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Abstract. Discussed is the problem of the mutual interaction between spinor 
and gravitational fields. The special stress is laid on the problem of the proper 
choice of the gauge group responsible for the spinorial geometrodynamics. 
According to some standard views this is to be the local, i.e., x-dependent, 
group SL(2, C), the covering group of the Lorentz group which rules the in
ternal degrees of freedom of gravitational cotetrad. Our idea is that this group 
should be replaced by SU(2, 2), i.e., the covering group of the Lorentz group 
in four dimensions. This leads to the idea of Klein-Gordon-Dirac equation 
which in a slightly different context was discovered by Barut and coworkers.
The idea seems to explain the strange phenomenon of appearing leptons and 
quarks in characteristic, mysterious doublets in the electroweak interaction.

1. Introductory Remarks. Four-Component versus Two-Component 
Spinors in Special Relativity

Even now the concept of spinor is still rather mysterious. Let us begin with what is 
clean, doubtless and experimentally confirmed. Historically the first thing was the 
discovery by G. Uhlenbeck and S. Goudsmit that to understand the spectral lines 
of atoms one had to admit the existence of spin — internal angular momentum of 
electrons of the surprising magnitude 1/2 in ^-units. The idea seemed so surpris
ing and speculative that even prominent physicists like Lorentz and Fermi were 
strongly if not aggressively against it. Fortunately Ehrenfest and Bohr supported 
the hypothesis [15]. And the strongest support was experimental one, from atomic 
spectroscopy. The mathematical understanding came later on from group theory. 
An essential point is that the group SU(2) may be identified with the universal 
covering group of SO(3, R), orthogonal group in three real dimensions, isomor
phic with the group of rotations around some fixed point in the physical Euclidean
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space. It is projective unitary representations rather than vector ones that is rele
vant for quantum mechanics. And when studying quantum projective representa
tions it is natural to start from discussing the universal covering group. There is 
no direct nor commonly accepted interpretation of spin in terms of quantized gyro
scopic degrees of freedom, although in spite of certain current views such an idea 
is not a priori meaningless. When relativistic quantum mechanics and field the
ory emerged, the half-integer internal angular momentum was interpreted in terms 
of the complex special linear group SL(2, C) as the universal covering group of 
the restricted Lorentz group SO^(1, 3). On this basis Wigner and Bargmann de
veloped the systematic theory of relativistic linear wave equations. This theory 
was in a sense too general, formally predicting an infinity of particles and fields 
which do not seem to exist on the fundamental elementary level. Some new impact 
came from Dirac and his attempts of creating relativistic quantum mechanics based 
on first-order differential equations. The second-order Klein-Gordon equation did 
not seem to be satisfactory as a relativistic quantum-mechanical equation both be
cause of its incompatibility with Born statistical interpretation (the non-existence 
of positively-definite probabilistic density) and because of its predictions incom
patible with experimental data of atomic spectroscopy. This was the reason that 
the Klein-Gordon was rejected by Schrödinger who, by the way, was the first to 
formulate it. It turned out that the non-relativistic equation commonly referred to 
as Schrödinger equation gave much more satisfactory predictions, especially when 
combined phenomenologically with the spin idea into what is now known as two- 
component Pauli equation. It is well known that as a consequence of Dirac anal
ysis the old XIX-th century idea of hypercomplex numbers and Clifford algebras 
revived. Namely, if the desired first-order equation

=  mV (1)

is to imply the Klein-Gordon equation

gßVdßdvV =  - m 2V, gßV (idß) (idß) V = m 2V (2)

where g denotes the specially-relativistic metric tensor of Minkowskian space-time 
((2) is just the relativistic energy-momentum for free particles), then the “vector 
components” Yß have to satisfy

Y  Yv +  Yv Yß = ‘2gßV (3)

i.e., they must be non-commutative algebraic entities, and certainly not numbers. 
Incidentally, this is obvious even from the very form of equation (1), because if Y 
is a usual vector, the equation would not be relativistically invariant. So certainly 
besides of the index ß, Yß must have certain additional indices and their interplay 
may result in the invariance under Poincaré group. The objects Yß commonly 
referred to as Dirac matrices are expected to be linear mappings of some linear
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space D into itself, so more rigorously, one should write (3) as

YMY v +  Yv YM =  2 gMv ID (4)

where ID denotes the identity operator in D.
Alternatively, one can use Dirac covectors with components

ym :=  gßv  y  v (5)
satisfying

YmYv +  Yv Ym =  2 gß v I d  . (6)
The above formulae tell us simply that the scalar quadrats of covectors and vectors 
are literally represented as squares of something

(ymPm)2 =  gMV Pm Pv , (YmXm)2 =  gMv xMx v (7)
or, more precisely

(ymPm )2 =  gMV PmPv I d  , (YmXm )2 =  gMv xMx v I d  . (8)

On the quantum level, when “momenta” pM are replaced by operators idM, this is 
the “square-rootization” of the d’Alembert operator

(ym^ m)2 =  I d □ =  - I v g MV (i9m) (idV) 

(y mOm)2 =  I d  □ =  I d  gMV ̂ m^v .

(9)

(10)

To avoid the crowd of characters, in literature one usually omits the symbol ID, 
although literally incorrect, this does not lead to misunderstandings.
This linear realisation in terms of linear mappings ym,Ym Y L (D) ~  D 0  D* is 
necessary in physics, both on the fundamental and computational level. Neverthe
less, from the more abstract and formal point of view, the expressions above were 
a physical rediscovery (by Dirac) of Clifford algebras. This concept is certainly 
more general than physical problems appearing in four-dimensional Minkowski 
space-time or three-dimensional Euclidean space.
Let (V, g) be a pseudo-Euclidean space, so V  is a finite-dimensional vector space 
and g Y V * 0  V * is a symmetric non-degenerate metric tensor in V . It needs not be 
definite; it is positive in the three-dimensional Euclidean space but has the normal- 
hyperbolic signature (+, —, —, —) (or (—, +, +, +)) in Minkowskian space-time 
of special relativity. Obviously, in those examples V is a linear space of translation 
vectors, respectively in space and space-time. Let T0 (V) denote the associative 
algebra of all contravariant tensors in V

To(V) =  (R ® V ® (V 0  V) ® (V 0  V 0  V) ® ••• ) (11)

i.e., the set of infinite sequences of contravariant tensors of all possible orders 
with the obvious multiplication rule. Although it is literally incorrect, nevertheless
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technically convenient to write those sequences as formal sums:

(c, v ,t, s , . . .)  =  c +  v +  t +  s +-----. (12)

This is an abbreviation for

(c  0, 0, 0, . . .)  +  (0, v, 0, 0, . . .)  +  (0, 0, t, 0, . . .) +  (0, 0, 0, s , . . .)  +  ■ ■ ■ (13)

where c G R, v G V, t G V  <g> V , s G V  <g> V  <g> V , etc. The notation (12) together 
with the reduction procedure enables one to perform the tensor multiplication in 
T0(V) in a simple, automatic way.
Let us take the elements of T0(V ) of the form

u ® v +  v ® u — 2g(u, v) (14)

or, more precisely,

(—2g(u,v),  0, u ® v +  v ® u, 0 , . . .)  (15)

where the vectors u , v run over all of the space V .
Let J (V, g) c  T0(V) denote the ideal of the associative algebra T0(V ), generated 
by elements of the form (15). Both T0(V ) and J (V,g) are infinite-dimensional, 
however the quotient space

Cl(V,g) := T0(V )/J(V ,g )

has a finite dimension. This is just the Clifford algebra of (V, g). The associative 
product in Cl(V, g) is induced from that in T0(V) as usual in the quotient space of 
an associative algebra with respect to its ideal. If ( . . . ,  e^ . . .)  is a basis in V , then 
the corresponding induced basis in T0 (V) consists of the elements

(1,e j , ej  ^  ej  ,e i ® ej  ® ek , . . . ) (16)
where the labels run over all possible values i =  1 , . . . ,  dim V. The identification 
of ej  ® ej  +  ej  ® ej  with 2gj , more precisely, the identification of

(—2gj j , 0, ej  ® ej  +  ej  ® ej , 0 , . . .)  (17)

with the null element when the quotient procedure is performed, tells us that the 
basis of Cl( V, g) consists of elements which for brevity will be denoted as follows:

1, ^ , ejej , ejej ek, . . . , e1e2 " " " en , i < i < j  k  . . . .  (18)
They are canonical projections (under the quotient procedure) of

(1 ,0 ,0 ,0 , . . . ) ,  (0, ej , 0, 0, . . . ) ,  (0, 0, ej  ® ej , 0, . . . )

(0, 0, 0, ej  ® ej  ® ek , . . . ) ,  . . . ,  (0, . . . ,  0, ei ® e2 ® ® e„ ) .

The quotient-projections of other elements of (16), in particular, higher-order ones, 
may be expressed through (19), for example, if the basis e is g-orthogonal

ej  ej  =  —ej  ej  +  2gj j , eie2 ••• e„ ei =  (—1)ra- i gn e2 ••• e„ . (20)
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Orthogonality means obviously

gij = g(ei,ej  ) =  0, if i =  j. (21)

Usually, although not necessarily, we use orthonormal bases when besides of (21) 
the following holds

gii  =  g(ei ,e i ) =  ±1. (22)
We are dealing here only with real linear spaces (the ones over R) when the concept 
of signature does exist and the number of diagonal ±  signs is well defined and 
invariant.
In linear realisations, when the elements of Cl( V, g) are isomorphically represented 
by linear mappings of some linear complex space D into itself, the representants 
of basic elements ei will be denoted by Dirac symbols Yi .
The elements of Cl(V, g) for which the multiplicative inverse exists form the group 
GCl(V, g) under the associative product which is referred to as Clifford group.
This group acts in Cl(V, g) through the similarity transformations

A e  GCl(V, g) : Cl(V, g) 9 X  ^  A X A -1 . (23)

Let us distinguish the subgroup O(V, g) C GCl(V, g) which acting in this way 
does preserve the subspace V of Cl(V, g), or, to be more precise, the subspace
(0,V, 0, . . . ,  0)

A e  O (V, g) : A(0, V, 0 , . . . ,  0)A-1 =  (0,V, 0 , . . . ,  0). (24)

This action induces the action of the pseudo-orthogonal group O(V, g) on V

A(0, v, 0, . . . ,  0)A-1 =  (0, L[A]v, 0, . . . ,  0) (25)

where, obviously, the assignment

A e  O (V, g) ^  L[A] e  O(V,g) (26)

is a group homomorphism. Obviously, it is seen that A, —A give rise to the same 
pseudo-orthogonal mappings

L[—A ]=  L[A]. (27)

Moreover, O(V, g) is the universal covering group of O(V, g). In the special case 
of three-dimensional Euclidean space or four-dimensional Minkowski space, the 
2 : 1 universal covering groups of the connected components of unity SO(3, R), 
SO^(1,3) may be identified respectively with SU(2) and SL(2, R), according to 
the well-known analytical procedure.
Linear realisation of all those objects is necessary for physical purposes. There is 
an infinity of possible dimensions of the space D of Dirac objects (Dirac spinors). 
In physics the special stress is laid on irreducible minimal realisation. It is well 
known that if the real dimension of V equals n =  2m, m being a natural number,
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then the lowest possible dimension of D equals 2m = 2n / 2 and this is the com
plex dimension (D is a linear space over the field C). As usual in fundamental 
physics, field equations are self-adjoint, i.e., derivable from variational principles. 
To construct Lagrangians for the D-valued Dirac field, we must have at disposal 
some sesquilinear Hermitian form G on D, G G D 0  D, such that the “Dirac 
matrices” 7 G L(D) ~  D 0  D* are Hermitian with respect to G. In any case, it 
is so if we wish to construct Lagrangian for the Dirac equation. Some comments 
are necessary here, because usually the literature devoted to the subject is either 
very mathematically abstract, one can say esoteric, or, much more often, purely 
analytical and full of misunderstandings. Those misunderstandings come from the 
analytical misuse of the matrix concept, without any attention paid to the essential 
problem, what are geometric objects represented by matrices. Let us stress a few 
important points. The so called “Dirac matrices” provide an analytical description 
of some mixed tensors, i.e., linear mappings in D, Yß G L(D) ~  D 0  D *, so their 
analytical representation reads 7ß r s in which the indices r, s refer to the space D. 
The above-mentioned Hermitian form r  G D 0  D is a twice covariant tensor in 
D, “complex in the first index”. The corresponding analytical expression is Gfs. 
Evaluation of G on the pair of objects tf , p  G D  is analytically given by

G (tf, p) =  Gr-s ^ V  =  G(p,  tf). (28)

And similarly, the action of Yß is analytically given by

(7ß tf)r  =  7^ r s tf s . (29)

The inverse form of G, G-1 G D 0  D is a twice contravariant tensor “complex in 
the second index”. To avoid the crowd of symbols, in analytical representation we 
omit the symbol of inverting and use simply the analytical expression Grs, where

G-z Gzr =  5r s , Grs G-s =  £r s. (30)

The corresponding “deltas” represent, respectively, identity mappings of D* and 
D. The choice of G must be compatible with Yß in the sense, that “gammas” must 
be Hermitian with respect to G. Namely, let us introduce sesquilinear forms r ß, 
r ß on D, r ß G D* 0  D, r ß G D* 0  D by the G-shifting of spinor indices

rß -  =  G- Yßz± rs — Grz Y s, r ^r s — 9ßvr  s s — Grz 7r z I sß- (31)

It might be perhaps suggestive to use the symbols 7ßrs, Yßrs, however, this would 
be also confusing. The sesquilinear forms r ß, r ß must be Hermitian,

r ß (tf ,p ) =  r ß (p, tf), r M(tf ,p ) =  r M(p, tf) (32)

i.e., analytically,
r ß - =  r ß -r s s r  , r  - =  r  -ß rs — ßs r (33)
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where, as usual, the coefficients of are defined by

^ ( t f , p) =  T^ r s^ V 3. (34)

When one deals with Minkowski space of signature (+, —, —, —) or (—, + , +, +), 
G must have the neutral signature (+, +, —, —).
Let us notice that G gives rise to the antilinear mappings

V Y tf ^  tf e  V* (35)

where
tfr  : = t f 5Gâ r . (36)

This is the so-called Dirac conjugation (the “Dirac bar operation”).
Let us stress that the particular matrix realisation of y ß  and G is a matter of conve
nience and it is only their mutual relationships system quoted above that matters. In 
commonly used representation the matrix [G^s ] coincides numerically with [Y0 r s ] . 
This is at least one of infinitely many representations, perhaps computationally the 
most convenient one. If the machine producing tfr  from tfr  was essentially given 
by y 0 , this would be a drastic violation of the relativistic invariance.
Everything formulated according to the Clifford paradigm may be done in arbi
trary dimension. But our physical space-time is just four-dimensional. And the 
higher-dimensional Universes in the Kaluza style are still rather hypothetical what 
concerns their fundamental existence. And some special features of dimension 
four lead to another paradigm. Namely, the Hermitian geometry of the Dirac space 
has the neutral signature (+, +, —, —), so the group of pseudounitary transforma
tions U(V, G) ~  U(2, 2) preserving G seems to be something fundamental. But 
its special subgroup SU(V, G) ~  SU(2, 2) consisting of transformations with de
terminants equal to unity is the universal covering group of the 15-dimensional 
conformal group CO(V,g) ~  CO(1, 3) of Minkowskian space. Perhaps it is just 
here where another paradigm should be sought? In other dimensions this coinci
dence of the group of symmetries of Hermitian scalar product of spinors and the 
space-time conformal group breaks down. But our space-time at least in certain 
its aspects is just four-dimensional. So it is difficult to decide a priori which para
digm should be accepted. And in a sense they seem to suggest different dynamical 
models.
There is also another point of the special dimension four, which has to do with 
certain ideas formulated by Weizsäcker, Finkelstein and Penrose. They were also 
a basis towards reconciliation of quanta and gravitation (general relativity). The 
two theories seem to be historically incompatible. Everything has to do with the 
Weizsäcker idea of “urs”.
The starting point is that every physical experiment may be finally decomposed into 
a sequence of yes-no experiments, i.e., in a sense the Universe is something like
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the giant computer device. So in the beginning there is a dichotomy -  two-element 
set Z2, one can consider it as the {0 ,1}-set, non-excited and excited (active). But 
we know that physical phenomena are ruled by quantum mechanics with its super
position principle and wave-particle dualism. Therefore, the next step is to take 
the linear shell of Z2 over the complex field C, i.e., the complex linear space C2. 
And it is also known that usually there is no physically fixed basis, so instead one 
should start with the C-two-dimensional complex linear space W . As yet we do 
not assume any fixed geometric structure in W .
Let us make a small digression concerning the complex linear geometry. Any com
plex linear space W of arbitrary dimension n gives rise to the natural quadruple of 
mutually related linear complex spaces. Those are: W itself, its complex conjugate 
W , the dual W * (we mean dual over C) and the antidual W * =  W . Obviously, 
as in every linear space, W * is the space of linear (over C) functionals on W . 
The antidual W * =  W consists of antilinear (half-linear) functions on W . Its 
elements may be simply defined as argument-wise complex conjugates of linear 
functions, so f  G W * operates on W according to f  (u) := f  (u). The assignment 
W * G f  m  f  G W * is an antilinear (half-linear) isomorphism of W * onto W *. In 
finite dimension, by analogy to the canonical isomorphism between W and W **, 
we can define W as the space of antilinear functions on W *. So, there exists an an
tilinear isomorphism of W onto W , W G u m  u  G W , such that U as a functional 
on W * acts as follows: u ( f  ) := f  (u). If ( . . . ,  e*,. . .)  is some basis in W , then the 
corresponding bases in W *, W , W * will be denoted respectively by ( . . . ,  ej , ...) ,  
( . . . ,  ë j , . . .)  and ( . . . ,  e*,...) . It must be stressed that there is no canonical com
plex conjugate of vectors in a given linear space W and that the antilinear complex 
conjugate operation acts between different linear spaces, e.g., W and W are W * 
and W . The complex conjugate of vectors in a given linear space is possible only 
when W itself is endowed with an additional structure which is neither assumed 
here nor would be physically interpretable. Of course one could remain on the 
level of C, but then the crowd of apparently natural but neither mathematically 
nor physically motivated objects like n=i uava appear. No such artefacts when
working in an abstract W.
The next step, both mathematically and physically is the tower of tensor byproducts 
over W . The most important objects are hermitian forms on W and W *. They are 
respectively sesquilinear forms on W and W *

p : W x W m  C, p G W * ® W *

and
x : W * x W * m  C, x  G W ® W  

satisfying respectively the hermiticity conditions

Pab =  Pba, Xab = Xba (37)
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i.e., more geometrically

p(Wi,W2) = p(w 2 ,Wi), X ( f i , f 2 ) =  x(f2 , f l ) .  (38)

These four-dimensional spaces, denoted respectively as

Herm (W* ® W *) , Herm ( w  ® W ) 

are evidently dual in a canonical form to each other in the sense of pairing

(p, x) = Tr(p, x) =  PabXba = Tr(xp) G C. (39)

The natural bases of W ® W , W * ® W *, corresponding to some choice of basis 
(e1, . . . ,  en ) in W is obviously, the system of

ei ® e-j , e 1 ® ej .

The subspaces Herm {W  * ® W  *j and Herm {W ® W j  are spanned on some ba
sic Hermitian forms on W  and W *. The most convenient possibility is to choose 
as coefficients some numerical Hermitian matrices. The traditional historical con
vention in field theory of fundamental two-component spinors are Pauli matrices 
and the corresponding bases in Herm ( W * ® W  * ), Herm [W  ® W j

a[e]A =  —= aAabe a ® eb, ^[e] a
" A

baeb ® ea. (40)

Some remarks are necessary here. Obviously, we mean here the “relativistic” quad
ruplet of sigma-matrices, so a° =  a0 =  12 is the 2 x 2 identity matrix. The re
maining ones, or, R  =  1,2,3, are a usual triplet of Pauli matrices. But, of course, 
unlike in the non-relativistic Pauli theory of spinning electron, they are not the 
spin operators (multiplied by 2/K) acting in the two-dimensional internal Hilbert 
space. They are Hermitian forms, so twice covariant and twice contravariant (once 
complex), certainly they are not Hermitian operators acting in a two-dimensional 
Hilbert space. Incidentally, it is very essential that in the internal spaces of Weyl 
fields W , W there is no fixed Hermitian scalar product with respect to which sig
mas would be linear Hermitian operators, i.e., mixed tensors. This has to do with 
the structure of Weyl equations, their self-adjoint structure and their noninvariance 
under spatial reflections.
A very important point is the status of the internal “relativistic” index A. The lower 
and upper cases of A have nothing to do with the metrical shifting of indices with 
the help of some internal Minkowski metric p a b . The point is important because 
the alternative linear bases in Herm ( W  * ®  W  * ), Herm ( W  ®  W )

o[e]A := nABo[e]B, o[e]A := r]ABa[eJ]B (41)
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are also used for certain purposes. The level of writing the capital indices in 
(40) and separately in (41) has only to do with the pairs of dual bases. Namely, 
Herm ( w * ® W  *j and Herm (w  ® w j  are mutually dual in the canonical way 
and the corresponding bases are also dual

(a[e]A , a[e]B} = 2 a[e\Aäb^[e\ßba = 1 Tr (aAa ^  = öAß  (42)

independently on the choice of the base e. When this choice is fixed, we do not 
distinguish graphically between a[e]A , a[e]A  and aA, a a . And similarly for a  [e]A , 
a[e] a . But unlike this

(a[e]A , a[e]B  ̂ =  2nA B , (a[e]A , a[e]B ) =  2nA B . (43)

Numerically the matrices aA, a a  coincide and equal the “relativistic” quadruplet 
of “sigmas”. Similarly, a A coincide with Of a and equal the quadruplet of “sigmas” 
with relativistically n-corrected signs.
We were dealing here (and are so all over in analytical manipulations of spinors) 
with few of infinity possibility of mistakes appearing when one does not distinguish 
between bi(sesqui)linear forms, linear mappings and their matrices.
Let us follow the idea of two-component spinors as something primary and its 
impact on Dirac theory and its conformal modifications.
First, let us remind that if dim W =  2, then the subspaces of Hermitian tensors 
H(W ) C W ® W , H(W )* C W * ® W * are endowed with a natural conformal- 
Minkowskian geometry, i.e., Minkowski tensor defined up to a constant multiplier. 
Indeed, the peculiarity of dimension two is that for any x G H(W ), p G H(W )*, 
the determinants

det „ba det [pab] (44)

are quadratic forms and one can easily see they have normal-hyperbolic signature. 
It is still a mystery if there is something deep in this fact and the underlying rea
soning or this is a strange accident. There is an idea that starting from this one 
can reconciliate quanta and gravitation (more generally -  quanta and gravitation). 
As both indices have the same valence, the determinants are not scalars in H(W), 
but respectively scalar densities of weight —2 and 2. Changing the basis in W 
multiplies them by the appropriate power of the transformation matrix.
When some among infinity of conformally equivalent metrics n G H(W )* ® 
H(W )* is fixed once for all, i.e., the standard of scale is chosen, then we can 
always choose the basis (ei, e2) in W in such a way that, e.g.,

[nAB ] =  diag (1, —1, —1, —1) (45)

i.e.,
n =  nA B  a[e]A ® a[e]B (46)
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the bases a[e]A and a[e]A, A =  0 ,1 ,2 ,3 , are n-orthonormal.
Another fixation of scale is based on the choice of symplectic structure e on W . 
Being two-dimensional, it has only one such up to a complex multiplier. So, in a 
fixed basis (ei, e2) we can take

[eab] =  [eab] =

And then for x  = x Aa[ë]A, y = 

n(x, y) = nABxAy B

ab —cb 0 -1e e 1 0

yAv[e]A

nAB = 1 <JAba VBdce[e\bd e[e]cc*

(47)

(48)

Obviously, the unimodular complex multiplier exp(i^), <p E R, does not influ
ence n and it is only the absolute value of the multiplier that modifies the scale. 
Obviously, the inverse objects in (47) are meant in the usual sense

e[e]ace[e]cb = ôab, ë[e]acë[e]cb =  (49)

Another similar, but in a sense intrinsic object in W  is the tensor density of weight 
one Eab defined by the condition that in all possible bases in W

[Eab]
"0 -1 "  

1 0 (50)

Obviously the inverse E ab given in all coordinates by

E ab 0 1 , 
- 1  0 , E ac Ecb = 6ab (51)

is the tensor density of weight minus one. Those Ricci objects enable one to con
struct in H( W ) the symmetric tensor density of weight two, using just the second 
of the formulae (48)

N AB := 2 aAbâ BdcEbdE ac
but it is hard to decide if some physical meaning may attributed to this object and 
to its contravariant inverse of weight minus two.
No doubt, the idea of deriving specially-relativistic geometry from two-component 
complex objects (spinors), especially in the context of Weizsäcker “urs” is inter
esting, although not yet proven (if provable at all) in a very convincing way, just 
one of hypothetical paradigms. It is very interesting that the non-definite Hermit- 
ian tensors, i.e., elements of H(W ), H (W *) ~  H(W )* are space-like in the sense 
of above Minkowski metric n , degenerate ones correspond to the “light cones” of 
isotropic vectors and covectors, whereas the definite ones are time-like.
The positively definite ones may be assumed to define future, whereas the negative 
ones are by definition past-oriented. The degenerate forms, i.e., light-cone ele
ments are future- or past oriented depending on whether they adhere respectively
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to the bulk of positively- or negatively-definite hermitian tensors. There is nothing 
like such a basis for defining canonically future and past when Minkowskian space 
is primary one, not derived as a byproduct of the Weyl space W .
There is another interesting link between ideas of two-dimensional “quantum am
plitudes” and “specially-relativistic” geometry. Namely, W as a two-dimensional 
linear space over C is completely amorphous. No particular geometric object 
is fixed in W as an absolute one; in particular, none of infinity of Hermitian 
forms is distinguished in it. So, there is no fixed positive scalar product in W, 
it is not a Hilbert space and there is no probabilistic interpretation in the usual 
sense. However, if we once fix some positive sesquilinear form k G H (W *) =  
Herm ( w * ® W * j, i.e., some positive scalar product, then (W, k) becomes the 
Hilbert space admitting a true quantum-mechanical interpretation. Let us remind 
the idea, controversial but interesting one, expressed may years ago in the book 
by Marshak and Sudarshan [7] that the quantum-mechanical formalism becomes 
operationally interpretable always with respect to some reference frame. And as 
said above, any positively definite, thus time-like and future oriented element k of 
H (W *) is areference frame in the “space time” (H(W ), R+n).
Let us continue with byproducts of the Weyl paradigm of two-component spinors. 
The target space W of Weyl spinor fields is completely amorphous as no absolute 
objects are fixed in it. Unlike this, its byproducts like H (W *), H(W ), and the 
space of Dirac bispinors

D := W x W*  (52)

are full of byproducts structures. By analogy to linear spaces W x W * which carry 
canonical symplectic structures (and in the real W case -  the neutral-signature 
pseudo-Euclidean structures), any complex space of the form W x W *, it does 
not matter of what dimension, is endowed with two natural Hermitian structures of 
neutral signature. Let us quote them

G ((W l,fi) , (W2,/2)) := fi(W2) +  f2 (wi ) (53)

iF  ((w i, f i ) , (-W2 J 2)) s' to 1 s' (54)

The sesquilinear forms G, F  are respectively Hermitian and anti-Hermitian

G (tfi, ^2) =  G (*2, * i) , F  (^ i ,  ^2) =  - F  (*2, ^ i) . (55)

If we use adapted coordinates in the physical dimension four, we obtain

[Grs] =  12 0  , [F- ] = \ 0 12 
[Frs] =  I2 0 (56)

where I2 denotes the 2 x 2 identity matrix, 0 is the zero matrix.
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If G is interpreted as the bispinor scalar product, then the G-raising of the bar-index 
of F  leads to that is usually interpreted as the y5-Dirac “matrix”

Y
5

Y0 Y 'Y2 Y3 =  i [ g  - 12 (57)

But as yet the Dirac matrices were not introduced in any particular analytical rep
resentation, in particular, in the one compatible with (56) and (57). From the point 
of view of the Weyl paradigm of two-component spinors as primary entities, when 
the Minkowskian target metric r/AB is fixed in its particular standard form, the most 
natural is the Weyl-van-der Waerden-Infeld representation

YA 0 a A 
aA 0 (58)

More precisely, this analytical matrix representation is to be understood in such a 
way that yA are linear mappings from D =  W x  W with matrices

Ä ArY s
0

a A ab

aAab

0
(59)

where the action on bispinors [^ r]T [ua, va]T is analytically meant as follows

0 a ab
a aab 0

Obviously, the summation convention is used here and the first Latin indices run 
over the range (1, 2), whereas the bispinor ones have the range (1,2,3,4). 
Roughly speaking, the Weyl two-component spinors (W ) are transformed into 
anti-Weyl ones ( w  * j  and conversely. It is clear that the anticommutation rules (4) 
and the Hermitian compatibility conditions (31), (33) are satisfied. This bispinor 
representation based on Weyl spinors is particularly suggestive and is very conve
nient when describing the action of improper Lorentz group. For example, spatial 
rotations are not only very simple in analytical sense, but roughly speaking they 
consist in a sense in the mutual interchanging of weyl and anti-Weyl spinors. As is 
well-known, the particular matrix realisation [yr s], [Gaa] does not matter. It is only 
the system of algebraic relationships between them, that is essential. Nevertheless, 
for historical reasons let us mention also Dirac representation. We have then

ub a abVb
vab aaabub

(60)

YDir
I2 0 1 a 0 0 R 0 a R
0 1 h“-i to 0 -a 0 , YDir = Ob1

[Gas]Dir
g  0 5 0 I2

10 , YDir =  i O

(61)

(62)
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Analytically the both representation are interrelated via the change of coordinates 
described by the matrix

B  = B -1 =  B t  = B+
1

V2
I 2 I 2 
I 2 - I 2

(63)

The last chain of equalities implies that “accidentally” 7Ars and Grs transform 
according to the same rules in spite of their different geometric nature. Again the 
accident not to be repeated generally! Spinor representation based on the space W 
is geometrically more natural but there are physical problems in which Dirac repre
sentation is more convenient. For example, nonrelativistic approximation is more 
visible then; one obtains the two-component Pauli equation for spinning electron 
almost automatically.
Very important geometric problems appear when one injects Lie groups and their 
Lie algebras of mappings acting in W into L(D), the set of linear mappings of D 
into itself and into L(H), L(H*) ~  L(H)*-real spaces of Hermitian tensors on H. 
Any A e  GL(W ) gives rise to U (A) C GL(D), namely

U(A) := A x A*-1 (64)

acting as follows on bispinors

(U (A )*) U(A) u Au ’ U '
v v o A 1 v' _

where, analytically

(65)

u'a =  (Au)a =  A abub, v'ä =  (v o A  ^  =  v^A 1ba. (66)

This is evidently a faithful representation (injection) of GL(W ) into GL(D). And 
moreover, this is an injection into the pseudounitary subgroup U(D, G) C GL(D), 
isomorphic (non-canonically) with U(2, 2) C GL(4, C), namely the subgroup of 
GL(D) preserving the scalar product G

Gr s U (A)r -ZU (A)s w =  G-zw  (67)

or briefly
U (A)*G =  G. (68)

As mentioned, the unimodular subgroup SU(D, G) isomorphic (non-canonically) 
with SU(2, 2) is isomorphic with something very important, namely, with the uni
versal covering group of the full conformal group SO^(H(W)) isomorphic (non
canonically) with the Lorentz group SO^(1, 3). So we again return to the funda
mental question of our four-dimensional conformal paradigm: Perhaps the Clifford 
structure is something accidental which in the special case of the four-dimensional 
space time is related to the conformal group, but perhaps the latter one is just the
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proper physical way? The deep physical meaning of the Minkowskian confor
mal group seems to work in support of this hypothesis. This is the group which 
preserves the set of uniformly accelerated motion (the uniform inertial motions 
form the very special subset of this set. This group preserves the light cones. It 
is semisimple and finite 15-dimensional. Moreover, it is the smallest semisimple 
group containing the (non-semisimple) Poincaré group and every larger diffeomor- 
phism group of this property must be infinite-dimensional. Perhaps the admitting 
of U(D, G) instead its subgroup given by (64), (66) is justified as an extension of 
the group of extended point transformations in cotangent bundles to the group of 
canonical transformations as there is a complete analogy.
The one-parameter subgroups of GL( W ) may be (at least locally) written in expo
nential form

A(t ) =  exp(ar), a E L(W ) — gl(W ). (69)

They give rise to one-parameter subgroups of (64), (66)

U (A(t )) =  exp (u(a)r) (70)

where the generators u(a) act on D as the following elements of L(D)

u'b = abcuc, vj) = —vca ci. (71)u u1—y
v V

Let us notice that when the transformations A are restricted to the proper linear 
group SL(W), so that

Tr a =  0 (72)

then the transformations (66) acting on the u - and v -components are exactly what 
in the standard literature is referred to as the D (1/2,0) and D (0,1/2) representa
tions of SL(W) — SL(2, C), i.e., the corresponding two-valued representations 
of SO(H, n) — SO^(1,3). Then the total representation (66) is reducible one, 
equivalent to

D (1/2’0) ® D (0’1/2) (73)

unless we admit spatial reflection which destroy the reducibility. Those reflec
tions are always meant with respect to some reference frames in H(W ), H (W *) — 
H(W )*, i.e., with respect to some positively definite Hermitian form Kab or its 
inverse Kba

KacK<C =  Scb, K^Kcb =  ^ab. (74)
It is assumed to be n-normalised to unity, i.e., if

ab _ A 1K — K —̂ &A  
2

ab A

A BnAB K K =  1,

Kab — KA —2 ® ab 
AB

n kakb  = 1

(75)

(76)
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then the corresponding spatial reflection interchanging u, v is analytically given by

P u 0 Kab ub KabVb
v Kab 0 vb Kabu

(77)

The natural question: if once to admit the mixing of W , W * to introduce the spatial 
reflection, then why not to admit its total pseudounitary mixing by U(D, G) ~  
U(2, 2) -  the covering group of conformals!
The next problem is the relationship between linear mappings in W  and those 
in conformal-Minkowski spaces H(W ), H (W *) ~  H(W )*. It is clear that any 
A e  GL(W ) acts on Hermitian tensors according to the rules A*, A*. Analytically

(A*x)ab = A“CA V J , (A*x)-ab = Pe-dA-15,  A ~ ldb. (78)

Obviously, this transformation preserves Hermicity, i.e., H(W ) is mapped onto 
H(W ), H (W *) ~  H(W )* is also mapped onto itself. And it is again clear that 
replacing A by exp(ip)A, e  R, we do not modify the transformation rule for
Hermitian tensors. If we use the “sigma-basis” in H(W ), H (W *), then the matrix

(a h)A b , (Ah) &l =  A*gl =  @K (Ah)K l (79)

is given by

(Ah )k l =  1 ffKbaAal.Abd^LcJ (80)

and of course in the second formula of (78) is based on the matrix contragradient 
to (80)

A*aL =  (A -1) k  ̂ K . (81)

It is explicitly seen that A, -A , or more generally, exp(ip)A, e  R, lead to the
same transformation rule AH in H. If A-s are restricted to SL(W) ~  SL(2, C), 
the assignment GL(W ) 9 A ^  AH e  GL(H) is a universal 2 : 1 covering of the 
restricted Lorentz group. Obviously, for any unimodular transformation, i.e., for 
any element of the subgroup

UL(W ) := {A e  GL(W ); | det A| =  1} (82)

the corresponding A* does preserve separately any of the natural conformally in
variant metrics on H(W ). But obviously, any real multiplier at A different from 
one does violate this isometry properly and the corresponding (AH) becomes the 
Weyl transformation of H, multiplying any of possible p-s by the real dilatation 
factor

n I—̂ |det A |-2 n (83)
more precisely

n K L  (A-1) m (A-1) n = |det A| 2 n M N (84)
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for any of mutually proportional r/- This agrees with the mentioned nature of n as a 
tensor Weyl density of weight two rather than tensor. And similarly e behaves like 
the skew-symmetric tensor density of weight one in W .
Let us now do some comments concerning the action of A G GL(W ) through 
U (A) G U(D, G) C GL(D). Transformations U (A) act as similarities on the 
associative algebra L(D). In particular, they transform “Dirac matrices” as follows

YK ^  U(A)y k U (A)-1 . (85)

According to (67), the bispinor scalar product G is invariant under the action of 
pseudounitary group. However, if | det A| =  1, the similarities (85) do notpreserve 
the Clifford anticommutation rules, because the metric n is not conserved then. 
Instead, Clifford rules are then transformed into ones with the modified metric (83). 
The point is that (58) are explicitly built of n. Therefore, the conformal paradigm is 
not compatible with the Clifford one, and to reconciliate them, one would have to 
start with introducing additional dynamical variable, namely, the one-dimensional 
scalar factor in n and, henceforth, in a A and yA. Then the resulting scheme would 
become scale-free, i.e., invariant under the Weyl group, although still not under the 
total conformal group or its covering SU(D, G) ~  SU(2, 2).
For the sake of further developments, let us complete those comments by remarks 
in the spirit of (69)-(71) in application to (79)-(80). Again, for any a G L(W ) ~  
gl(W ) we shall consider the one-parameter group

{A(t ) =  exp(ar) G GL(W ) ; t g R} (86)

and the corresponding induced action on H-spaces, which in “sigma-basis” is given 
by (80)

(Ah) (t)Kl =  1 a K-be exp(aT)ec exp(aT f d°Lcd. (87)

By analogy to (69)-(71) let us represent it as follows

Ah (t) =  exp (o^ t) . (88)

After some calculations one can show that

K
a (H) L 1 _K_ „e cb I 1 K_ -pj b ec 

2a Cea C&L + 2 a bea c&L (89)

or more precisely

a(H) =  R eT r (aK aa^j  . (90)

As expected, there is a direct relationship between traces, i.e., generators of dilata
tions

Tr a(H) =  4Re Tr (a) . (91)
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The inverse formula of (90) is not unique, because, obviously, the purely imaginary 
part of the trace of a does not contribute to anything in geometry of H and with a 
given a(H) it is completely arbitrary

_  , K eS L L Ka f  =  4 I a (H)LGK g cf — 2 a (H) k 6e f )  +  2 Im (aCc) àef (92)

the last term, as mentioned, is completely arbitrary and generates the phase trans
formations:

w ^  exp(i^>)w, <p G R. (93)

Many misunderstandings result when one uses without a sufficient care the ana
lytical language, identifying simply the target spaces of Dirac and Weyl spinors 
respectively with C4 or C2 (some artefact structure of those spaces). Nevertheless, 
this language is commonly used (C4 and C2 are identified with some standard fi
bres of the corresponding bundles). So, to finish with, let us quote some popular 
analytical formulae. For any a G gl(2, C) ~  L(2, C) the corresponding injections 
into pseudounitary Lie algebra u(4, G) are given by

u(a) a 0 
0 - a +  , u (a)

1
2

a — a+ a +  a+ 
a +  a+ a — a+ (94)

respectively in the van der Waerden-Infeld-Weyl spinor representation and Dirac 
representation.
The covering projection P  : SL(2, C) ^ SO^(1, 3) and the corresponding isomor-
phism p : SL(2, C )  ^  so(1, 3) are respectively given by

U (A)yk  U (A)-1 =  y lP  (A)L k  , [u(a), yk  ] =  Y LP(a)L K (95)

AgK  A+ =  gL A L K , av (  +  gk  a+ =  GLP(a)L K (96)

where also

P (A ) L k  =  2 Tr (gl Agk A+) =z 4 Tr (yL U(A)yk U(A)-1 ) (97)

p(a)Lk  = 1 Tr (oLa o ( j  +  1 Tr (g k a+vL) =  1 Tr (j Lu(a) jK ) (98)

and respectively, in the spinor Weyl-van der Waerden and Dirac representations we 
have

U (A) A 0 1 'A  +  A-1+ A — A-1+ "
0 A-1+ , U(A) =  2 A — A-1+ A +  A-1+_ (99)

But an important warning: The hermitian conjugations a+, A+ in formulae (94)- 
(99) are analytical artefacts -  just the formal hermitian conjugate of matrices 
meant as tables of numbers. There is no scalar product with respect to which 
they would be true, geometric hermitian conjugates.
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2. Spinors, Fermions and Four-Dimensional Einstein-Cartan 
Gravitation. Some Standard Ideas, Doubts and Questions

As mentioned, we usually base on the analytical language. For majority of non
prepared audience the premature use of fibre bundle concepts more obscures than 
elucidates. Nevertheless, from the principal point of view the fibre bundle lan
guage is a proper one. Thus, all over in this paper, in particular in this section, 
our treatment will rely on some compromise: the basic expressions are formulated 
analytically, but certain fibre bundle comments are also included.
Let M  be a four-dimensional space-time. It is inhabited by two realities: matter 
and geometry, i.e., gravitation. According to the known figurative statement: “Mat
ter tells to space how to curve, and space tells to matter how to move”. This is a 
mutual interaction. According to contemporary ideas, the fundamental heavy mat
ter like leptons and quarks has the fermionic nature, i.e., it is described by spinor 
fields. Higgs bosons, if they really exist, are an exception. Fundamental interac
tions are transferred by gauge fields and it is natural to expect that gravitation, the 
oldest known and very important interaction is not an exception. So we remind 
the basic ideas of the dynamics of Dirac-Einstein-Cartan system, starting from the 
analytical concepts, e.g., R4 as the bispinor target space.
Analytically, bispinor fields are described by mappings

tf : M  ^  C4 (100)

i.e., four-component complex fields-amplitudes on the space-time manifold. At 
this stage we are interested only in bispinors as such, so we do not take into account 
the existence of other, more specific quantum numbers (internal indices) at t f . If 
x ß are some local space-time coordinates in M , then tf is analytically represented 
by the system of symbols

tfr (x ^ ) . (101)
This is the material sector. Degrees of freedom of the geometric-gravitational sec
tor are described by two objects: gravitational cotetrad e and some SO(1,3)-ruled 
abstract connection r ,  explicitly

M  9 x ^  ex G L (TxM , R4) ~  R4 ® T *M  (102)

M  9 x ^  r x G L (TxM, so(1, 3)). (103)

Obviously, TxM , T^M  denote respectively the tangent and cotangent spaces at 
x G M , SO(1, 3) denotes the restricted Lorentz group in Minkowskian space 
R4 meant with the signature (+, —, —, —), and so(1 ,3) is the Lie algebra of the 
Lorentz group. To be more precise, we must use also the total non-connected 
group O(1, 3) consisting of four connected components and its subgroups like 
O Î(1, 3) (orthochronous one), SO(1, 3) (preserving the total orientation of R4 as
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a Minkowski space) and SO^(1,3) (preserving separately the temporal and spa
tial orientations). Obviously, r  as a vector-valued differential form takes values in 
the Lie algebra of the connected component of unity SO^(1,3). Analytically, the 
objects e, r  are represented by systems of their components

eAß(x), VAß ß(x ) (104)

where the Latin capitals, just like small Greek indices, run the standard range 
(0,1, 2, 3). Obviously, no confusion of the manifold M  and the arithmetic space 
R4 meant with the standard Minkowskian (+, —, — , —) metric is admissible. M  
is an amorphous differential manifold with no fixed geometry, whereas R4 with 
its Minkowski metric n is one of target spaces. Obviously, the cotetrad e is al
gebraically equivalent to its dual contravariant tetrad e with components eßA(x), 
where

eAßeßß = öAb  , eßAeAv = . (105)
To be pedantic and complete with notation let us remind that the elements L G 
O(4, n) — O (1,3) are defined analytically by

nAB =  ncD l ca L d b  , n =  L*n. (106)

The contravariant inverse nAB is obviously given by

nAC ncB =  öa b  (107)

and the elements of Lie algebra, £ G so(4, n) — so(1 ,3) are n-skew-symmetric

£a b  =  —nAC nBD£Dc  =  — £b a (108)

Let us stress that the above connection r ABß is not an affine connection, it is 
as yet some abstract connection ruled by the Lorentz group and operating (e.g., 
parallel-shifting) on objects with the capital R4-indices. Of course, as expected, the 
pair (eAß, r ABßj  gives rise to some affine connection, cf. (135) below. However, 
for many reasons it is more convenient (although apparently less natural) to use 
just r ABß as a primary quantity. Taking values in the Lie algebra so (R4, n) =  
so(1, 3), r ABß is n-skew-symmetric, i.e.,

r ABß =  — r BAß =  —nAC nBD r Dc ß. (109)

In other words, the primary object is some lower-case-index skew-symmetric quan
tity

r AB  ̂ =  —r  BAß (110)
and later on we define its byproduct

r ABß =  nAcrcB ß (111)

the latter one automatically satisfies (109).



86 Jan J. Stawianowski and Vasyl Kovalchuk

The space-time manifold M  is amorphous and no absolute objects are assumed in 
it, except, of course, the very differential structure. Unlike this, our target spaces 
are endowed with some fixed, absolute geometries. Let us quote them detailly, 
starting with the analytical description of target spaces like R4, R2, C4, C2, etc., in 
spite of certain possibilities of doing mistakes.

i) R4 as a target space of the cotetrad field e is endowed with some fixed 
Minkowskian structure, i.e., normal-hyperbolic metric n of the signature 
(+, — , —, — ), usually we simply put

[nAB ]= d ia g (1, —1, —1, —1). (112)

ii) C4 as a target space of the Dirac bispinor field is endowed with some 
sesquilinear Hermitian form G of the neutral signature (+, +, — , — ). It 
is only signature what matters here; the particular numerical shape of G 
is a merely choice of basis. We assume G to be antilinear/linear in the 
first/second argument. There are two most popular choices, as we reminded 
in the previous section are as follows:

[Gr s ]

[Gr s ]D

0 I2 
I2 0

I2 0 
0 —I 2

(113)

(114)

The first one occurs when so-called spinor representation (Weyl-van der 
Waerden-Infeld representation) of bispinor objects is used. The second 
choice is used in the Dirac representation. The choice (113) is well suited 
to the use of two-component Weyl spinors as elementary entities. Repre
sentation (114) is convenient when one discusses the non-relativistic limit 
and the Pauli equation. Representations (113) and (114) are related to each 
other through the covariant rule transformation

B+ 0 I2 
I2 0

B I2 0
0 — I2 (115)

where
I2 I2 '
I2 —12 . .

Bilinear form G is preserved by the pseudo-unitary group

B =  B -1 =  B + =  B t  =  —=
v/2

U(4, G) ~  U (2,2) c  GL(4, C).

Its Lie algebra u(4,G) ~  u(2 ,2) consists of matrices u which are anti- 
hermitian in the G-sense

G r z u  s +  G szuZr — °. (116)
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Obviously, the elements of U(4, G) ~  U(2, 2) satisfy by definition

G-z s U%U St  = Gr t . (117)
The contravariant inverse of G will be denoted by [Gr r] and obviously

Gr -G-t =  6rt , G-t G t- =  S-- . (118)

The space of G-Hermitian elements of L(4, C) will be denoted by H(4, G), 
and the space of sesquilinear Hermitian forms simply by H(4). Obviously, 
they are real vector spaces (ones over R) and their elements are related to 
each other by

hr s =  Gr r h-s . (119)
Lie algebra u(4, G) ~  u(2, 2) is the imaginary unit multiple of H(4, G) ~  
H(2, 2)

u(4,G) =  iH(4,G), u(2, 2) =  iH (2,2). (120)

iii) Another element of the target geometry is some fixed Clifford injection, i.e., 
a linear monomorphism

Y : R4 ^  H(4, G) =  iu(4, G) C L(4, C) (121)

or, when the Dirac convention (114) is used,

Y : R4 ^  iu(2, 2) C L(4, C).

This is to be Clifford injection, so, if sa  are elements of the standard zero- 
one basis of R4, then their Y-images

Ya := Y sa (122)

satisfy the anticommutator rule

{Ya, Yb } =  Y a y  b +  Yb Ya =  2^ab I4 (123)

{Y A,YB } =  YAYB +  YB YA =  2nAB I4 (124)

where, obviously
YA := nABYb (125)

and the two conditions (123) and (124) are equivalent.
These conditions are but the special case of the general rules of Clifford al
gebra. The fundamental idea of Clifford paradigm is to represent the scalar 
square of vectors and convectors just as the usual square of something

(ya«A) =  VA B  uA u B  I,  (yA/a) =  nA B  / a / b I  (126)

where I  is the identity operator. From the tensorial point of view, the ob
jects yA, Ya commonly referred to as Dirac matrices, are mixed tensors, 
i.e., linear mappings of the target space of the ^-objects into itself. Here, 
in the physical four-dimensional case, Y A , Y a  G L(4, G). Obviously, the
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coincidence of the real dimension of M  and the complex dimension of C4 
is accidental and does not occur for the general n =  dim M . For physical 
reasons (real-valuedness of the Lagrangian for ^ ), linear mappings yA , ya  

must be G-hermitian

YA, YA e  H(4, G) =  iu(4, G) ~  H(2, 2) =  iu(2, 2). (127)

So, they must be imaginary-unit-multiples of elements of the Lie algebra of 
pseudounitary operators in C4 preserving G. The linear shell of YA-s over 
reals will be denoted by V

V  := y (R4) C iu(4, G) ~  iu(2,2). (128)

Obviously, V is a real linear subspace of the real linear space iu(4, G) =  
H(4, G). Lowering the first indices of YA-s, YA-s we obtain sesquilinear 
hermitian forms on C4

r Ars =  Grz Y AZs, rArs =  Grz YA^s (129)

cf. (119). Their linear shell will be denoted by V . It is a real four-dimensio
nal subspace of the real space H(4) of all sesquilinear hermitian forms on
C4

V C H(4). (130)
Obviously, H(4, G) C L(4, G), H(4) are 16-dimensional over reals

dimR H(4, G) =  dimR U(4, G) =  dimR H(4) =  16. (131)

Let us stress that the concept of hermitian linear mappings as elements of 
L(4, G) is always related to some hermitian scalar product G in C4. Unlike 
this, the concept of sesquilinear hermitian form is metric-independent and 
does not assume any G.

This was the list of absolute geometric objects in target spaces and in some their 
byproducts. There are some important points concerning those objects. The bispi
nor metric G which appears explicitly in Lagrangian for the Dirac field ^  seems 
to suggest that the pseudounitary group U(4, G) ~  U (2,2) may be expected to 
describe some fundamental symmetries of spinorial geometrodynamics. At the 
same time, it is well-known that the subgroup SU(4,G) ~  SU(2, 2) consisting 
of pseudounitary mappings with determinants equal to unity (the modulus is al
ways unity) is the covering group of the Minkowskian conformal group, just like 
SL(2, C) is the universal covering group of SO^(1, 3). But this is the peculiarity 
of the space-time dimension four.
In other dimensions there is no link between conformal and Cliffordian paradigms. 
As our space-time seems to be just four-dimensional (no convincing evidence for 
Kaluza philosophy), it is not clear which paradigm is to be accepted as a proper 
foundation.
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As mentioned, the particular matrix (coordinate) realisation of objects G, ya, r A 
does not matter. What matters are relationships between them, i.e., (123), (124), 
(127), (129). In other words, no particular choice of subspaces V, V  of the above 
properties is essential. Let us stress however an important point. Although in the 
above sense arbitrary, when once fixed, the subspaces V , V are globally fixed all 
over M , independently on the choice of x G M . This is not necessary for the 
Clifford “square-rootization” (126) of the n-scalar product. In a sense this is some 
global “action-at-distance” element of the description. If the theory is formulated 
in fibre bundle terms, where ^  are cross-sections of some complex fibre bundle 
over M  and the cotetrad field e is a cross-section of the principal fibre bundle 
F *M of linear co-frames in M , this means that some structure in M  is in a sense 
flat.
The above target-space objects enable one to construct some family of important 
geometric byproducts of the fields , eA ß , r ABß. Let us quote them.

i) Dirac-Einstein metric tensor field g [e, n] on M

g [e, n] := nABeA ® eB (132)

i.e., analytically,
gßv =  nA B  eAß eB v . (133)

With respect to this metric, the frame e is automatically n-orthonormal, i.e., 
Lorentzian

gßV eßAeVB = nAB, eAßeBvg ^  = nAB. (134)

ii) Affine connection on M. Its holonomic coefficients are given by

r aßß = eaAr ABßeBß +  eaAeAß,ß (135)

where, as usual, comma denotes the partial differentiation. The n-skew- 
symmetry of r  (109), (110) implies that it is automatically Einstein-Cartan 
connection. It is metrical, i.e., the corresponding covariant derivative of the 
Einstein-Dirac metric vanishes

V[r]g =  0 (136)

however, in general it is not symmetric. Its torsion tensor S, i.e., skew- 
symmetric part of r

m  _________ 1 ( T̂ a \
S ßß = r [ßß] =  2 ßß r ßß' 

is in general non-vanishing and the following holds

a  1 I Tßa _ f a  1
ßß

I a  I I rsa I a  I , ca I c a c a
\ ß ß j  +  K  ßß =  1 ß f l )  +  S  ßß +  Sßß -  Sß ß .

(137)

(138)
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In the literature K a ßß is referred to as the contortion tensor. Raising and 
lowering of indices is understood in the sense of Dirac-Einstein metric gßV. 
In the sense of this metric contorsion is skew-symmetric in its two first 
indices

K aß ß = - K ß a ß = - g ß Xg « - K \ ß . (139)
These relatively complicated properties show that really it is

pA p A ADpCr Bß = —r B  ß = —nB C n r Dß

that is to be used as a primary object. It is constrained only by the simple 
algebraic condition of n-skew-symmetry. All Einstein-Cartan properties are 
then just direct consequences.
For the sake of completeness, let us mention that the second term on the 
right-hand side of (135) is in geometry referred to as the teleparallelism 
connection r tei[e] induced by the (co)frame e

Ttei[e]a ßß := ea A eA ß , ß . (140)

It is uniquely defined by the condition that e is parallel with respect to r tel [e]
V [tel]ß e°A = 0, V[tel]ß eA a  = 0. (141)

As always the difference of affine connections r , r tel[e] is a tensor field of 

valence

r -  r tel[e] = r ABeA ® eB (142)
r a ßß -  r tel[e]a ßß = r ABßeaAeBß. (143)

The quantities r ABß are referred to as non-holonomic components of r 
with respect to e. Obviously, r tel [e] has the vanishing curvature tensor and 
in general non-vanishing torsion, i.e., skew-symmetric part. This torsion 
vanishes if and only if e is holonomic. If one expresses the torsion S of r 
through its non-holonomic coefficients with respect to e

S [e] = 2 qAb c eA ® eB ® eC (144)

one obtains the quantity Q which in traditional geometric literature is known 
as the non-holonomy object of e [10]

QAbc =  2 S A b c  =  êA, [eB, ec]  ̂ (145)

[eA, eB] = Q C a b ec , deA = 1 QAb c eC ® eB. (146)

Let us introduce the system of scalars

r ABC := r ABßeßc . (147)



Search for the Geometrodynamical Gauge Group. Hypotheses and Some Results 91

These quantities by their very definition satisfy

V c es  = TAb c  eA  (148)
V ß ev =  TXvß ex (149)

where, obviously, V c denotes the covariant differentiation along the vec
tor field eC, and ev =  d / d x v is the v-th coordinate tangent vector of the 
coordinate system xG
It is clear that non-holonomic coefficients of r[e] do vanish

rtei[e]ABC =  0. (150)

iii) Bispinor connection form given analytically as u rsß. It operates with bispi
nor indices and parallel transport of objects with such indices. This quantity 
is G-antihermitian in internal indices r, s, i.e., u  is a differential form on 
M  with values in the Lie algebra u(4, G) ~  u(2 ,2). The matrices are 
explicitly given by

u ß = 1 r KL« (yKYL — YLYK) (151)

cf. (111), and the inverse formula reads

r Kl„ =  1 Tr (yKu^y l ) (152)

just u(a) as an element of Lie algebra differential connection one-form tak
ing values in the Lie algebra. So, there is a one-to-one relationship be-

and [ur s]. When the field of 
(Lie-algebra-valued) differen- 

and [ur s] determines uniquely some Einstein-Cartan con-

tween systems of differential forms |^ KL 
frames e is fixed, then any of vector-valued

r K ,tial forms 
nection T " ^ .

iv) Dirac conjugation. This is an antilinear operation from C4 to its dual space 
C4*. Being numerical spaces, C4 and C4* might seem identical. But of 
course, this is misleading. Working more precisely, we should have used 
some abstract complex four-dimensional space D endowed with geome
try based on some sesquilinear hermitian form G of the neutral signature 
(+, +, —, — ). Then D*, the dual of D, is evidently something else. If T is 
an element of D, then T , its Dirac conjugate, is an element of D*. Analyti
cal C4-representation is as follows

T r := T s Gs r . (153)

As seen from the use of complex conjugation, the assignment T ^  T is 
an antilinear, or half-linear, isomorphism acting between complex linear 
spaces D, D *.
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An important remark-warning! In majority of papers and textbooks on field 
theory, one simply identifies G with y0 and uses the analytical formula

$  =  $ +y° (154)

where for $  analytically given by [$1, $ 2, $3, $ 4]T, $ +  is defined as the
$1, $2, $3, $4 Ob-formal hermitian conjugation of matrices, $+  

viously, this is geometrically meaningless and follows from the automatic 
use of analytical C4-language. Indeed, $ , $  are in fact elements of differ
ent linear space, V and V*. Matrices [G^s], [Y°r s] represent completely 
different geometric objects. G is a sesquilinear hermitian form on V, i.e., 
twice covariant tensor, G G V 0  V* and V denotes here the complex 
conjugate space of V and also V, V are different linear spaces. Dirac 
“matrices” ya  are mixed tensors in V, i.e., linear mappings of V into V*, 
YA G L(V) ~  V 0  V*. What is written in standard, common language 
is just that for the sake of convenience one uses special representations in 
which the matrices of G, y° numerically coincide. But of course there ex
ists an infinity of other representations where this is not true, the point is 
only that usually they are not used, being, claimly, less convenient in calcu
lations.

v) Covariant differentiation. Affine connection Taßß  gives rise to the usual 
covariant differentiation of tensor fields on M . Its e-non-holonomic coeffi
cients r Ä B ß  enable one to differentiate objects with non-holonomic indices 
with respect to e, for example

v [r]ß tA B  = dß iÄ B  +  r A o ß tC B  -  r C B ß tAo . (155)

The corresponding mixed tensor taß  in M

t a ß  = eaA tAB  eB ß  (156)

is then automatically differentiated in the usual way

V[r]^t“ß =  dß ta ß  +  r % t Aß -  r x ßß t a x . (157)

Objects with spinor indices are covariantly differentiated according to the 
rule generated by one for bispinors

V M/i$  =  0ß$  +  u ß$  (158)

i.e., analytically

V Hß $ r = d ^ $ r +  u rsll$ s. (159)

This rule is extended to the tensor algebra over C4, or more precisely, over 
V, e.g.,

V [u ]ß p r s = dM ( / s  +  wr Zß( W sß(
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etc., including also objects having indices related to the complex conjugate 
space D.
All those rules are combined in an obvious way when one deals with ob
jects having various kinds of indices. Such a unified differentiation will be 
denoted simply by D ß. Let us quote an example.

D , ja A r z ß V ß B s u o . „a A r z dßV ß B s U
i pa ..A A r z -pA ..a A r Z+ r AßV ß B s u r ßßV A B s u
i pA ..a C r z pC ..a A r z+  r CßV ß B s U — r BßV ß C s U
I , ,r ..a A t z + & tßV ß B s u t a A r zZ ' & sß^ ß B t u
i —z ..a A r z —z .^a A r z +  & vßV ß B s u & ußV ß B s z.

(160)

All possibilities of indices are here exhausted. There may be more or less 
indices; everything is done according to the above rule which is automati
cally compatible with the Leibniz rule for tensor products.
An important example: the cotetrad and tetrad fields. In the sense of the 
above unified connection the following holds

Dv eAß =  0, Dv eßA =  0. (161)

This is equivalent to the relationship (135).
Obviously, when the differentiated object has only one kind of indices, then 
D reduces to some corresponding rule like V[r], V ^ ,  V[w], where r ß is
an abbreviation for r A B ß . Let us observe that in certain situations objects 
with a few kinds of indices may be differentiated in a sense of only one of 
them. For example, we may be interested in affine r-differentiation of any 
of the “egs” (“Beine”) eA , A being fixed. Then, to avoid mistakes, in such 
situations the corresponding label like r ,  r , & will be used in the V-symbol, 
so, for example

V[r]ß ev A  =  dßevA +  r % e AA  =  D ß ev A  =  0. (162)

vi) The “world Dirac matrices”, i.e., H(D, G) ~  H(4,G) ~  H(2,2)-valued 
differential form e on M . More precisely, it is V-valued and analytically 
defined as follows

er sß := YA r s eA ß . (163)

In other words, this e is a differential form with values in the imaginary unit 
multiple of the Lie algebra of U(D, G) ~  U(4, G) ~  U (2,2) when some 
representation is fixed, it is V-valued

M  9 x ^  ex G L (TxM, V) C L (TXM,  iu(D, G )) .
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By the G-lowering of the first spinorial index of the “world Dirac matri
ces”, we obtain a differential form with values in the space of Hermitian 
sesquilinear forms on D ~  C4. Analytically

ersß — Grze sß — r Arse ß. (164)

Again, when some representation is fixed, ersßdxß is V -valued

M  9 x ^  Vx e  L (TXM, v ') c  L (TxM,  H(D, G )) . (165)

In analogy to (162), the quantities er sß and exsß, i.e., the corresponding V- 
and V-valued differential one-forms on M , are parallel with respect to the 
total D ß-differentiation, i.e., total connection on M

Dve sß — 0, D versß — 0. (166)

This is not true for the partial connection V[r]ß.
Let us notice that the equivalence of two equations in (168) is due to the 
fact that

Dv Grs — 0 (167)
and the latter formula follows exactly from two properties of G: it is a mul
tiplet of constant scalar fields on M  (scalars in the sense of M  as a mani
fold), and wv is G-antihermitian (it takes values in the Lie algebra of pseu
dounitary group U(D, G) ~  U(2, 2), i.e., in the space of G-antihermitian 
mappings).

As mentioned previously, the use of analytical description and numerical spaces 
like C2, C4, R4, L(4, C), etc. as target spaces may be even essentially misleading. 
What is worse, it obscures the physical interpretation and may prevent us to find a 
proper model. That was the reason we suggested to use linear spaces W , D, etc. 
as proper target (standard fibres).
Linear frames ex : TXM  ^  V C iu (D, G) ~  iu(2, 2) ~  L (4, C) extend naturally 
to isomorphisms of complexified Clifford algebras

CCI (TxM, g[e, n]x) ^  L(D ) ~  L (4, C) ~  CCl (r 4, g) . (168)

Incidentally, it may look strange that the vector-valued differential forms [er s], 
[exs] take values in some fixed subspaces V and V, not in the total, non-restricted 
linear spaces

H(D, G) — iu(D, G) ~  H (2,2) ~  iu(2,2). (169)
This is a kind of rigid action at a distance structure. When translated into rigorous 
fibre bundle language this means that there is some kind of rigid “flatness” built 
up into the theory. In this respect the theory of two-component Weyl spinors is 
much more natural and free of such aprioric absolute objects. Analytically, Weyl 
spinors take values in C2 or, to be more precise, in a two-dimensional complex
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linear space W . Geometrically, they are cross-sections of some associated vector 
bundle with the typical fibre W (or, more analytically, C2). As we have seen, the 
bispinor space is then defined as the Cartesian product

D =  W x W*.  (170)

The space W is completely amorphous, whereas its byproducts like D and H(W ) 
are full of intrinsic, inherited structures. Strictly speaking, and this is theoretically 
important, not everything in Clifford geometry developed over D is completely 
intrinsic. An intrinsic element is the particular choice of normalisation of n. In 
geometry of single Weyl spaces this normalisation was not so essential, i.e., we 
have no Clifford concepts there. If one follows the Clifford paradigm, a particular, 
fixed normalisation of n must be assumed. Similarly, in the bispinor connection 
expression (151), (152) n is essential with a given fixed normalisation. This nor
malisation has to do with the normalisation of the symplectic structure in W. Let 
us remind the formula

nAB = 1 VAbaVßdc£bd£äc (171)

„AB 1 A B -= ac bd r m '\
n = 2 °  h‘ä(T dc£ £ (172)

where
£ac£cb =  Sab, £ ac £ca =  Saa. (173)

As mentioned, they are defined up to squared real multipliers at the complex sym- 
plectic form £ and its inverse £; the factors exp(i^), tp G R, do not influence them. 
The four-component bispinor fields ^ :M  ^  D ~  C4 may be interpreted as pairs 
of two-component spinors: Weyl u:M ^  W  and anti-Weyl v:M ^  W  . Let 
us remind that physically the objects u, v may be used respectively for describ
ing, e.g., the anti-neutrino and neutrino fields. One can introduce H(W)-valued 
differential one-form given by analytically by

ab ab Ae ß := <7A e ß (174)

and similarly the vector-valued differential one-form with H(W *) ~  H (W )* as 
the target space

eabß := ^AabeAß = nABcrBabeAß. (175)
Those quantities are the “world Pauli matrices”. What concerns the second object, 
perhaps from some point of view the reciprocal version contravariant in M  would 
be more adequate

eßab = eJ1A(TAab (176)
with the dual contravariant tetrad instead the cotetrad

eA^ B  = öAb  , eß AeA v = S^v. (177)
In any case (176) is free of the fixed normalisation of n.
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Let us observe that unlike the world Dirac matrices er s ß , the Weyl quantities 
eabi , eabi  (or rather eß ab) are completely amorphous. They take values in the 
total spaces of all Hermitian tensors on the (two-dimensional) spinor target spaces. 
Nothing like the aforementioned restriction to the real four-dimensional subspaces 
V , V , is assumed (in the fibre bundle language — no global “action at distance” 
“flatness” assumption). So again the two-component Weyl spinors seem to be most 
elementary objects. The bispinor joining of the Weyl-anti-Weyl pairs into Dirac ob
jects and first of all its Clifford explaining might be perhaps an artificial peculiarity 
of the space-time dimension dim M  =  4. Physically this joining is necessary for 
introducing the mass terms to Lagrangians and for the invariance under “spatial 
reflections” in spinor degrees of freedom.
In connection with this two-component language let us mention another byproduct 
of fundamental Weyl quantities, namely the Weyl spinor connection and covariant 
differentiation. Basing on the local action of the group GL(W ) on Weyl and anti- 
Weyl spinors we can introduce gl(W ) ~  L(W )-valued Weyl connection forms 
w wa b i  and the corresponding covariant differentiation. Later on those operations 
may be raised to Dirac D-valued fields and to H(W )- and H (W *) ~  H(W )*- 
valued fields.
According to formulae (89), (90), we have for the corresponding connection com
ponents:

r M =  R eTr (a K  (w u ß ) cl) (178)

i.e., completely analytically

t^K _ 1 _ K_  /w, a \ cb I 1 _ K_ (w-J )  \  „  ac / 1 7 m
f Lß  = 2 C ba ( W cß) CL  + 2  °  ba  ̂ W cßj  CL  . (179)

It is thus clear that

Tr (Ti) =  r KKi =  4Re Tr (wu ß) =  4Re (wu aaß) . 

The formula inverse to (179), by analogy to (92), reads

w a  W bi 4 ( r K Lß CK acc L cb -  2 r K K ß sab +  ^ Im (wu ci  n

(180)

(181)

where with a fixed r KLi as a primary quantity, the last term, i.e., purely imaginary 
gauging is completely arbitrary. Its value does not influence r KL i.
The corresponding covariant differentiation of the Weyl spinors has the form

V[w W] X  =  ößua +  (w wa b i  ) ub (182)

and similarly for the anti-Weyl spinors

V[ww]iva =  dß va -  va (wwc äß ) . (183)
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The corresponding Dirac differentiation of bispinor fields has the unified form

VMm^ VMm

" ua " V  [w u]MU,a
. vb . V [ww]mv 6

(184)

Let us quote in addition some similar formulae for bispinors

r

V [w]m^ r  — r u  rp̂ s .  (185)
It is interesting that in the above formulae the scale standard, i.e., particular nor
malisation of n is non-essential and it does not occur at all. The two kinds of 
amorphous two-component Weyl spinors are completely sufficient here. It is not 
so in (152) where the indices of Dirac matrices are moved with the use of fixed- 
normalised metric n.
Starting from the Weyl spinors, it is instructive to discuss the important problem of 
metrical compatibility of our affine connections. First of all, an arbitrary GL(W )- 
ruled connection form wu abM gives rise to the connection r M, r ABM (see (178) and 
(179)) dealing with the capital indices. Then, when some (co)tetrad field e is fixed, 
the true affine connection r aßM (135) may be fixed. For a quite arbitrary connec
tion wu, therefore, for a quite arbitrary affine connection r aßM, and for the original 
definition of Dirac-Einstein metric (132) with somehow fixed normalisation of n, 
we have the following Einstein-Cartan-Weyl rule

r ßv\ — I M  +  KMvA (186)

where

by
v \ is the Levi-Civita connection built of g [e, n], the K-tensor is given

KMv a — S p v a + S v a m -  S a Mv + 2 (öß v Qa + ö̂ a Q v -  9v a Qm) (187)

in which SmvA is the torsion of r MvA

S p v A — 2 ( r MvA -  r p Av ) (188)

and Qm is the Weyl covector field, so that

V  Ag pv  — Q Ag ßv  (189)
and the covariant derivative is meant in the total r-sense.
One can easily show that

Qm — 2 r A AA — 2 R e ( u V ). (190)

However, the level of the Riemann-Cartan-Weyl space is not suited to the theory 
of dynamically interacting geometry and spinor matter. To include the internal 
Weyl invariance into theory one should introduce additional geometrodynamical
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quantities. One of explanations is just in (176). One would have to introduce into 
this formula a new version of tetrad f  ß a , independent on eßA, and postulate same 
dynamics for the system of geometrodynamical quantities.
So, let us go back to reporting the Einstein-Cartan-Dirac theory and then pass to 
our original ideas.
Let us start with the remark that in a sense, paradoxically, generally-relativistic the
ory of dynamical spinors, i.e., spinorial geometrodynamics, is less confusing than 
the seemingly simpler specially-relativistic theory. The point is again in artefacts 
and some hidden structures of Minkowski space. There is nothing like the smooth 
transition to Dirac theory and spinor theory in a curved space. The reason is that 
the covering group of GL(4, R) (any GL(n, R), n > 3) is not a linear group, so 
it does not admit a faithful realisation in terms of finite-dimensional matrices (like 
SU(2), SL(2,C), respectively for SO(3,R), SO^(1,3)). Affine spinors would 
have to be either nonlinear or infinite-dimensional objects. The only way out of 
this difficulty is to introduce the (co)tetrad field as an auxiliary object, gravitational 
potential, by definition orthonormal one. Then the group SO(1, 3) (SO(H, n) ge
ometrically speaking) “mixes” the (co)tetrad (co)legs in a way appropriately syn
chronised with the action of SL(2, C) (SL(W)) on (bi)spinor fields. And the status 
of this (co)tetrad field is geometrically mysterious. It is neither the gauge field 
(at least in a standard sense; there were some non-standard attempts) nor Higgs 
field, nor matter field or anything of a well-established status. It is the field of 
reference frames that never occurs as a dynamical quantity in any physical the
ory. Just an additional motivation to do something with this problem. By the way, 
even in specially-relativistic spinor theory, the concept of tetrad is implicit present, 
although apparently hidden.
Matter Lagrangian for the Dirac field in the standard Einstein-Cartan theory is 
given by

L m  (4 ,e ,w ) 2 9ß Versß  (4/r V v 4 s -  Vv4/r 4 s) J\g\  -  mV r V  yj\g\ 

2 gß v er sß ( F V v 4 s -  V v W )  f g  -

where, obviously, erSjU, ersß  are given by (163), (164, and y^\g\ is the W-density 
built canonically of g^ v

f \ g \  =  f \  det [dß v ] I- (191)

The same formula works in Minkowski space in curvilinear coordinates. No trick 
enables us to hide the metric tensor gßv  by the formal use of

e^r s := eß a Y Ars gßV ersv
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(and similarly for easß), because the scalar density of weight one is necessary
if L m is to be a correctly defined Lagrangian density.
We remember that in the standard Dirac theory, er sß, easß represent vector-valued 
differential one-forms taking values in some proper subspaces V , V  of H(D, G) 
or H(D*). Unlike this, in Weyl theory for the field u one uses the most general 
differential one-form eabß without any restrictions on its values in H ( W *)

LWeyl =  2 9ßVe-abß (ü  “Vvub -  Vvü aub) [ \g\. (192)

Let us remind that in all those formulae we are dealing with the Einstein-Cartan 
model, where the Weyl covector vanishes

Qß =  0 (193)

thus, the connection form ww“bß is trace-less, i.e., s l ( 2 , C)-valued (and so are 
ww“bß, wwrsß), and r KLß is n-skew-symmetric

r  K Lß +  nKM nLN r  NMß = 0 (194)
therefore, trace-less. Then automatically (194) implies that the affine connection 
r aßß built of the abstract connection r ABß and the (co)frame (eAß) eßA is met
rical, i.e., it is an Einstein-Cartan connection, thus, the metrical one

V xgßv =  0

although in general non-symmetric (the torsion S needs not vanish). This Levi- 
Civita assumption would be too strong and artificial.
When the gravitational degrees of freedom, i.e., eabß, or er sß, or easß are fixed (and 
so is the Einstein-Dirac metric g [e, n]ßv) and not subject to the variational proce
dure, then we obtain the following generally-relativistic Dirac and Weyl equations 
formulated on the background of fixed geometry (gravitational field)

ießAYA (Vß +  S % I4 )  *  =  m * (195)

(in natural units), i.e., more analytically

ießrs (Vßsz +  S vVß5sz ) * z = m * r (196)

for Dirac equations and

ießA<JA (V ß +  S vvßl2) u =  0 (197)

for generally-relativistic Weyl equation. Analytically

ießac (Vßcb +  S vvßöcb) ub = 0. (198)

Let us notice that the two-component Weyl equation is mass-less if it is to be self
adjoint and relativistically invariant. The terms involving the trace of torsion are 
remarkable. Only in the torsion-free Riemann space or in special Riemann-Cartan
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spaces with the vanishing trace of torsion, one obtains the expected equations. It is 
interesting that the self-adjoint structure of field equations, i.e., the existence of La- 
grangian is in both cases based on the fixed metric normalisation n. What concerns 
the field equations themselves, the Dirac equation (195), (196) depends explicitly 
on n through its occurrence in ya-s. Unlike this, only the Weyl Lagrangian is 
based on some choice of n while the corresponding Weyl equation (197) or (198) 
is non-metrical-amorphous.
Some problems appear when we admit also anti-Weyl field v and wish to consider 
it simultaneously with the Weyl field; this union is just the Dirac field in a sense. 
Then we have to use anti-Weyl Lagrangian, analytically

Lanti-W eyl =  1 ^ g f Aab (v„V vVb -  (VvVa) Vb) j \ g |
2 (199)

=  2 (?v“b (v“V vVb -  ( V vVa) Vl)^\g\

and even the resulting field equation will depend on the explicit fixation of n

A (V ß +  S %ßh )  v =  0. (200)

An alternative way of writing (199) would be

Lanti-W eyl =  2 gßu f ^ - A o b  (VaVvVh -  (V uVa) Vh) j \g \ .  (201)

In the geometrodynamical sector we would have to use then two independent 
tetrads (e^A , f ^Aj  or cotetrads (eAß, f A ^ j , with some independent dynamical 
interaction between them. One really does something like this in spinor theory 
invariant under the Weyl group. However, this would be a compromise and our 
proper idea goes further towards the full conformal group as the gauge group of 
geometrodynamics.
A natural procedure would be to consider e, f  as logically independent, take the 
spinor connection fundamental one, construct the corresponding affine connections 
r  [w, e], r  [w, f], in H, and to include some dynamical term built of e, f , e.g., 
starting from the twice covariant tensor

t [e, f W  =  eAßf Av
or its symmetric part

Y [Y  f  \ßv = 22 (e^  f Av +  eAv fAM) .

Obviously, there is plenty of algebraic and differential concomitants of the objects 
t [e, f  ], y [e, f  ] which might be a priori possible as interaction terms. And then, the 
independence (at least partial one) of e, f-tensors might be used for elimination the 
embarrassing standard of scale nAB from the theory.
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Obviously, in the specially-relativistic limit, when pseudo-Cartesian coordinates 
are chosen (and gravitational-geometric degrees of freedom are frozen), so that

„A   cA pA __ n w ,a _ n , ,re ß — 0 ß, r Bß — °  W bß — °  W Sß =

then for the weak bispinor and spinor fields we obtain
0, gßv — Vßv (202)

L — ~Y‘,ßT ^ r<9ß^ s -  dßür^ s ) -  r ^ r

L — 22 ̂ ß«b (ü°dß Ub -  dßü“ub)

respectively for the Dirac and Weyl fields and obviously

i 7ßrsdß^s — m ^ r , iaß-abdßUb — 0, mß“bdßVb — 0

respectively for the Dirac, Weyl and anti-Weyl fields in special relativity. 
Usually one concentrates in physics on two extreme situations:

1. Matter wave equations on the basis of fixed geometry.
2. Dynamics of gravitational field under the influence of matter.

(203)

(204)

(205)

s

Obviously, the most important situations are those characterised by the mutual 
interactions. Especially when one is interested in evolution of the Early Universe 
or the dynamics of highly concentrated objects like, e.g., neutron stars.
Let us quote a few Lagrangian terms used in the Poincaré gauge models of gravi
tation, including the Einstein-Cartan model.
The most traditional Einstein-Cartan model is similar to the Palatini Lagrangian, 
however, without restricting assumptions about the symmetry of affine connection

LEC(e ,W) — 1  gßV R ( r ) V v  J\g\  (206)

k denoting gravitational constants, up to units and normalisation, R(r ) a ßKV is the 
Riemann tensor built of r .  The existence of Lagrangian linear in curvature is a 
peculiarity of gravitation among all other gauge models of fundamental interac
tions. (206) is believed to describe macroscopic gravitation. The quantities (e, w) 
or (e, r )  are assumed to be two independent kinds of degrees of freedom. The 
label “gr” refers to “gravity” or “geometry”.
The Yang-Mills term quadratic in curvature is constructed according to the stan
dard prescription of gauge theories

L jrM(e, w) — j R a ßßv  R ß aKxgßKgv X ^\g\  (207)

where the Riemann tensor just as previously is built of affine connection, without 
any direct use of g. The quantity £ is a “microgravitational” constant. It is as
sumed to be responsible for gravitation in the very microscopic scale, at very small 
distances.
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A priori one can admit the “cosmological-like” term

LgOsm (e, w) =  Ay^jgj (208)

in which A is a constant (unlike to certain popular views, no sign of A may be 
decided a priori, without comparison with experiments).
An important triple of terms is one quadratic in the torsion tensor. There are func
tionally independent ones, known as Weitzenböck invariants

L“ (e,w) =  A g ^ g vXS  V  S ß KxJ\gj
V  (209)

+  BgßV S aßßS ßa^ J  jgj +  Cg^v S aaßS ßß ^ J  jgj

with A, B , C being constants. It is also expected that these terms have to do with 
the microscale gravity. Let us observe the characteristic Killing-Cartan structure 
of the S-S expression in the second term.
There is an opinion, expressed by Obukhov, Sardanashvilli and Ivanenko [4,5,9] 
that combining approximately the above terms one obtains on the quantized level 
the renormalizable theory. This is interesting, because according to certain views 
the usual Einstein theory is so notoriously non-renormalizable like the old Fermi 
model of weak interactions. If the mentioned views are true, this would be a new 
argument in favour of gauge methodology in fundamental interactions.
The Einstein-Cartan gauge Poincaré model of the spinor-gravity (geometry) inter
action is in fact a kind of gauge theory, although one must say a very peculiar one, 
with certain features fairly uncommon with other, in a sense “true” gauge theories 
of fundamental interactions.
Let us remind transformations like U (A) (65), u(a) (70), (71), AH (80), a(H) =  
1(a) (88)-(90), P (A), p(a) (95)-(98) and apply them in the gauge theory context. 
The gauge idea consists in that all transformations quoted above are local, i.e., x- 
dependent. More precisely, we are dealing with the infinite-dimensional group of 
pointwisely composed group-valued mappings

A : M  ^  GL( W ) ~  GL(2, C) 

or in traditional Dirac-Einstein-Cartan theory

A : M  ^  SL(W) ~  SL(2, C).

On the level of spaces H(W ), H (W *) ~  H(W )* we are dealing with the resulting 
mappings

Ah =  L(A) : M  ^  R+O(1, 3) 

or in the traditional Dirac-Einstein-Cartan theory

Ah =  L(A)  : M  ^  SOT(1 ,3)
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when the range of A is restricted to SL(W) ~  SL(2, C). Similarly, we deal with 
mappings U : M  ^  U(D, G), i.e., analytically, U : M  ^  U(2, 2) and in Dirac- 
Einstein-Cartan theory U, as mentioned, takes the values in the subgroup of cor
responding to the D (1/2,0) 0  d (0,1/2) -representation of SL(2, C). Transformation 
properties of our objects are then as follows

[*r ]
eK

ß

r KM ß

[U (A)r s ^ s] 

L(A)K m  eM ß

(210)

(211)

L (A) K n T NRßL (A)- 1 R m  -
dL(A)KN

dxß
L(A) - 1N

M (212)

K sß] U (A)r z u z t ß U (A)- 1 t s
dU (A)rz 

dxß
U (A )— 1 z

s (213)

The first two rules are homogeneous-linear. The next two ones are non-homoge
neous, i.e., affine. They contain the typical non-homogeneous-additive corrections 
for geometric objects of the connection type.
It is obvious that the total Einstein-Cartan-Dirac Lagrangians of the form

L =  Lm (^ ,e ,u )  +  Lgr (e, u)  (214)

Lm given by (191), and Lgr obtained by summation of the terms (206), (207), (208) 
and (209) is invariant under the action of the above gauge group. In this sense 
Einstein-Cartan-Dirac theory is a kind of gauge theory with the internal (acting on 
bispinor and on the tetrad legs) SL(W) ~  SL(2, C) group of local transforma
tions. There are, however, some quite non-typical features of this gauge theory in 
comparison with “true” gauge theories.
First of all, its main non-typical feature in comparison with commonly used gauge 
theories is that the gauge group SL(W) ~  SL(2, C), just like the dilatations- 
admitting GL(W ) ~  GL(2, C), is non-compact. Much more strange is the dy
namical use of the tetrad or equivalently cotetrad. The main meaning of this object 
is that of the reference frame. In no other “true” gauge theory such an object oc
curs as a dynamical quantity. In gauge gravitation it is an object which establishes 
a bundle monomorphism of an abstract principal SO^(1, 3)-bundle over M  into 
the bundle of linear frames F M ; more in detail, onto some SO^(1, 3)-reduction of 
F M . This reduction is dynamical, non-fixed, thus, it belongs to physical degrees 
of freedom.
Besides of this fact there are a few other doubts as to the gauge status and general 
structure of the theory.

1. The first one is that the differential vector-valued one-form

Ie  sß\x = r AYA r s eA ß : TxM V  c  iu(D,G) ~  iu(2,2)
x
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takes values in the proper subspace V , not in the total space iu(D, G) ~  
iu(2, 2). As mentioned, in this respect the comparison with generally- 
relativistic Weyl theory is rather instructive. When working with Weyl 
spinors, we use the total spaces of Hermitian tensors H ( W ), H ( W *) ~  
H ( W )* as target spaces. Why not to follow this pattern when dealing with 
four-component spinors and basing on the conformal-motivated U(D, G)- 
symmetry?

2. The (+, +, —, —) metric Grs underlies Lm (^ , e, w). So a desirable idea 
is the symmetry just under conformally-motivated U(D, G) ~  U(2, 2), not 
only under SL(W) ~  SL(2, C) injected into U(2, 2) by the bispinor repre
sentation D (1/2,0) 0  D (0,1/2). To achieve it in a structureless M , one must 
admit general vector-valued forms

[ersß]x : T x M  ^  H(D,G) ~  H(2, 2).

3. In special relativity, the x-independence of the representation subspace V C 
H(D, G) ~  H (2,2) has to do with the Dirac-Clifford idea of taking the 
square root of the d'Alembert operator. In general relativity, this paradigm 
loses its conceptual coherence and convincing power. Classically, it is still 
true that

(Y ßPß)2 =  9ßV PßPv h  (215)
but on the operator level,

(iY^ (V ß +  S vvßh ) ) 2 =  —r f vV ßV „I4 =  (iYMV M)2 (216)

where
Yß := eßAYA

are the “world Dirac matrices”. There is no longer the Clifford square
rooting of the d’Alembert operator, and the artificial globality of V becomes 
a price paid for nothing.
Even in the simplest case of (artificial in this context) Levi-Civita connec
tion, the right-hand side of (216) contains an additional term

—1 R I 4 (217)

which rather destroys the coherence of Clifford paradigm as a fundamen
tal physical postulate (here R denotes the scalar curvature of the Riemann 
tensor).
Let us also stress another important point. Namely, Poincaré group is dras
tically non-semi-simple. Because of this the Lagrangian (214), especially 
in its geometric-gravitational part, is drastically non-unique and dependent 
on plenty of arbitrary parameterizing constants. The good thing is only
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that according to views declared by people working in the topic, the result
ing theory may be renormalizable on the quantum level and that it “macro
scopic” part is compatible with standard general relativity, including such 
its well-established consequences as the Schwarzschild solution and post
Newtonian limit.

4. As mentioned, there is no dynamical use of frames in “genuine” gauge the
ories. Generally-relativistic spinors must use tetrads because of the men
tioned geometric reasons (for n > 3, GL(n, R) and SL(n, R), the cov
erings of GL(n, R) and SL(n, R) are nonlinear groups). Would not it be 
better to reinterpret tetrads as additional gauge or Higgs fields? Or some
thing else, but not reference frames. Let us remind, there is an idea by 
Hehl, Ne’emann and others [1-3] to interpret the total Poincaré group, not 
only the homogeneous Lorentz group, as the gauge group of relativity. But 
then translations are either “external” gauge transformations acting on ar
guments, not on values (like in “true” gauge theories), or they are internal 
transformations acting in the affine instead of linear tangent spaces which 
is also a rather difficult and exotic idea.

5. Dirac Lagrangian for the bispinor field is a rather surprising linear function 
of quantities

J V  := r s  -  ( V ^ r ) r s  J\g\. (218)

This expression has the typical structure of the bosonic current. The natural 
question appears: does it mean anything deeper? Is this the true current 
following from some invariance principle via the Noether theorem? What 
would be the hypothetical primeval Lagrangian underlying such a system 
of currents? The tensor structure of internal variables of this current in
dicates directly on the pseudounitary group U (D,G)  ~  U(2, 2), the in
ternal conformal geometry or a gauge scheme of gravitation and perhaps 
the second-order in derivatives fundamental U(D, G) ~  U(2, 2)-invariant 
Lagrangian. The point is only then how to reconciliate the second-order 
differential equation for rw ith  the physically well-established aspects of 
Dirac theory?
Before going any further let us quote some heuristics concerning the last 
point. This will be a maximally-simplified heuristics concerning the in
terplay between second-order and first-order derivatives in wave equations. 
Let us forget for a moment about four-component spinors, two-component 
spinors, etc. The object we concentrate on for a while is the one-component 
specially-relativistic complex Klein-Gordon field r  : M  ^  C.
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The respective Lagrangian has the standard form

Lm(*) =  1 g“vdß^ d v* ^ M  -  2 * * ^ \ g \  (219)

with the obvious meaning of symbols and where c is constant (nothing to do 
with “velocity of light”). This Lagrangian is globally invariant under U (l) 
acting in the standard way

*  ^  exp(ia)* , a  G R. (220)

Localization of this phase invariance, i.e., passing over to the x-dependent 
phase a  results in a standard way into replacing

d“ ^  V “ =  d“ -  iqeß (221)

q denoting the coupling constant (“charge”) and eß is the “gauge” field. 
Then the locally U(l)-gauge-invariant Lagrangian for the field *  becomes

Lm(*, e) =  2 g ^ V ÿ V v * ^ M  -  2 * * ^ M .  (222)

The usual Maxwell dynamics for e (it is difficult to be inventive here) is

Lg(e) =  - 1 f ßVf KXg“KgvX^ \g ], f v  =  dße„ -  dveß . (223)

Therefore, the total dynamics is to be given by

L  (* ,e ) =  Lm (*,e) +  Lg(e). (224)

Violating the nice gauge aesthetics, but reducing everything to the brutal 
facts of ordering the differential operators, we can write

Lm(*, e) =  L'm(^, e) +  l g“vd“* d v * ^ M  (225)

where

L'm(*,e) =  qg“ve„2 (* d „ *  -  (d„* )  * )  J\g\

- I 2 -  y  g“" e^ev l * * / M -
„2

In this language the resulting field equations may be written as

_  ^  _222 N _ i
I 0 o e e“ o e I * o g d“dvqie“ d“ *  -  22 -  | e %  -  | e “ “J  *  -  2 g“vd“dv*  =  0 

dv f  “v =  q2e“ * *  +  iqg“v (* d v*  -  d " * * )  .

(226)

(227)

(228)

So, we have the coupled system of “Dirac” equation for * , “parasitically” 
disturbed by the second-order derivative term, and “Maxwell equation” for
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the “potential” eß with the strange “current” composed of the term algebraic 
in tf (the “Dirac” term) and the term involving derivatives (the “Klein- 
Gordon” term). There is a natural question: do exist situations (“slowly- 
varying” fields), when the last terms on the right-hand sides of (227), (228) 
are negligible? If so, there is a range of applications for the truncated 
“Dirac” Lagrangian and truncated “Dirac” dynamics

L'm(*, e) =  2 qeß ( ^ t f  -  f e t f )  tf)
(229)

i e ^ t f  =  Q q  -  2 e %  -  2 e % )  tf (230)

f ßV ;v =  dv f ^v = qV tftf. (231)

This “truncated model” is rather artificial, but it brings about the following 
question:
Is not the “genuine” Dirac theory also a truncated part of some more funda
mental Klein-Gordon theory with the gauge group U(2, 2)?
Let us proceed.

3. U(2, 2) as an Expected Fundamental Symmetry in Spinor 
Geometrodynamics

3.1. Some Objections Against Dirac Theory

Generally-relativistic Dirac theory deals with a triple of mutually interacting ob
jects: the bispinor matter wave tf and two geometrodynamical quantities, namely, 
the tetrad field e and the SL(2, C)-ruled bispinor connection u, which gives rise to 
the covariant differentiation of bispinors

V ßtfr = d t f  +  u rSßt f s. (232)

The target spaces of e and tf , i.e., R4 and C4, are endowed with certain geometric 
structures. Namely, R4 is Minkowskian space with the scalar product n, whereas 
in C4 a neutral-signature hermitian form G is fixed. Analytically

[nAB] =  diag (1, -1 ,  -1 ,  - 1 ) ,  [Grs] =  diag (1,1, -1 ,  - 1 ) .

G gives rise to the Dirac conjugation of bispinors

tfr := tf 'G ^ r . (233)
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Within the matrix algebra L(4, C) one fixes a quadruplet of G—hermitian Dirac 
matrices yA satisfying Clifford anticommutation rules

YAYB +  y B YA =  2nAB I4. (234)

The tetrad field e and the internal metric n give rise to the metric tensor g 
space-time manifold M

A BgßV •= gABe ße v.
Similarly, the pair (e, w) induces the Einstein-Cartan affine connection

_-pA _b i _•= e Ar Bve a +  e AeB „A A r A B a  •= 1 Tr ( Vav  •— ^ A  Bv^ a 1 ^ A ^  a,v 1 — B a  ' 2

where the shift of capital indices is meant in the g-sense. 
Matter Lagrangian is given by

Y wßYb

Lm(^ ; e,w) =  -2eaAYArs r V ß ^ s — V ^  r ̂ V ^ i -  r ̂ r y / \ g \.s

on the

(235)

(236)

(237)

A few choices of geometrodynamical Lagrangians are logically consistent and 
compatible with experimental data. The simplest of them, used in Einstein-Cartan 
theory, is proportional to the curvature scalar R(r ,  g) built of r  and g. There are 
also more sophisticated models, admitting the Yang-Mills terms quadratic in cur
vature, and algebraic terms quadratic in torsion [2-5,9].
This scheme is a kind of gauge theory in which SL(2, C) is its structural group,
the cotetrad field A or rather its 2 :1  spinorial covering object, is a reference 
frame (cross-section of the corresponding principal bundle), [wr sa] is a connection 
form on the principal bundle, and the matter field [^ r] represents a cross-section 
of an associate bundle with the standard fibre C4. Although this theory works 
perfectly in usual applications, some principal objections may be raised against it. 
Let us quote them.

1. The tetrad field e enters the Lagrangian L m through the differential one- 
form

[er sa]
A

YAe a (238)

3 A
with values in the R-linear span of Dirac matrices V •= © Rya . This

A=0
linear subspace of the space of all G-hermitian matrices is fixed once for 
all and used as the value-space of (238) at all space-time points. This is a 
global, rigidly fixed structure that drastically violates the local paradigm of 
gauge theories. In a sense, it is an action-at-distance concept. It would be 
much more compatible with the local philosophy of gauge theories if we 
admitted the linear mappings [er sa]x to be general injections of Tx M  into 
the space of G-hermitian operators in C3 4.
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In the genuine gauge theories of elementary particle physics, the reference 
frame never occurs explicitly as a dynamical quantity. Field equations are 
imposed on associate bundle objects (matter) and connections in principal 
bundles (interaction). Unlike this, in spinor theory, the tetrad field is an im
portant dynamical variable from the gravitational sector. One cannot avoid 
\eAß when constructing Lagrangians. But if so, there is a temptation to 
modify the theory in such a way as to turn the cotetrad into a gauge field of 
some kind.

2

3. The internal metric G is explicitly used in the construction of Lagrangian. 
This suggests that it is rather the total pseudounitary group U(4,G) ~  
U(2, 2) than its injected subgroup SL(2, C) that should be used as a proper 
group of physical symmetries. SU(2, 2) is in fact used in twistor geom
etry and conformal field theory [6, 8], because it is the covering group 
of the conformal group CO(1, 3). However, without serious and compli
cated modifications, this approach is applicable only to massless particles in 
Minkowskian space-time. Moreover, although in this treatment field equa
tions are invariant under SU(2, 2) combined with the conformal action on 
the wave function argument, the Lagrangian itself is not invariant. Thus, the 
resulting symmetries are non-Noetherian, and do not lead to conservation 
laws.

4. An intriguing structural feature of the Lagrangian (237) is that it is built of 
quantities

J rsß := (VM* s * r -  * sV , f r ) j M  (239)

with a characteristic structure of bosonic Noether currents. What does it 
mean? What is the hypothetical primeval Lagrangian leading to these cur
rents? What group is to be used? The very algebraic structure of J rsß 
suggests the group U(4, G) and the Klein-Gordon Lagrangian for *  with G 
as an internal metric.

3.2. Second-Order Derivatives Model with the Internal U (2,2)-Symmetry

The four-dimensional space-time manifold M  of our model is not endowed with 
any absolute geometry apart, of course, the very differential structure. There are 
two basic target spaces, namely, the complex linear algebra L(4, C) and its natu
ral domain C4. The algebra L(4, C) appears as the faithful irreducible realisation 
of the complexified Clifford algebra for the standard Minkowskian space (R4, n ), 
where [^a b ] =  diag(1, -1 ,  -1 ,  -1 ) . Therefore, the amplitude space C4 will be 
endowed with the neutral signature (+, +, -  , -  ) pseudo-unitary geometry. The 
corresponding hermitian form will be denoted by G, analytically, Grs . This form
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appears in physics in the mass term of Dirac equation. It is also an intertwin
ing operator interrelating two mutually hermitian-conjugate representations of 7 - 
matrices. The G-shift of indices enables one to construct the Dirac conjugation 
Vr := V Gsr , it is an antilinear isomorphism of C4 onto its dual C4* ~  C4. 
The scalar product G gives rise to the pseudo-unitary group U(4, G) C GL(4, C), 
if we put [Gr s ] =  d iag(1 ,1, -1 ,  -1 ) , then, of course, U(4, G) =  U(2, 2). The 
corresponding Lie algebrau(4, G) C L(4, C), isomorphic with u(2, 2), consists of 
matrices A which are G-antihermitian, i.e., satisfy G(Au,  v) =  -G (u ,  Av) for any 
u, v G C4 (where, of course, G(u, v) =  GfSUr vs). The imaginary unit multiple 
iu(4, G) of u(4, G) consists of G-hermitian matrices; in particular, Dirac matrices 
belong to this class.
Our model involves three kinds of independent dynamical variables:

i) the matter field, i.e., wave amplitude V : M  ^  C4
ii) the normal-hyperbolic metric tensor g

iii) the U(4, G)-ruled connection on M , locally represented as a u(4, G)-valued 
differential one-form

M  7 x ^  Ax G L (TxM, u(4, G )) .

The corresponding analytical symbols are Vr , gßV, ArSjU, where r  =  1,2,3,4,
ß , v  =  0,1, 2, 3.
Geometrodynamical sector is described by two field quantities (g, A). There is no 
dynamical use of tetrad, affine connection, or SL(2, C)-ruled spinor connection. 
Instead, all these quantities will appear as byproducts of A, after the SL(2, C)- 
reduction.
Local transformations U : M  ^  U(4, G) act on our field quantities according to 
the standard rule

(UV )(x) =  U(x)V(x), Ug =  g

(UA)x =  U(x)AxU(x)-1 -  dUxU(x)-1 . 

Covariant differentiation of wave amplitudes is defined as

+  g ( a m -  1 Tr A ß^ j  T +  4 Tr A^V 

=  +  gAMV +  4 - 4  Tr A^V

(240)

(241)

where the coupling constants g and q correspond, respectively, to the subgroups 
SU(4, G), elR! . The curvature form F  depends only on the “semisimple” coupling 
constant g,

FßV =  =  dV  +  g [A^  A v] d^Av -  dv A ß +  g [AM, A v ]. (242)
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Matter Lagrangian will be assumed in the Klein-Gordon form

L m  ($ ; A, g) =  V ß$ Vv$  -  2 $ $

= \ g ßU V ßW V v  $ s Grs yf\g| -
(243)

b, c denoting constants. This is the only reasonable model locally invariant under 
U(4, G). Dirac-like models based on first-order differential equations are incom
patible with our choice of degrees of freedom, because we have no tetrad or any 
other vector-valued differential one-form transforming under (240) according to a 
homogeneous-linear rule.
The gauge-invariant Noether current corresponding to the U(4, G) ~  U(2, 2)- 
symmetry is given by

J  ($ ; A, g)rsß := 2 ( $ rVM$ s -  V  , $ r$ s) V &  (244)

Just as in electrodynamics, it is algebraically equivalent to derivatives of Lm with 
respect to the gauge potential

<9Lm($; A,g)
d A rsß

g J  srß + q -  g
4

J  zzßösr (245)

The only reasonable dynamical model for A  is that based on the Yang-Mills La- 
grangian

Lym (A,g) =  F*x) g ' " ^ ^  +  ^  T r (F „ v m (F * x) g ' - g - ^
(246)

where a, a' are constants depending on the choice of units; they refer, respectively, 
to the subgroups SU(4, G) and elR!  of U(4, G).
There is less aprioric evidence as to the choice of the dynamical term for g. Let us 
quote three natural possibilities:

i) Palatini-like model. In this scheme there is no separate Lagrangian for g. 
The total Lagrangian reduces to Lm ($ ; A, g) +  LYM  (A, g), and the metric 
tensor enters it in a purely algebraic way. Nevertheless, just as in the usual 
Palatini model, g is a dynamical variable, subject to the variational proce
dure in Lm +  LY M . The usual gravitational constant of Einstein theory will 
be proportional to the inverse of a.

ii) Hilbert-Einstein model

LH E (g) =  - d R (g)^ \g\  +  l j \ g \  (247)

in which d, l are constants, and R(g) denotes the scalar curvature of g. The 
correspondence of our model with the standard gravitation theory enables
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one to identify some linear combination of d, a with the inverse of the grav
itational constant. Formally, the parameter l has the cosmological constant 
status, there are, however, no aprioric restrictions on its sign. Obviously, 
putting d =  0, l =  0, we obtain Palatini-like model.

iii) g might be a byproduct of something else, like, e.g., some vector-valued dif
ferential one-form E  on M , transforming under (240) according to a homo
geneous rule (generalized cotetrad). It is reasonable to assume Lagrangian 
quadratic in the A-covariant differential of E .

The analogy with the usual Palatini principle enables one to suppose that the 
model i) will be more suitable and reasonable than ii) with non-vanishing d, l. 
However, at this stage, we refrain from any choice and assume ii) with the possi
bility of putting d =  0, l =  0.

The gauge field momentum H r sßv is defined as usually

ttt ßv 9L ym
H s  = 9 A ^ ~rß,v

(248)

and thus

H ßv =  - a F ßv \ f \g\ -  a'I4 Tr F ßvyf\g\ (249)

where the shift of the spatio-temporal indices is meant in the g—sense.

The metrical energy-momentum tensor of matter and gauge fields is given by

T ßv =  Tmßv +  TYMßV 2 / d(Lm +  LYm)
Æ  \  dgßv

d (Lm +  LYM)
9g,ßv,a a

after short calculations, one obtains

_ _ c _
Tmßv = bV (ß f  Vv ) f  — 2 V a f  Vß * g a ß gß v +  2 ^  * g ßv  

TY M ß v  = a Tr ( F ^ )  — |  Tr (Fa ß F aß) gß v

+  a' Tr (FßK) Tr (FvK) — ^  Tr (Faß) Tr (f aß) gßv

(250)

(251)

Obviously, the total Lagrangian underlying our variational principle is given by

L =  Lm +  LYM +  LHE
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and then the resulting Euler-Lagrange equations may be written in the following 
form

c
gßV V[ô]Mv [fl]v +  b ̂

V[g]v H  ̂

d ( r (9 Y v -  2 m a ßV)

where V [g]ß  denotes the total covariant differentiation corresponding to the simul
taneous use of the Yang-Mills connection A rsg (internal indices) and the Levi-

(spatio-temporal indices), R(g)ßv  denotes the Ricci ten

sor of 9.
Let us observe that the left-hand side of (253) may be rewritten as

V[g]vHßV = dv H ßV +  9 [Av, H ßV] =  H ßV;v +  9 [Av, H»v] (255)

where the semicolon denotes the Levi-Civita covariant differentiation. Although 
H ßv  ;v =  dvH ^v (because H  is a skew-symmetric contravariant tensor density of 
weight one), it will be convenient in our later calculations to use the form with
H  ̂  ;v.
If we use the Palatini-like pattern, d =  0, l =  0, then (254) becomes T ßv  = 0, just 
as in Poincaré-gauge models of gravitation. If d =  0, but the “cosmological” term 
is admitted, them T ßV = lgß v .
Apparently, the above U(2, 2)-invariant Klein-Gordon-Yang-Mills system has no
thing to do with the physically well-established Dirac equation and Einstein-Cartan 
geometrodynamics. The wave equation (252) is a second-order differential equa
tion, and it is difficult to expect any reasonable correspondence with the first-order 
Dirac equation and its Clifford background. However, a more detailed analysis re
veals not only the correspondence but also certain promising features of the model.

3.3. Expressing Everything in Terms of the Internal Symmetry SL(2, C)

The correspondence with generally-covariant Dirac theory and with an Einstein- 
Cartan type geometrodynamics becomes readable when one expands all internal 
quantities with respect to a basis adapted to an appropriate monomorphism of 
SL(2, C) into U(4, G) ~  U(2, 2). This monomorphism corresponds to the stan
dard injection of the proper Lorentz group SO^(1, 3) into the conformal group 
CO (1,3). Let yA, A  =  0,1, 2, 3, be any quadruplet of Dirac matrices adapted to 
the hermitian form G, thus, iYA G u(4, G), and

YA YB  +  YB  YA  =  2nA B  I4 . (256)

Civita connection \ a
X ßß

=  0 (252)

=  g J  +  Tr J ^ I 4 (253)

=  -  ̂  +  1 T ßV (254)
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It is well-known that complexified Clifford algebra L(4, C) is generated by Dirac 
matrices. Besides of 7A’s themselves the most natural 7 -adapted basis contains the 
following standard matrices

(257)Y5 = -75 = -Y 0Y17 27 , 
1

a y  = \y a  y  5 = -17 5y a

Yab =  i  (yayb -  y b y a )  =  - y ba (258)

The quadruplet of AY’s obeys the Clifford rules with the reversed signature, i.e.,
(—, + , + , + )

a Y b y +  B y a y  = - 2  nAB I4 . (259)
The Lie algebra u(4, G) is an R-linear shell of matrices

iYA, iAY, S AB, 175, 1I4 . (260)
Geometrically and physically relevant subalgebras of u(4, G) are R-linear shells 
of the following subsystems:

• su(4, G): iYA, iAY, S AB, 175.
• Lorentz algebra, i.e., injected sl(2, C): S AB.
• Weyl algebra, i.e., injected sl(2, C) © R I2: S AB, iY5.
• injected gl(2, C): S AB, iY5, i l  (Weyl algebra and U(1)-gauges) 

It is convenient to use the following mixtures of two kinds of 7 ’s

t a

x A

2 (YA +  AY) =  2 YAB (7B +  By)

YA -  AY
1
2

(261)

(262)

They generate Abelian Lie algebras

[ta , tb ] =  0, xa , xb 0.

Within the twistor formalism, the group generated by ta’s is identified with spatio
temporal translations and that generated by x A ’s with proper conformal transfor
mations of the four-dimensional Minkowskian space. XAB’s generate Lorentz 
transformations and iY5 -  dilatations. In our, generally-covariant, approach, the 
group U(4, G) ~  U(2, 2), describes purely internal symmetries without any direct 
relationship to subgroups of DiffM.
As Y-matrices do not generate Lie subgroups, it is convenient to replace the sys
tem (260) by the following one, better suited to the group structure of U(4, G).

1ta, iXA, S AB, iY5, il4. (263)

The Yang-Mills field A will be expanded as follows

AM =  1 ftAb m£ ab +  Bu y 75 +  A^iI +  eAMiTA +  / aB xA (264)
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where QAB 

and

= — QBAß, and all indicated coefficient fields are real. Let us define:

QAbm := QABß +  2B ßöAB (265)

Q ABß =  QABß — 4QGCßbAB, B ß =  8 ^ AAß. (266)

Then, (264) may be rewritten as

A ß  =  2 q ABm { ^ a b  +  1 nAB1 Y5)  +  eA ß \ta  +  Î A v\X A  +  A'ß il. 

The correspondence analysis will be based on rescaled quantities:

TA B ß := gQA B ß , r a bm =  r ABM — 1 r GGM̂ AB

Q  := 4gBß  =  | q Aam =  1 r AAM
A Ae ß  := ge ß , <pA ß  := g f A ß .

Expressing the Yang-Mills field in terms of r ,  we obtain

A ß  =  2gTA B ß ( y a b  +  1 nAB1 Y5)  +  eA ß \TA  + f A ß iXA  +  A ^i/ 

= D ß V  +  geAMiTA^ +  g f A ß iXA ^

where

(267)

(268)

(269)

(270)

(271)

(272)

D ^V = dß v  +  2 r ABM ( yab + 1  nAB 1 y^  v  +  gA ^iv. (273)

Let us now describe how the spinorial group SL(2, C) acts of these objects. Any 
choice of Y-matrices gives rise to same monomorphism

U : SL(2, C) ^  U(4, G) C GL(4, C)

it is given by the formulae

U (A) =  exp Q  tAB YAB^ (274)

A =  exp Q tA B  (vA v b  — VB va)^  , VA  =  nABvb (275)

where va , A =  0,1 ,2 ,3 , denotes the relativistic quadruplet of Pauli matrices. In 
the last formula it is put, exceptionally, va =  v a , whereas the n-shift of indices is 
indicated by the tilde symbol. For certain geometric reasons, there is no escaping 
this inconsistency without introducing an obscuring crowd of additional symbols
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[11,12]. The Lorentz transformation L(A) G SO^(1,3) assigned to A satisfies, 
obviously, the following conditions

U (A)yk U (A)-1 =  ym L (A )%  (276)

L (A )%  =  4 Tr (yk U(A)ymU(A)-1 ) =  1 Tr ( a KA^m A+) . (277)

Obviously, local transformations A:M ^  SL(2, C) act on wave amplitudes through 
U(A), like in (240)

(U(A)tf) (x) =  U (A(x)) tf(x). (278)

The gauge field components eK. ,  / k . ,  Tk LjU, A . suffer in virtue of (278), the 
following transformations:

eK / _
e .  _
/ k /  _

L(A)Km  e“ .  
/ m . L(A)-1M

r K /N .

(A .)/

ß L \ A ! K

K  t~.M T / A \ - 1 H_  L(A)KM rMH.L(A)- N
dL(A)KM

dxM
L(A) -1M

A/ .A. .

(279)

(280)

n  (281) 

(282)

It is important that if the local U(4, G) ~  U(2, 2) -symmetry is restricted to the sub
group U(SL(2, C)), the transformation rule for e becomes homogeneous and alge
braic in L(A). The field /  transforms contragradiently to e, thus, roughly speaking. 
e, /  are, respectively, contravariant and covariant vectors in Minkowskian space 
(R4,n). The T-coefficients transform under SL(2, C) exactly as non-holonomic 
coefficients of some SO^(1,3)-ruled spatio-temporal connection. If we extend 
SL(2, C) to GL(2, C), faithfully generated in bispinor space by XAB, iy5, i/4, 
the Lorentz group SO^(1,3) is replaced by the Weyl group eRSO^(1,3), and the 
above-quoted transformation properties of e, / ,  r ,  A/, remain true. Thus, if we 
assume in addition that det eA.  _  0, then, from the point of view of the reduced
symmetry GL(2, C), e becomes the cotetrad, and coefficients Tk M.  are, related 
to this cotetrad, non-holonomic coefficients of some Einstein-Cartan-Weyl affine 
connection [2]. The trace-less part r k M.  is an Einstein-Cartan connection, and 
Q . _  (1 /2 )rAA. becomes the Weyl covector. The fields / a form an additional 
cotetrad; we have used it in our GL(2, C)-invariant approach to spinors, to com
pensate the effect of dilatations. Within our model the cotetrad field e is interpreted 
dynamically, as a part of the U(4, G)-ruled Yang-Mills field, not as a reference 
frame for some SL(2, C)-ruled bispinor connection. Admitting also Q . and A . 
we obtain the GL(2, C)-connection, which compensates also local dilatations and 
local electromagnetic gauges. The part (273) of the covariant derivative V .^  
is just the corresponding GL(2, C)-invariant covariant differentiation of bispinors. 
It becomes the usual SL(2, C)-derivative if we put Q . _  0, A . _  0.
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If e, f  are co-tetrads (in general, they need not be so), i.e., if det eAß =  0, 
det[/A^j =  0, then Yang-Mills field A gives rise to certain spatio-temporal objects, 
assigned to A in a locally GL(2, C)-invariant way. For example, we can define 
following algebraic objects

t (e  f ) ßV :=  e A / Av, G (e, f ) ßV = t (e, f ) {ßv) . (283)

The latter is a metric-like quantity. We can also introduce SL(2, C)-invariant 
Dirac-Einstein matrices

h (e  n)ßV = nAB eAßeBv, h ( f  n)ßV = nAB U / b v . (284)

We can also construct the following spatio-temporal affine connections r ( e )x^v, 
r ( f  )XßV, assigned to A in a locally GL(2, C)-invariant manner

r ( e ) \ v  =  e W  eBß +  e W  (285)

r ( f  )xßV =  - / a ^ Abu f XB +  f  XA/ a^ u . (286)

They are Einstein-Cartan-Weyl connections in the sense of metrics h (e, n) and 
h (f, n), respectively

v[r(e)]xh (e, n)ßV =  - Q xh (e, n)ßV, v [r(f)]xh ( f , n)ßV =  - Q xh ( f  n)ßV.

It must be stressed, however, that, in view of the independent dynamical status of 
gnv, they need not be metrical with respect to g^v, thus, in general, the tensors

K (e)x„v := r ( e )x„v -  { l v  } , K ( f )x„v := r ( f ^  } (287)

will not have any special algebraic properties.
Torsion and curvature tensors of r(e ), r ( f ) will be denoted by S(e), S ( f  ), R(e), 
R ( f ), thus

s  (e)xMv =  r ( e )x[H , S ( f  )x ß v =  r ( f  )x M  (288)

R(e)xK̂ v =  2r(e)xK[v,̂ ] +  2r(e)xp[^r(e)P |K|v] (289)

R ( f  )x KßV =  2 r ( f  )xK[v,M] + 2 r ( f  )xp[^r ( f  )P|K|v]. (290)

Let us now express the curvature form of A in terms of the SL(2, C)-reduction. 
After some calculations one obtains

F  =  DA =  T  (e)AiTA +  T  ( f  )a1xA +  1 R A B  S ab +  G |  75 +  F 'i /  (291)
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where

T  (e) 

R a

A

B

G

F  '

deA +  gQAB A eB =  deA +  r AB A eB

R(Q)a b -  4 R ( t y UCàAB -  2geA A fB  +  2gnACnBDeD A f c\C  XA_ _A „AC,

4 R ( r )AB -  4g R ( r )Cc öAB -  2geA A fB + 2ggACVb d eD A f c  

1 _  , . . 1
g

■pdQ -  geA A fA =  -
4g g
dA'

- R ( r ) AA -  g2eA A fA

and R (r) denotes the curvature form of the eRSO(1,3) Î-ruled connection r

R (r )AB =  d r AB +  r AC a r CB, R (^ )ab =  d ^ AB +  g ^ AC a  q c b .

At this stage r  is an abstract eRSO^ (1, 3)-ruled connection, and R (r) -  its abstract 
curvature. An affine connection in M  and its curvature may be assigned to them 
only after some choice of tetrad had been done, and it is not yet the case. In general 
e, f  are free to be singular, or even vanishing.
The torsion-like structure of quantities T  (e), T  ( f  ) is easily recognised. There 
is nothing surprising in it as for example, we know that the torsion of a linear 
connection may be reinterpreted as a part of curvature of the corresponding affine 
connection. Here one is dealing with the conformal connection A. Some of its part 
may interpreted as translational torsion, “proper conformal” torsion, and Lorentz- 
rotational curvature.
If e, f  are co-tetrads, i.e., det 
relationships hold

1 
2S ( e ) \*  =  - 1  eAAT (e)

R(e) A v

where, of course

? V Bk DA

B

eAM =  0, det [fA^j =  0, then the following

V , S (f)A v  = - 1  f  AAT(f)A„v (292)

B ß v , R (f  A „ v  =  - fA « fAB R ' V (293)

r Aà B , /  rXB c B JA X J =  àA .e

3.4. Reducing Everything to the Subgroups SL(2, C) and GL(2, C)

The above reduction concerned only the kinematical concepts. Let us now express 
the dynamics of our model in terms of SL(2, C) and GL(2, C) objects. To some 
extent, the correspondence with standard theory is readable already on the level of 
Lagrangians, without manipulations on field equations.
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Matter Lagrangian may be expressed in the following form

Lm (tf; A,g) =  bgf gßveKß ( d vtft k tf -  tft k D vtf) yf\g\

+  bg2 gßvf Kß ( p vtfx Ktf -  tfXKDv tf) f g \

+  bgtf w  tf f g  +  f  gßv Dß tf Dv tf f ig j

where the matrix W is given by

W =  f gß v eK ß f K v h  -  ^  -  f ig ßveK ß f L v £ k La b Z A B . 

Let us quote another, perhaps more intuitive, expression

L m  (tf; A,g) = bg f  gßv  E  K ß (D v tf Yk  tf -  tf Yk  Dv tf ) \/\g\

+  bg f  gßv  F  K ß (D v tf k  y tf -  tf k  y Dv t f ) \ f \ g 

+  bgtf W tf f g \  +  f  gßv  D v tf  D ß t f f \ g \

where

E A ß  :=  2 { ßA ß  +  nA B h ß ) , F Aß : = f  ( e t f  -  t f B fBßA A B .

(294)

(295)

(296)

(297)

The separate terms are invariant under the local SL(2, C) group. We easily recog
nise the usual Dirac structure in the first term of (296). The second term corre
sponds to the Dirac model with the reversed signature. There are also algebraic 
mass terms; they may bee non-vanishing even if c =  0. The only feature of (296) 
discouraging from the point of view of Dirac theory is the d'Alembert term qua
dratic is derivatives Dß tf as it leads to second derivatives in field equations. It will 
be shown, however, that, surprisingly enough, this term is rather harmless.
The Yang-Mills Lagrangian has the following SL(2, C)-structure

LYM(A ,g) a  s a _
8 R A B ß v R B A K \ gßKgv \ f \ g \ -  a T ( e) A ß VT ( f ) A Kx gßKgv X ^ \

(298)
+  aGß v GKx gßKgv X \f\g\ -  (a +  4a') Fß v FKx gßKgv X J\g\.

The correspondence with Poincaré-gauge theories of gravitation (including Ein- 
stein-Cartan scheme) becomes more readable when we assume that e, f  are co
tetrads and express (298) in terms of purely spatio-temporal quantities. We obtain
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that

LYM(A ,g) ^  R(e) V m X,T\l\9 \ -  ^ R(e)Xx^JŸ\

+  2aR(e)KxßXt Kß f \g \  -  4atxKS (e)xßVS ( f )KßVf \g \

+  4ag2tßvtßVf \g \  -  2ag2tßUt v^ f \ g \  -  2ag2F ßtVvf \ g \  (299)

+  2ag2h (e)ßvh ( f Y ß f \ g \  -  2ag2h (eY ßh ( f )vv f \g \

-  (a + 4a') FßVF ^  f g \

where the shift of indices is meant in the g-sense. In particular, distinction must be 
made between t^v =  eß A f vA  {tßKtKV = öß v Ĵ and tßV = gßKgvXtKX.
We easily recognize in (299) the Yang-Mills term quadratic in curvature R a ßßv  
and the Einstein-Cartan-Palatini term linear in R a ßß v . Both occur in Poincaré- 
gauge theories of gravitation [2-5,9]. The main difference is that instead of terms 
quadratic in torsion, we have now the term bilinear in translational torsion S(e) and 
proper-conformal torsion S ( f  ). There is however a correspondence range, where 
S(e) and S ( f  ) become equal, at least approximately. Namely, as we shall see, our 
model admits solutions satisfying Einstein-Cartan constrains

f k  = VK M eM , g = h(e, n) = G(e, f  ) = t(e, f  ). (300)

So, restricting our Lagrangians (294), (299) to Einstein-Cartan constraints (300) 
(compatible with equations (252), (253), (254) although not implied by them), one 
obtains

L m ( T ; A ,g)\EG = bg2 gßVe%  (d v 'Ty k t  -  T Y k D v ^J\g\

2 -  2 )  T * f \ g \  +  D v v f \ g

L Y M (A,g)\EC = ^  R Kxßv R V v f \ g \  +  2aRß vßV f \ g \

-  4aSV S„ßVf \ g \  -  48ag2f \g \ .

+  (2bg
(301)

(302)

Lm\EC is a superposition of the usual Dirac and Klein-Gordon Lagrangians. The 
algebraic (mass) term exists even if we put c =  0 in the primary Lagrangian (243). 
Expression for L YM \EC predicts some correspondence with metric-affine theo
ries of gravitation. Lagrangians used there are superpositions of terms appear
ing in (302) (curvature-quadratic, curvature-linear, torsion-quadratic and “cosmo
logical”). The ratios of constant coefficients in (302) follow from the assumed 
U(4, G)-symmetry. In gauge-affine theories their values are not a priori prescribed 
and occur as certain control parameters. There are some indication that the first
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term should be relevant for the microscopic gravitation, whereas the linear term is 
necessary for the correct macroscopic limit [4,5,9].
It is, obviously, not the same to substitute constraints (300) to Lagrangians or to 
field equations (problem of Lagrange multipliers). The correct correspondence 
analysis should, and just will be, carried over on the level of field equations. Nev
ertheless, some heuristics, and guidance is also provided, in a concise form, by 
Lagrangians themselves.
To express concisely field equations in terms of the SL(2, C)-ruled geometry, we 
must introduce auxiliary dynamical quantities. First of all, we express the confor
mal current of matter in terms of the complete system (263)

Iß = A°ß^ \9 \ lTA +  0Aß[ \g \ iXA +  1 0ABß [ M S ab 

+  0ß[\Ö\ Y 75 +  0'ß \[\9\\-I-

Instead of ̂ -multiplets we shall also use the following world tensors

:= eßAA0v, 0 := f ßA0Av, 0KßV := eKAeBß0ABv.

(303)

(304)

These 0-quantities are quadratic-sesquilinear forms of the field ^  and for details 
see [13], where also the SL(2, C)-expansion of energy-momentum tensors (250), 
(251) is presented.
To write down in a concise form the wave equation (252), we have introduced 
the unified covariant differentiation V [g] (more precisely, we should denote it by 
V[g,A|). When acting on mixed geometric quantities with spatio-temporal and in
ternal (U(4, G)-ruled) indices, this operator combines, in the Leibniz-rule sense, 
the Levi-Civita and the internal A-based covariant differentiations. Restriction of 
U(4,G) to its injected subgroups GL(2, C), SL(2, C) gives rise to the internal 
covariant differentiation D defined in (273). Combining it with the Levi-Civita 
differentiation, we obtain the unified operator D[g,r]. But now, an additional floor 
of mixed objects appears, namely, quantities with spatio-temporal and capital in
dices; the latter ones refer to the linear subspace of L(4, C) spanned on 7 -matrices. 
The operator D[g,r ] extends in a natural way onto the realm of such objects. When 
e is a co-frame, then the pair, e, r  gives rise to the affine connection r(e ) defined 
in (285), (286). The mixed tensor objects with indices of the type ß, A  may be 
identified, by means of e, with purely spatio-temporal tensors endowed only with 
the ß-type indices. Under this identification, the D[g,r]-differentiation of (ß, A)- 
objects becomes an operator D[g,r(e)] acting on the spatio-temporal tensor fields. 
These fields may be also differentiated covariantly in the sense of r(e ) or {g}. 
The corresponding operators D[r(e)], D[{g}] differ from D[g,r(e)] by certain terms 
involving the tensor field K  (e).
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Let us summarise: GL(2, C)-invariant covariant differentiation D[g,r] is defined as 
a Leibniz-rule extension of the following formulae

% n „ X .  := a„x „ -  w  { ^ } = o Ks)]„Xv (305)

D [ĝ r := dßmr +  u rsß^ s (306)

D [g,r]ßYA := dßV A + r ABßY B (307)

where

u rsß := 2 r AB.  (sA B rs +  1 VAB 1 Y5rs) +  qAgiörs. (308)

Thus, e.g.,

D[g,p],,Z r v A  =
ryS pBZ vA — r A^Z vB —

A
AA (309)

When e is a co-frame, and g =  h(e, rj), then (308) becomes the usual relationship 
between the bispinor connection u  and the non-holonomic representation r ABß of 
the Einstein-Cartan-Weyl affine connection r(e).
The above way of introducing V[g], D[g,r] as operators combining the {g}-differen- 
tiation of world tensors and V- or D-differentiation of internal objects, was rather 
technical. A rigorous treatment should have used the Cartesian product of two 
principle fibre bundles over M  : the soldered bundle F M  of linear frames and an 
abstract, yet non-specified U(4, G)-ruled bundle over M , or its subbundles ruled 
by GL(2, C) and SL(2, C). Within this framework, the corresponding connections 
and covariant derivatives should be analysed. However, the explicit description of 
all appearing objects would enormously extend the treatment without any essen
tial profit for our subject. Thus, at this stage, we decide to avoid this superfluous 
purism.
It is convenient to use the quantities E Aß, F Äß defined in (297), because they are 
directly coupled to Dirac matrices

eAßTA +  fAßXA = E AßYA +  F Aß ay .

We shall also use the corresponding contravariant objects

E ß a  := 9ßv VAE E Bv, F ^ a  := 9ßv Va s  F  Bv

The W -operator (295) may be expressed as follows

W  =  2 9a b E AßE Bvg^vI  -  2 Va b F AßF Bvg^vI  

-  T ^ I  +  9igßvE AßF Bv£a b c d £
c

2 9 b
CD

(310)

(311)
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After some calculation, which in view of their large volume and rather purely tech
nical character, do not deserve reporting here, we obtain the GL(2, C)-reduced 
form of field equations (252), (253), (254).
When expressed in terms of GL(2, C)-ruled objects, the wave equation (252) be
comes

i7A ( e ^a D ^  + 1 (d ^ E ^ a ) * )

+  iA7 ( f »a D „*  +  1 (d ^ p^ a) * )  (312)

-  W ^ D [fl,r]MD [fl,r]v*  =  0.

On the left-hand side we recognise a superposition of two Dirac operators, cor
responding to mutually opposite normal-hyperbolic signatures (+, —, — , —) and 
(—, +, + , +). There is also an algebraic “mass” term W *  and the second-order 
“d’Alembert operator”. The divergence-type corrections have to do with Lie deriva
tives of the pseudo-Riemannian volume element and are necessary for the 
self-adjoint character of the wave equation. By abuse of language, we could 
rewrite (312) in the following, suggestive form

iYALEA *  +  iAl L FA *  — W *  +  D[g,Y]ßD[g,r]v *  = 0 (313)

where the “covariant Lie derivative” operators act on *  as on complex density of 
weight 1/2, and contain compensating terms responsible for the local GL(2, C)- 
invariance. There is also a second-order covariant d’Alembert operator, locally 
invariant under GL(2, C). It is seen that some Dirac-like structure emerges from 
these equations, but there are two terms perturbing it -  an additional Dirac operator 
and the second-order terms. As we shall see, they are not so embarrassing as they 
could seem.
Expressing the Yang-Mills equations (253) in terms of the GL(2, C)-splitting (291) 
we obtain

D[g,r]ß  T  (e)A a ß  +  geBß  R s Aaß — 2geA ß  G B a ß  =  — |  Ada (314)

D[g, r]ß T  ( f  )Aaß +  g f B ß  R BA aß + 2gfA ß  Ga ß  =  — ̂ aa (315)

D[g,r]ß R A B a ß  +  2geB ß  T  ( f  )A a ß  — 2geA ß T  ( f  )B a ß

—2 g f A ß T(e)B a ß  + 2gfB ß T (e)Aaß =  — (316)

D[g,r]ß Gaß — geA ß  T  ( f  )A a ß  +  g f A ß  T  (e)A a ß  =  — 1 9a  (317)

( l  +  — )  D g r]ß F'a ß  =  — q d'a . (318)\ a y a
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3.5. Some Special Solutions and Correspondence with Standard Theory

As yet we did not assume non-singularity of e, f ,  moreover they we free to van
ish. If they happen to be frames, i.e., det eAß = 0, det [/aJ  =  0, then the 
above equation, involving mixed quantities, may be expressed in terms of world 
tensors, free of any internal indices. This form is more convenient when the cor
respondence with Einstein theory and gauge theories of gravitation is studied. The 
resulting equations have a rather complicated form and occupy much place, thus, 
we do not quote them here but for certain details cf. [13]. They establish relation
ships between curvature and torsion tensors R(e), R (f  ), S(e), S ( /)  (288), (289), 
(290) and their g-covariant derivatives. There are terms characteristic for Einstein, 
Einstein-Cartan, and Poincaré-gauge theories of gravitation. To discuss the cor
respondence in more detail, we begin with the purely geometrodynamical sector, 
putting ^  =  0. Obviously, the wave equation (312) is then trivially satisfied and it 
turns out, there are also solutions to (253), (314)-(318). Namely, let us substitute 
to equations (314)-(318) the following Einstein Ansatz

f Aß = VAE eBß ,

r ( e ) \„ .  = r ( / ) V  =  { ^  } ,

Qß =  0,

V  =  9ßv = h(e)ßV = h ( f )Mv (319) 

S ( e ) \ v = S  ( f ) \ v = 0 (320)

A  =  0. (321)

Let us stress, these constructions are substituted now to the field equations (252)- 
(254), not to the variational principle based on (243), (246), (247). Thus, we do 
not modify the dynamics, but search for particular solutions.
Equations (317), (318) become identities under substitution (319)-(321), whereas 
(314) and (315) both reduce to the same form

R 1V -  12g2g ^  = 0 (322)

where RßV denotes the Ricci tensor of the metric gßV = h(e)ßV. If matter is 
admitted, then (314) leads to

R ßV -  i 2 g V v =  (323)
a

the corresponding equation for (315) has 9ßU on the right-hand side. Using the 
Einstein tensor, we can rewrite these equations as follows

R ßV -  1 RgßV = -1 2 g2gßV (324)

R ßV -  1 RgßV = -12g  V v +  g ( V v -  1 0aa g ^ A  . (325)2 a y 2 J
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Finally, equation (316) reduces to
g2

R aßßV ;v =  - - e aßß (326)a
or without matter to

R aßßu ;v = 0. (327)
Let us observe that, the last equation is redundant, because it follows from (322) in 
virtue of Bianchi identities.
Yang-Mills equations (314)-(318) are compatible with the Einstein Ansatz (319)— 
(321) and are reduced by it to (324), (325), i.e., to Einstein equations with the 
negative “cosmological constant” —12g2, determined by the coupling constant g 
of the U(2,2)-gauge field. Gravitational constant is given by g/a.  If we admitted 
in (319)-(321) a non-vanishing torsion S  (e), then the resulting equations would 
correspond with those of Poincaré-gauge theories of gravitation.
The Ansatz (319)-(321) may be weakened without any violation of the equations 
(314)-(318), namely, by admitting arbitrary constant factors at f , g

fAß = kßAB eBß, = kh(e)ßV, h ( f  )ßV = k 2h(e)ßV
, , ( \  1 (328)

r (e )V  =  r ( f ) =  [  ^ ^ , 9ßV = Ph(e)ßv, Qß = 0  = 0.

Substituting these assumptions to equations (4.16), we obtain

R (h(e))ßV — 2 h (e)aß R(h(e))aß h(e)ßV = —12 g2h(e)ßV. (329)

The factors k, p become essential when we consider the last subsystem (254), 
obtained from the variation of the action functional with respect to the metric gßV. 
On the right-hand side of Einstein equations (254) we must substitute the total 
energy-momentum tensor

T ßV = TYMßV +  TmßV.

If there is no matter, T ßV reduces to TYM ßV, and substituting to (254) the weakened 
Ansatz (328), we obtain

(ip — 24g2dk )̂ h(e)ß V = TYMßv  (330)

where TYm is given by

TY Mßv = 8g2p R(h(e))a ßßAR(h(e))ßav7 h (e)A"

-  i g2p R(h(e))aßKAR(h(e))ß«p,fc(e)“'h (e )A" h(e)ßl, (33!)

+  ( m i A ß v — 1 M e)“ß  R W e))a ß  h (e)ß,ß .
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Equation (330) impose rather strong algebraic conditions on the curvature tensor of 
the metric h(e)ßV. A priori it is not clear whether they are compatible with (323). 
One can show that, fortunately, there is no contradiction between (323) and (330), 
because there exist constant-curvature vacuum solutions. These solutions may be 
derived from flat U(4, G)-connections A.
Let us assume that A is flat, i.e., F  = D A  =  0. Using the expansion (291), we 
express the condition F  =  0 as follows

deA +  r A b  A  eB =  0 

d fA  +  fB A  r BA =  0

R (r)AB -  4 R (r )Gc §a b  -  2g2eA a fB

+2g2nA C nB D eD A  f c  =  0 

8 R(r)A A -  g2eA  A  f a  =  0

F' = dA! =  0.

(332)
(333)

(334)

(335)

(336)

Under the substitution F  =  0, ^  =  0, the Yang-Mills and wave equations (252),
(253) become identities. Thus, the problem reduces to the system consisting of 
(332)-(336) and Einstein equations (254). There are geometrically distinguished 
solutions which provide a natural basis for the correspondence analysis of (252)-
(254) . They are based on the weakened Einstein Ansatz (328). Substituting it into 
(332)-(336), we observe that (332), (333), (335), (336) become identities. More 
precisely, it is sufficient to assume that

f A ß =  knA B  eB ß , gßV =  ph (e) ßV , Qß  =  0, A'ß =  0. (337)

Then (332) and (333) just imply that r(e ) =  r ( f ) =  {g} =  {h ( e) }. And finally, 
equation (334) simply states that (M, g) is a constant-curvature space.
The U (2,2)-flatness condition (332)-(336) reduces under the Ansatz (337) to the 
following equation

R(9)aßßv
4g2k

P
( ga ß g ßv gavgßß) (338)

This means that (M, g) is a constant-curvature space. It is conformally-flat, and 
this link between conformal flatness of g and the U(2,2)-flatness of A  is rather nat
ural, if we remember that SU(2, 2) is the universal covering group of the conformal 
group CO(1, 3).
The equation (338) implies that

1 12 g2 k
R(g)ßV — 2 R(g)gßV =  gßV . (339)2 P



Search for the Geometrodynamical Gauge Group. Hypotheses and Some Results 127

This is consistent with (330) and (332)-(336) if and only if

Ip = 24g2dk. (340)

It is a dissatisfying redundancy of the model, that the Einstein equations emerge 
from (252)-(254) in two different forms, with independent constants. One can 
avoid this disadvantage by following the Palatini scheme, i.e., putting d =  0, l =  0. 
The metric tensor g preserves then its status of independent dynamical variable, 
however, it is no longer represented by a separate term in Lagrangian. Instead, it 
enters algebraically the matter and Yang-Mills Lagrangian. The above integration 
constants, p, k are then completely arbitrary.
The presented solutions of geometrodynamical equations provide a convenient 
framework for investigating the Dirac limit of our wave equation. The most con
venient choice of Ansatz constants is k =  1, corresponding to the balanced bite
trad (e, f  ). Let us mention, incidentally, there are also solutions corresponding to 
k =  0. They describe a geometric background for the strange world admitting 
only one kind of Weyl spinors. The trivial geometrodynamical vacuum A =  0 is 
incompatible with any concept of spinors.
Let us now go back to the wave equation (313). Due to the small value of the 
gravitational constant, geometrodynamical sector is weakly sensitive to the mate
rial one. Thus, in a small spatio-temporal scale of elementary particle physics, it 
is a satisfactory approximation to consider the wave dynamics (313) as played on 
the fixed geometric arena provided by the above solutions (337), (338) without any 
feedback through geometry.
Let us substitute to (313) the Ansatz

fAß = VAE eBß, gßV = h(e)ßV = pab  eAß eBv. (341)

Therefore
E  Aß = eAß, Fa v = 0.

The Ansatz (341) reduces the wave equation to

i'7A (e ßAO„* +  2 ( % r ) ^ a) * )  - * + 2ggßvD[ä.r|ßö|s.rlv*  = 0.

The divergence correction term has the same status as in (312). Following (313), 
we can also use the symbolic representation

4bg2  c i
{YACeA *  -  fbg  *  +  2f fß v D lg,r|ßD [g,r]v*  =  °. (342)

It is easy to show that

D[fl,r] ß e ß A =  - K  ( e ) a ß a e ß A (343)
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thus,

eßAiYA ( D ß -  1 K  {e)aß 0j *  -  * + h r  * = » •'ß 2 V ' ß«

If we assume in addition that r(e ) is an Einstein-Cartan connection, then

K  (e) %  =  - 2 S ß a (344)

Finally, if r  is a Levi-Civita connection, or, at least, if S is trace-less,

eßAiYADß *  -  *  +  2g®ßVDW l ßD W lv*  = 0  (345)

In the specially-relativistic limit, when eßA =  $ß A, r  =  0, gßv = nßv, this 
equation becomes as follows

iYß dß *  -  — - *  +  — dß dß *  =  0. (346)
' ß 2bg 2g ß

If our model is to be viable, this equation must somehow correspond with the Dirac 
equation, in spite of the term with second derivatives.
Let us consider, more generally, the following specially-relativistic Klein-Gordon- 
Dirac equation

ViYßdß*  -  W *  -  Udß dß *  = 0 (347)
which is derivable from the Lagrangian

L = V l-  ( *  Yßdß*  -  dß*Yß*  -  W *  *  +  Udß*  dß*  (348)

where V , W , U are real constants, and Minkowskian coordinates are used. Obvi
ously, equation (347) does not correspond to any irreducible representation of the 
Poincaré group, and in this sense it is not admitted by the Wigner-Bargmann clas
sification as a relativistic wave equation for elementary particles. Nevertheless, 
there are no principal obstacles against considering a continuous dynamical sys
tem ruled by (347). A more detailed analysis, together with quantization attempts, 
is presented in [14]. Here we restrict ourselves to an elementary analysis of the 
physical viability of (347).
Due to linearity of (347), one can expect solutions in the form of continuous su
perpositions of harmonic plane waves. Equation (347) yields, under substitution 
of

* (x ) =  f  e x p ( - ipßx ß)
that

Y ßPß f  =  (349)
where

1
m 2 =  p2 =  — ^ (2UW +  V2 ±  V V 4 +  4UW V2) (350)
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Thus, the general solution of (347) is a superposition of two Dirac waves with 
masses m - , m+ given by (350). In general, when no restrictions on coefficients 
U, W , V are imposed, tachyonic situations p2 < 0 are possible. To avoid this and 
warrant real non-negative solutions for p2, we must assume

V2 +  4UW > 0. (351)

The appearance of two mass shells in the general solution of (347) need not be so 
embarrassing as it could seem, and namely, for the following reasons:

i) If the splitting of masses m+ — m -  is large, than, in usual conditions, it 
may be difficult to excite the m+-states, because the frequency spectrum of 
external perturbations will have to contain frequencies of the order (m+ — 
m - )c2/h.  For example, if U ^  0, then m -  ^  |W |/|V |, m+ ^  œ  
(compare this with the idea of the Pauli-Villars-Rayski regularization).

ii) It is not excluded that superposition of states with two masses might be just 
desirable, for example, one could try to explain in this way a mysterious 
kinship between heavy leptons and their neutrions, or the corresponding 
pairing between quarks. If there is no algebraic term, W =  0, then m -  =  0, 
m+ =  |V /U |, thus, in spite of the purely differential character of (347), 
massive states appear, and are paired with massless ones.

iii) For special values of U, V, W namely, when V2 +  4UW =  0, the mass gap 
vanishes, m -  =  m+ =  |W /U |, and (347) exactly reduces to usual Dirac 
equation.

Comparing equations (346), (347) we obtain that

V =  1, W
4bg2 — c 

2bg
1

2g
(352)

and the Klein-Gordon-Dirac equation (347) is controlled by two parameters g and 
c/b. Therefore, one of masses in the doublet will vanish when c =  4bg2 and the 
non-vanishing partner equals m+ =  2|g|.
The mass splitting vanishes when c =  3bg2. The Klein-Gordon-Dirac equa
tion (347) reduces then to usual Dirac equation, and m -  =  m+ =  |g|. The general 
formula for the mass doublet reads

m T =  c — 2g2 ( 1 bg2 — 3)  . (353)

It is seen that below the threshold c/b =  3g2 there is no correspondence with Dirac 
equation unless we accept complex masses, tachyons and decays. At c/b =  3g2 
there is a kind of “phase transition”, and, due to interaction between fields ^  and 
A, the effective Dirac particle of mass |g| emerges. When c/b increases above the 
threshold, the mass splitting appears and the wave field ^  becomes a superposition
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of Dirac waves with masses m± given by (353). The quadrat-of-mass gap

A (m 2) =  4 |g ^ b  -  3g2 (354)

becomes negligible for small coupling constants. Some primary “mass” c/b is nec
essary if the effective Dirac behaviour is to emerge from the original Klein-Gordon 
model due to the spontaneous breaking of the U(2, 2)-symmetry to SL(2, C). It is 
not excluded that extending the internal symmetry from U(2, 2) to GL(4, C) we 
could obtain a model where the effective Dirac equation with mass would appear 
even in the absence of the algebraic term (c/2)1T \g\ in the Klein-Gordon La- 
grangian for T. The theory invariant under GL(4, C) involves more degrees of 
freedom, because Grs becomes a dynamical quantity.

Final Remarks

We were motivated by some physical ideas concerning the status of nonlinear
ity in fundamental wave equations appearing in quantum theory of strongly con
densed field-particles systems. In fundamental problems one must take relativis
tic phenomena into account. Even in situations where they are not quantitatively 
very strong, they strongly influence certain qualitative aspects. The nonlinearity 
we mean is usually implied by strong and non-commutative symmetry groups. 
When we deal with relativistic theory of phenomena in which particles with half
integer spin appear, it is just necessary to introduce additional geometric objects, 
well-known in mechanics of structured continua, like the non-holonomic fields of 
frames (cotetrad fields). And then this way the strong nonlinearity appears. This 
is because then by the very geometric nature of used fields, groups of conformal 
symmetry and general covariance appear. In spite of our dealing with the very fun
damental physical fields, the mathematical methodology of our treatment is in a 
sense common with characteristic nonlinearities appearing in elasticity and theory 
of shells and membranes.

Acknowledgements

This paper contains results obtained within the framework of the research project 
501 018 32/1992 financed from the Scientific Research Support Fund in 2007
2010. Authors are greatly indebted to the Ministry of Science and Higher Educa
tion for this financial support.
In our studies concerning symmetry of equations of nonlinear mathematical phy
sics we owe very much to our collaboration with the colleagues from Bulgar
ian Academy of Sciences, in particular to the collaboration with professor Ivaïlo 
M. Mladenov and his group. This collaboration is based both on informal, in par
ticular conference based contacts and on our formal project P-23 “Group Structures



Search for the Geometrodynamical Gauge Group. Hypotheses and Some Results 131

Behind Two- and Three-Dimensional Elastic Structures” within the framework of 
the agreement between Bulgarian and Polish Academies of Sciences (respectively 
Institute of Biophysics and Institute of Fundamental Technological Research). One 
of us (JJS) is very grateful to professor Ivaïlo M. Mladenov for his contribution to 
organizing our mutual visits within the framework of the above-mentioned project.

References
[1] Hehl F., Lord E. and Ne’eman Y., H adron  D ila ta tion , S h ea r a n d  Sp in  a s C om ponents  

o f  the In tr in sic  H yperm om entum . C urrent a n d  M etric-A ffine T heory o f  G ravita tion , 
Phys. Letters 71B (1977) 432-434.

[2] Hehl F., Mc Crea J. and Mielke E., W eyl Space-T im e, the D ila ta tion  Current, an d  C re
a tion  o f  G raviting  M a ss  by Sym m etry  B reak ing , In: Exact Sciences and their Philo
sophical Foundations//Exact Wissenschaften und ihre Philosophische Grundlegung. 
Vortage des Internationalen Hermann-Weyl Kongress, Kiel, Vertrag Peter Lang, 
Frankfurt am Mein-Bern-New York-Paris, 1985.

[3] Hehl F., Nitsch J. and Van der Heyde P., G ravita tion  a n d  the P oincaré G auge F ie ld  
T heory  w ith  Q uadra tic  L agrang ians, In: General Relativity and Gravitation. One 
Hundred Years after the Birth of Einstein, Held A. (Ed.), vol. 1, Chapter XI, Plenum 
Press, New York, 1980, pp 329.

[4] Ivanenko D., Pronin P. and Sardanashvily C., G auge T heory o f  G ravita tion  (in Rus
sian), Naukova Dumka, Kyiv, 1985.

[5] Ivanenko D. and Sardanashvily C., G ravita tion  (in Russian), Naukova Dumka Pub
lishers, Kyiv, 1985.

[6] Lopuszahski J., S p in o r C alcu lus (in Polish), PWN -  Polish Scientific Publishers, 
Warsaw, 1985.

[7] Marshak R. and Sudarshan E., In troduction  to E lem en tary  P artic le P h ysics , Inter
science Publishers, New York, 1961.

[8] Penrose R. and Rindler W., Sp inors an d  Space-T im e: vol. 1, T w o-Spinor C alcu lus  
a n d  R ela tiv is tic  F ie ld s, Cambridge University Press, 1987; vol. 2, Sp in o r an d  Tw istor  
M eth o d s  in Space-T im e G eom etry , Cambridge University Press, 1988.

[9] Ponomariov V., Barvinsky A. and Obuchov Yu., G eom etrodynam ica l M eth o d s  and  
G auge A pproach  to T heory o f  G ravita tion  (in Russian), Energoatomizdat, Moscow, 
1985.

[10] Schouten J., D er  R icc i-K a lkü l, Springer, Berlin, 1924; R icc i C alcu lus, 2nd edition 
thoroughly revised and enlarged, Springer, New York, 1954.

[11] Slawianowski J., E lim ina tion  o f  Sca le fro m  the T heory o f  M u tu a lly  In terac ting  G rav
ita tiona l a n d  Sp in o r F ie ld s, Rep. Math. Phys. 33 (1993) 191-202.

[12] Slawianowski J., Spinors, G ravity  a n d  R eca lib ra tion  Invariance. M icrophysica l M o 
tiva tion  fo r  the Weyl G eom etry , Rep. Math. Phys. 35 (1995) 1-31.

[13] Slawianowski J., N ew  A pproach  to the U(2,2 )-Sym m etry  in  Sp in o r a n d  G ravita tion  
T heory , Fortschritte der Physik -  Progress of Physics 44 (1996) 105-141.



132 Jan J. Slawianowski and Vasyl Kovalchuk

[14] Slawianowski J. and Kovalchuk V., K lein -G ordon-D irac  Equation: P hysica l Justifi
ca tion  a n d  Q uan tiza tion  A ttem p ts, Rep. Math. Phys. 49 (2002) 249-257.

[15] Veltman M., F acts a n d  M yster ie s  in E lem en tary  P artic le P hysics, World Scientific, 
New Jersey, 2003.


	SEARCH FOR THE GEOMETRODYNAMICAL GAUGE GROUP. HYPOTHESES AND SOME RESULTS

	1.	Introductory Remarks. Four-Component versus Two-Component Spinors in Special Relativity

	(31)

	^[e] a

	det

	det [pab]

	[nAB ] = diag (1, —1, —1, —1)	(45)

	n = nAB a[e]A ® a[e]B



	(51)

	(68)

	k6ef) + 2Im (aCc) àef

	2.	Spinors, Fermions and Four-Dimensional Einstein-Cartan Gravitation. Some Standard Ideas, Doubts and Questions


	[Grs]

	[Grs]

	0 I2 I2 0

	(113)

	(114)

	0 I2 I2 0

	I2	0

	0 — I2

	(115)


	[*r ]

	rK

	(210)

	(211)

	(212)


	Ksß]

	-I 2 - y g“" e^evl **/M-

	3.	U(2, 2) as an Expected Fundamental Symmetry in Spinor Geometrodynamics

	3.1.	Some Objections Against Dirac Theory

	V^i-	r ^r y/\g\.

	3.2.	Second-Order Derivatives Model with the Internal U(2,2)-Symmetry

				 c	


	3.3.	Expressing Everything in Terms of the Internal Symmetry SL(2, C)





	e . _

	dL(A)KM

	A/ .

	A..

	t (e f)ßV := eA/Av,	G (e, f)ßV = t(e, f){ßv) .

	v[r(e)]xh (e, n)ßV = -Qxh (e, n)ßV,	v[r(f)]xh (f,n)ßV = -Qxh (f n)ßV.


	„AC,

	3.4.	Reducing Everything to the Subgroups SL(2, C) and GL(2, C)

	%n„X. := a„x„ - w { ^} = oKs)]„Xv	(305)

	3.5.	Some Special Solutions and Correspondence with Standard Theory


	i'7A (eßAO„* + 2 (%r)^a) *) -*+2ggßvD[ä.r|ßö|s.rlv* = 0.

	{YACeA * - fbg	* + 2ffßvDlg,r|ßD[g,r]v* = °.	(342)

	Final Remarks

	Acknowledgements

	References






