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APPENDIX. SOME RESULTS FOR PLANAR GRAPHS.

In this appendix we prove several graph theoretical, or point-set 
topological results, in particular Propositions 2.1-2.3 and Corollary 

2.2 which were already stated in Ch.2. The proofs require somewhat messy 
arguments, even though most of these results are quite intuitive. We 
base most of our proofs on the Jordan curve theorem (Newman,(1951), 
Theorem V. 10.2). Some more direct and more combinatorial proofs can 
very likely be given; see the approach of Whitney (1932, 1933). 
Especially Whitney (1933), Theorem 4, is closely related to Cor. 2.2., 
Prop. 2.2 and Prop. A.l, and has been used repeatedly in percolation 
theory.

Throughout this appendix % is a mosaic, 3 a subset of the 
collection of faces of % and (Q,Q*) a matching pair based on (ffi,3). 

These terms were defined in Sect. 2.2. Qp£>Qp£ and 2 ^  will be the 
planar modifications as defined in Sect. 2.3. We fix an occupancy 
configuration oj on 77{ and extend it as in (2.15), (2.16). W(v) and 
Wp^(v) are the occupied cluster of v on Q and 57̂  (or Qpg), 

respectively, in the configuration w. 3W, the boundary of W, is 
defined in Def. 2.8; v Q w means that v and w are adjacent vertices 

on Q .

Proposition 2.1. Let 3̂ p£(v) be the boundary of Wp^(v) on 
27^ • 11 Wp^(v) 1S non-empty and bounded and (2.3)-(2.5) hold with 
Q replaced by 7?u then there exists a vacant circuit Jp^ on_ 7 ^  

surrounding Wp^(v), and such that all vertices of 57^ on̂  Jp^ belong

3V V)-
We owe the idea of the proof to follow to R. Durrett. We shall 

write Wp£ and BWp  ̂ instead of Wp£(v) and 9WPjJv)- 0n
various occasions we shall use the symbol for a path to denote the set

of points which belong to some edge in the path. Thus in (A.2), the left 
hand side is the set of points which belong to tt and to W U 3Wp  ̂ . In 

(A.5) int(J)\ tt is the set of points in int(J) which do not lie
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on 7r . This abuse of notation is not likely to lead to confusion.
We shall actually prove the slightly stronger statement that the 

vertices of 57^ on Jp£ belong to 3gxt Wp£ , the "exterior 
boundary of W ", wherepjc

(A.l) ext v = { u  e  3W
such that u 

U 3WpJl} .

P«.:

is

3 path it from u 

the only point of

to

TT in

00 on

The crucial property of 3ext Wp^ is given in the following lemma.

Lemma A.l. Assume that (2.3)-(2.5) hold with Q replaced by %. If 
Wp£ is non-empty and bounded, then 3gxt Wp£ f 0 . Let

u e Bext Wp£ , w e Wp£ and tr a path from u to_ °° on %^  such 
that

and1)
u V w

(A.2) TT n {W U 3WpJl> = {u} .

Let e be an edge of 57^ from w to u and tt the simple
path consisting of e followed by tt . Then there exists a Jordan -------- -------_  -------------------------
curve J in_ R such that

(A.3) u e int(J) 9

(A.4) J intersects each edge of 57^ incident to u exactly

once, but all edges of 57^ not incident to u belong to

ext(J),

(A.5) int(J)\Tr has exactly two components, K' and K" say. Any

edge between u and a vertex u e ^exi intersects exactly 
one of the components K' and K". There exists a vertex 
u1 e 3gxt Wp^ and an edge e 1 of 7?^ between u and u‘

which intersects only K'. There also exists a vertex 
u" e 3gxt Wpĵ and an edge e" of 77^ between u and u"

which intersects only K" (u1 = u" is possible!).

(Fig. A.l gives a schematic illustration of the situation.)
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\

Figure A.l. W is the hatched region. The vertices of Bextw
are on the dashed curve. J is the small circle 
surrounding u.

a first time. This intersection belongs
Proof: If W 0 is non-empty and bounded, then any path from °° to-----  px,
W _ must intersect Bid „ p£ p£
t0 3e x t V  ThUS 3ext V  * 0 in this situation.

By definition there exists a simpleNow take u e 3ext WpJl
path tt from u to on satisfying (A.2) and a w e WV  ° "pA
which is adjacent to u. The self-avoiding path tt cannot intersect
e in its interior (because 57^ is planar), nor in the point
w (by (A.2)), and goes through the point u only once (at its

beginning). Thus tt has no double points. Now let D be a small
open disc around u such that D does not intersect any edge of

not incident to u. (Use (2.4) to find such a disc). If all edges
incident to u are piecewise linear, then the perimeter of D will
satisfy (A.3) and (A.4) provided D is sufficiently small. The
general situation can be reduced to this simple case by means of a

2
homeomorphism of F onto itself which takes pieces of the edges of

% £ incident to u onto straight line segments radiating from the
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origin (see Newman (1951), exercise VI. 18.3 for the existence of 
such a homeomorphism). We may therefore assume that we have a Jordan 
curve J satisfying (A.3) and (A.4).

Note that e, as well as the unique edge of tt incident to 
u (the first edge of tt) each intersect J exactly once (by (A.4)) so 
that tt intersects J exactly twice, and int(J)Yrr has indeed 

two components - which we call K' and K" (see Newman (1951),
Theorem V. 11.7). Let eg = e, and let e-j ... ,ev_-|, e^ = eg be 
the edges of 5̂  incident to u, listed in the order in which they 
intersect J as we traverse J in one direction from eQ fl J; there 

are only finitely many of these by (2.4). Write u.. for the endpoint 
of e.. different from u, and x.. for the intersection of e.. and

Figure A.2.

J. Thus Ug = w. The first edge of tt is one of the e^, say

e. . For i f 0, in,v, e. runs from u to x. inside one com- 
1Q u i i
ponent K' or K", and then from x. to u. it is in ext(J) by
(A.4) (note û  e ext(J), also by (A.4)). Thus, each of these edges
intersect exactly one of K' and K". Since each of the two arcs of
J from xn to x. form part of the boundary of one the componentsU lg
K' and K" (Newman (1951), Theorem V.11.8), it follows that e^,
1 £  i < i g, intersect the same component, K' say, while e^, 
i0 < i < v intersect the other, which will be K". This proves the 
first statement in (A.5) (since un = u^ e W and hence not in 3WnP
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and also u. e it does not belong to 3W ).
1o p5.

We write A., for the arc of J from to ,

0 5 i < v-1. Then A^\{x^, x^+ }̂ does not intersect any edge and 
therefore lies entirely in one face of 57^ . Since all faces of 

37^ are triangles (Comment 2.3(vi)), this implies that ê  and 
e^i lie in the boundary of a triangle, and 37^ u . ^ , Ug = 
w e W_, while u. e  tt is not in W „ . Hence the indexp£ '0 p£

i-, = max {j:0< j < iQ, u. e Wp£}

is well defined. As observed above, u. ,, is a neighbor of11+1
e Wp£ , but by definition of i, û  t Wp^ . Therefore,

u. +1 e BW Also, u. e tt does not belong to 3W 0 by (A.2).T-| 1 p£ Iq P36 Thus

i 1 +1 < i and we can define i2 by

i2 = max {j :î < j < iQ , Uj e 3Wp£} •

We can connect u. to °° by a path consisting of edges from u. to
1 2 J

u.,-, , i9 < j < in , followed by the piece of tt from u. to °° . TheJ +  I ^ — U 1 g

vertices û  +-|,...,ui do not belong to Wp  ̂U 3Wp  ̂ by choice of 

i^, i^, so that u.. e 3gxt Wp^ with 0 < i2 < ig- Finally we define 

i' = min{0 < j < i2: u. e 3 ^  W^} .

By the above i' is well defined, and u1:=u., is connected to 

u by an the edge e., which intersects K' , but does not intersect 
K". Similarly we can define

i" = max{i0 < J < v:Uj e 30xt W^}

and u" = u.„.e.„ only intersects Ku. This proves the existence of 
the desired u1, e 1, u" and e" for A.5. ] |

Proof of Proposition 2.1: For a non-empty and bounded W

any uQ e 3gxt Wp^ and apply Lemma 1 with uQ for u.

one of the vertices u1, u" e 3gxt Wp^ adjacent to Ug 
ence is guaranteed by Lemma A.l. Say we picked u' for

pa pick 
Let u-j be

whose exist- 

u. Let e-|
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be an edge between u0 = u and u-| = u which intersects only K'
as in Lemma A.l. Assume we have already constructed

ui with ui e 3ext

UJ.ej-i

and an edge of i r ^  between 

. We then apply Lemma A.l to u..

Uq 96^ 9 ^ 1 9 . . .  ,e.j 3

u. , and
J 1

Associated

with ui are two components K' and K". Assume intersects K'.
Then by (A.5) we can find an edge e.+^ from u.i

ei
to some V l  £ 3ext

Wp£ , such that e^-j intersects only K" and not K', and hence 
with e^i f e^. We continue in this way until the first time we obtain
a double point, i.e., to the smallest index 
a p < v with u_ = u . . v < 00 because W

v for which there exists 
is bounded, and thereforeUp Uv "p£

3ext Wp£ c 9Wp£ (see (2.3), (2.4)). p will be unique by
the minimality of v. Since is planar, Jp£ = (Up,ep,... ,ev,vv)
- or more precisely the curve made up from ê
Jordan curve. We now show that it has the required properties.

e p + l is a 
The

vertices on J „ belong top£ 9ext ^p£ c awp£ by choice of the

ui

W_ Thus

and since each vertex of aWp£ has to be vacant, Jp£ is vacant. 
To show that Wp£ c: int(Jp£) observe first that all vertices of 

Jp£ belong to aWp£ 
and the connected set
]R2 \ Jp£ . Now write u for up+-j and let it be a path on 
from u to 00 satisfying (A.2), and e an edge of from u

w e W

and therefore not to 
W

px,
u_ 11 and let

pr ",UJ lV  n Jpj.
lies entirely in one component of

to
some w e wp£. We apply Lemma A.l once more with this choice of u
t t, w and e. With tt and J as in Lemma A.l we may assume (by
virtue of the construction of Jn0) that the two edges e and e

P^ P ^
incident to u intersect different components of int(J)\ir. We shall
prove now that this implies

‘P+1

(A.6) tt crosses Jp£ from ext(Jp£) to int(Jp£) at u

This will suffice, since the part tt\{u} of tt clearly lies in
ext(Jp£), so that (A.6) will imply that e\{u} belongs to int(Jp£).

will belong to int(Jp£). Hence Wp£ c int(Jp£) andIn particular w

VIJp£ surrounds .,p£
To prove (A.6) note that the Jordan curve J surrounding u,

P*
in two points only, sayconstructed in Lemma A.l intersects

x' on e and x" on
P

between x' and x" must lie in different components of
e . (by (A.4)). The two open arcs of J
p 2 v* \ V

one in int(J„0) and the other in ext(Jo£). Indeed each of thesep£
arcs lies entirely in one component of ]R \ j pp, and they cannot both
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lie in the same component, because u e J 0 lies on the boundarypx,
of int(Jp^) as well as the boundary of ext(Jp£). Thus, there 
exists continuous curves from J to points in its interior near u 

which lie in int(Jp£)> and there also are such curves in ext(Jp )̂.
Now we have by (A.4) (or more directly by its proof) that tt intersects 
J exactly once, in y 1 say, and e also intersects J exactly once, 
in y" say (see Fig. A.3).

x' and x" cannot lie on the same arc of J between y 1 and y" 

because x' and x" are the endpoints of the pieces of ep fl int(J) 
and ep+-| fl  int(J) , respectively, while by construction ep fl  int(J) and 

ep+1 A int(J) belong to different components of int(J)\ ff . These 
two different components, K1 and K", each have one of the arcs of 
J from y 1 to y" in their boundary, so that x1 has to lie in the 
arc bounding K' and x" in the other arc, bounding K". But this 
means that y' and y" separate x‘ and x" on J. Therefore, y' 
and y" do not lie on the same arc of J between x' and x". Since 

we saw above that one of these open arcs was in int(J J  and thepx,
other in ext(J 0) it follows that one of the points y' is in 
int(Jp^) and the other in ext(Jp )̂. (A.6) now follows. Q
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Corollary 2.2. If W(v) is non-empty and bounded and (2.3)-(2.5) 
hold, then there exists a vacant circuit J* on Q* surrounding 

W(v).

Proof: By Cor. 2.1 W c Wp^ and by Prop. 2.1 there exists a vacant
surrounding Wcircuit 

that J

on

P *

■p*, V  ----------'J npA’
cannot contain any central vertex of Q

all occupied (cf. (2.15)). Thus, Jpi

and therefore also W. Note 
since these are 

is actually a circuit on 
ofr*£ . Assume it is made up from the edges e|,...,e*

and v| . Thenand that the endpoints of e* are v^-j

'o’e1

G *
^ p £

r* = (v *,e£,...,e*,v*) is a path on Q*0 with one double point, to

wit 

wi th

v£ = v*0 v

v ' v ' " ’ 8pl
We now apply the procedure of the proof of Lemma 2.1a,

Q* instead of Q, to remove the central vertices from v*. Let

0 1 
A

o
A —i

.

<  i < V  p - b e  t h e i n d i c e s  f o r  w h i c h v t  i s  n o t  a

< J1 ,  i  > v - 1,  a n d
-  P -

c e n t r a l  v e r t e x o f T h e n ,  a s  i n  L e mma  2 . 1a i p

V i ' 1 j  - 2 -
I f

V i = V 1 s o  t h a t  v t  a n d  
J

v *  a r e  a d j a c e n t  
1 j + i

on Q*, and e*^ is an edge of Q*, then we do not change ej+-j • If

i . = i .+2, then v* is the central vertex on Q* of some face
j+i j ij+1

F which is close-packed in Q*. We then replace the piece
+1, e* +2 of r* by the single edge of Q* through F, 

j ■ 'j ^
We write v*. for v* and

J

ei ,+l

v * e!+i forwith endpoints v. and v| +2
_ j „ J u J

the edge from v| to v|+-| . We make these replacements successively.
Assume for the sake of argument that ip = 0 (this can always be
achieved by numbering the vertices of r* such that it starts with
a non-central vertex). Assume also that we already made all replace

ments between

v0
Cl*
e0 :

made up from e

V* = V* and v*'0 0

VV .......... V* ;

i*
0 ” ev' • e
! on Q*0 nor on

We then have the sequence 

and can form the curve J,V

| +2,...,e* (even though this is 
k
Q*). Assume that J^ is a Jordan

curve which contains W in its interior, 

then Jk+-j, is also a Jordan curve which 

This will prove the corollary, since

We shall now show that 
in tains W in its interior.

J0 = V

P
of J*. If 

therefore

p *
ek+l

= p *V1’

has these properties 

properties require 
then there is nothing to prove. Assume

and J_ or J  ̂ will be a curve on Q with the properties required

k+1 = ik+2 and that p *
ek+l is the edge in the closed face
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F of % from vf = v* to k+1 = v?V2’while
vertex of F. By Comment 2.3(i) the three edges e*

v* ,v1
k+l

e*

is the central 

and
k+2

e£+1 then form the topological boundary of a closed "triangle", T say. 
Jk+1 is again a Jordan curve, because it contains only vertices of 
Jk, and e* with i+2 < j <_ v cannot intersect the interior of the 
edge e£+-| of Q. The latter statement results from Comment 2.3(i)

V *  T +̂l Of

consists of

and the fact that e*. does not contain the central vertex
J

F, because Jk is self-avoiding. From the facts that W 

vertices and edges of Q and W c int(Jk) and from Comment 2.3(i) it 
follows that W cannot intersect Fr(T). Since T contains no ver
tices of Q, W c T is also impossible so that W n j = 0. But this 

implies W irit(Jk+-|) because int(Jk) \ int(Jk+1) cj, and 
W <= int(Jk). □

In the proof of Prop. 2.2 we shall use the next lemma, which 
follows from Alexander's separation lemma (Newman (1951), Ch.V.9). 
Actually one can deduce Prop. 2.2 from Prop. 2.1 without this lemma, 
but it is needed a few times later on anyway. Lemma A.2 is essentially 
the same as Lemma 3 in Kesten (1980a).

2Lemma A >2. Let J-j be a Jordan curve in 1R which consists of four 
closed arcs A p A ^ A ^ A ^  with disjoint interiors , which occur in 

this order when J-j is traversed in one direction. (Some of these arcs 

may reduce to a single point.) Further, let J0 be a Jordan curve in __2 L 
F with

(A.7) A-j ^ int(J2) but A3 c ext(J2).

o o
Then J^ contains an arc B with one endpoint each on A2 and A^ 
and such that the interior of B is contained in int(J-j).

Figure A.4 J-j is the solidly drawn curve. J2 is dashed.
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Proof: We write for U int(J^). Also for x,y e J2 and

[x,y] one of the closed arcs of J2 from x to y > we shall write 
(x,y] for [x,y] \{x} and (x9y) for [x9y]\{x9y}. (x9y) is the
interior of [x9y]. For r = 2,4 we define

(A.8) G^ = {x c J2 H : there exists a point y e n Ar

such that the interior (x9y) of one of the arcs of

J2 from x to y is contained in int(J-j)}.

The first task is to show that Gr is closed. First we observe that 
J2 is closed so that

(A.9) Gy c closure of J2 = J2 .

Now if z e G^ H int(J^), then z e J2 PI int(J^) and it is easy to see 

that z e G^ in this case. We therefore restrict ourselves to showing 
that any z e Gf H lies in Gr itself. This is true by definition 
if z c J2 H Af9 since

(A.10) J2 Oftr C G r

(take y = x in (A.8) for x e J2 D Af; in this case one of the arcs 
from x to y has an empty interior). In addition, by virtue of (A.7),

(A.11) j2 n (A1 U a 3) = 0 .

Thus we only have to consider z e Gr H A^ if r = 2  and z e G- H A2
if r = 4. For the sake of definiteness take r = 2, z e G2 n Â .
Let xn e G2, xn z. There is nothing to prove if xn = z for some

n, so that we may assume xn f z. Without loss of generality we may
also assume that xn e J2 approaches z from one side, i.e., that we
can choose the arcs [z,x ] of J0 such thatn 2

(A. 12) [z,xn]T[z,z] = {z} , xn f z.

Furthermore, there exist yn e J2 f) A2 and choices of the arcs

[x„,y*J on J0 from x„ to y„ such that L n •'n 2 n J n

(A.13) (xp »yn) c int(J]) .

Since A2 and A^ are separated on J-j by A1 and A3 we must have 
A2 n A4 c  a1 U a 3 and

J2 n a2 U A4 C j 2 fl (A1 u A3) = 0 (by (A.ll)).
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Therefore yn e J2 n A2 is bounded away from z e J2 n Â . In addition, 
from (A.12) and (A.13) the arc [x ,y ] does not contain the point 

z e A4 c J-j. It follows that from some ng on the arcs [z,x ] and

Figure A.5. The location of some points on J?. y cannot lie 
in the solidly drawn segment.  ̂ n

[xn>yn] only have the point xn 
then, by virtue of (A. 12)

in common, and x e (x ,y ).nQ v n5Jn' But

(Z,x ] = U
n0 n>ng {V V C n>; (xn’V

Consequently also

(z,y ) = (z,x ] U (x ,y ) <= 1 nt(J,) 
n0 0 0 0 1

so that z e Ĝ . This proves that G2 closed and the same proof 
works for G4-

Next we take for Â ,, r = 2,4, a closed subarc of A^ which con
tains the common endpoint of A^ and A-j, but not the common endpoint 
of Ar and A^, and which is such that

(A.14) J2 n Ar c A; .

Such exist since J2 H A3 = 0 (by (A.7)). Note that by (A.7) 
also J2 H Â  = 0 so that A2 and A^ must have nonempty interiors.
We can and shall therefore also take the interiors of A2 and A^ non
empty. Now define

F2 = G2 u A‘ ,

F4 = g4 u a; u A] .

Since A-|, A2 and A4 and G^ are closed, F2 and F4 are closed. 
First we assume
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(A.15) g2 n g4 f 0 .

We can then find an xq e G2 n G4 C" J2 n and Points yr £ J2 n Ar 
and arcs [xQ ,yr] of J2 from xQ to yr such that (xQ ,yr) cint J-j, 
r = 2,4. Note that automatically yr e since by (A.7)

J2 n Ar s r = 2’4’

If Xq e A2, then the arc [Xg,y4] satisfies all requirements for B
and we are done. Similary if xQ e A^. xQ e J2 n (Â  U A3) is impos
sible, by virtue of (A.ll). Since = A-j U A2 U A3 U A4 this takes 
care of Xg e J-j, and leaves us with Xg e J2 H int(J-j). In this case,
the arc [Xg,yr] hits J1 first in J2 n Ar (at yf), and neither of

the arcs [xg,y2] and [xg,y4] can be a subarc of the other. Thus 
[xg,y2] and [xg,y4] only have the point xQ in common and we can 
take B = [xQ ,y2] U [xQ,y4]. This is the arc of J2 from y2 to y4 
through Xg, with

B = (xg,y2) U (x0,y4) U {Xg} c int(J-|).

Thus, in this case the lemma is again true, and we have found B when

ever (A.15) holds.
Now assume that

(A.16) g2 n g4 = 0 .

We shall complete the proof by showing that (A.16) leads to a contra
diction. Denote by a the common endpoint of A-j and A2 (see Fig.
A.4). If (A.16) holds, then

(A.17) g2 n (A4 U A ^  = 0 ,

since G2 c J2 implies

G2 n A1 c J 2 fl A1 = 0 (by (A.7)),

G2 n A4 c  G2 n J2 0 A4 C  G2 n G4 = 0 ^  (A -10))-

Similary G4 n A^ = 0 so that

(A.18) f2 n F4 = A2 0 (A4 U V  = {a> •

Next we choose a point b e int(J-j) n int(J2) sufficiently close to a, 

so that we may connect b to A2 \{a} and to A-j U A4\{a} by
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continuous paths <j>2 and respectively, which are contained in 
int(J-|) n int(J2) except for the final point of ^  which lies on 
and the final point of cĵ which lies on A-j U . This can be done 
because a e A-j c int(J2) H j and by exercise VI.18.3 in Newman (1951) 
we may assume that A£ and A-j U A^ are segments radiating 
from a e J-j H int(J2); note that A£ and A^ have nonempty interiors 

by construction. Finally, let c e Ag. We can then connect b to c 
by the following curve tt2: Go from b to A£ along ^  and then 
continue along A2 U Ag\ {a} to c. This path is disjoint from 

because A2 U Ag\ (a} and A^ U A-j are disjoint, while <j>2 minus its 
final point lies in int(J-j) H int(J2) which is disjoint from 

4̂ c- d] U anc* fina11y

(a2 u A3\{a}) n g4 c  (a2 n j2 n g4) u (a3 n j2) e g2 n g4 = 0

(compare proof of (A. 17).

In the same way we can connect b with c by a path which moves along 

$4, anc* A-j U A^ U Ag\{a}, and which does not intersect Fg. Since 
F2 fl F̂  is connected (see (A.18)), Alexander's lemma (Newman (1951), 
Theorem V.9.2) implies that b is connected to c by a continuous 
curve ifj disjoint from F2 U F̂ . This, however, is impossible as we 
now show, if; begins at b e  int(J-j) Fl int(J2) and ends at c e Ag 
c ext(J2) fl J.j. Let d be the first point of ij; in J-j. Then, since 

is disjoint from F2 U F^, we must have

(A.19) d e A3 U (A2\A^) U (A4\AJ^).

The right hand side of (A.19) lies in ext(J2) by (A.7) and the fact 

that Ar\ A^ is (by (A.14)) disjoint from J2 and contains the common 
endpoint of Ar and A^ in ext(J2). Therefore, in going from 
b e int(J-j) n int(J2) to d along we must hit J2 in a point
e e J2 H J-j (because d is the first point of ip on J-j). But any 
such point e must lie in F2 U F^ since we can go from e along some 
arc of J2 to ext(J-|) (J2 c J-| is impossible by (A.7)). If this 
arc hits A2 before A^ then e e G2, and if it hits A^ before A2 
then e e G^. Thus 1p must intersect F2 U F^ and we have deduced a 
contradiction from (A.16). p]

Proposition 2.2. Let J be a Jordan curve on % (and hence also on 
Q and on Q*) which consists of four closed arcs A ^ A ^ A ^ A ^  with 

disjoint interiors, and such that A-j arvd Ag each contain at least
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one vertex of 7%. Assume that one meets these arcs in the order A-j,

A2,A3’A4 as one traverses J in one direction. Then there exists a
path r on_ Q inside J = J U int(J-j) from a vertex on A-j to a
vertex on A^, and with a l l  vertices of r in  J \A ^  U A3 occupied,

if and only if there does not exist a vacant path r* on Q* inside0------------------- 0 —  -------
j \A-j U A^ from a vertex of to a vertex of A^ .

Proof: First assume that there exists a vacant path r* on Q* insideo o
J \A-| U A^ from y2 e A^ to e Â . Since A^ and A^ separate 
A-j and A^ on J any path r inside T from a vertex on A-j to a 
vertex on A3 must intersect r* (e.g. by Newman (1951) Theorem 

V.11.8). If r is on Q and r* on Q*, then they must intersect in 

a vertex of 7)1 (and of Q and Q*) by Comment 2.2(vii). This vertex 
would lie in J \A-j U A3 and be vacant, as a vertex of r*. Thus any 
path on Q in J connecting a vertex on A-j with a vertex of A^ 
would have to contain a vacant vertex in J\A-j U A3. Consequently, no 

path r as required in the lemma exists. This proves one direction of 
the proposition.

Now for the converse. Without loss of generality we may assume 
that the plane has been mapped homeomorphically onto itself such that 
J is now the unit circle, that Â  (A^) intersects the line segment

Figure A.6. J is the circle in the center. A^ and A^ are the
boldly drawn arcs. The two hatched regions are two 
faces of ^ .
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from the origin to (-2,+2) (to (2,-2)), while k^ (A^) lies between 
A-j and A^ (A^ and A-j) as we go around J clockwise. We next 
modify the graphs outside 7, as well as the occupancy configuration 
outside int(J). We shall then apply Cor.2.2 to the modified graph and 
configuration. The mosaic %. is modified to a mosaic ^  as follows. 
The vertices of ^  are the vertices of '7i in J plus all points of 

the form (2i^,2i^)» i^»i2 e ^ * As f°r edges, there is an edge of
77̂ between (2i-j ,2i^) and the four points (2î  ± 2,21^ ± 2). The
edges of ^ in J are also edges of 77[̂ . Finally, we write

= ( - 2 , 2 ) ,  u2 = ( 2 , 2 ) ,  u3 = ( 2 , - 2 ) ,  u4 = ( - 2 , - 2 )

and we give 77̂ an edge between uf and any vertex on A^, r = 1 or

3 (see Fig. A.6). ^  has no further edges. We insert the edges from 
Ar to u^ in such a way that they lie in int(S^)\J, except for 
their endpoints, where S-| is the square

S1 = {(x-j ,x2) : |x-j | < 2 ,|x2 | <2}  .

Moreover, we choose these edges such that an edge from Â  to u-j and 
an edge from A^ to u^ do not intersect, while the edges from Ar 
to ur intersect in u^ only (see Fig. A.6). Thus ^  contains a 
copy of the mosaic % of Ex. 2.2(i) (multiplied by a factor two). In 

7 ^  coincides with the original 7/i9 while there are no edges in 
S-|\int(J) which have interior intersections. The faces of ^  are 
the open squares into which the plane is divided by the lines x-j = 2i-j, 
x2 = 2i25 ^l9̂  e z exclusion of S-| - as well as the faces
of % inside J, plus certain faces in S^\J. The last kind of faces 
are either "triangular" bounded by two edges from u^ to A^ and an 
edge of Wl in A^, or a face bounded by the two edges on the perimeter 
of S-j incident to us, s = 2,4, one edge from u-j to A-j and one 
from u^ to A3 plus an arc of J containing A(these are the 
hatched faces in Fig. A.6). It is clear that ^  is a mosaic.

We next take for 3̂  the collection of faces of ^ in J which 
belong to 3. In other words, a face F of 77̂ belongs to 3̂  iff 
F c int(J) (in which case F is also a face of ty) and F e 3, Note
that since J is a Jordan curve made up from edges of 771, which are
also edges of ̂ , each face of % and of ^  lies either entirely in
int(J) or in ext(J). We take (Q-j ,Q|) as the matching pair based on
(57̂ ,3^). Clearly Q-j and coincide with Q and Q*, respectively, 
in 7.
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Finally we define the modified occupancy configuration on ^ . 
Let a) be the original occupancy configuration on Let H be the 
half line from Ug parallel to the first coordinate axis:
H = f (Xi,X2):Xi 2,X£ = -2}. Then we take

^(v) = w(v) if V e J \A] U A3 ,

H>1 (v) = +1 if V e A1 U A3 U H ,

w-| (v) = -1 if V t J and v t H.

We choose a vertex v in A-j and take

W-j = W-|(v,u)-j) = occupied component of v on Q-j in the 

configuration .

Now assume that there does not exist any path r on Q in J from 
a vertex on to a vertex on Ag with all vertices on r and in 

J\A.| U Ag occupied. In this case Ŵ  cannot contain any point on 
Ag. For if there would be an occupied path r-j on Q-j from v to a 
vertex of Ag, then either r-j is contained in J or it leaves J 
before it reaches Ag.  The first case cannot arise, for if r̂  stays 
in J, then r̂  is also a path on Q and the vertices on r-j in 
T\A-| U Ag would also have to be occupied in w (u)(v) = a)-j(v) for 

all such vertices; see (A.20)). Thus, the piece of r-j from its last 
vertex on A-j to its first vertex on Ag would be a path r of the 
kind which we just assumed not to exist. Also the second case is 

impossible, because the only way to leave J on Q-j without hitting 
Ag is via u-| and ^  is vacant in co-j by (A.20). Thus no occupied 
path r-j can go through u-j. It follows that indeed Ŵ  FI Ag = 0. 
Since all vertices of Ag U H are occupied in ^  , and can therefore 
be connected by occupied paths on Q-j in 03̂, it follows that they 
belong to one component, and

(A.21) W1 n (Ag U H) = 0.

Since all vertices outside J and not on H are vacant we obtain also

w1 c 7.
We are now ready to apply Cor. 2.2. This Corollary, applied to 

the cluster W-j on Q-j shows that there exists a vacant circuit J* 
on surrounding W-j. Now all vertices on Â  are occupied in 
(see (A.20)) and hence belong to W-| (since v e A-̂ ). Thus



402

(A.22) A] c W1 c int(J*).

Also, J* being vacant cannot intersect Ag U H, since it would then 
have to intersect this set in a vertex (see Comment 2.2(vii)) and all 
vertices on Ag U H are occupied in ^  . But since H goes out to 

°° and Ag U H together with the edges from Ag to Ug form a 
connected set, this means that

(A.23) Ag U H c ext(J*).

We can now apply Lemma A.2 with J.| = J , Jg = J* - (A.22) and (A.23) 
correspond to (A.7). J* therefore must contain an arc B such that
o _ o o
B c int(J) c J \A-| U Ag and one endpoint on each of Ag and A^ .
The arc B therefore lies in J\A-j U Ag and in this region 
coincides with Q* and go-| with oo. Thus all vertices of Q* on B

are vacant. Also, all points of B belong to edges of Q* in
J\A, U Av  because J* is a circuit on Q*. The endpoints of B 
belong to J* c Q*, as well as to J c Q (since A^ U A^ c  J), hence 

are necessarily vertices of Q* (see Comment 2.2(vii)). It follows 
that B is made up of the complete edges of a vacant path r* on Q*_ o o
inside J \A-j U Ag, and runs from a vertex on Ag to a vertex Â .

The existence of such an r* was just what we wanted to prove. QJ

We remind the reader of the set up for Proposition 2.3. J is a 

Jordan curve consisting of four nonempty closed arcs B-|,A,Bg,C with 
A and C separating B-| and Bg on J^.L^ :x(l) = a^, i = 1,2,a-| < ag,
are two axes of symmetry for Q^, and for i = 1,2

(A.24) B.| is a curve made up from edges of \ v  or Bi

lies on and J lies in the halfplane 

(-l)i(x(l)-a1) < 0.

The proposition deals with paths r = (vQ,e-|,... ,ev ,vv) on 

(A.25) v1,e2,...,ev_1,vv_1 c int(J),

(A.26) ê  has exactly one point in common with J. This lies
in B-j and is either Vq , or in case B̂  c it may 
be the midpoint of e-j,

and
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(A.27) e has exactly one point in common with J. This lies 

in B2 and is either vv , or in case B2 c L2 > it may 
be the midpoint of e .

J“(r) and J+(r) are the components of int(J)\r with A and C 

in their boundary, respectively, r-j «< r2 means J”(r^) c JZ(r2) (see 
Def. 2.11 and 2.12). For a path r and a subset S of J r  r c S 
means that all edges and vertices of r lie in S. We only consider 
sets S for which

(A.28) b1 n b2 n s = 0 .

Proposition 2.3. Assume that (2.3)-(2.5) hold with Q replaced by 7% 
and that L-:x(l) = a.., i = 1,2, are axes of symmetry for Qp^, with 
a-j < a2< Let J be a Jordan curve consisting of four closed nonempty 
arcs B-j A , B2 and C as above satisfying (A.24). Let S be any 
subset of such that (A.28) holds. Denote by ft = ft(S,aj) the
collection of all occupied paths r on_ which satisfy (A.25)
-(A.27) and r c S. _If_ ft f 0, then it has a unique element R = R(S,u)) 
which precedes all others. Any occupied path r _on_ Qp^ which 
satisfies (A.25)-(A.27) and r c S also satisfies

(A.29) r n j c j ^ R )  and R n j c j ' ( r ) .

Finally, let rQ be a fixed path on Qp£ satisfying (A.25)-(A.27) 
and e S (no reference to its occupancy is made here). Then, 
whether R = rg or not depends only on the occupancies of the vertices 
of Q  ̂ in the set

(A.30) (J"(rQ) U V1 U V2) n S,

where V.. = 0 if B.. is made up from edges of 57^, while

V.. = {v:v a vertex of Qp^ such that its reflection v in

L̂  belongs to J”(rg) and such that e H j c ”j"(r )̂ n s

for some edge e of Qp^ between v and v}, i = 1,2,

in case B̂  lies in L.., but is not made up from edges of 5 ^  .

Proof: Assume ft f 0 and r̂  ,r^ z ft. We shall first construct a path
r on Qp^ satisfying (A.25)-(A.27) as well as 
(A.31) each edge of Qp^ which appears in r also appears 

in r-j or in r2,
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and

(A.32) r < r-| and r ■< r2 .

Since the vertices on r are endpoints of the edges appearing in r, 
each vertex on r also lies on r-| or r̂ . In particular since 

rl ,r2 C" ̂  (A.31) will imply r c. s. Moreover all vertices on r will
be occupied since this holds for r̂  ,r2 e ft. Thus r will be an ele
ment of ft which precedes r-j and r̂ . By carrying out this process 
repeatedly we obtain paths reft which occur earlier and earlier in 
the partial order. After a finite number of steps we shall arive at 
the minimal crossing R.

Now for the details. Let r̂  = (Vg,e-j s... ̂ v ^ v ) and 

r2 = (wQ’fi • • ’fT ’WT^ t*iese Paths are self-avoiding, so that
the curve C-| made up from e-j,...,ev is a simple arc with endpoints 
Vq and vv . C-j intersects J in exactly two points, mq e B-j and 
m^ e B̂ . equals Vq or the midpoint of e-j, and mv equals v^
or the midpoint of ev> The open arc of C-| between mQ and
lies in int(J). Similar comments apply to the curve C2 made up from 
the edges of r2:f-j ,...,f .

If C2 contains no point in J”(r^) then we take r = r^. We 
shall see below (after (A.44)) that this implies (A.32). ((A.25)-(A.27) 

and (A.31) are obvious in this case). Let us therefore assume that 
C2 contains a point x c J (r-j). Then x belongs to some edge of
r2, say x e fa . We note that all edges of r-j and r2 are edges of
the planar graph Q 0. Two such edges, if they do not coincide, canpx,
intersect only in a vertex of Qp^, which is a common endpoint of these 
edges. Thus an edge f of r2 which contains a point of J"(r-|)
cannot leave J-(r-|) by crossing r^. If it crosses Fr(J”(r-j)) \ r-j
then it crosses J and f must be f. or f , and f intersects J

I T
only once, in the midpoint of f. In this case one half of f lies 
in ext(J) U J while the interior of the other half - which contains 
a point of J”(r^) - must lie entirely in J”(r-|) (cf. Comment 2.4(ii)). 
Thus for any edge f of r2 we must have

(A.33) either f n int(J) c J~(r-j) or f fl int(J) c J+(r-j).

In particular

(A.34) fa n int(J) <= j“(r]).

Also, if we move along the arc C2 from x to Wq , then the first
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intersection with C-j, if any, must be a vertex of Qp^ which is a 
common endpoint of an edge of r2 and an edge of r^. In particular 
it must equal for some 0 < 3 1 v . If such an intersection 
exists we take b equal to this intersection; if no such intersection 
exists we take b = Wq , the initial point of r2. Similarly, if moving 
along C2 from x to w t there is an intersection with C-| then we 
take c equal to the first such intersection; otherwise we take 
c = w , the final point of r2. In all cases b and c are vertices 

of r2, and if c is on r-j, then c = v^ for some 0 £ y  < v . We 
write p for the piece of r2 between b and c. I.e., if b = wfi, 

c = w£ with 6 < e then p = (ŵ  >e§+] > • • • >ee’we)» and 5 and e
are interchanged when 6 > e. The same argument used above for showing 

(A.33) shows that p - which contains the point x e J”(r^) - cannot 
leave J"(r^) through r^, and that if p crosses J, then p con
tains a half edge in ext(J) U J, the other half being in J~(r-|).

Thus

(A.35) p H int(J) = (p\{b,c>) H int(J) c  J"(r-j).

In the sequel we restrict ourselves to the case where b = w^ 

and c = w£ with 1 £ < e £ t - 1 . This means that (A.35) simplifies

to
(A.36) p = p \{b,c} <= j”(r-j).

We leave it to the reader to make the simple changes which are neces

sary when b = wrt and/or c = w_b = Wq and/or
replacing the piece of r-j between b
may have b = vR = w

reverse

r

c = v = w0* y e
and in this case ?

We define a new path r-j by 
and c by p. Note that we 

with y < 3- We then have to

1

y  y

becomes

e' e' e-1= (vQ,e1,... ,e^,v# = w^f^ w^ > • • • .f^^ = v ^ e ^  ,... 9e,,v ,).6 +15 0 3 3+1 v  v '

(In the simpler case 3 < y p is inserted in its natural order.)
We show that r-j is a path satisfying (A. 25) - (A. 27). r-j consists of 
one or two pieces of r-j and p. Each of these pieces is a piece of 
a self-avoiding path, hence self-avoiding. Also, p does not intersect 
r-j, and if r-j contains two pieces of r-j then they are disjoint 
(because b and c are distinct, being two points of the simple arc 

C2, one strictly before and one strictly after x on C2). Therefore 
r-| is self-avoiding. Let r̂  = (v q ,^ ,... ,e^,v^). Then by construc
tion each of the edges e., 2 i 5 £-1, is one of the edges
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e2....ev_1,f2,...fr_1, and similarly

........V i } e  {vi ........ V l ' wl .........V l } '

Thus r̂  satisfies (A.25), because r-j and r2 do. Also (A.26) and 
(A.27) hold, because e-j = e^, e^ = ev when 1 < 5 < e < i-l. (But 
even when b = Wq (A.26) is easy for then e-j = f.i; similarly for 
(A.27).)

For brevity denote by E(r) the collection of edges of Q 
appearing in r. Then it is clear from the construction that

(A.37) E(r-|) c e ^ )  U E(r2).

(A.37) says that (A.31) holds for r-j instead of r. Since r-j c X(r-j) 

by definition, it is also immediate from the construction and (A.35) 

that

(A.38) ^  H j  c j~(r ).

We show that (A.38) implies

(A.39) r] n j c j * ^ )  <= J+ (r1)

and

(A.40) J " ^ )  c j “(ri),

To see this, observe first that the arc, J.| say, of J between the 
points of intersection of r̂  and J, and containing A, is the only 
part of y(r-|) on J. By (A.38) the points of intersection of r-j 
and J must lie on J-j. Consequently the arc of J between these 
intersection points containing C also contains that arc of J be
tween the intersection points of J and r-j containing C. The latter 
arc is just J\J^. Any interior point zQ of J\J-| lies therefore 
in Fr(J+(r-j)) H Fr(J+(r-|)). Such interior points exist since the 

endpoints of J\J-| are the intersections of r-1 with J; these lie 
on B-j H S and fl S, respectively, and cannot coincide by virtue of 
(A.28). Pick a point Zq in the interior of J\J-|. Any point 
z-j e int(J) sufficiently close to z^ belongs to J+(r-|) fl J+(r )̂. 

Choose such a z-| and let y be an arbitrary point of J+(r-j). There 
then exists a continuous curve ip from y to z-j in J+(r-|). By 
(A.38) ip cannot hit r , and since ip lies in J+(r-,) it cannot hit 
J either. Thus ip does not hit Fr(J (r-j)) and ends at z-j e J (r-|). 
Thus all of \p lies in J+(r-j) and in particular y e J+(r-j). Since
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Figure A.7. Schematic diagram giving relative locations J is 
the perimeter of the rectangle. is the boldly
drawn part of J. r-1 is drawn solidly and r̂  is
dashed. r1 coincides with r in the part drawn as 
___ . The figure illustrates a case with b=w^ .

y was an arbitrary point of J+(r^) we proved 

(A.41) J ^ )  <= /( r^ .

The second inclusion in (A.39) follows immediately from this, while 

the first inclusion in (A.39) is immediate from the definition of J+ . 
(A.40) follows from (A.39) since J”(r) = int(J) \~J+(r).

(A.40) implies that if an edge f of r2 satisfies f fl int(J) 
c j  (r-j), then also f Fl int(J) c  J”(r-j). By virtue of (A.33) the 

other edges f of r2 satisfy f fl  int(J) c J+(r^) . f is not one of 
these, by (A.34). However, f is part of p , and hence of r, so 
that f Fl int(J) c J (r1). Therefore, if we write N(r) for the 
number of edges f or r2 with f Fl int(J) c  J (r), then f is 
counted in N(r^) but not in N(r^). Moreover, by the preceding 
observation, any f counted in N(r^) must also be counted in N(r^). 

Thus
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(A.42) N(r1) < N(rn).

We now replace r-j by r-| and repeat the procedure, if necessary. 
If C2 still contains a point in J”(r̂ ) then we form r̂  such that

E(r2) c E l ^ )  U E(r2) c e ^ )  U E(r2), (cf. (A.37)),

J"(r2) ^ J"(r]) <= J”(r1) (cf. (A.40)), 
and

N(r2) < N ^ )  < N(rn) (cf. (A.42)).

Since r2 has finitely many edges N(r^) < °°, and N decreases with 
each step. Thus, after a finite number of steps, say A steps, we 

arrive at a path satisfying (A.25)-(A.27) and

(A.43) E(rx) c E(rx -j) U E(r2)... <= E(r^) U E(r2),

(A.44) J'(rx) c J'(rx.-|) c ...

and such that contains no more points in J"(r^), or equivalently 

(A.45) r2 n j c j +(rx).

The case where C2 contains no points in J~(r-|) mentioned in the 
beginning of the proof is subsumed under this, if we take r^ = r-j for 
this case. We now take r = r^ . (A.43) gives us (A.31) while (A.44)
and (A.45) give us (A.32). Indeed (A.45) implies J’(r )̂ = J"(r)
c J”(r2) just as (A.38) implies (A.41) (merely interchange + and 
-). This completes the construction of r.

Now that we have constructed r from r-j, r̂  the remainder of 

the proof is easy. Denote the elements of in some order by 
rijr^*...,r . If ft = 0 we don't have to prove the existence of R, 

and when R has only one element, r^, then R = r^. In general ft 
is finite by virtue of (2.3), (2.4). For a _> 2 let r be the path
constructed above from r-| and r£. For a = 2 take R = r. For
o >_ 3 go through the above construction with r-j and r2 replaced 
by r and r3, respectively. The resulting path, r say, is again in 

ft and satisfies

E(r) c  E(r) U E(r3) c E(r]) U E(r2) U E(r3) (cf. (A.31))

r •< r3 and r <  r, hence r -« r^, 1 <_ i £ 3 (cf. (A.32)).
and
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After a finite number of such constructions we obtain a path R e ft 
which satisfies

E(R) c U E(r.), 
i=1 1

(A.46) R r-j, 1 1 i 1 a •

This R precedes all elements of ft. (A.46) implies

R H j c j ’(R) c j “(r ), 1 < i < a ,

and hence r. H j c J+ (R) (just as (A.38) implied (A.39)). Thus 

(A.29) holds. The uniqueness of R is immediate for if R' e ft also 
precedes all elements of ft, then R ■< R' and R'-< R. Then (A.29) 
holds for R as well as R1 so that

R n j c= j-(R'), R n j c= j+fR'),

whence
r n j c j -(r') n j+(r') = r' n j.

Interchanging R and R1 yields R H J = R* fl J5 which together with 
(A.26) and (A.27) leads to R = R\

Finally, if rQ is a path on Qp£ satisfying (A.25)-(A.27) and 
rg c S, then R = rg if and only if r^ e R but rg is not preceded 
by any other element of ft. Thus R = rg is equivalent to

(A.47) rQ is occupied, but any path r on Qp£ satisfying 
(A.25)-(A.27) with r c S with r *<rg, r / rQ 
cannot be occupied.

Clearly, (A.47) only depends on the occupancies of sites on r^ or on 
paths r rg with r c S. But all such sites belong to "J"(rg) Fl s 
or are an initial or final point in ext(J) of a path r <  rg with 
r c s. Since r has to satisfy (A.26) and (A.27) one easily sees 
that all these sites belong to the set (A.30)(cf. Comment 2.4(ii)).Q

We next prove a purely graph-theoretical proposition, which is 
needed only in Ch. 9. It was first proved by Sykes and Essam (1964). 
We find it somewhat simpler to prove the version below which refers to 
Q and Q* rather than Q and Q*. Vie remind the reader of thepX/ pX/
definition of Q_„ (uu occupied) for an occupancy configuration co on

%
Q (go; occupied) for an occupancy configuration go

pic

l satisfying (2.15) and (2.16). Q  ̂ (co; occupied) is the graph with
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vertex set the set of occupied vertices of and edge set the set
of edges of Qp^ both of whose endpoints are occupied. Q*^ ( go ; vacant) 
is defined similarly; see the proof of Theorem 9.2.

Proposition A.l. Let go be a fixed occupancy configuration on 0^, 
satisfying (2.15) and (2.16). Two vacant vertices of v̂  and

v2 lie in the same component of Q*^ ( go;  vacant) if and only if v̂  
and v2 lie in the same face of Qp^ ( go;  occupied).

Proof: v-j and v2 lie in the same component of ( go ;  vacant) iff
there exists a vacant path on Q*^ from v̂  to If such a path
exists, then it cannot intersect any edge of Qp^ ( g o ;  occupied) (by 

virtue of Comment 2.3(v)) so that the path lies entirely in ine face 
of Q 0 ( go;  occupied). Thus in one direction the proposition is trivial.pjc

For the converse, assume v.j ,v2 e are vacant and lie in the 

same face of Q - (Go;occupied). By definition of such a face as a 
component of ]R2\q (Go;occupied) this means that there exists apx, 2
continuous curve ifj in R \Qpĵ (Go;occupied) from v̂  to v2- In 
order to complete the proof we show how one can modify i|j so that it 
becomes a path on ( go;  vacant). To make this modification we 
recall that all faces of are "triangles" (Comment 2.3(vi)).
Assume that ip intersects such a face, say the open triangle F with
distinct vertices w - j ^ ^  and edges e-j between w2 and w^, e2
between w3 and w-j, and e3 between w-j and vi .̂ Moving from v-j

to v2 along i/j let x-j (x3) be the first (last) intersection with
7. The x. are necessarily on the perimeter of F, since both end
points of are vertices of Q* , hence not in any of the openp)6
triangular faces of 5^. If x̂  e e, then at least one endpoint of 
e must be vacant, for otherwise e belongs to Qp^ ( go;  occupied), 
while ip is disjoint from this graph. This implies that x-j can be 
connected to x2 by a simple arc along the perimeter of F, which 
still does not intersect ( go;  occupied). For example, let 

X1 e ei» x2 e e2* ^  common endpoint w3 of e-j and e^ is 
vacant, then move from x̂  to w3 along ê  and from w3 to x2 
along e2. If w3 is occupied, then w-j and w2 must be vacant, 
and one can go from x-| to w2 along e-|, from w2 to w-j along 
e3, and from w-j to x2 along e2. These connections from x-j to 
x2 do not intersect Qp^ ( go;  occupied), because if an edge e does 
not belong to Q 0 ( go;  occupied), then no interior point of e canDx,
belong to ( g o ;  occupied). ip intersects only finitely many faces,
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say F-j,...,Fv . We can successively replace the piece of ip between 
the first and last intersection of 7. with a simple arc along the 
perimeter of F.. Making such a replacement cannot introduce a new 
face whose interior is entered by \jj . On the contrary, each such 
replacement diminishes the number of such faces. Consequently, after 
a finite number of steps we obtain a continuous curve, <p say, from 

V1 v29 disjoint from Qp£ (w; occupied), and which is contained in
the union of the edges of • $ m y not be a path on Q*£- For
instance it can contain only part of an edge e, rather than the whole 
edge e, and <p is not necessarily simple. Note, however, that <p 
begins at the vertex v7 of Q*0, and ends at v9 which we may take

'1
1 'tfp£5 a n d  e n d s  a t  v2

(there is nothing to prove if v

%
1 - v2)- Let w1

£ different from v-j through which <j>
different from 
be the first vertex of 

passes. Set

tQ = max{t e [0,1]: cp(t) = v-j}, 

t-| = min{t e [0,1]: <p(t) = w^}.

We can then discard the piece of <p from t = 0 to t = tg-9 the
restriction of cp to [tg,l] is still a path from v-| to Also
for tg < t < t, <p(t) cannot equal any vertex of and therefore
is contained in the union of the interiors of the edges of V 
the continuous path <p cannot go from the interior of one edge to the 
interior of another edge without passing through a vertex, this means
that <p(t) for tg < t < ti is contained in the interior of a single
edge e-̂ from v̂  to w^. Also by connectedness cp passes through 
all points of e-|. We can therefore replace the piece of <p from 

t = 0 to t = t-j by the simple arc e-|. After this replacement <p 
still is a continuous path in ]R^\Q ^ (w; occupied). We repeat this 
process with w-j in place of v-j. After a finite number of replace

ments we obtain a path p on

Since

%£,\^p£ occupied), with possible
double points, from v-j to v S i n c e  p does not intersect Qp^ (w; 
occupied) it contains only vacant vertices, and in particular no central 
vertices of Q (see (2.15)). Thus p is a path with possible doublep£
points on Q*£ (03; vacant). Loop-removal (see Sect. 2.1) from p 
finally yields the required self-avoiding path on Q*£ (w; vacant) 

from v-j to v̂ . Q

Finally we prove a simple lemma which is used repeatedly, and 

which guarantees the existence of "periodic paths" resembling straight
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lines on periodic graphs.

Lemma A.3. Let Q be a periodic graph imbedded in . Then for 
each 1 < i < d there exists a vertex Vq = (v q(1),...,Vg(d)) of_ Q 
and a path rQ = (vQ,e.| ,v-j,... ,eQ ,va) on Q such that

(A.48) 0 < v(j) < 1, 1 < j < d,

(A.49) v^ = Vg+a^^ for some integer a 1 

and

(A.50) for all n _> 1 the path on Q obtained by successively 

traversing rQ+ka£.., k = 0,1,...,n is a self-avoiding 
path on Q connecting vQ with Vg+(n+l)a^^ .

Proof: Let wQ be any vertex of Q and r a path on Q connecting 

Wq with Wq+^1- . Then the path on Q obtained by successively tra
versing r+k^j» k = 0,...,n connects wQ with wQ+(n+l)^^, but it 

may have double points. To get rid of the double points we choose w-j, 
W2 on r as follows. First let a be the maximal integer for which 
there exist vertices w.j, w^ on r with

(A.51) w2 = wi+a î *

Since the endpoint of r, Wq+^^ , differs from the initial point of r 

by we see that a >_ 1. We now select a pair w^, w^ satisfying 
(A.51) and lying"as close together as possible", in the sense that 
there does not exist any pair of vertices (w3,ŵ ) f (w-|,w2) on the
segment of r from w1 to w2 with w^ = w^+a^.
of r from w-, to w9 by 

'd *
s. Let

Denote the segment 
be the unique integers

for which wn +£ £.£. lies in the unit cube [0,1) 
u i J J ('

we can take *0 ■ »0 + f  V j
and r^ = s +

d

¥ j

We claim that 

Since r is

self-avoiding so is s and by virtue of periodicity we only have to 
show that for any k > 1 s and s + ka^^ cannot intersect, and that 
the only common point of s and s + is w2 = w.j + a£.., the endpoinl

of s and initial point of s + £.. To see that this is indeed the
case consider a vertex w^ of Q which lies on s as well as on 
s + ka£.. Then viy=vi^-kaE,. also lies on s. By our definition of 
a, this is possible only if k = 1. Moreover, if k = 1, by our choice

of (w-j ,w2) this is possible only if w^ = ŵ  and w^ = w2, as
claimed. □


