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Abstract, We consider some recent results about the Poisson structures, aris
ing on the co-algebra of a given Lie algebra when we have on it a structure of 
a bundle of Lie algebras. These tensors have applications in the study of the 
Hamiltonian structures of various integrable nonlinear models, among them 
the 0(3)-ehiral fields system and Landau-Lifshitz equation.

1. Introduction

Suppose that M atfn, K) =  End(K") is the linear space of all n x n matrices 
over the field K, which willl be either i  or C and will be specified explicitly 
only if it is necessary. Mat-(n) possesses a natural structure of associative algebra 
and as a consequence -  a structure of a Lie algebra defined by the commutator 
[A", F] =  A"F — FA", denoted by gKn). However, the structure of the associative 
algebra over Mat-(n) is not unique, indeed, if we fix J  e  Mat-(n), then we can 
define the product (A" o Y ) j  =  A"JF and with respect to it Mat-(n) is again 
an associative algebra. This induces a new Lie algebra structure, defined by the 
bracket

Thus we obtain a family of Lie brackets, labelled by the element J.  It is readily 
seen that we actually have a linear space of Lie brackets, since the sum of two 
such brackets is also a Lie bracket of the same type. The above construction can 
be applied even if A", F, J  are not n x n matrices, since (1) makes sense when 
A", F  6 M atfn, m)  -  the linear space of n x m  matrices and J  e  Matfm, n) -  
the linear space of n x m  matrices. According to the accepted terminology, (1) 
defines a linear bundle of Lie algebras. Another example is obtained if we lake A",

[A", F] j  =  X J Y  -  Y J X . (1 )
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Y  from so (n) (the skew-symmetric matrices) and belonging to the space sm(n) of 
symmetric n x n matrices. Then again we have a bundle of Lie brackets.
It is difficult to say where the above algebraic structures have been used for the 
first time, and in this article we shall try to outline the applications they have found 
recently, especially regarding the infinite dimensional integrable systems. For the 
finite dimensional systems, [14] provides a wide range of applications. In [17] we 
have tried to make a review of these algebraic structures, filling up some gaps in 
the theory, but we believe there are still open questions of general character. For 
example, see [17], the classification theorem, announced some years ago, is not 
proved yet, though one sees it cited, [12], We denote a bundle of Lie brackets by 
(0 , V),  the first space being the algebra, the second space (linear space V) labels 
the brackets, that is in [X, Y]j ,  we have X , Y  e 0, J  e V.
In the applications one usually has the so-called closed bundles and the classifi
cation we mentioned concerns closed irreducible bundles over C. In [17] it was 
shown that the original definition for a closed bundle, [14], can be substituted by 
another, requiring the closure of the space of the brackets under the “Lie deriva
tives” induced by any of the new brackets. The plan of the present paper is the 
following. We first introduce some class of closed bundles of Lie algebras, that is 
large enough, then we pass to the Poisson Lie structures, defined on such algebras 
in the finite and infinite dimensional case, and finally give some applications.

2. Some Closed Linear Bundles o f Lie Algebras

As shown in [17], all except one of the known classes of closed irreducible bundles 
of Lie algebras can be obtained by the following simple construction. On M at(n) 
there are two natural algebraic structures, induced by the associative algebra struc
ture: the Lie algebra structure, defined by the commutator, and the structure of 
commutative algebra, defined by the anti-commutator A' i * A'_> A' i AA +  AAA' i. 
To distinguish between them we denote M at(n) by gl(n) in the first case and 
m at(n) in the second. There exist the following natural maps:

i) the representation F  of gl(n) into End(gl(n)): F ( X ) Y  =  —X lY  — Y X
ii) the map G of M at(n) into End(M at(n)): G { X ) Y  =  X lY  — Y X .

Since F  is a representation, for fixed S  the subspace 0 s  =  { X ; F ( X ) S  =  0} is 
a Lie subalgebra in gl(n). The map G possess the following interesting property

G ( X i * X 2) = - F ( X 1)G(X2) ~  F ( X 2)G (X i) (2)

and as a consequence the space Vg =  {J ; G (J )S  =  0} is a subalgebra of the 
commutative algebra m at(n) containing the unity 1 . Let us denote [Xi , X 2)y  =  
X \ Y X 2 — X 2Y X \ .  For Y  =  1 this is the usual commutator. The following result 
is a particular case of a more general one, [17], but we shall use only it.
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Proposition 1. I f  the matrix S  is nondegenerate, then 0sHV s =  {0} and (0 ,5, Vs) 
is closed linear bundle o f Lie algebras with brackets defined by [X, Y]m , where 
X .  Y  c  0,5, M  e Vs .

Even when we restrict ourself to the bundles of the type (0,s, Vs) the class of bun
dles is large enough, for example, on any of the simple algebras from the classical 
series B n =  so(2n +  1), n > 2, Cn =  sp(2n), n > 3, and Dn =  so(2n), n > 4, 
one can define such structure, [17], The construction can be also applied with 
slight modification to the bundle (Mat(p, q),M&t(q,p)).
We consider now the applications of the above algebraic structures for the inte- 
grable, or soliton systems, these terms being used for system of nonlinear evolu
tion equations depending on one spacial variable x  and the time I. allowing Lax 
representation [dx — U,dt — V) =  0, and such that they can be solved through some 
of the techniques, known in general as the Inverse Scattering Method (ISM). The 
matrices U, V  are functions on some functions f  which in their turn depend x, t 
(,fi define the so-called manifold of potentials) and a parameter A. Usually U, V  
lie in the algebra of formal Laurent series in A with finite principle part and coeffi
cients in some fixed finite-dimensional Lie algebra 0 . This algebra is denoted by 
0  ® [A, A-1] and referred as the jet algebra of 0 . (There are cases when U, V  are 
elliptic functions on A but we do not consider such pairs here). Thus the elements 
of the jet algebra are of the type

However, see [2], there exist Lax pairs for which the matrices U and V  lie in the 
spaces of the type 0^r =  (0,s ® [A, A-1]) pr, where pr is a fixed element from the 
vector space Vs ® [A, A-1] -  the vector space of Laurent series with finite principle 
part and coefficients lying in Vs- These spaces are in fact also algebras. Indeed, 
their elements are of the type Pnpr where Pn is as in (3). A brief calculation shows 
that

Therefore 0^ r (A) can be considered as an algebra having the same underlying 
space as 0,s ® [A, A-1 ] but endowed with different brackets

This has been mentioned in [17] that the relevant algebraic structure used in [2] 
in relation with the bundle of Lax pairs for the 0(3)-chiral fields system and the 
Landau-Lifshitz equation is that of the jet algebra so(4)(A+J) type. The struc
ture (5) has been rediscovered recently in [12], where the author made use of

Pn =  E  x i e 0 . (3)
i=—n

[■P n P r jQ m P r ] —  ( [P n j Q m ]p r ) P r ■ (4)

(5)
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pr =  A i — XA2 mainly for the bundles (so(n), sm(n)) and then apply the Adler- 
Kostant scheme to the algebra &pf  (A) in order to analyze systems that are general
izations of the Landau-Lifshitz equation. There is another application in the line of 
the finite dimensional case -  the construction of compatible Poisson Lie tensors.

3. Poisson-Lie Tensors Related to the Algebras

As it is well known, a Poisson bracket over a smooth manifold M  can be introduced 
either by some symplectic form or Poisson tensor (symplectic manifold or Poisson 
manifold). The symplectic case is classical, as to the Poisson tensor structure, we 
refer to [6], There is a canonical way to equip the dual space 0* of a Lie algebra 
0  with a Poisson structure, provided one can identify the spaces 0** and 0 . It 
amounts to the following: Let p  6 0* and denote by TM(0*), T*(0*) the tangent 
and cotanget spaces at p. Then

Tm(0 *) =  0 *, T*(0 *) =  0 “  =  0  (6)

and one can define a Poisson structure over 0* through the field of linear maps:

p ^ P ^ E  H om (0 ,0*), Pff i X )  = -ad*x p, X  G 0 . (7)

We shall call the tensor P  the Poisson-Lie tensor. It is well known, that the 
Poisson-Lie tensor P  can be restricted to the orbits of the coadjoint action of the 
corresponding group and on these orbits it becomes nondegenerate, [13], that is, 
the orbits are endowed with canonical symplectic structure.
If there exists a symmetric nondegenerate bilinear form B (X ,  F ) over 0 , invariant 
with respect to the adjoint action of 0  (this of course means that 0  is semisimple) 
one can identify in a canonical way 0 * and 0  and respectively the adjoint and the 
coadjoint actions. Then the Poisson-Lie tensor is simply Pfl(X)  =  adx p  for all 
A", p  G 0 .
One of the characteristic properties of the soliton equations is that they are Hamil
tonian with respect to different, but compatible Poisson structures [4, 7], Two 
Poisson tensors P. Q are called compatible if their sum is a Poisson tensor too, 
and as a matter of fact we have then a two-parametric family of compatible Pois
son tensors aP  +  bQ, with a,b G K. The linear bundles of Lie brackets provide 
in a natural way such compatible tensors. Indeed, if for a fixed S,  (0 s ,  Vs) is the 
closed linear bundle of Lie algebras, defined in the previous Section, we have the 
following:

Proposition 2. On the dual space €>*s is defined a family o f compatible Poisson- 
Lie tensors, labelled by J  G Vs

q ^ A q : PqJ (X)  = -  ( a d i)*  (q) X  G 0S, q G 0s- (8)
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For example, the tensors , P^ 2, where J  is a diagonal matrix, J 2 is its square 
and 1 is the identity matrix have been used in [9] to describe the bi-Hamiltonian 
structure of the Euler equations on the Lie algebras so(n) after identifying so(n) 
and so*(n) through the trace form T r(X F).
There is another algebraic mechanism which is often used in the theory of the 
integrable systems in order to obtain compatible Poisson tensors. The same alge
braic mechanism is also used to obtain from a finite dimensional tensors an infinite 
dimensional one.

Proposition 3. I f  7  is a two-cocycle for the trivial action o f a Lie algebra Sj on the 
field o f scalars K, then on Sj* there exists the following two-parameter family o f 
compatible Poisson tensors

p  —» —ci&dxP -  c2y ( X , .), X  e  $), ci, c2 e  K. (9)

We shall not comment further the finite-dimensional applications. In the theory 
of soliton equations the above construction is usually applied when one considers 
Poisson tensors of the algebra Sj = <&[x], which is the algebra of the smooth, fast 
decaying at infinity functions on the line (usually Schwartz functions) with values 
in some finite dimensional semisimple Lie algebra 0  with Killing form B (the 
algebraic operations are defined, of course, point-wise). Then one introduces on 
0  [x] the bilinear form

+ QO
« X ,F ))  =  J B ( X ( x ) , Y ( x ) ) d x ,  I , F e  <8{x] (10)

—  QO

and the so-called Gel’fand-Fuchs eoeyele [11] (sometimes also called Maurer- 
Cartan eoeyele, [3]) y (X ,  F ) =  ((dxX ,  F )), where dx stands for the derivation 
operator with respect to x. The Poisson tensors obtained in this way define the 
Hamiltonian structure of the equations for which the matrices U and V  in the Lax 
representation belong to the jet algebra 0  ® [A, A-1] and have the form

q —» ci&dx(q) +  C2dxX ,  I  e  0 [ 4  c i,c2 e l .  (1 1 )

However, since one cannot actually identify <5[x] and <5[x]** one interprets some
times X  as a distribution. It can be seen also that the same expression gives Poisson 
tensor fields in the case when q(x) is not as before an element from <5[x], but an 
element from the bigger space <3q[x] of the smooth 0-valued functions, tending 
fast enough to some constant value when |rc| —» 00. Finally, in the construction (9) 
we can always add to 7  a trivial cocycle, that is a cocycle of the type d0, where 
0{X)  =  (X, po) and po is a constant element from j)*, and in this way to obtain a 
family of compatible Poisson tensors

P ~ >  P f i -  P f - i ( X )  =  —c t & d x P  -  c2y ( X , .) -  a d ^ o , X C J3 (12)
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with Cj, i = 1,2 being constants. For applications of the structures (12) in the 
finite dimensional case see [14], as to the infinite dimensional situation, the tensors 
from the above family are also frequently used (though sometimes their origin is 
not mentioned explicitly). For example, the tensors defining the bi-Hamiltonian 
structure of the soliton equations in the nonlinear Schrodinger equation hierarchy 
are of the above type [3, 5],

4. The Linear Bundle (so(4),sm (4))

Let us start by making the following remark regarding the Lie algebras so(n). The 
map (X , F )  i-» [X, Y } j  is a two-cocycle for the adjoint representation of so(n) 
(with its usual structure). This cocycle is an ad-coboundary, since

[X, Y ] j  = adx a(Y )  -  ad y a(X ) -  a([X, Y}) (13)

where a  e End(so(n)) is given by

a (X )  = i ( X J  +  J X )  (14)

where J  is a symmetric matrix, and as usual a d x (F ) =  [X, Y}. After this gen
eral remark, in what follows we shall concentrate on so (4). It will be useful to 
parametrize it in such a way that the splitting so (4) =  so (3) © so (3) in two ideals 
isomorphic to so(3) be seen easily, as well as the action of a. For u, v  e C3 we 
write

u {«}/ =

{v}ii =

— U i  0 U $  —  U 2

— 112 ~  «3 0 U \

\ —«3 “ 2 ~Ul 0/
/  0 V i  V 2  — V ^

— V i  0 V 3  V 2

—V2 —V:i 0 —Vi
\  v 3  — V 2  V i  0/

(15)

(16)

Then each element A  e so (4) can be written in the form

A = {u}/ +  { v } / / ( 17)

and if we put

0 /  =  | { u } / ; u e C 3J ,  <5// = |{ u } / / ; u  6 C3|  (18)

then the algebras <8/,//  are isomorphic to so(3) and are ideals in so(4). As a con
sequences [0 /, <5n] =  0. Since J  is symmetric, it can be diagonalized and since
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when J  proportional to 1 gives the usual bracket, we can take J  to be traceless. In 
what follows, we shall assume that

J  =  diag(—j i  -  j 2 +  h ,  ~ h  +  h  ~  h , .h  ~  h  -  h , j i  +  h  +  h )  (19) 
where j s are numbers. The following useful properties hold

Proposition 4. Let J  be the diagonal matrix, introduced above. Then the map a, 
defined in (14) interchanges the two so(3) subalgebras o f so(4). More precisely

«({«}/) =  - { K u } h , « ({u } i i ) =  —{-Ffu}/ (20)

where K  =  diag(ji, J2, jfi) and K& denotes a vector, such that (K a ) s = j sas.

The Lie algebra so (4) is quite exceptional as in this case one can define nonde
generate inner product which is simultaneously invariant under all Lie algebra 
structures in the bundle (so(4),sm(4)) [17]. This, of course, can happen be
cause so (4) is semisimple, but not simple -  otherwise all invariant inner prod
ucts are proportional to the Killing form B ( X , Y ) .  It is constructed in the fol
lowing way. On so (4) define the linear map T  : so (4) —» so (4), such that 
T ( X i  -I- X u )  =  X j  — X u ,  where X j  e  ©/, X u  6 <8 / / ,  and the bilinear form 
B t (X,  F )  =  B (X ,  T(Y)) .  One can prove that

Proposition 5. B t  is invariant, non-degenerate bilinear form with respect to the 
adjoint action o f so (4) j  and a  is skew-symmetric with respect to B t .

The constructions outlined in the previous section, using in the Gel’fand cocycle 
the form B t  instead of the Killing form B  yields

Proposition 6. Over the manifold so(4)o[a:] there exists a seven-parameter family 
o f compatible Poisson tensor fields

A  -> p (cxc2,c3,J) = ClŜ A +  c2ad^ +  c3dx , A  e so(4)0[a:]. (21)

According to our knowledge, these Poisson structures have been used for the first 
time in [16] to describe the Hamiltonian properties of the 0(3) -chiral fields system 
hierarchy. We will show how they can be applied to describe the Hamiltonian 
properties the hierarchy of the Landau Lifshitz equation, obtained via polynomial 
bundle (the LLp hierarchy).

5. The P-N Structure for the LL Hierarchy Obtained Through 
Polynomial Bundle

Suppose M  is a manifold, endowed with two compatible Poisson structures and de
note the corresponding tensors by P  and Q. The compatibility means that P  + Q 
is also a Poisson structure. As mentioned, the existence of different, but compat
ible Poisson structures, for which the same equation is Hamiltonian, is one of the
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characteristic features of the integrable equations. If in addition one of the ten
sors, for example Q, is invertible, then the pair (Q, A*), (A =  Q 1 o P ) endows 
the manifold with a special geometric structure, the so-called Poisson-Nijenhuis 
structure (P-N structure).
As it is well-known, the P-N structure is responsible for the infinite Abelian algebra 
of symmetries one has for the soliton equations [7], In what follows we are going 
to find such structures on some specific manifold. In the above context (that is 
when a compatible Poisson structure exists and one can define A =  Q 1 o P), we 
call A a recursion operator.
The tensors one would like to invert are not always invertible. But if in the com
patible pair (P, Q) the Poisson tensor Q is not invertible, one avoids the problem 
by restricting Q to some integral leaf of the distribution m  i-» im(Qm). As it 
is known, Q will be an invertible Poisson tensor on such a leaf (this holds for the 
finite-dimensional case, and with some caution one can do it usually in the infinite
dimensional case, too). But even if Q is easily restricted, it might not be the case 
for P , since restrictions of the Poisson tensors on a given submanifold are not 
always possible. However, there are sufficient conditions for a submanifold in a 
Poisson manifold to be a Poisson manifold, too. They are described in a theorem, 
proved in general form in [10], and in a simpler version in [8], where also various 
applications to the soliton equation theory are given. We use the theorem in the 
following form

Theorem 1. Let M be a Poisson manifold and N C M be a submanifold. Let i 
be the inclusion map o f N into M and let X p(N)m be the subspace o f covectors 
a  at m  6 N, such that Pm(a) 6 [di]m(Tm(N)). Let T^(N ) be the annihilator o f 
im[di]m. LetX p(N)m+ T J-(N)m =  T^_(M) anrfXp(N)mnT-L(N)m C_ker(Pm). 
Then there exists unique Poisson tensor P  on N, such that Pm =  [di]moPmo[di]^.

The theorem shows how to construct the restriction of P  and has been used in [16] 
to find the recursion operators for the 0(3)-chiral fields hierarchy. We use it now to 
find the recursion operators for the Landau-Lifshitz hierarchy of integrable equa
tion. This is a new result and we shall outline it only in brief, the details will be 
published elsewhere. We need some definitions first.
Suppose S(x , t)  e  R3 is a smooth vector field taking values on the unit sphere 
S2 =  {S; ||S ||2 =  1} and tending fast enough to some limit value So when |rc| —> 
oo, that is all the derivatives of S(x)  go to zero when |rc| —» oo. Usually So is 
assumed to be (0,0,1) which we assume too. We require a condition that ensures 
the above, but it is stronger, we assume that S(x)  is a real-valued function taking 
its values on S2, such that the components of S(x)  — So are a Schwartz (type) 
functions on the line. We write the above conditions for short as

(sw) lim S(x) = S0 =  (0,0,1). (22)
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Two notorious infinite dimensional integrable dynamical systems are known to 
exist on the space M s  of functions S(x),  satisfying the above conditions, which 
attracted considerable attention in the past decades:

1. The Heisenberg ferromagnet equation (HF)

It is known that it is gauge equivalent to the nonlinear Sehrodinger equa
tion (NLS) [18, 5, 3] -  another notorious completely integrable system.

2. The Landau-Lifshitz equation (LL)

where R  = diag(ri, r 2, r.3), rt > 0 and the vector field R ( S) has compo
nents rsS s.

The LL equation describes waves in ferromagnet chains and it is one of the infinite 
dimensional completely integrable systems (cf. [3]), found after the discovery of 
the ISM. Is it also related to some finite-dimensional integrable systems [15].
For LL there exists a Lax pair, belonging to hierarchies of pairs lying in so(4)(A+^  
[2], if the values of j s are fixed to be j s =  iyTJ, where rs are as in (24).
The corresponding evolution equations are

where the quantities B n satisfy the following infinite system of equations -  the 
LLp chain system

The equations (25) are evolution equations, defined on the set of matrices of the 
type A  =  {S}/, where S(x)  e  Ms- We denote this space by M j -  this is our 
manifold of potentials. The hierarchy (25) is the Landau-Lifshitz hierarchy of 
evolution equations, but as we need to distinguish hierarchies obtained through 
different bundles we call it LLp hierarchy. Of course, all the relations (25), (26) 
can be written in terms of the vector fields S, b n and cn [2], In this case they take 
simpler form , but unfortunately the algebraic structures remain hidden.
Now, looking at the LLp hierarchy of evolution equations, cf. (25) and (26), and 
also at the tensor fields p ^ 1'C2'C3'J) one sccs (hat they can be cast into the following 
two equivalent forms

(23)

St =  S x S ra +  S x  R ( S) (24)

At — (Bn)x — —(A J B n — B nJA)  — —[A,Bn+i]
(25)

A = {S}/, B n = {bn}/ +  {c n} u

[-4, B 0] = 0
[A, B n+1] =  2(Bn)x -  (A J B n ~  B nJA),  n = 0 ,1 , . . .  .

(26)

At = PA(Bn+1 ) =  QA(Bn), n =  0 ,1 , . . . (27)
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where in order to avoid the complicated indices we have put Q = p i  IflAJ) ant| 
p  =  p io .- f '1!-7). These two tensors are compatible, which is the starting point of 
our considerations. We would like to restrict them to the space of potentials Mg.  
The first tensor can be immediately restricted and since its form remains unchanged 
we denote it by the same letter. It defines the so-called first Hamiltonian structure 
on Mg- We skip the details about the restriction of P  and give only the final result

Proposition 7. On the manifold ofpotentials Mg there exists a restriction P  o f the 
Poisson tensor P  having the the form

X

PA(X*) = ir(dx (X*))  -  ±AX j  B T (X*(y), A y(y)) dy
±00 (28)

- ^ ( a o A ^ o a J O i , ! * ] ) ]

where X*  E TA(Mg), it denotes the projection in so(4) onto the subspace, or
thogonal to A  and a  was introduced in (14).

The operator A, whose inverse appears in the above formula, is defined as

A(Y*)  = dxY * - ^ [ a ( A ) , Y * ]  (29)

and its domain is the set of functions Y*(x)  =  {c (x )}n  where (sw) lim c(x) =  
co(0,0,1), co being some constant. If A(X*) = Y*,  then X* = A - 1 (F*) is 
specified if we fix the asymptotic of X*  at +oo (—oo), which explains the subscript 
± . The description of this operator, the fact that its inverse is well-defined, and that 
the functions applied to A . and A gives the same result are topics that are out of 
the scope of the present paper.
Since on the tangent space TA(Mg)  the operator QA is invertible, we are able to 
calculate the recursion operator A± =  Q ^ 1 o p A

X

A |(x * )  =  -^ [A , dx (X*)\ +  A,] j  B T (X*(y) ,Ay) dy
ztoo

1 1 (30)
— —(it o a  o A j,1 o a  o ad^)(X*)

=  A-t(X*) — - ( tt o a  o A ^1 o a  o ad^)(X*) 

where X*  satisfies B t (X*(x ), A ( x )) =  0. The operators
X

= ~ [ A , d x (X*)] + ^ [ A A x] j  B T (X*(y) ,Ay)d y  (31)
±CXD

A±(X*)
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are the well-known recursion operators for the HF equation [5, 1], To see this one 
must put X*  =  {b}/ and express A±(X*) through b(a:). Note that A± reduces to 
A± when K  =  0. Now the general theory of compatible Poisson tensors and P-N 
manifolds yields

Proposition 8. The pair (Q , N L =  ( A L)*) endows the manifold o f potentials Mg 
(or M s) with a P-N structure.

Corollary 1. Suppose the elements o f B n G so(4)o [x] from the LLp hierarchy, (25) 
are written in the form B n(x) =  Fn(x) +  Gn(x), where Fn(x) G 0/ ,  Gn(x) G 
0 / / .  Then ir (Fn) can be interpreted as closed forms on Mg, that are in involution 
with respect to both the Hamiltonian structures Q and P  and they can be obtained 
recursively

Tr(Fn+i) = A±(M.Fn)) (32)
while the equations o f the LLp hierarchy have Bi-Hamiltonian form

At =  QA(AFn+i))  =  P a(7t(F„)). (33)

It must be emphasized, that the recursion operator A± appears here for the first 
time. The recursion operator that has been considered up to now in relation to the 
LL equation is the one found in [1]. Both operators (ours and that one in [1]) relate 
two compatible Poisson structures, but in the present paper the second structure 
appears in clear algebraic settings which is not the case for the recursion operator 
used until now. Next, the operator in [1] reduces to A± (A± is the recursion oper
ator for HF) when the parameters rj in the Landau-Lifshitz equation tend to zero 
(and hence the LL equation reduces to HF) while the operator A± reduces to A± in 
the same limiting case. Since the operator found in [1] is not the square of A±, we 
have a new recursion operator. The flaw of using A± seems could be ascribed to the 
need to invert the operator A. This actually amounts to the problem of solving for 
cn the chain system at each step. However, the above flaw is apparent, as we have 
shown in [2] that there exists a nice formula, expressing cn through b o , , b„ i. 
Thus A± are recursion operators for the LL equation at least on the same reasoning 
as the operators found by Barouch et al [1],

6. Conclusion

We have outlined some of the applications of the theory of the bundles of Lie alge
bras, related to infinite-dimensional integrable systems. As can be seen, these ap
plications are still rather limited, despite the success in the finite-dimensional case. 
We strongly believe however, that the recent developments in the theory of the 
Landau-Lifshitz equation will attract the interest of the specialists. These develop
ments make even more interesting than before the question about the equivalence
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between different bundles of the Lax pairs -  the elliptic one (usually considered) 
and the polynomial one, based on the new notion of the alternative Lie algebra 
structures.
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