occupied cluster of $v$ on $\mathcal{G}$ and $m_{p \ell}$ (or $\mathcal{C}_{p \ell}$ ), respectively, in the configuration $\omega$. $\partial W$, the boundary of $W$, is defined in Def. 2.8; v $\mathcal{G} w$ means that $v$ and $w$ are adjacent vertices on $\mathcal{G}$.
Proposition 2.1. Let $\partial W_{p \ell}(v)$ be the boundary of $W_{p \ell}(v)$ on $m_{p \ell}$. If $W_{p \ell}(v)$ is non-empty and bounded and (2.3)-(2.5) hold with $g_{g}$ replaced by $m$, then there exists a vacant circuit $J_{p \ell}$ on $m_{p \ell}$ surrounding $W_{p \ell}(v)$, and such that all vertices of $m_{p \ell}$ on $J_{p \ell}$ belong to $\partial W_{p \ell}(v)$.

We owe the idea of the proof to follow to R. Durrett. We shall write $W_{p \ell}$ and $\partial W_{p \ell}$ instead of $W_{p \ell}(v)$ and $\partial W_{p \ell}(v)$. On various occasions we shall use the symbol for a path to denote the set of points which belong to some edge in the path. Thus in (A.2), the left hand side is the set of points which belong to $\pi$ and to $W U \partial W_{p l}$. In (A.5) $\operatorname{int}(\mathrm{J}) \backslash \tilde{\pi}$ is the set of points in int(J) which do not lie
on $\tilde{\pi}$. This abuse of notation is not likely to lead to confusion.
We shall actually prove the slightly stronger statement that the vertices of $m_{p \ell}$ on $J_{p \ell}$ belong to $\partial_{\text {ext }} W_{p l}$, the "exterior boundary of $W_{p \ell}$ ", where

$$
\begin{align*}
& \partial_{\text {ext }} W_{p \ell}:=\left\{u \varepsilon \partial W_{p \ell}: \exists \text { path } \pi \text { from } u \text { to } \infty\right. \text { on }  \tag{A.1}\\
& m_{p l} \text { such that } u \text { is the only point of } \pi \text { in } \\
& \left.W_{p \ell} \cup \partial W_{p \ell}\right\} \text {. }
\end{align*}
$$

The crucial property of $\partial_{\text {ext }} W_{p \ell}$ is given in the following lemma. Lemma A.1. Assume that (2.3)-(2.5) hold with $\mathcal{G}$ replaced by $m$. If $W_{p \ell}$ is non-empty and bounded, then $\partial_{\text {ext }} W_{p \ell} \neq \emptyset$. Let
$u \varepsilon \partial_{\text {ext }} W_{p \ell}, W \varepsilon W_{p \ell}$ and $\pi$ a path from $u$ to $\infty$ on $m_{p \ell}$ such that

$$
u m_{p l} w
$$

and ${ }^{1)}$

$$
\begin{equation*}
\pi \cap\left\{W \cup \partial W_{p \ell}\right\}=\{u\} \tag{A.2}
\end{equation*}
$$

Let $e$ be an edge of $m_{p \ell}$ from $w$ to $u$ and $\tilde{\pi}$ the simple path consisting of $e$ followed by $\pi$. Then there exists a Jordan curve $J$ in $\mathbb{R}^{2}$ such that
(A.3)
$u \varepsilon \operatorname{int}(J)$,
(A.4) $J$ intersects each edge of $m_{p \ell}$ incident to $u$ exactly once, but all edges of $m_{p l}$ not incident to $u$ belong to ext(J),
(A.5) $\quad \operatorname{int}(J) \backslash \tilde{\pi}$ has exactly two components, $K^{\prime}$ and $K^{\prime \prime}$ say. Any edge between $u$ and a vertex $\tilde{u} \varepsilon \partial_{\text {ext }} W_{p \ell}$ intersects exactly one of the components $K^{\prime}$ and $K^{\prime \prime}$. There exists a vertex $u^{\prime} \varepsilon \partial_{\text {ext }} W_{p l}$ and an edge $e^{\prime}$ of $m_{p l}$ between $u$ and $u^{\prime}$ which intersects only $\mathrm{K}^{\prime}$. There also exists a vertex $u^{\prime \prime} \varepsilon \partial_{\text {ext }} W_{p \ell}$ and an edge $e^{\prime \prime}$ of $m_{p \ell}$ between $u$ and $u^{\prime \prime}$ which intersects only $K^{\prime \prime}\left(u^{\prime}=u^{\prime \prime}\right.$ is possible!).
(Fig. A.l gives a schematic illustration of the situation.)


Figure A.1. $W_{p l}$ is the hatched region. The vertices of $\partial_{\text {ext }} W$ are on the dashed curve. $J$ is the small circle surrounding $u$.

Proof: If $W_{p \ell}$ is non-empty and bounded, then any path from $\infty$ to $W_{p \ell}$ must intersect $\partial W_{p \ell}$ a first time. This intersection belongs to $\partial_{\text {ext }} W_{p \ell}$. Thus $\partial_{\text {ext }} W_{p \ell} \neq \emptyset$ in this situation.

Now take $u \varepsilon \partial_{\text {ext }} W_{p l}$. By definition there exists a simple path $\pi$ from $u$ to $\infty$ on $m_{p l}$ satisfying (A.2) and a $w \in W_{p \ell}$ which is adjacent to $u$. The self-avoiding path $\pi$ cannot intersect e in its interior (because $m_{p l}$ is planar), nor in the point $w$ (by (A.2)), and goes through the point $u$ only once (at its beginning). Thus $\tilde{\pi}$ has no double points. Now let $D$ be a small open disc around $u$ such that $\bar{D}$ does not intersect any edge of $m_{p l}$ not incident to $u$. (Use (2.4) to find such a disc). If all edges incident to $u$ are piecewise linear, then the perimeter of $D$ will satisfy (A.3) and (A.4) provided $D$ is sufficiently small. The general situation can be reduced to this simple case by means of a homeomorphism of $\mathbb{R}^{2}$ onto itself which takes pieces of the edges of $m_{p l}$ incident to $u$ onto straight line segments radiating from the
origin (see Newman (1951), exercise VI. 18.3 for the existence of such a homeomorphism). We may therefore assume that we have a Jordan curve $J$ satisfying (A.3) and (A.4).

Note that $e$, as well as the unique edge of $\pi$ incident to $u$ (the first edge of $\pi$ ) each intersect $J$ exactly once (by (A.4)) so that $\tilde{\pi}$ intersects $J$ exactly twice, and $\operatorname{int}(J) \backslash \tilde{\pi}$ has indeed two components - which we call $\mathrm{K}^{\prime}$ and $\mathrm{K}^{\prime \prime}$ (see Newman (1951), Theorem V. 11.7). Let $e_{0}=e$, and let $e_{1}, e_{2}, \ldots, e_{v-1}, e_{v}=e_{0}$ be the edges of $m_{p l}$ incident to $u$, listed in the order in which they intersect $J$ as we traverse $J$ in one direction from $e_{0} \cap J$; there are only finitely many of these by (2.4). Write $u_{i}$ for the endpoint of $e_{i}$ different from $u$, and $x_{i}$ for the intersection of $e_{i}$ and


Figure A. 2.
J. Thus $u_{0}=w$. The first edge of $\pi$ is one of the $e_{i}$, say $\mathbf{e}_{\mathbf{i}_{0}}$. For $\mathbf{i} \neq 0, \boldsymbol{i}_{0}, \nu, e_{i}$ runs from $u$ to $x_{i}$ inside one component $K^{\prime}$ or $K^{\prime \prime}$, and then from $x_{i}$ to $u_{i}$ it is in ext(J) by (A.4) (note $u_{i} \varepsilon \operatorname{ext}(J)$, also by (A.4)). Thus, each of these edges intersect exactly one of $K^{\prime}$ and $K^{\prime \prime}$. Since each of the two arcs of $J$ from $x_{0}$ to $x_{i_{0}}$ form part of the boundary of one the components $K^{\prime}$ and $K^{\prime \prime}$ (Newman (1951), Theorem V.11.8), it follows that $e_{i}$, $1 \leq i<i_{0}$, intersect the same component, $K^{\prime}$ say, while $e_{i}$, $\mathrm{i}_{0}<\mathbf{i}<\nu$ intersect the other, which will be $K^{\prime \prime}$. This proves the first statement in (A.5) (since $u_{n}=u_{n}, W$ and hence not in $\partial W_{n 0}$
and also $u_{i_{0}} \varepsilon \pi$ does not belong to $\left.\partial W_{p \ell}\right)$.
We write $A_{i}$ for the arc of $J$ from $x_{i}$ to $x_{i+1}$, $0 \leq i \leq v-1$. Then $A_{i} \backslash\left\{x_{i}, x_{i+1}\right\}$ does not intersect any edge and therefore lies entirely in one face of $\pi_{p l}$. Since all faces of $m_{p l}$ are triangles (Comment 2.3(vi)), this implies that $e_{i}$ and $e_{i+1}$ lie in the boundary of a triangle, and $u_{i} m_{p \ell} u_{i+1}, u_{0}=$ $w \varepsilon W_{p \ell}$, while $u_{i_{0}} \varepsilon \pi$ is not in $W_{p \ell}$. Hence the index

$$
\mathfrak{i}_{1}=\max \left\{j: 0 \leq j \leq \mathfrak{i}_{0}, u_{j} \in W_{p \ell}\right\}
$$

is well defined. As observed above, $u_{i_{1}+1}$ is a neighbor of $u_{i_{1}} \varepsilon W_{p l}$, but by definition of $i, u_{i_{1}+1} \notin W_{p l}$. Therefore, $u_{i_{1}+1} \varepsilon \partial W_{p \ell}$. Also, $u_{i_{0}} \varepsilon \pi$ does not belong to $\partial W_{p \ell}$ by (A.2). Thus $i_{1}+1<i_{0}$ and we can define $i_{2}$ by

$$
\mathfrak{i}_{2}=\max \left\{j: \mathfrak{i}_{1}<j<\mathfrak{i}_{0}, u_{j} \varepsilon \partial W_{p \ell}\right\}
$$

We can connect $u_{i_{2}}$ to $\infty$ by a path consisting of edges from $u_{j}$ to $u_{j+1}, i_{2} \leq j<i_{0}$, followed by the piece of $\pi$ from $u_{i_{0}}$ to $\infty$. The vertices $u_{i_{2}+1}, \ldots, u_{i_{0}}$ do not belong to $W_{p \ell} \cup \partial W_{p l}$ by choice of $i_{1}$, $i_{2}$, so that $u_{i_{2}} \varepsilon \partial_{\text {ext }} W_{p l}$ with $0<i_{2}<i_{0}$. Finally we define

$$
i^{\prime}=\min \left\{0<j \leq i_{2}: u_{j} \varepsilon \partial_{e x t} W_{p l}\right\} .
$$

By the above $i^{\prime}$ is well defined, and $u^{\prime}:=u_{i}$, is connected to $u$ by an the edge $e_{i}$, which intersects $K^{\prime}$, but does not intersect K". Similarly we can define

$$
i^{\prime \prime}=\max \left\{i_{0}<j<v: u_{j} \varepsilon \partial_{\text {ext }} W_{p \ell}\right\}
$$

and $u^{\prime \prime}=u_{i n} . e_{i^{\prime \prime}}$ only intersects $K^{\prime \prime}$. This proves the existence of the desired $u^{\prime}, e^{\prime}, u^{\prime \prime}$ and $e^{\prime \prime}$ for A.5.

Proof of Proposition 2.1: For a nonempty and bounded $W_{p l}$ pick any $u_{0} \varepsilon \partial_{\text {ext }} W_{p \ell}$ and apply Lemma 1 with $u_{0}$ for $u$. Let $u_{1}$ be one of the vertices $u^{\prime}, u^{\prime \prime} \varepsilon \partial_{\text {ext }} W_{p \ell}$ adjacent to $u_{0}$ whose existence is guaranteed by Lemma A.1. Say we picked $u^{\prime}$ for $u$. Let $e_{1}$
be an edge between $u_{0}=u$ and $u_{1}=u^{\prime}$ which intersects only $K^{\prime}$ as in Lemma A.1. Assume we have already constructed $u_{0}, e_{1}, u_{1}, \ldots, e_{i}$, $u_{i}$ with $u_{i} \varepsilon \partial_{\text {ext }} m_{p \ell}$ and $e_{j}$ an edge of $\pi_{p \ell}$ between $u_{j-1}$ and $u_{j}, e_{j-1} \neq \mathrm{e}_{\mathrm{j}}, 1 \leq \mathrm{j} \leq \mathrm{i}$. We then apply Lemma A. 1 to $u_{i}$. Associated with $u_{i}$ are two components $K^{\prime}$ and $K^{\prime \prime}$. Assume $e_{i}$ intersects $K^{\prime}$. Then by (A.5) we can find an edge $e_{i+1}$ from $u_{i}$ to some $u_{i+1} \varepsilon \partial_{\text {ext }}$ $W_{p \ell}$, such that $e_{i+1}$ intersects only $K^{\prime \prime}$ and not $K^{\prime}$, and hence with $e_{i+1} \neq \mathrm{e}_{\mathrm{i}}$. We continue in this way until the first time we obtain a double point, i.e., to the smallest index $v$ for which there exists a $\rho<v$ with $u_{\rho}=u_{v} . v<\infty$ because $W_{p \ell}$ is bounded, and therefore $\partial_{\text {ext }} W_{p \ell} \subset \partial W_{p \ell}$ finite (see (2.3), (2.4)). $\rho$ will be unique by the minimality of $v$. Since $m_{p \ell}$ is planar, $J_{p \ell}=\left(u_{\rho}, e_{\rho}, \ldots, e_{v}, v_{\nu}\right)$ - or more precisely the curve made up from $e_{\rho}, e_{\rho+1}, \ldots, e_{\nu}$ - is a Jordan curve. We now show that it has the required properties. The vertices on $J_{p \ell}$ belong to $\partial_{\text {ext }} W_{p \ell} \subset \partial W_{p \ell}$ by choice of the $u_{i}$, and since each vertex of $\partial W_{p \ell}$ has to be vacant, $J_{p \ell}$ is vacant. To show that $W_{p l} \subset \operatorname{int}\left(J_{p l}\right)$ observe first that all vertices of $J_{p \ell}$ belong to $\partial W_{p \ell}$ and therefore not to $W_{p \ell}$. Thus $W_{p \ell} \cap J_{p \ell}=\emptyset$ and the connected set $W_{p l}$ lies entirely in one component of $\mathbb{R}^{2} \backslash J_{p l}$. Now write $u$ for $u_{\rho+1}$ and let $\pi$ be a path on $m_{p l}$ from $u$ to $\infty$ satisfying (A.2), and $e$ an edge of $m_{p l}$ from $u$ to some $w \in W_{p \ell}$. We apply Lemma A.l once more with this choice of $u$, $\pi, W$ and $e$. With $\tilde{\pi}$ and $J$ as in Lemma A. 1 we may assume (by virtue of the construction of $J_{p l}$ ) that the two edges $e_{\rho}$ and $e_{\rho+1}$ incident to $u$ intersect different components of $\operatorname{int}(J) \backslash \tilde{\pi}$. We shall prove now that this implies

$$
\begin{equation*}
\tilde{\pi} \text { crosses } J_{p \ell} \text { from } \operatorname{ext}\left(J_{p \ell}\right) \text { to } \operatorname{int}\left(J_{p \ell}\right) \text { at } u . \tag{A.6}
\end{equation*}
$$

This will suffice, since the part $\pi \backslash\{u\}$ of $\tilde{\pi}$ clearly lies in $\operatorname{ext}\left(J_{p \ell}\right)$, so that (A.6) will imply that $e \backslash\{u\}$ belongs to $\operatorname{int}\left(J_{p \ell}\right)$. In particular $w$ will belong to $\operatorname{int}\left(J_{p \ell}\right)$. Hence $W_{p \ell} \subset \operatorname{int}\left(J_{p \ell}\right)$ and $J_{p \ell}$ surrounds $W_{p \ell}$.

To prove (A.6) note that the Jordan curve $J$ surrounding $u$, constructed in Lemma A.l intersects $J_{p \ell}$ in two points only, say $x^{\prime}$ on $e_{\rho}$ and $x^{\prime \prime}$ on $e_{\rho+1}$ (by (A.4)). The two open arcs of $J$ between $x^{\rho}$ and $x^{\prime \prime}$ must lie in different components of $\mathbb{R}^{2} \backslash J_{p \ell}$, one in $\operatorname{int}\left(J_{p \ell}\right)$ and the other in $\operatorname{ext}\left(J_{p \ell}\right)$. Indeed each of these arcs lies entirely in one component of $\mathbb{R}^{2} \backslash J_{n \ell}$, and they cannot both
lie in the same component, because $u \varepsilon J_{p \ell}$ lies on the boundary of $\operatorname{int}\left(J_{p \ell}\right)$ as well as the boundary of $\operatorname{ext}\left(J_{p \ell}\right)$. Thus, there exists continuous curves from $J$ to points in its interior near $u$ which lie in $\operatorname{int}\left(J_{p \ell}\right)$, and there also are such curves in $\operatorname{ext}\left(J_{p \ell}\right)$. Now we have by (A.4) (or more directly by its proof) that $\pi$ intersects $J$ exactly once, in $y^{\prime}$ say, and $e$ also intersects $J$ exactly once, in $y^{\prime \prime}$ say (see Fig. A.3).


Figure A. 3
$x^{\prime}$ and $x^{\prime \prime}$ cannot lie on the same arc of $J$ between $y^{\prime}$ and $y^{\prime \prime}$ because $x^{\prime}$ and $x^{\prime \prime}$ are the endpoints of the pieces of $e_{\rho} \cap \operatorname{int}(J)$ and $e_{\rho+1} \cap \operatorname{int}(J)$, respectively, while by construction $e_{\rho} \cap \operatorname{int}(J)$ and $e_{\rho+1} \cap \operatorname{int}(J)$ belong to different components of $\operatorname{int}(J) \backslash \tilde{\pi}$. These two different components, $K^{\prime}$ and $K^{\prime \prime}$, each have one of the arcs of $J$ from $y^{\prime}$ to $y^{\prime \prime}$ in their boundary, so that $x^{\prime}$ has to lie in the arc bounding $K^{\prime}$ and $x^{\prime \prime}$ in the other arc, bounding $K^{\prime \prime}$. But this means that $y^{\prime}$ and $y^{\prime \prime}$ separate $x^{\prime}$ and $x^{\prime \prime}$ on $J$. Therefore, $y^{\prime}$ and $y^{\prime \prime}$ do not lie on the same arc of $J$ between $x^{\prime}$ and $x^{\prime \prime}$. Since we saw above that one of these open arcs was in $\operatorname{int}\left(J_{p \ell}\right)$ and the other in ext $\left(J_{p \ell}\right)$ it follows that one of the points $y^{\prime}$ is in $\operatorname{int}\left(J_{p \ell}\right)$ and the other in $\operatorname{ext}\left(J_{p \ell}\right)$. (A.6) now follows.

Corollary 2.2. If $W(v)$ is non-empty and bounded and (2.3)-(2.5) hold, then there exists a vacant circuit $\mathrm{J}^{*}$ on C\&* surrounding $^{\text {* }}$ $W(v)$.

Proof: By Cor. 2.1 $W \subset W_{p \ell}$ and by Prop. 2.1 there exists a vacant circuit $J_{p \ell}$ on $m_{p \ell}$ surrounding $W_{p \ell}$, and therefore also $W$. Note that $J_{p \ell}$ cannot contain any central vertex of $\mathcal{G}$ since these are all occupied (cf. (2.15)). Thus, $J_{p \ell}$ is actually a circuit on $\mathcal{C}_{\mathrm{p} \ell}^{\star}$. Assume it is made up from the edges $\mathrm{e}_{1}^{\star}, \ldots, \mathrm{e}_{\nu}^{\star}$ of $\mathcal{C}_{\mathrm{p} \ell}^{\star}$, and that the endpoints of $e_{i}^{*}$ are $v_{1-1}^{\star}$ and $v_{\dot{j}}^{*}$. Then $r^{*}=\left(v_{0}^{*}, e_{1}^{*}, \ldots, e_{v}^{*}, v_{v}^{*}\right)$ is a path on $C_{0}^{*}{ }_{p \ell}$ with one double point, to wit $v_{0}^{*}=v_{v}^{*}$. We now apply the procedure of the proof of Lemma 2.1a, with $\mathcal{G}^{*}$ instead of $\mathcal{G}$, to remove the central vertices from $\mathrm{v}^{\star}$. Let $0 \leq i_{0}<i, \ldots,<i_{\rho} \leq v$ be the indices for which $v_{i}^{*}{ }_{j}$ is not a central vertex of $\oint_{\mathrm{p} \ell}^{\star}$. Then, as in Lemma 2.1a $i_{0} \leq 1, i_{\rho} \geq v-1$, and $\mathbf{i}_{\mathbf{j}+1}-\mathbf{i}_{\mathbf{j}} \leq 2$. If $\mathbf{i}_{\mathbf{j}+1}=\mathbf{i}_{\mathbf{j}}+\boldsymbol{1}$ so that $\mathrm{v}_{\mathbf{i}_{j}}$ and $\mathrm{v}_{\mathbf{i}}^{\boldsymbol{*}}{ }_{\mathbf{j}+1}$ are adjacent on $\mathcal{q}^{\star}$, and $e_{j+1}^{\star}$ is an edge of $\mathcal{q}^{\star}$, then we do not change $e_{j+1}^{\star}$. If $\mathbf{i}_{j+1}=\mathbf{i}_{j}+2$, then $v_{i}^{*}{ }_{j+1}$ is the central vertex on $\mathcal{C}^{\star}$ of some face
F which is close-packed in $\mathrm{g}^{*}$. We then replace the piece $e_{i}^{*}+1, v_{i}^{*}+1, e_{i}^{*}+2$ of $r^{*}$ by the single edge of $\mathcal{C}^{*}$ through $F$, with endpoints $v_{i_{j}}^{*}$ and $v_{i_{j}}^{*}+2$. We write $\tilde{v}_{j}^{*}$ for $v_{i_{j}}^{*}$ and $\tilde{e}_{j+1}^{*}$ for the edge from $\tilde{v}_{j}^{*}$ to $\tilde{v}_{j+1}^{*}$. We make these replacements successively. Assume for the sake of argument that $i_{0}=0$ (this can always be achieved by numbering the vertices of $r^{*}$ such that it starts with a non-central vertex). Assume also that we already made all replacements between $v_{i_{0}}^{*}=v_{0}^{*}$ and $v_{i_{k}}^{*}$. We then have the sequence $\tilde{v}_{0}^{*}, \tilde{e}_{0}^{*}, \ldots, \tilde{e}_{k}^{*}, \tilde{v}_{k}^{*}, e_{\tilde{i}_{k}^{*}}^{*}+\ldots, v^{*}=\tilde{v}_{0}^{*}$, and can form the curve $J_{k}$ made up from $\tilde{e}_{0}^{\star}, \ldots, \tilde{e}_{k}^{*}, e_{\mathbf{i}_{k}^{*}+1}^{*}, e_{{\underset{i}{k}}^{*}}^{k}+2, \ldots, e_{\nu}^{*}$ (even though this is neither a curve on $\mathcal{C}_{\mathrm{p} \ell}^{*}$ nor on $\left.\mathcal{C}_{\mathrm{E}}^{*}\right)$. Assume that $J_{k}$ is a Jordan curve which contains $W$ in its interior. We shall now show that then $J_{k+1}$, is also a Jordan curve which contains $W$ in its interior. This will prove the corollary, since $J_{0}=J_{p \ell}$ has these properties and $J_{\rho}$ or ${\underset{\sim}{\rho}}+1$ will be a curve on $\mathcal{C}$ with the properties required of $J *$. If $\tilde{e}_{k+1}^{*}=e_{i_{k}}^{*}+1$, then there is nothing to prove. Assume therefore $i_{k+1}=i_{k+2}$ and that $\tilde{e}_{k+1}^{\star}$ is the edge in the closed face
$\bar{F}$ of $m$ from $\tilde{v}_{k}^{*}=v_{i_{k}}^{*}$ to $\tilde{v}_{k+1}^{*}=v_{i_{k}}^{*}+2$, while $v_{i_{k}+1}^{*}$ is the central vertex of $F$. By Comment 2.3(i) the three edges $e_{i_{k+1}}^{\star}, e_{\mathbf{i}_{k+2}}^{\star}$ and $\tilde{e}_{\mathrm{k}+1}^{*}$ then form the topological boundary of a closed "triangle", T say. $J_{k+1}$ is again a Jordan curve, because it contains only vertices of $J_{k}$, and $e_{j}^{k}$ with $i+2<j \leq v$ cannot intersect the interior of the edge $\tilde{e}_{k+1}^{\star}+1$ of $\mathcal{G}$. The latter statement results from Comment 2.3(i) and the fact that $e_{j}^{*}$ does not contain the central vertex $v_{{\underset{i}{k}}^{*}+1}^{*}$ of $F$, because $J_{k}$ is self-avoiding. From the facts that $W$ consists of vertices and edges of $\mathcal{G}$ and $W \subset \operatorname{int}\left(J_{k}\right)$ and from Comment 2.3(i) it follows that $W$ cannot intersect $\operatorname{Fr}(T)$. Since ${ }_{\top}^{\circ}$ contains no yertics of $\mathcal{G}, W \subset \frac{\circ}{T}$ is also impossible so that $W \cap T=\emptyset$. But this implies $W \subset \operatorname{int}\left(J_{k+1}\right)$ because $\operatorname{int}\left(J_{k}\right) \backslash \operatorname{int}\left(J_{k+\rceil}\right) \subset T$, and $W \subset \operatorname{int}\left(J_{k}\right)$.

In the proof of Prop. 2.2 we shall use the next lemma, which follows from Alexander's separation lemma (Newman (1951), Ch.V.9). Actually one can deduce Prop. 2.2 from Prop. 2.1 without this lemma, but it is needed a few times later on anyway. Lemma A. 2 is essentially the same as Lemma 3 in Kesten (1980a).
Lemma A.2. Let $J_{1}$ be a Jordan curve in $\mathbb{R}^{2}$ which consists of four closed arcs $A_{1}, A_{2}, A_{3}, A_{4}$ with disjoint interiors, which occur in this order when $\mathrm{J}_{1}$ is traversed in one direction. (Some of these arcs may reduce to a single point.) Further, let $J_{2}$ be a Jordan curve in $\mathbb{R}^{2}$ with

$$
\begin{equation*}
A_{1} \subset \operatorname{int}\left(J_{2}\right) \text { but } A_{3} \subset \operatorname{ext}\left(J_{2}\right) . \tag{A.7}
\end{equation*}
$$

Then $J_{2}$ contains an arc $B$ with one endpoint each on $\AA_{2}$ and $\AA_{4}$ and such that the interior of $B$ is contained in $\operatorname{int}\left(J_{1}\right)$.


Figure A. $4 \mathrm{~J}_{1}$ is the solidly drawn curve. $\mathrm{J}_{2}$ is dashed.

Proof: We write $\bar{J}_{1}$ for $J_{1} \cup \operatorname{int}\left(J_{1}\right)$. Also for $x, y \in J_{2}$ and $[x, y]$ one of the closed arcs of $J_{2}$ from $x$ to $y$, we shall write $(x, y]$ for $[x, y] \backslash\{x\}$ and $(x, y)$ for $[x, y] \backslash\{x, y\}$. ( $x, y$ ) is the interior of $[x, y]$. For $r=2,4$ we define

$$
\begin{align*}
G_{r}= & \left\{x \in J_{2} \cap J_{1}: \text { there exists a point } y \in J_{2} \cap A_{r}\right.  \tag{A.8}\\
& \text { such that the interior }(x, y) \text { of one of the arcs of } \\
& \left.J_{2} \text { from } x \text { to } y \text { is contained in int }\left(J_{1}\right)\right\} .
\end{align*}
$$

The first task is to show that $G_{r}$ is closed. First we observe that $\mathrm{J}_{2}$ is closed so that

$$
\begin{equation*}
\bar{G}_{r} \subset \text { closure of } J_{2}=J_{2} . \tag{A.9}
\end{equation*}
$$

Now if $z \in \bar{G}_{r} \cap \operatorname{int}\left(J_{1}\right)$, then $z \varepsilon J_{2} \cap \operatorname{int}\left(J_{1}\right)$ and it is easy to see that $z \in G_{r}$ in this case. We therefore restrict ourselves to showing that any $z \& \bar{G}_{r} \cap J_{1}$ lies in $G_{r}$ itself. This is true by definition if $z \in J_{2} \cap A_{r}$, since

$$
\begin{equation*}
J_{2} \cap A_{r} \subset G_{r} \tag{A.10}
\end{equation*}
$$

(take $y=x$ in (A.8) for $x \in J_{2} \cap A_{r}$; in this case one of the arcs from $x$ to $y$ has an empty interior). In addition, by virtue of (A.7),

$$
\begin{equation*}
J_{2} \cap\left(A_{1} \cup A_{3}\right)=\emptyset . \tag{A.11}
\end{equation*}
$$

Thus we only have to consider $z \varepsilon \bar{G}_{r} \cap A_{4}$ if $r=2$ and $z \varepsilon \bar{G}_{r} \cap A_{2}$ if $r=4$. For the sake of definiteness take $r=2, z \varepsilon \bar{G}_{2} \cap A_{4}$. Let $x_{n} \in G_{2}, x_{n} \rightarrow z$. There is nothing to prove if $x_{n}=z$ for some $n$, so that we may assume $x_{n} \neq z$. Without loss of generality we may also assume that $x_{n} \varepsilon J_{2}$ approaches $z$ from one side, i.e., that we can choose the $\operatorname{arcs}\left[z, x_{n}\right]$ of $J_{2}$ such that

$$
\begin{equation*}
\left[z, x_{n}\right] \downarrow[z, z]=\{z\}, x_{n} \neq z \tag{A.12}
\end{equation*}
$$

Furthermore, there exist $y_{n} \varepsilon J_{2} \cap A_{2}$ and choices of the arcs $\left[x_{n}, y_{n}\right]$ on $J_{2}$ from $x_{n}$ to $y_{n}$ such that

$$
\begin{equation*}
\left(x_{n}, y_{n}\right) \subset \operatorname{int}\left(J_{1}\right) \tag{A.13}
\end{equation*}
$$

Since $A_{2}$ and $A_{4}$ are separated on $J_{1}$ by $A_{1}$ and $A_{3}$ we must have $A_{2} \cap A_{4} \subset A_{1} \cup A_{3}$ and

$$
J_{2} \cap A_{2} \cup A_{4} \subset J_{2} \cap\left(A_{1} \cup A_{3}\right)=\emptyset \quad(\text { by }(A .11))
$$

Therefore $y_{n} \in J_{2} \cap A_{2}$ is bounded away from $z \varepsilon J_{2} \cap A_{4}$. In addition, from (A.12) and (A.13) the arc $\left[x_{n}, y_{n}\right]$ does not contain the point $z \varepsilon A_{4} \subset J_{1}$. It follows that from some $n_{0}$ on the $\operatorname{arcs}\left[z, x_{n}\right]$ and


Figure A.5. The location of some points on $J_{2} \cdot y_{n}$ cannot lie in the solidly drawn segment.
$\left[x_{n}, y_{n}\right]$ only have the point $x_{n}$ in common, and $x_{n_{0}} \varepsilon\left(x_{n}, y_{n}\right)$. But then, by virtue of (A.12)

$$
\left(z, x_{n_{0}}\right]=\underset{n \geq n_{0}}{u}\left(x_{n}, x_{n_{0}}\right] \subset \underset{n \geq n_{0}}{\cup}\left(x_{n}, y_{n}\right) \subset \operatorname{int}\left(J_{1}\right) .
$$

Consequently also

$$
\left(z, y_{n_{0}}\right)=\left(z, x_{n_{0}}\right] \cup\left(x_{n_{0}}, y_{n_{0}}\right) \subset \operatorname{int}\left(J_{1}\right)
$$

so that $z \in G_{2}$. This proves that $G_{2}$ is closed and the same proof works for $G_{4}$.

Next we take for $A_{r}^{\prime}, r=2,4$, a closed subarc of $A_{r}$ which contain the common endpoint of $A_{r}$ and $A_{1}$, but not the common endpoint of $A_{r}$ and $A_{3}$, and which is such that

$$
\begin{equation*}
J_{2} \cap A_{r} \subset A_{r}^{\prime} . \tag{A.14}
\end{equation*}
$$

Such $A_{r}^{\prime}$ exist since $J_{2} \cap A_{3}=\emptyset$ (by (A.7)). Note that by (A.7) also $J_{2} \cap A_{1}=\varnothing$ so that $A_{2}$ and $A_{4}$ must have nonempty interiors. We can and shall therefore also take the interiors of $A_{2}^{\prime}$ and $A_{4}^{\prime}$ nonempty. Now define

$$
\begin{aligned}
& F_{2}=G_{2} \cup A_{2}^{\prime}, \\
& F_{4}=G_{4} \cup A_{4}^{\prime} \cup A_{1} .
\end{aligned}
$$

Since $A_{1}, A_{2}^{1}$ and $A_{4}^{1}$ and $G_{r}$ are closed, $F_{2}$ and $F_{4}$ are closed.
First we assume

$$
\begin{equation*}
G_{2} \cap G_{4} \neq \emptyset . \tag{A.15}
\end{equation*}
$$

We can then find an $x_{0} \varepsilon G_{2} \cap G_{4} \subset J_{2} \cap \bar{J}_{1}$ and points $y_{r} \in J_{2} \cap A_{r}$ and arcs $\left[x_{0}, y_{r}\right]$ of $J_{2}$ from $x_{0}$ to $y_{o} r_{r}$ such that $\left(x_{0}, y_{r}\right) \subset$ int $J_{1}$, $r=2,4$. Note that automatically $y_{r} \in A_{r}$ since by (A.7)

$$
J_{2} \cap A_{r} \subset \AA_{r}, r=2,4 .
$$

If $x_{0} \in A_{2}$, then the arc $\left[x_{0}, y_{4}\right]$ satisfies all requirements for $B$ and we are done. Similary if $x_{0} \in A_{4} \cdot x_{0} \varepsilon J_{2} \cap\left(A_{1} \cup A_{3}\right)$ is impossible, by virtue of (A.11). Since $J_{1}=A_{1} \cup A_{2} \cup A_{3} \cup A_{4}$ this takes care of $x_{0} \in J_{1}$, and leaves us with $x_{0} \in J_{2} \cap \operatorname{int}\left(J_{1}\right)$. In this case, the arc $\left[x_{0}, y_{r}\right]$ hits $J_{1}$ first in $J_{2} \cap A_{r}$ (at $y_{r}$ ), and neither of the arcs $\left[x_{0}, y_{2}\right]$ and $\left[x_{0}, y_{4}\right]$ can be a subarc of the other. Thus $\left[x_{0}, y_{2}\right]$ and $\left[x_{0}, y_{4}\right]$ only have the point $x_{0}$ in common and we can take $B=\left[x_{0}, y_{2}\right] \cup\left[x_{0}, y_{4}\right]$. This is the arc of $J_{2}$ from $y_{2}$ to $y_{4}$ through $x_{0}$, with

$$
\stackrel{\circ}{B}=\left(x_{0}, y_{2}\right) \cup\left(x_{0}, y_{4}\right) \cup\left\{x_{0}\right\} \subset \operatorname{int}\left(J_{1}\right) .
$$

Thus, in this case the lemma is again true, and we have found $B$ whenever (A.15) holds.

Now assume that

$$
\begin{equation*}
G_{2} \cap G_{4}=\emptyset . \tag{A.16}
\end{equation*}
$$

We shall complete the proof by showing that (A.16) leads to a contradiction. Denote by $a$ the common endpoint of $A_{1}$ and $A_{2}$ (see Fig. A.4). If (A.16) holds, then

$$
\begin{equation*}
G_{2} \cap\left(A_{4}^{\prime} \cup A_{1}\right)=\emptyset, \tag{A.17}
\end{equation*}
$$

since $G_{2} \subset J_{2}$ implies

$$
\begin{gathered}
G_{2} \cap A_{1} \subset J_{2} \cap A_{1}=\emptyset \quad \text { (by (A.7)) }, \\
G_{2} \cap A_{4}^{\prime} \subset G_{2} \cap J_{2} \cap A_{4} \subset G_{2} \cap G_{4}=\emptyset \quad \text { (by (A.10)). }
\end{gathered}
$$

Similary $G_{4} \cap A_{2}^{\prime}=\emptyset$ so that

$$
\begin{equation*}
F_{2} \cap F_{4}=A_{2}^{\prime} \cap\left(A_{4}^{\prime} \cup A_{1}\right)=\{a\} . \tag{A.18}
\end{equation*}
$$

Next we choose a point $b \varepsilon \operatorname{int}\left(J_{1}\right) \cap \operatorname{int}\left(J_{2}\right)$ sufficiently close to $a$, so that we may connect $b$ to $A_{2}^{\prime} \backslash\{a\}$ and to $A_{1} \cup A_{4}^{\prime} \backslash\{a\}$ by
continuous paths $\phi_{2}$ and $\phi_{4}$, respectively, which are contained in $\operatorname{int}\left(\mathrm{J}_{1}\right) \cap \operatorname{int}\left(\mathrm{J}_{2}\right)$ except for the final point of $\phi_{2}$ which lies on $A_{2}^{\prime}$ and the final point of $\phi_{4}$ which lies on $A_{1} \cup A_{4}^{\prime}$. This can be done because a $\varepsilon A_{1} \subset \operatorname{int}\left(J_{2}\right) \cap J_{1}$, and by exercise VI.18.3 in Newman (1951) we may assume that $A_{2}^{\prime}$ and $A_{1} \cup A_{4}^{\prime}$ are segments radiating from a $\varepsilon J_{1} \cap \operatorname{int}\left(J_{2}\right)$; note that $A_{2}^{\prime}$ and $A_{4}^{\prime}$ have nonempty interiors by construction. Finally, let $c \varepsilon A_{3}$. We can then connect $b$ to $c$ by the following curve $\pi_{2}$ : Go from $b$ to $A_{2}^{\prime}$ along $\phi_{2}$ and then continue along $A_{2} \cup A_{3} \backslash\{a\}$ to $c$. This path is disjoint from $F_{4}$ because $A_{2} \cup A_{3} \backslash\{a\}$ and $A_{4}^{\prime} \cup A_{1}$ are disjoint, while $\phi_{2}$ minus its final point lies in $\operatorname{int}\left(J_{1}\right) \cap \operatorname{int}\left(J_{2}\right)$ which is disjoint from $F_{4} \subset J_{1} \cup J_{2}$, and finally

$$
\begin{aligned}
& \left(A_{2} \cup A_{3} \backslash\{a\}\right) \cap G_{4} \subset\left(A_{2} \cap J_{2} \cap G_{4}\right) \cup\left(A_{3} \cap J_{2}\right) \subset G_{2} \cap G_{4}=\emptyset \\
& \text { (compare proof of (A.17). }
\end{aligned}
$$

In the same way we can connect $b$ with $c$ by a path which moves along $\phi_{4}$, and $A_{1} \cup A_{4} \cup A_{3} \backslash\{a\}$, and which does not intersect $F_{2}$. Since $F_{2} \cap F_{4}$ is connected (see (A.18)), Alexander's lemma (Newman (1951), Theorem V.9.2) implies that $b$ is connected to $c$ by a continuous curve $\psi$ disjoint from $F_{2} \cup F_{4}$. This, however, is impossible as we now show. $\psi$ begins at $b \varepsilon \operatorname{int}\left(J_{1}\right) \cap \operatorname{int}\left(J_{2}\right)$ and ends at $c \varepsilon A_{3}$ $\subset \operatorname{ext}\left(\mathrm{J}_{2}\right) \cap \mathrm{J}_{1}$. Let d be the first point of $\psi$ in $J_{1}$. Then, since $\psi$ is disjoint from $F_{2} \cup F_{4}$, we must have

$$
\begin{equation*}
d \varepsilon A_{3} \cup\left(A_{2} \backslash A_{2}^{\prime}\right) \cup\left(A_{4} \backslash A_{4}^{\prime}\right) . \tag{A.19}
\end{equation*}
$$

The right hand side of (A.19) lies in $\operatorname{ext}\left(J_{2}\right)$ by (A.7) and the fact that $A_{r} \backslash A_{r}^{\prime}$ is (by (A.14)) disjoint from $J_{2}$ and contains the common endpoint of $A_{r}$ and $A_{3}$ in $\operatorname{ext}\left(J_{2}\right)$. Therefore, in going from $b \varepsilon \operatorname{int}\left(J_{1}\right) \cap \operatorname{int}\left(J_{2}\right)$ to $d$ along $\psi$ we must hit $J_{2}$ in a point e $\varepsilon J_{2} \cap \bar{J}_{1}$ (because $d$ is the first point of $\psi$ on $J_{1}$ ). But any such point $e$ must lie in $F_{2} \cup F_{4}$ since we can go from $e$ along some arc of $J_{2}$ to $\operatorname{ext}\left(\mathrm{J}_{1}\right) \quad\left(\mathrm{J}_{2} \subset \bar{J}_{1}\right.$ is impossible by (A.7)). If this arc hits $A_{2}$ before $A_{4}$ then $e \in G_{2}$, and if it hits $A_{4}$ before $A_{2}$ then $e \in G_{4}$. Thus $\psi$ must intersect $F_{2} \cup F_{4}$ and we have deduced a contradiction from (A.16).

Proposition 2.2. Let $J$ be a Jordan curve on $m$ (and hence also on $\mathcal{G}_{8}$ and on $\mathrm{G}^{*}$ ) which consists of four closed $\operatorname{arcs} A_{1}, A_{2}, A_{3}, A_{4}$ with disjoint interiors, and such that $A_{1}$ and $A_{3}$ each contain at least
one vertex of $m$. Assume that one meets these arcs in the order $A_{1}$, $A_{2}, A_{3}, A_{4}$ as one traverses $J$ in one direction. Then there exists a path $r$ on $\mathcal{G}$ inside $\bar{J}=J \cup \operatorname{int}\left(J_{1}\right)$ from a vertex on $A_{1}$ to a vertex on $A_{3}$, and with all vertices of $r$ in $J \backslash A_{1} \cup A_{3}$ occupied, if and only if there does not exist a vacant path $r^{*}$ on $\ell^{*}$ inside $\bar{J} \backslash A_{1} \cup A_{3}$ from a vertex of $\AA_{2}$ to a vertex of $\AA_{4}$.
Proof: First assume that there exists a vacant path $r^{*}$ on $\mathcal{C}^{*}$ inside $\bar{J} \backslash A_{1} \cup A_{3}$ from $y_{2} \in \AA_{2}$ to $y_{4} \varepsilon \AA_{4}$. Since $A_{2}$ and $A_{4}$ separate $A_{1}$ and $A_{3}$ on $J$ any path $r$ inside $J$ from a vertex on $A_{1}$ to a vertex on $A_{3}$ must intersect $r^{*}$ (e.g. by Newman (1951) Theorem V.11.8). If $r$ is on $G$ and $r^{*}$ on $g^{*}$, then they must intersect in a vertex of $m$ (and of $\mathcal{G}$ and $\mathcal{g}^{*}$ ) by Comment $2.2($ vii). This vertex would lie in $\bar{J} \backslash A_{1} \cup A_{3}$ and be vacant, as a vertex of $r *$. Thus any path on $\mathcal{G}$ in $\bar{J}$ connecting a vertex on $A_{1}$ with a vertex of $A_{3}$ would have to contain a vacant vertex in $\bar{J} \backslash A_{1} \cup A_{3}$. Consequently, no path $r$ as required in the lemma exists. This proves one direction of the proposition.

Now for the converse. Without loss of generality we may assume that the plane has been mapped homeomorphically onto itself such that $J$ is now the unit circle, that $A_{1}\left(A_{3}\right)$ intersects the line segment


Figure A.6. $J$ is the circle in the center. $A_{2}$ and $A_{4}$ are the boldly drawn arcs. The two hatched regions are two faces of $m_{7}$.
from the origin to $(-2,+2)$ (to $(2,-2))$, while $A_{2}\left(A_{4}\right)$ lies between $A_{1}$ and $A_{3}\left(A_{3}\right.$ and $\left.A_{1}\right)$ as we go around $J$ clockwise. We next modify the graphs outside $\bar{J}$, as well as the occupancy configuration outside int(J). We shall then apply Cor.2.2 to the modified graph and configuration. The mosaic $m$ is modified to a mosaic $m_{7}$ as follows. The vertices of $m_{7}$ are the vertices of $m$ in $\bar{J}$ plus all points of the form $\left(2 i_{1}, 2 i_{2}\right), i_{1}, i_{2} \in \mathbb{Z}$. As for edges, there is an edge of $m_{1}$ between $\left(2 i_{1}, 2 i_{2}\right)$ and the four points $\left(2 i_{1} \pm 2,2 i_{2} \pm 2\right)$. The edges of $m$ in $\bar{j}$ are also edges of $m_{7}$. Finally, we write

$$
u_{1}=(-2,2), u_{2}=(2,2), u_{3}=(2,-2), u_{4}=(-2,-2)
$$

and we give $r_{1}$ an edge between $u_{r}$ and any vertex on $A_{r}, r=1$ or 3 (see Fig. A.6). $m_{1}$ has no further edges. We insert the edges from $A_{r}$ to $u_{r}$ in such a way that they lie in $\operatorname{int}\left(S_{1}\right) \backslash \bar{J}$, except for their endpoints, where $S_{1}$ is the square

$$
S_{1}=\left\{\left(x_{1}, x_{2}\right):\left|x_{1}\right| \leq 2,\left|x_{2}\right| \leq 2\right\} .
$$

Moreover, we choose these edges such that an edge from $A_{1}$ to $u_{1}$ and an edge from $A_{3}$ to $u_{3}$ do not intersect, while the edges from $A_{r}$ to $u_{r}$ intersect in $u_{r}$ only (see Fig. A.6). Thus $m_{1}$ contains a copy of the mosaic $m$ of Ex. 2.2(i) (multiplied by a factor two). In $\bar{J} m_{1}$ coincides with the original $m$, while there are no edges in $S_{1} \backslash \operatorname{int}(J)$ which have interior intersections. The faces of $m_{1}$ are the open squares into which the plane is divided by the lines $x_{1}=2 i_{1}$, $x_{2}=2 i_{2}, i_{1}, i_{2} \varepsilon \mathbb{Z}$ - with the exclusionof $\stackrel{\circ}{S}_{1}$ - as well as the faces of $m$ inside $J$, plus certain faces in $\stackrel{\circ}{S}_{j} \backslash \bar{J}$. The last kind of faces are either "triangular" bounded by two edges from $u_{r}$ to $A_{r}$ and an edge of $m$ in $A_{r}$, or a face bounded by the two edges on the perimeter of $S_{1}$ incident to $u_{s}, s=2,4$, one edge from $u_{1}$ to $A_{1}$ and one from $u_{3}$ to $A_{3}$ plus an arc of $J$ containing $A_{s}$ (these are the hatched faces in Fig. A.6). It is clear that $m_{1}$ is a mosaic.

We next take for $\mathcal{F}_{1}$ the collection of faces of $m$ in $\bar{J}$ which belong to $\mathfrak{F}$. In other words, a face $F$ of $m_{1}$ belongs to $\mathcal{F}_{1}$ iff $F \subset$ int(J) (in which case $F$ is also a face of $m$ ) and $F \in \mathcal{F}$. Note that since $J$ is a Jordan curve made up from edges of $m$, which are also edges of $m_{1}$, each face of $\pi_{1}$ and of $m_{1}$ lies either entirely in int(J) or in ext $(J)$. We take $\left(\mathcal{C}_{1}, \mathcal{C}_{1}^{\star}\right)$ as the matching pair based on $\left(\mathbb{M}_{1}, \mathfrak{F}_{1}\right)$. Clearly $\mathcal{G}_{1}$ and $\mathcal{C}_{1}^{*}$ coincide with $\mathcal{C}_{\mathcal{C}}$ and $\mathcal{C}_{\mathcal{A}}^{*}$, respectively, in $J$.

Finally we define the modified occupancy configuration on $\pi_{7}$. Let $\omega$ be the original occupancy configuration on $m$. Let $H$ be the half line from $u_{3}$ parallel to the first coordinate axis:
$H=\left\{\left(x_{1}, x_{2}\right): x_{1} \geq 2, x_{2}=-2\right\}$. Then we take

$$
\begin{array}{ll}
\omega_{1}(v)=\omega(v) & \text { if } v \varepsilon \bar{J} \backslash A_{1} \cup A_{3},  \tag{A.20}\\
\omega_{1}(v)=+1 & \text { if } v \varepsilon A_{1} \cup A_{3} \cup H, \\
\omega_{1}(v)=-1 & \text { if } \quad v \notin \bar{J} \text { and } v \notin H .
\end{array}
$$

We choose a vertex $v$ in $A_{1}$ and take

$$
\begin{aligned}
& W_{1}=W_{1}\left(v, \omega_{1}\right)=\text { occupied component of } v \text { on } c_{1} \text { in the } \\
& \text { configuration } \omega_{1} \text {. }
\end{aligned}
$$

Now assume that there does not exist any path $r$ on $\mathcal{G}$ in $\bar{J}$ from a vertex on $A_{1}$ to a vertex on $A_{3}$ with all vertices on $r$ and in $\bar{J} \backslash A_{1} \cup A_{3}$ occupied. In this case $W_{1}$ cannot contain any point on $A_{3}$. For if there would be an occupied path $r_{1}$ on $\mathcal{C}_{1}$ from $v$ to a vertex of $A_{3}$, then either $r_{1}$ is contained in $\bar{J}$ or it leaves $\bar{J}$ before it reaches $A_{3}$. The first case cannot arise, for if $r_{1}$ stays in $\bar{J}$, then $r_{1}$ is also a path on $\mathcal{G}$ and the vertices on $r_{1}$ in $\bar{J} \backslash A_{1} \cup A_{3}$ would also have to be occupied in $\omega\left(\omega(v)=\omega_{p}(v)\right.$ for all such vertices; see (A.20)). Thus, the piece of $r_{1}$ from its last vertex on $A_{1}$ to its first vertex on $A_{3}$ would be a path $r$ of the kind which we just assumed not to exist. Also the second case is impossible, because the only way to leave $\bar{J}$ on $\mathcal{C}_{1}$ without hitting $A_{3}$ is via $u_{1}$ and $u_{1}$ is vacant in $\omega_{1}$ by (A.20). Thus no occupied path $r_{1}$ can go through $u_{1}$. It follows that indeed $W_{1} \cap A_{3}=\emptyset$. Since all vertices of $A_{3} \cup H$ are occupied in $\omega_{1}$, and can therefore be connected by occupied paths on $\mathcal{C}_{1}$ in $\omega_{1}$, it follows that they belong to one component, and

$$
\begin{equation*}
W_{1} \cap\left(A_{3} \cup H\right)=\emptyset . \tag{A.21}
\end{equation*}
$$

Since all vertices outside $\bar{J}$ and not on $H$ are vacant we obtain also $W_{1} \subset \bar{J}$.

We are now ready to apply Cor. 2.2. This Corollary, applied to the cluster $W_{1}$ on $\mathcal{C}_{1}$ shows that there exists a vacant circuit $J *$ on $C_{1}^{\star}$ surrounding $W_{1}$. Now all vertices on $A_{1}$ are occupied in $\omega_{1}$ (see (A.20)) and hence belong to $W_{1}$ (since $v \in A_{1}$ ). Thus

$$
\begin{equation*}
A_{1} \subset W_{1} \subset \operatorname{int}\left(J^{*}\right) \tag{A.22}
\end{equation*}
$$

Also, $\mathrm{J}^{*}$ being vacant cannot intersect $A_{3} \cup H$, since it would then have to intersect this set in a vertex (see Comment 2.2(vii)) and all vertices on $A_{3} \cup H$ are occupied in $\omega_{1}$. But since $H$ goes out to $\infty$ and $A_{3} \cup H$ together with the edges from $A_{3}$ to $u_{3}$ form a connected set, this means that

$$
\begin{equation*}
A_{3} \cup H \subset \operatorname{ext}(J *) \tag{A.23}
\end{equation*}
$$

We can now apply Lemma A. 2 with $J_{1}=J, J_{2}=J^{*}-(A .22)$ and (A.23) correspond to (A.7). J* therefore must contain an arc $B$ such that $\stackrel{\circ}{B} \subset \operatorname{int}(J) \subset \bar{J} \backslash A_{1} \cup A_{3}$ and one endpoint on each of $\AA_{2}$ and $\AA_{4}$. The arc $B$ therefore lies in $\bar{J} \backslash A_{1} \cup A_{3}$ and in this region C $_{1}^{*}$ coincides with $\mathcal{C}_{8}$ and $\omega_{1}$ with $\omega$. Thus all vertices of $g_{8} *$ on $B$ are vacant. Also, all points of $B$ belong to edges of $C_{8}^{*}$ in $\bar{J} \backslash A_{1} \cup A_{3}$, because $J *$ is a circuit on $\mathcal{G}^{*}$. The endpoints of $B$ belong to $J \star \subset g_{g}{ }^{*}$, as well as to $J \subset \mathcal{G}_{g}$ (since $\AA_{2} \cup \AA_{4} \subset J$ ), hence are necessarily vertices of $\mathrm{C}_{\mathrm{*}}$ ( see Comment $2.2(\mathrm{vii})$ ). It follows that $B$ is made up of the complete edges of a vacant path $r^{*}$ on $\mathcal{C}^{*}$ inside $\bar{J} \backslash A_{1} \cup A_{3}$, and runs from a vertex on $\AA_{2}$ to a vertex $\stackrel{\circ}{4}_{4}$. The existence of such an $r^{*}$ was just what we wanted to prove.

We remind the reader of the set up for Proposition 2.3. $J$ is a Jordan curve consisting of four nonempty closed arcs $B_{1}, A, B_{2}, C$ with $A$ and $C$ separating $B_{1}$ and $B_{2}$ on $J_{i} \cdot L_{i}: x(1)=a_{i}, i=1,2, a_{1}<a_{2}$, are two axes of symmetry for $G_{p \ell}$, and for $i=1,2$
$B_{i}$ is a curve made up from edges of $\eta_{b l}$, or $B_{i}$
lies on $L_{i}$ and $J$ lies in the halfplane
$(-1)^{i}\left(x(1)-a_{i}\right) \leq 0$.

The proposition deals with paths $r=\left(v_{0}, e_{1}, \ldots, e_{v}, v_{v}\right)$ on $\mathcal{G}_{p \ell}$

$$
\begin{equation*}
v_{1}, e_{2}, \ldots, e_{v-1}, v_{v-1} \subset \operatorname{int}(J), \tag{A.25}
\end{equation*}
$$

$e_{1}$ has exactly one point in common with $J$. This lies in $B_{1}$ and is either $v_{0}$, or in case $B_{1} \subset L_{1}$ it may be the midpoint of $e_{1}$,
and $e_{v}$ has exactly one point in common with $J$. This lies in $B_{2}$ and is either $v_{v}$, or in case $B_{2} \subset L_{2}$, it may be the midpoint of $e_{v}$.
$J^{-}(r)$ and $J^{+}(r)$ are the components of int (J) \r with $A$ and $C$ in their boundary, respectively. $r_{1} \prec r_{2}$ means $J^{-}\left(r_{1}\right) \subset J_{2}^{-}\left(r_{2}\right)$ (see Def. 2.11 and 2.12). For a path $r$ and a subset $S$ of $\mathbb{R}^{2} r \subset S$ means that all edges and vertices of $r$ lie in $S$. We only consider sets $S$ for which

$$
\begin{equation*}
B_{1} \cap B_{2} \cap S=\emptyset . \tag{A.28}
\end{equation*}
$$

Proposition 2.3. Assume that (2.3)-(2.5) hold with $G$ replaced by $m$ and that $L_{i}: x(1)=a_{i}, i=1,2$, are axes of symmetry for $G_{p l}$, with $a_{1}<a_{2}$. Let $J$ be a Jordan curve consisting of four closed nonempty arcs $B_{1} A, B_{2}$ and $C$ as above satisfying (A.24). Let $S$ be any subset of $\mathbb{R}^{2}$ such that (A.28) holds. Denote by $R=\Omega(S, w)$ the collection of all occupied paths $r$ on $G_{p l}$ which satisfy (A.25) -(A.27) and $r \subset S$. If $R \neq \emptyset$, then it has a unique element $R=R(S, w)$ which precedes all others. Any occupied path $r$ on $G_{p l}$ which satisfies (A.25)-(A.27) and $r \subset S$ also satisfies
(A.29) $\quad r \cap \bar{J} \subset \bar{J}^{+}(R)$ and $R \cap \bar{J} \subset \bar{J}^{-}(r)$.

Finally, let $r_{0}$ be a fixed path on $G_{p \ell}$ satisfying (A.25)-(A.27) and $r_{0} \subset S$ (no reference to its occupancy is made here). Then, whether $R=r_{0}$ or not depends only on the occupancies of the vertices of $\mathcal{E}_{\mathrm{pl}}$ in the set
(A.30) $\quad\left(\bar{J}^{-}\left(r_{0}\right) \cup V_{1} \cup V_{2}\right) \cap s$,
where $V_{i}=\emptyset$ if $B_{i}$ is made up from edges of $M_{\ell \ell}$, while
$V_{i}=\left\{v: v\right.$ a vertex of $G_{p \ell}$ such that its reflection $\tilde{v}$ in
$L_{i}$ belongs to $\bar{J}^{-}\left(r_{0}\right)$ and such that $e \cap \bar{J} \subset \bar{J}^{-}\left(r_{0}\right) \cap s$
for some edge $e$ of $\mathcal{G}_{p \ell}$ between $v$ and $\left.\tilde{v}\right\}, i=1,2$,
in case $B_{i}$ lies in $L_{i}$, but is not made up from edges of $m_{p l}$.
Proof: Assume $\quad \mathfrak{L} \neq \emptyset$ and $r_{1}, r_{2} \in \Omega$. We shall first construct a path $r$ on $G_{p \ell}$ satisfying (A.25)-(A.27) as well as
(A.31) each edge of $\mathcal{E}_{\mathrm{p} \ell}$ which appears in $r$ also appears in $r_{1}$ or in $r_{2}$,
and
(A.32)

$$
r<r_{1} \text { and } r<r_{2} .
$$

Since the vertices on $r$ are endpoints of the edges appearing in $r$, each vertex on $r$ also lies on $r_{1}$ or $r_{2}$. In particular since $r_{1}, r_{2} \subset S$ (A.31) will imply $r \subset S$. Moreover all vertices on $r$ will be occupied since this holds for $r_{1}, r_{2} \varepsilon R$. Thus $r$ will be an element of $R$ which precedes $r_{1}$ and $r_{2}$. By carrying out this process repeatedly we obtain paths $r \varepsilon \Omega$ which occur earlier and earlier in the partial order. After a finite number of steps we shall arive at the minimal crossing $R$.

Now for the details. Let $r_{1}=\left(v_{0}, e_{1}, \ldots, e_{\nu}, v_{\nu}\right)$ and $r_{2}=\left(w_{0}, f_{1}, \ldots, f_{\tau}, w_{\tau}\right)$. Both of these paths are self-avoiding, so that the curve $C_{1}$ made up from $e_{1}, \ldots, e_{v}$ is a simple arc with endpoints $v_{0}$ and $v_{\nu} . C_{1}$ intersects $J$ in exactly two points, $m_{0} \in B_{1}$ and $m_{v} \in B_{2}$. $m_{0}$ equals $v_{0}$ or the midpoint of $e_{1}$, and $m_{v}$ equals $v_{v}$ or the midpoint of $e_{\nu}$. The open arc of $C_{1}$ between $m_{0}$ and $m_{v}$ lies in int(J). Similar comments apply to the curve $C_{2}$ made up from the edges of $r_{2}: f_{1}, \ldots, f_{\tau}$.

If $C_{2}$ contains no point in $J^{-}\left(r_{1}\right)$ then we take $r=r_{1}$. We shall see below (after (A.44)) that this implies (A.32). ((A.25)-(A.27) and (A.31) are obvious in this case). Let us therefore assume that $C_{2}$ contains a point $x \in J^{-}\left(r_{1}\right)$. Then $x$ belongs to some edge of $r_{2}$, say $x \in f_{\alpha}$. We note that all edges of $r_{1}$ and $r_{2}$ are edges of the planar graph $\mathcal{E}_{\mathrm{pl}}$. Two such edges, if they do not coincide, can intersect only in a vertex of $\mathcal{G}_{\text {pl }}$, which is a common endpoint of these edges. Thus an edge $f$ of $r_{2}$ which contains a point of $J^{-}\left(r_{1}\right)$ cannot leave $J^{-}\left(r_{1}\right)$ by crossing $r_{1}$. If it crosses $\operatorname{Fr}\left(J^{-}\left(r_{1}\right)\right) \backslash r_{1}$ then it crosses $J$ and $f$ must be $f_{1}$ or $f_{\tau}$, and $f$ intersects $J$ only once, in the midpoint of $f$. In this case one half of $f$ lies in ext(J) $\cup J$ while the interior of the other half - which contains a point of $\mathrm{J}^{-}\left(r_{1}\right)$ - must lie entirely in $\mathrm{J}^{-}\left(r_{1}\right)$ (cf. Comment 2.4(ii)). Thus for any edge $f$ of $r_{2}$ we must have
(A.33) either $\stackrel{\circ}{f} \cap \operatorname{int}(J) \subset J^{-}\left(r_{1}\right)$ or $f \cap \operatorname{int}(J) \subset \bar{J}^{+}\left(r_{1}\right)$.

In particular

$$
\begin{equation*}
\stackrel{\circ}{f_{\alpha}} \cap \operatorname{int}(J) \subset J^{-}\left(r_{1}\right) \tag{A.34}
\end{equation*}
$$

Also, if we move along the arc $C_{2}$ from $x$ to $w_{0}$, then the first
intersection with $C_{1}$, if any, must be a vertex of $\mathcal{C}_{p \ell}$ which is a common endpoint of an edge of $r_{2}$ and an edge of $r_{1}$. In particular it must equal $v_{\beta}$ for some $0 \leq \beta \leq v$. If such an intersection exists we take $b$ equal to this intersection; if no such intersection exists we take $b=w_{0}$, the initial point of $r_{2}$. Similarly, if moving along $C_{2}$ from $x$ to $w_{\tau}$ there is an intersection with $C_{1}$ then we take $c$ equal to the first such intersection; otherwise we take $c=w_{\tau}$, the final point of $r_{2}$. In all cases $b$ and $c$ are vertices of $r_{2}$, and if $c$ is on $r_{1}$, then $c=v_{\gamma}$ for some $0 \leq \gamma \leq \nu$. We write $\rho$ for the piece of $r_{2}$ between $b$ and $c$. I.e., if $b=w_{\delta}$, $c=w_{\varepsilon}$ with $\delta<\varepsilon$ then $\rho=\left(w_{\delta}, e_{\delta+ך}, \ldots, e_{\varepsilon}, w_{\varepsilon}\right)$, and $\delta$ and $\varepsilon$ are interchanged when $\delta>\varepsilon$. The same argument used above for showing (A.33) shows that $\rho$ - which contains the point $x \in J^{-}\left(r_{1}\right)$ - cannot leave $J^{-}\left(r_{1}\right)$ through $r_{1}$, and that if $\rho$ crosses $J$, then $\rho$ contains a half edge in $\operatorname{ext}(J) \cup J$, the other half being in $J^{-}\left(r_{1}\right)$. Thus

$$
\begin{equation*}
\stackrel{\circ}{\rho} \cap \operatorname{int}(J)=(\rho \backslash\{b, c\}) \cap \operatorname{int}(J) \subset J^{-}\left(r_{1}\right) . \tag{A.35}
\end{equation*}
$$

In the sequel we restrict ourselves to the case where $b=w_{\delta}$ and $c=W_{\varepsilon}$ with $1 \leq \delta<\varepsilon \leq \tau-1$. This means that (A.35) simplifies to

$$
\begin{equation*}
\stackrel{\circ}{\rho}=\rho \backslash\{b, c\} \subset J^{-}\left(r_{1}\right) . \tag{A.36}
\end{equation*}
$$

We leave it to the reader to make the simple changes which are necessary when $b=w_{0}$ and/or $c=w_{\tau}$. We define a new path $\tilde{r}_{1}$ by replacing the piece of $r_{1}$ between $b$ and $c$ by $\rho$. Note that we may have $b=v_{\beta}=w_{\delta}, c=v_{\gamma}=w_{\varepsilon}$ with $\gamma<\beta$. We then have to reverse $\rho$ and in this case $\tilde{r}_{1}$ becomes

$$
\tilde{r}_{1}=\left(v_{0}, e_{1}, \ldots, e_{\gamma}, v_{\gamma}=w_{\varepsilon}, f_{\varepsilon}, w_{\varepsilon-1}, \ldots, f_{\delta+1}, w_{\delta}=v_{\beta}, e_{\beta+1}, \ldots, e_{\nu}, v_{\nu}\right) .
$$

(In the simpler case $\beta<\gamma \quad \rho$ is inserted in its natural order.) We show that $\tilde{r}_{1}$ is a path satisfying (A.25)-(A.27). $\tilde{r}_{1}$ consists of one or two pieces of $r_{1}$ and $\rho$. Each of these pieces is a piece of a self-avoiding path, hence self-avoiding. Also, $\stackrel{\circ}{\rho}$ does not intersect $r_{1}$, and if $\tilde{r}_{1}$ contains two pieces of $r_{1}$ then they are disjoint (because $b$ and $c$ are distinct, being two points of the simple arc $C_{2}$, one strictly before and one strictly after $x$ on $C_{2}$ ). Therefore $\tilde{r}_{1}$ is self-avoiding. Let $\tilde{r}_{1}=\left(\tilde{v}_{0}, \tilde{e}_{1}, \ldots, \tilde{e}_{\xi}, \tilde{v}_{\xi}\right)$. Then by construction each of the edges $\tilde{e}_{\mathbf{i}}, 2 \leq \mathbf{i} \leq \xi-1$, is one of the edges
$e_{2}, \ldots, e_{\nu-1}, f_{2}, \ldots f_{\tau-1}$, and similarly

$$
\left\{\widetilde{v}_{1}, \ldots, \tilde{v}_{\xi-1}\right\} \subset\left\{v_{1}, \ldots, v_{v-1}, w_{1}, \ldots, w_{\tau-1}\right\} .
$$

Thus $\tilde{r}_{1}$ satisfies (A.25), because $r_{1}$ and $r_{2}$ do. Also (A.26) and (A.27) hold, because $\tilde{e}_{1}=e_{1}, \tilde{e}_{\xi}=e_{\nu}$ when $1 \leq \delta<\varepsilon \leq \tau-1$. (But even when $b=w_{0}$ (A.26) is easy for then $\tilde{e}_{1}=f_{1}$; similarly for (A.27).)

For brevity denote by $E(r)$ the collection of edges of $\mathcal{C}_{p \ell}$ appearing in $r$. Then it is clear from the construction that

$$
\begin{equation*}
E\left(\tilde{r}_{1}\right) \subset E\left(r_{1}\right) \cup E\left(r_{2}\right) \tag{A.37}
\end{equation*}
$$

(A.37) says that (A.31) holds for $\tilde{r}_{1}$ instead of $r$. Since $r_{1} \subset \bar{J}^{-}\left(r_{1}\right)$ by definition, it is also immediate from the construction and (A.35) that

$$
\begin{equation*}
\tilde{r}_{1} \cap J \subset \bar{J}^{-}\left(r_{1}\right) \tag{A.38}
\end{equation*}
$$

We show that (A.38) implies

$$
\begin{equation*}
r_{1} \cap \bar{J} \subset \bar{J}^{+}\left(r_{1}\right) \subset \bar{J}^{+}\left(\tilde{r}_{1}\right) \tag{A.39}
\end{equation*}
$$

and

$$
\begin{equation*}
J^{-}\left(\tilde{r}_{1}\right) \subset J^{-}\left(r_{1}\right) \tag{A.40}
\end{equation*}
$$

To see this, observe first that the arc, $J_{1}$ say, of $J$ between the points of intersection of $r_{1}$ and $J$, and containing $A$, is the only part of $\bar{J}^{-}\left(r_{1}\right)$ on $J$. By (A.38) the points of intersection of $\tilde{r}_{1}$ and $J$ must lie on $J_{1}$. Consequently the arc of $J$ between these intersection points containing $C$ also contains that arc of $J$ between the intersection points of $J$ and $r_{1}$ containing $C$. The latter arc is just $J \backslash J_{1}$. Any interior point $z_{0}$ of $J \backslash J_{1}$ lies therefore in $\operatorname{Fr}\left(J^{+}\left(r_{1}\right)\right) \cap \operatorname{Fr}\left(J^{+}\left(\tilde{r}_{1}\right)\right)$. Such interior points exist since the endpoints of $J \backslash J_{1}$ are the intersections of $r_{1}$ with $J$; these lie on $B_{1} \cap \mathrm{~S}$ and $\mathrm{B}_{2} \cap \mathrm{~S}$, respectively, and cannot coincide by virtue of (A.28). Pick a point $z_{0}$ in the interior of $J \backslash J_{1}$. Any point $z_{1} \varepsilon \operatorname{int}(J)$ sufficiently close to $z_{0}$ belongs to $J^{+}\left(r_{1}\right) \cap J^{+}\left(\tilde{r}_{1}\right)$. Choose such a $z_{1}$ and let $y$ be an arbitrary point of $j^{+}\left(r_{1}\right)$. There then exists a continuous curve $\psi$ from $y$ to $z_{1_{+}}$in $J^{+}\left(r_{1}\right)$. By (A.38) $\psi$ cannot hit $\tilde{r}_{1}$, and since $\psi$ lies in $J^{+}\left(r_{\gamma}\right)$ it cannot hit $J$ either. Thus $\psi$ does not hit $\operatorname{Fr}\left(J^{+}\left(\tilde{r}_{1}\right)\right)$ and ends at $z_{p} \varepsilon J^{+}\left(\tilde{r}_{1}\right)$. Thus all of $\psi$ lies in $J^{+}\left(\tilde{r}_{1}\right)$ and in particular $y \in J^{+}\left(\tilde{r}_{1}\right)$. Since


Figure A.7. Schematic diagram giving relative locations $J$ is the perimeter of the rectangle. $J_{1}$ is the boldly drawn part of J. $r_{1}$ is drawn solidly and $\tilde{r}_{1}$ is dashed. $\tilde{r}_{1}$ coincides with $\tilde{r}$ in the part drawn as =-- . The figure illustrates a case with $b=w_{0}$.
$y$ was an arbitrary point of $J^{+}\left(r_{1}\right)$ we proved

$$
\begin{equation*}
J^{+}\left(r_{1}\right) \subset J^{+}\left(\tilde{r}_{1}\right) \tag{A.41}
\end{equation*}
$$

The second inclusion in (A.39) follows immediately from this, while the first inclusion in (A.39) is immediate from the definition of $\mathrm{J}^{+}$. (A.40) follows from (A.39) since $J^{-}(r)=\operatorname{int}(J) \backslash \bar{J}^{+}(r)$.
(A.40) implies that if an edge $f$ of $r_{2}$ satisfies $\stackrel{\circ}{f} \cap \operatorname{int}(J)$
$\subset J^{-}\left(\tilde{r}_{1}\right)$, then also $f \cap \operatorname{int}(J) \subset J^{-}\left(r_{1}\right)$. By virtue of (A.33) the other edges $f$ of $r_{2}$ satisfy $f \cap \operatorname{int}(J) \subset \bar{J}^{+}\left(r_{1}\right) . f_{\alpha}$ is not one of these, by (A.34). However, $f_{\alpha}$ is part of $\rho$, and hence of $\tilde{r}_{1}$ so that $f_{\alpha} \cap \operatorname{int}(J) \subset \bar{J}^{+}\left(\tilde{r}_{1}\right)$. Therefore, if we write $N(r)$ for the number of edges $f$ or $r_{2}$ with $\stackrel{\circ}{f} \cap \operatorname{int}(J) \subset J^{-}(r)$, then $f_{\alpha}$ is counted in $N\left(r_{1}\right)$ but not in $N\left(\tilde{r}_{1}\right)$. Moreover, by the preceding observation, any $f$ counted in $N\left(\tilde{r}_{1}\right)$ must also be counted in $N\left(r_{1}\right)$. Thus

$$
\begin{equation*}
N\left(\tilde{r}_{1}\right)<N\left(r_{1}\right) . \tag{A.42}
\end{equation*}
$$

We now replace $r_{1}$ by $\tilde{r}_{1}$ and repeat the procedure, if necessary. If $C_{2}$ still contains a point in $J^{-}\left(\tilde{r}_{1}\right)$ then we form $\tilde{r}_{2}$ such that

$$
\begin{aligned}
E\left(\tilde{r}_{2}\right) \subset E\left(\tilde{r}_{1}\right) \cup E\left(r_{2}\right) \subset E\left(r_{1}\right) \cup E\left(r_{2}\right), & (c f . \text { (A.37)) } \\
J^{-}\left(\tilde{r}_{2}\right) \subset J^{-}\left(\tilde{r}_{1}\right) \subset J^{-}\left(r_{1}\right) & (c f .(A .40)),
\end{aligned}
$$

and

$$
N\left(\tilde{r}_{2}\right)<N\left(\tilde{r}_{1}\right)<N\left(r_{1}\right) \quad \text { (cf. (A.42)) }
$$

Since $r_{2}$ has finitely many edges $N\left(r_{1}\right)<\infty$, and $N$ decreases with each step. Thus, after a finite number of steps, say $\lambda$ steps, we arrive at a path $\tilde{r}_{\lambda}$ satisfying (A.25)-(A.27) and

$$
\begin{equation*}
E\left(\tilde{r}_{\lambda}\right) \subset E\left(\tilde{r}_{\lambda-1}\right) \cup E\left(r_{2}\right) \ldots \subset E\left(r_{1}\right) \cup E\left(r_{2}\right) \tag{A.43}
\end{equation*}
$$

$$
\begin{equation*}
J^{-}\left(\tilde{r}_{\lambda}\right) \subset J^{-}\left(\tilde{r}_{\lambda-1}\right) \subset \ldots \subset J^{-}\left(r_{1}\right) \tag{A.44}
\end{equation*}
$$

and such that $C_{2}$ contains no more points in $J^{-}\left(\tilde{r}_{\lambda}\right)$, or equivalently

$$
\begin{equation*}
r_{2} \cap \bar{J} \subset \bar{J}^{+}\left(\tilde{r}_{\lambda}\right) . \tag{A.45}
\end{equation*}
$$

The case where $C_{2}$ contains no points in $J^{-}\left(r_{1}\right)$ mentioned in the beginning of the proof is subsumed under this, if we take $\tilde{r}_{\lambda}=r_{1}$ for this case. We now take $r=\tilde{r}_{\lambda}$. (A.43) gives us (A.31) while (A.44) and (A.45) give us (A.32). Indeed (A.45) implies $J^{-}\left(\tilde{r}_{\lambda}\right)=J^{-}(r)$ $\subset J^{-}\left(r_{2}\right)$ just as (A.38) implies (A.41) (merely interchange + and -). This completes the construction of $r$.

Now that we have constructed $r$ from $r_{1}, r_{2}$ the remainder of the proof is easy. Denote the elements of $R$ in some order by $r_{1}, r_{2}, \ldots, r_{\sigma}$. If $\sigma=\emptyset$ we don't have to prove the existence of $R$, and when $R$ has only one element, $r_{1}$, then $R=r_{1}$. In general $R$ is finite by virtue of (2.3), (2.4). For $\sigma \geq 2$ let $r$ be the path constructed above from $r_{1}$ and $r_{2}$. For $\sigma=2$ take $R=r$. For $\sigma \geq 3$ go through the above construction with $r_{1}$ and $r_{2}$ replaced by $r$ and $r_{3}$, respectively. The resulting path, $\bar{r}$ say, is again in $\Omega$ and satisfies

$$
E(\bar{r}) \subset E(r) \cup E\left(r_{3}\right) \subset E\left(r_{1}\right) \cup E\left(r_{2}\right) \cup E\left(r_{3}\right) \quad(c f . \text { (A.31)) }
$$

and

$$
\bar{r} \prec r_{3} \text { and } \bar{r} \prec r \text {, hence } \bar{r} \prec r_{i}, 1 \leq i \leq 3 \text { (cf. (A.32)). }
$$

After a finite number of such constructions we obtain a path $R \varepsilon \Omega$ which satisfies

$$
\begin{equation*}
E(R) \subset \bigcup_{i=1}^{\sigma} E\left(r_{i}\right), \tag{A.46}
\end{equation*}
$$

This $R$ precedes all elements of $R$. (A.46) implies

$$
R \cap \bar{J} \subset \bar{J}^{-}(R) \subset \bar{J}^{-}\left(r_{i}\right), \quad 1 \leq i \leq \sigma,
$$

and hence $r_{i} \cap \bar{J} \subset \bar{J}^{+}(R)$ (just as (A.38) implied (A.39)). Thus (A.29) holds. The uniqueness of $R$ is immediate for if $R^{\prime} \varepsilon R$ also precedes all elements of $R$, then $R<R^{\prime}$ and $R^{\prime} \prec R$. Then (A.29) holds for $R$ as well as $R^{\prime}$ so that

$$
R \cap \bar{J} \subset \bar{J}^{-}\left(R^{\prime}\right), \quad R \cap \bar{J} \subset \bar{J}^{+}\left(R^{\prime}\right),
$$

whence

$$
R \cap \bar{J} \subset \bar{J}^{-}\left(R^{\prime}\right) \cap \bar{J}^{+}\left(R^{\prime}\right)=R^{\prime} \cap \bar{J} .
$$

Interchanging $R$ and $R^{\prime}$ yields $R \cap \bar{J}=R^{\prime} \cap \bar{J}$, which together with (A.26) and (A.27) leads to $R=R^{\prime}$.

Finally, if $r_{0}$ is a path on $\mathscr{E}_{\mathrm{p} \ell}$ satisfying (A.25)-(A.27) and $r_{0} \subset S$, then $R=r_{0}$ if and only if $r_{0} \varepsilon R$ but $r_{0}$ is not preceded by any other element of $\sigma_{\mathrm{a}}$. Thus $\mathrm{R}=r_{0}$ is equivalent to
$r_{0}$ is occupied, but any path $r$ on $\mathcal{G}_{p \ell}$ satisfying (A.25)-(A.27) with $r \subset S$ with $r<r_{0}, r \neq r_{0}$ cannot be occupied.

Clearly, (A.47) only depends on the occupancies of sites on $r_{0}$ or on paths $r<r_{0}$ with $r \subset S$. But all such sites belong to $\bar{J}^{-}\left(r_{0}\right) \cap S$ or are an initial or final point in ext(J) of a path $r<r_{0}$ with $r \subset S$. Since $r$ has to satisfy (A.26) and (A.27) one easily sees that all these sites belong to the set (A.30)(cf. Comment 2.4(ii)). $\square$

We next prove a purely graph-theoretical proposition, which is needed only in Ch. 9. It was first proved by Sykes and Essam (1964). We find it somewhat simpler to prove the version below which refers to $\mathcal{G}_{\mathrm{p} \ell}$ and $\mathcal{G}_{\mathrm{p} \ell}^{*}$ rather than $\mathcal{G}$ and $\mathcal{G}_{\mathcal{G}}$. We remind the reader of the definition of $\mathcal{G}_{\mathrm{p} \ell}(\omega$; occupied) for an occupancy configuration $\omega$ on mpl satisfying (2.15) and (2.16). $\mathcal{E}_{p l}$ ( $\omega$; occupied) is the graph with
vertex set the set of occupied vertices of $\mathcal{G}_{p \ell}$ and edge set the set of edges of $\mathcal{G}_{p \ell}$ both of whose endpoints are occupied. $\mathcal{G}_{\mathrm{p} \ell}^{\star}$ ( $\omega$;vacant) is defined similarly; see the proof of Theorem 9.2.

Proposition A.1. Let $\omega$ be a fixed occupancy configuration on $M_{p l}$, satisfying (2.15) and (2.16). Two vacant vertices of Cipe $_{\mathrm{p} \ell}^{\star} \mathrm{v}_{1}$ and $v_{2}$ lie in the same component of $\mathscr{C}_{\mathrm{p} \ell}^{\star}$ ( $\omega$; vacant) if and only if $\mathrm{v}_{1}$ and $v_{2}$ lie in the same face of $\mathscr{E}_{p l}(\omega$; occupied).
Proof: $v_{1}$ and $v_{2}$ lie in the same component of $\mathscr{q}_{\mathrm{p} \ell}^{*}$ ( $\omega$; vacant) iff there exists a vacant path on $\mathcal{C}_{\mathrm{p} \ell}^{*}$ from $\mathrm{v}_{1}$ to $\mathrm{v}_{2}$. If such a path exists, then it cannot intersect any edge of $\mathcal{C}_{p l}$ ( $\omega$; occupied) (by virtue of Comment 2.3(v)) so that the path lies entirely in ine face of $\mathcal{G}_{\mathrm{p} \ell}(\omega$; occupied). Thus in one direction the proposition is trivial.

For the converse, assume $v_{1}, v_{2} \varepsilon \mathcal{C}_{\mathrm{p} \ell}^{\star}$ are vacant and lie in the same face of $\mathcal{G}_{p \ell}(\omega ;$ occupied). By definition of such a face as a component of $\mathbb{R}^{2} \backslash \mathcal{G}_{p l}(\omega ;$ occupied) this means that there exists a continuous curve $\psi$ in $R^{2} \backslash g_{p \ell}\left(\omega\right.$;occupied) from $v_{1}$ to $v_{2}$. In order to complete the proof we show how one can modify $\psi$ so that it becomes a path on $\dot{\mathrm{q}}_{\mathrm{p} \ell}^{\star}$ ( $\omega$; vacant). To make this modification we recall that all faces of $M_{p l}$ are "triangles" (Comment 2.3(vi)). Assume that $\psi$ intersects such a face, say the open triangle $F$ with distinct vertices $w_{1}, w_{2}, w_{3}$ and edges $e_{1}$ between $w_{2}$ and $w_{3}, e_{2}$ between $w_{3}$ and $w_{1}$, and $e_{3}$ between $w_{1}$ and $w_{2}$. Moving from $v_{1}$ to $v_{2}$ along $\psi$ let $x_{1}\left(x_{2}\right)$ be the first (last) intersection with $\bar{F}$. The $x_{i}$ are necessarily on the perimeter of $F$, since both endpoints of $\psi$ are vertices of $\mathcal{C}_{\text {p } \ell}^{\star}$, hence not in any of the open triangular faces of " ple . If $x_{i} \varepsilon e$, then at least one endpoint of e must be vacant, for otherwise $e$ belongs to $\mathcal{C}_{\mathrm{pl}}$ ( $\omega$; occupied), while $\psi$ is disjoint from this graph. This implies that $x_{1}$ can be connected to $x_{2}$ by a simple arc along the perimeter of $F$, which still does not intersect $G_{p \ell}(\omega$; occupied). For example, let $x_{1} \varepsilon e_{1}, x_{2} \varepsilon e_{2}$. If the common endpoint $w_{3}$ of $e_{1}$ and $e_{2}$ is vacant, then move from $x_{1}$ to $w_{3}$ along $e_{1}$ and from $w_{3}$ to $x_{2}$ along $e_{2}$. If $w_{3}$ is occupied, then $w_{1}$ and $w_{2}$ must be vacant, and one can go from $x_{1}$ to $w_{2}$ along $e_{1}$, from $w_{2}$ to $w_{1}$ along $e_{3}$, and from $w_{1}$ to $x_{2}$ along $e_{2}$. These connections from $x_{1}$ to $x_{2}$ do not intersect $\mathcal{G}_{p \ell}(\omega$; occupied), because if an edge $e$ does not belong to $G_{p l}(\omega$; occupied), then no interior point of $e$ can belong to $\mathcal{G}_{\mathrm{p} \ell}(\omega$; occupied). $\psi$ intersects only finitely many faces,
say $F_{1}, \ldots, F_{\nu}$. We can successively replace the piece of $\psi$ between the first and last intersection of $\bar{F}_{i}$ with a simple arc along the perimeter of $F_{i}$. Making such a replacement cannot introduce a new face whose interior is entered by $\psi$. On the contrary, each such replacement diminishes the number of such faces. Consequently, after a finite number of steps we obtain a continuous curve, $\phi$ say, from $v_{1}$ to $v_{2}$, disjoint from $\mathcal{E}_{p l}(\omega$; occupied), and which is contained in the union of the edges of $\mathcal{M}_{\ell \ell} . \phi$ may not be a path on $\mathcal{C}_{\mathrm{p} \ell}^{*}$. For instance it can contain only part of an edge $e$, rather than the whole edge $e$, and $\phi$ is not necessarily simple. Note, however, that $\phi$ begins at the vertex $v_{1}$ of $\mathrm{c}_{\mathrm{p} \ell}^{\star}$, and ends at $\mathrm{v}_{2}$ which we may take different from $v_{1}$ (there is nothing to prove if $v_{1}=v_{2}$ ). Let $w_{1}$ be the first vertex of $M_{p e}$ different from $v_{1}$ through which $\phi$ passes. Set

$$
\begin{aligned}
& t_{0}=\max \left\{t \varepsilon[0,1]: \phi(t)=v_{1}\right\}, \\
& t_{1}=\min \left\{t \varepsilon[0,1]: \phi(t)=w_{1}\right\} .
\end{aligned}
$$

We can then discard the piece of $\phi$ from $t=0$ to $t=t_{0}$; the restriction of $\phi$ to $\left[t_{0}, 1\right]$ is still a path from $v_{1}$ to $v_{2}$. Also for $t_{0}<t<t, \phi(t)$ cannot equal any vertex of $m_{p l}$ and therefore is contained in the union of the interiors of the edges of $\pi_{p l}$. Since the continuous path $\phi$ cannot go from the interior of one edge to the interior of another edge without passing through a vertex, this means that $\phi(t)$ for $t_{0}<t<t_{1}$ is contained in the interior of a single edge $e_{1}$ from $v_{1}$ to $w_{1}$. Also by connectedness $\phi$ passes through all points of $e_{1}$. We can therefore replace the piece of $\phi$ from $\mathrm{t}=0$ to $\mathrm{t}=\mathrm{t}_{1}$ by the simple arc $\mathrm{e}_{1}$. After this replacement $\phi$ still is a continuous path in $\mathbb{R}^{2} \backslash \mathcal{C}_{p \ell}(\omega$; occupied). We repeat this process with $w_{1}$ in place of $v_{1}$. After a finite number of replacements we obtain a path $\rho$ on $\eta_{p l} \backslash \mathcal{C}_{p l}$ ( $\omega$; occupied), with possible double points, from $v_{1}$ to $v_{2}$. Since $\rho$ does not intersect $\mathcal{C}_{\mathrm{pl}}(\omega$; occupied) it contains only vacant vertices, and in particular no central vertices of $\mathcal{G}_{\mathrm{pl}}($ see (2.15)). Thus $\rho$ is a path with possible double points on ${\underset{\mathrm{p}}{\mathrm{p} \ell}}_{\star}^{( }(\omega$; vacant). Loop-removal (see Sect. 2.1) from $\rho$ finally yields the required self-avoiding path on $\operatorname{cic}_{\mathrm{p} \ell}^{\mathrm{*}}$ ( $\omega$; vacant) from $v_{1}$ to $v_{2}$.

Finally we prove a simple lemma which is used repeatedly, and which guarantees the existence of "periodic paths" resembling straight
lines on periodic graphs.
Lemma A.3. Let $\mathcal{G}$ be a periodic graph imbedded in $\mathbf{R}^{\mathrm{d}}$. Then for each $1 \leq i \leq d$ there exists a vertex $v_{0}=\left(v_{0}(1), \ldots, v_{0}(d)\right)$ of $\mathcal{C}$ and a path $r_{0}=\left(v_{0}, e_{1}, v_{1}, \ldots, e_{\sigma}, v_{\sigma}\right)$ on $\mathcal{G}$ such that
$0 \leq v(j)<1,1 \leq j \leq d$,

$$
\begin{equation*}
v_{\sigma}=v_{0}+\alpha \xi_{i} \text { for some integer } \alpha \geq 1 \tag{A.48}
\end{equation*}
$$

and
for all $n \geq 1$ the path on $\mathcal{G}$ obtained by successively traversing $r_{0}+k \alpha \xi_{i}, k=0,1, \ldots, n$ is a self-avoiding path on $\mathcal{G}$ connecting $v_{0}$ with $v_{0}+(n+1) \alpha \xi_{i}$.

Proof: Let $w_{0}$ be any vertex of $\mathcal{G}$ and $r$ a path on $\mathcal{G}$ connecting $w_{0}$ with $w_{0}+\xi_{j}$. Then the path on $\mathcal{G}$ obtained by successively traversing $r+k \xi_{i}, k=0, \ldots, n$ connects $w_{0}$ with $w_{0}+(n+1) \xi_{i}$, but it may have double points. To get rid of the double points we choose $w_{1}$, $w_{2}$ on $r$ as follows. First let $\alpha$ be the maximal integer for which there exist vertices $w_{1}, w_{2}$ on $r$ with

$$
\begin{equation*}
w_{2}=w_{1}+\alpha \xi_{i} . \tag{A.51}
\end{equation*}
$$

Since the endpoint of $r, w_{0}+\xi_{i}$, differs from the initial point of $r$ by $\xi_{i}$ we see that $\alpha \geq 1$. We now select a pair $w_{1}, w_{2}$ satisfying (A.51) and lying"as close together as possible", in the sense that there does not exist any pair of vertices $\left(w_{3}, w_{4}\right) \neq\left(w_{1}, w_{2}\right)$ on the segment of $r$ from $w_{1}$ to $w_{2}$ with $w_{4}=w_{3}+\alpha \xi_{i}$. Denote the segment of $r$ from $w_{1}$ to $w_{2}$ by $s$. Let $l_{1}, \ldots, l_{d}$ be the unique integers for which $w_{0}+\sum_{1} \ell_{j} \xi_{j} \underset{d}{\text { lies }}$ in the unit cube $[0,1)^{d}$. We claim that we can take $v_{0}=w_{0}+\sum_{1}^{d} \ell_{j} \xi_{j}$ and $r_{0}=s+\sum_{1}^{d} \ell_{j} \xi_{j}$. Since $r$ is self-avoiding so is $s$ and by virtue of periodicity we only have to show that for any $k>1 \mathrm{~s}$ and $\mathrm{s}+\mathrm{k} \alpha \xi_{j}$ cannot intersect, and that the only common point of $s$ and $s+\xi_{i}$ is $w_{2}=w_{1}+\alpha \xi_{i}$, the endpoint of $s$ and initial point of $s+\xi_{i}$. To see that this is indeed the case consider a vertex $w_{4}$ of $\mathcal{G}$ which lies on $s$ as well as on $s+k \alpha \xi_{i}$. Then $w_{3}:=w_{4}-k \alpha \xi_{j}$ also lies on $s$. By our definition of $\alpha$, this is possible only if $k=1$. Moreover, if $k=1$, by our choice of ( $w_{1}, w_{2}$ ) this is possible only if $w_{3}=w_{1}$ and $w_{4}=w_{2}$, as claimed.

