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Abstract, Here we consider the cubic complex Ginzburg-Landau equation. 
Applying the Hone’s method, based on the use of the Laurent-series solu
tions and the residue theorem, we have proved that this equation has no el
liptic standing wave solutions. This result supplements Hone’s result, that 
this equation has no elliptic travelling wave solutions. It has been shown 
that the Hone’s method can be applied to a system of polynomial differential 
equations more effectively than to an equivalent differential equation.

1. Introduction

Nonlinear dynamic systems and evolution equations actively used in physics are 
often nonintegrable in the sense that it is impossible to find their general solutions 
using known methods. At the same lime knowledge of special solutions with some 
given properties is sufficient for construction of physical models. At present lime 
methods for construction of special solutions in terms of elementary (degenerated 
elliptic) and elliptic functions are well developed [3,8-11,19-21,24,26,29-31,34, 
36] (see also [22] and references therein). Some of these methods are intended for 
the search of elliptic solutions only [3,20,29], others allow lo find either solutions 
in terms of elementary functions [8,9,36] or both types of solutions [10,11,19, 
21,24,26,30,31,34]. Note lhal both elliptic and degenerate elliptic functions are 
solutions of some first order polynomial differential equations.
Elliptic and degenerate elliptic solutions of some differential equation can exist 
only if there exist formal Laurent series solutions of them. One can construct 
such formal solutions using the Ablowitz-Ramani-Segur algorithm of the Painleve 
lest [1] (see also [32]). In [24] the method of construction of analytic special 
solutions of nonintegrable systems with the help of the Laurent series solutions
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has been proposed. The Laurent series solutions can be used to prove nonexistence 
of elliptic solutions as well [18].
In this paper we show that in order to prove the nonexistence of elliptic solutions 
the analysis of the system of differential equations may be more useful than the 
analysis of the equivalent differential equation. In two of the above mentioned 
papers ([18,24]) the cubic complex Ginzburg-Landau equation [13] has been in
vestigated. We also consider this equation. Using the Hone’s method we will prove 
that this equation has no elliptic standing wave solutions. This result supplements 
Hone’s result, that this equation has no elliptic travelling wave solutions.

2. The Cubic Complex Ginzburg-Landau Equation

The one-dimensional cubic complex Ginzburg-Landau equation (CGLE) [13] 
is one of the most-studied nonlinear equations (see [4] and references therein). It 
is a generic equation which describes many physical phenomena, such as pattern 
formation near a supercritical Hopf bifurcation [4,12], the propagation of a signal 
in optical fibers [2], spatiotemporal intermittency in spatially extended dissipative 
systems [16,23]. The CGLE

where p e  C, q e  C and 7 e  R. is not integrable if pq^ /  0. In the case q/p  e 
HL 7 0 the CGLE is integrable and coincides with the well-known nonlinear
Schrodinger equation [15,25],
One of the most important direction in the study of the CGLE is the consideration 
of its travelling and standing wave solutions [3-6,9,17-19,24,27,28]. Substituting

A (x, t) = £ = x - c t ,  c e l ,  w e l  (2)

in (1) we obtain the following third order system of ordinary differential equations

where tp =  ip' =  dp/d£_, M ' =  dM /d£. Six real parameters dr, ck, gr, gi, sr and 
Si are given in terms of c, p, q, 7 and uj as follows

iA t +  pA xx +  q\A\2A  -  i7.4 =  0 (1)

(3)

, . ■ , _  Q . _  1 _ 7  +  iwdr -)- idi — , sr is  ̂ — , gr "H igi —
p  p  p

Using (3) one can express ip in terms of M  and its derivatives
csr G' — 2csiGIp = +  ——T7-------
2 2M 2(gr — diM ) (5)
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where

G = l- M M "  -  l- M '2 -  y M M ? +  drM :i +  gtM 2 (6)

and in this way to obtain the third order differential equation in M

(G? -  2cstG f  -  4G M 2(dtM  -  grf  =  0. (7)

We will consider the case in which p fq  is not a real number. This condition is 
equivalent to the restriction di /  0. In this case the equation (7) is not integrable [7, 
9]. Using the Painleve analysis [7] or topological arguments [28] it has been shown 
that single-valued solutions depend on one arbitrary parameter. Equation (7) is 
autonomous, so this arbitrary parameter is £o: if M  = /(£ ) is a solution, then 
M  = /(£  — £o)> where Co G C has to be a solution. Special solutions in terms of 
elementary functions have been found in [5,9,19,27]. All known exact solutions of 
the CGLE are degenerate elliptic (rational, trigonometric or hyperbolic) functions. 
The full list of these solutions is presented in [18,24].

3. Elliptic Functions

The function q(z ) of the complex variable z  is a doubly-periodic function if there 
exist two numbers uj\ and u>2 which ratio u>i/u>2 is not a real number, and such that 
for all c c  C

q { z ) =  q { z + LUl) = e(z + iU2). (8)
By definition a double-periodic meromorphic function is called an elliptic func
tion [14]. The periods define the period parallelograms with vertices zq, zq+ N \uji, 
zq -)- N 2UJ2 and zq -)- Niuj\ -I- N 2UJ2, where N \ and N 2 are arbitrary natural num
bers and zq is an arbitrary complex number. The classical theorems for elliptic 
functions (see, for example [14]) ensure that

• If an elliptic function has no poles then it is a constant.
• The number of elliptic function poles within any finite period parallelogram 

is finite.
• The sum of residues within any finite period parallelogram is equal to zero 

(the residue theorem).
• If q(z ) is an elliptic function then any rational function of q(z ) and its 

derivatives is an elliptic function as well.

From (5) it follows that if M  is an elliptic function then ip has to be an elliptic 
function. Therefore, if we prove that ip can not be an elliptic function, we will 
prove that M  can not be an elliptic function as well. To prove this we construct 
the Laurent-series solutions for system (3) and apply the residue theorem to the 
function ip and its degrees.
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4. Nonexistence o f the Standing Wave Elliptic Solutions

4.1. The Laureni-Series Solutions and the Residue Theorem

To prove the non-existence of elliptic solutions to (3) we will use its solutions in the 
form of the Laurent series, which can be easily found due to the Ablowitz Ramani 
Segur algorithm of the Painleve test [1]. In such a way we obtain solutions only as a 
formal series, but really we will use only a finite number of these series coefficients, 
so we do not need actually the convergence of these series. It is known [9,18,24] 
that there are only two types of the Laurent-series solutions of (3) or (7). These 
solutions depend on the arbitrary parameter which determines the location of 
the singular point. At singular points ib and M  tend to infinity as 1 /t and 1 /t2, 
respectively. We denote the different Laurent series for the function ib as

QG QG
^ 1 =  E  Ckii-iQ? and ^ 2 =  E  - io)k (9)

k= - 1 k= - 1

with C -i  /  0 and D _i /  0. A nonconstant elliptic function should have poles. 
Let us assume that in some parallelogram of periods #(£) has N± +  N 2 poles, its 
Laurent series expansions being ibi in the neighbourhood of N \ poles and ib2 in 
the neighbourhood of N 2 poles. If #(£) is an elliptic function then the sum of its 
residues in some parallelogram of periods has to be zero, therefore, this function 
has both types of the Laurent series expansions (9) and

iVi =  ~ ^ N 2. (10)

If #(£) is an elliptic function then its powers ibk have to be elliptic functions as 
well, so they have N± Laurent series expansions ibk and N 2 Laurent series expan
sions ibk. To calculate residues of ibk (or ibk) we have to use only k  leading terms 
in the Laurent series ib 1 {ib2). The residue theorem for the functions ibk gives al
gebraic equations in the coefficients of ib 1 and ib2 Laurent series. Coefficients of 
these series depend on numerical parameters of the system (3) and only on them 
(have no resonances), hence, we obtain a system of algebraic equations in coeffi
cients of (3), at which (3) can have elliptic solutions.

For example, if we demand that the function 1b2 is an elliptic function, then us
ing (10) we obtain the following equation

Co = D 0 (11)
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analogously ip3, ip4 and ip5 can be elliptic function only if

C iC -i + Cq = D iD - i  +  D q

C2C 2 x +  ZCPCqC U  + C'I = D 2D 2_t +  3D iD 0D _i +  D |
( 12)

C%C %_! +  4C2C0C 2_! +  2C fC 2_1 +  e C -iC lC i +  C l

=  D zD —1 +  4D2D qD 2_1 +  2D \D 2_1 +  6D iD gD _i +  D |.

In Subsection 4.4 we also use the corresponding equation for ip7 under conditions
CQ =  0, C2 =  0, C4 =  0, i?o =  0, D 2 =  0 and D4 =  0

CbC b_ t +  bC gC iC ii +  5C fC '̂ 1 = D 5D 5_ 1 +  +  f>D\D3_ t . (13)

We have calculated the residues of powers of ip with the help of the procedure 
ydegree from our package of Maple procedures.
Note that using the residue theorem in the Laurent series solutions for the function 
M  we obtain more complex system of algebraic equations, because the function 
M  tends to infinity at singular points as 1 /£ 2, but not as 1 /£.

4.2. The Number of Essential Numerical Parameters of System (3)

The system (3) includes seven arbitrary constants, some of which can be fixed 
without loss of generality. First of all one can fix sr and Sj. From the condition 
p R. (the case of real p will be considered separately) follows that Sj /  0. Using 
the following transformations

C =  TUCj
_ Si _ ~ csr
Si = —, Sr = TSrj 'll) = 'll)---- —(1 — Ttu)

vj 2
(14)

one can put
1 . . 3sr = ----- and Si = ------------ .

10 10
(15)

Using the transformations

M  = p,M, di =  —, dr =  —
p, p

(16)

we can fix dr or cp. Following [18] we will fix the value of dr . Our restriction 
on parameters p and q gives no information about dr , so we have to consider two 
cases: dr =  0 and dr /  0 separately. Using scaling transformations of the inde
pendent variable £ it is possible to fix gi or gr, but, following [18,24] we leave 
them arbitrary to consider zero and nonzero values of these parameters at once. 
From the second equation in (3) it follows that if ip is a constant then M  can not 
be an elliptic function, so to obtain nontrivial elliptic solutions we have to assume
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that ip has poles. We do not restrict ourself to the case c =  0 and prove the non
existence of either travelling or standing wave solutions. It has been noted in [10] 
that one does not need to transform a system of differential equations into one 
equation to obtain the Laurent-series solutions.

4.3. The Case dr =  0

Let us consider the system (3) with

1 3
dr =  0, sr =  and s* =  . (17)

There exist two different Laurent-series solutions (we put Co =  Co =  0) of (3)

, V2  c(^ 2  +  l)
V'l =  —-----------™------- H 0 ( 0 ,20

and

Mi

M2

302 /  1 
~d~ \ 0

3 0 2  /  1

” “ d T  \ 0

0)+O(l) (l8)
■ 0 ) + O ( i i - (19)

From (10) it follows that iVi =  N 2, that is to say, if the function 0(C) has N  poles 
with residues, which are equal to 02 , within some finite period parallelogram, then 
in this domain the number of poles, which residues are equal to — 02 , has to be 
equal to N  as well.
Residues of 0 i  are equal to —2v/2c(v/2 -I- l)/20 , whereas residues of are 
—202c(02  — l)/20 . From equation (11) we obtain that the sum of residues of 
the function ip2 is equal to zero if and only if c =  0. So, we prove the absence of 
the travelling wave solutions. Note that to obtain this result we have used only two 
coefficients of the Laurent series ip\ and #2- In the case c =  0 we have to apply the 
residue theorem for ip3 and ip4, so, we have to calculate four coefficients in these 
series (two of them are zero at c =  0)

Vh = — H -  + —  — 5r) C + OC2 + 0(C’3) (20)

and

7)2 =  — ^— H -  — — ^r ) ^ ^ (^ 3)’ (21)

From (12) we obtain that the functions ip3 and ip4 satisfy the residue theorem if 
and only if

gi =  0 and gr =  0. (22)
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In this case the Laurent-series solutions give

M O  = Y ’ ^ 1 ( 0  = ^  (23)

and

M O  = m 2(0  = (24)
£ diO

The straightforward substitution of these functions in system (3) along with c =  0, 
dr =  0, gr =  0 and ft =  0 proves that they are exact solutions. Using the 
Ablowitz-Ramani-Segur algorithm [1] it is easy to prove that the coefficients of 
the Laurent-series solutions does not include arbitrary parameters, so the obtained 
solutions are unique single-valued solutions and the CGLE has no elliptic solution 
for these values of parameters as well. Thus we have proved the non-existence of 
both travelling and standing wave elliptic solutions for dr =  0.

4.4. The Case dr /  0

In this case we can use the following values of parameters without loss of generality
1 1  3

dr =  sr = ----- and & = ------------ . (25)
2 ’ 10 10

To simplify calculations, and following [18], we will express di through a new real 
parameter

di =  ±
3 \ :1- 1

Ay/2
8 > 1. (26)

If di > 0 (for the -I- sign in equation (26)), the system (3) has the following Laurent 
series solutions

ip i

1p2

0 2 (8 + 1 )  ! _  c_ /  Q M M  1'\
O f M M  4 10 \ 0 2 ( 8 - l )  2 j

0 2 ( 8 - 1 )  i c (  Q W M  _  1 
O W M  4 10 \ 0 2 ( 8 + l )  2

+ O(0

)  +  o (0

(27)

(28)

If there are N \ Laurent series of type ip\ and N-> Laurent series of type ip2 then 
equation (10) gives

JVi
8 - 1
0 + 1N 2. (29)

The residues theorem for ip2 gives c/3 =  0. Using condition 8 > 1, we derive that 
c has to be equal to zero, so we rederive the main result of [18] that the CGLE has 
no elliptic travelling wave solutions for non-zero values of parameters. Note that
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the use of Laurent series of ip(£) instead of the Laurent series of M(£) allows to 
simplify the calculations.
Let us consider the standing wave solutions (c =  0) of the CGLE. The Laurent 
series solutions are

~ _  y/2(3 +  1) ( fy r  ~  5gr -  5 ^ 2 (B2 -  l)g t) ^

' 1 ”  I  C 3(7/? +  5) C

+  90(,/?+l)(7,/? +  5)2{32^  ~ 1^ ~ ^ 9i9r

+  \J2(,52 -  1) (l22(,52 -  1 )g2 +  (11,52 -  34,5 +  61)52)

8 - 1  r (30)
+  1890(5 +  1)(38  +  1)(78  +  5)3 ^24ft 9r^  ~  1 ^ 147/3 

+  934,5 +  775) -  4<7^(23154 +  656,5s -  18,5 2 -  552,5 -  445)

+  gl \j2{82 -  1)(20<72(,52 -  1)(399,5 +  349)

-  3 ^ (483,5s -  473,52 -  2823,5 -  2435))} f  +  0 ( f )

~ \/2(,5 — 1) £,_! [P9r +  5gr +  5y/2(,52 -  1 )ft) ^
'h ~  ~  * 3(7,5 -  5) ^

+  90(5 +1)(7,5 +  5)2 {32(/? "  W  +  8) ^ r

+  \J2(,52 -  1) (l22(,52 -  l)g i  -  (11,B2 -  34,5 -  61)g2) }c3

5 + 1  r (31)
+  1890(3,5 -  1)(/? -  1)(7,5 -  5)3 ^24ft 9r(^  ~  1 ^ U7/3

-  934,5 +  775) -  45s (231,54 -  656,5s -  18,5 2 +  552,5 -  445)

-  g1^ 2 (B 2 -  1)(20<72(,52 -  1)(399,5 -  349)

-  3 ^ (483,5s +  473,52 -  2823,5 +  2435)}c5 +  0 (£ 7).

The residues of -ip2, ip4 and ip6 are equal to zero at c =  0. Substituting the coeffi
cients of the Laurent series ip\ and ip2, we transform system (12) and equation (13) 
into the algebraic system in ,5, gi and gr. This system is too cumbersome to be
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presented here, but can be easily solved via computer algebra system like Maple 
or REDUCE. The condition 0 > 1 leaves only one solution of this system

gr =  0, gt = 0. (32)

In the case di < 0 we also obtain that the residue theorem for powers of ip can be 
satisfied only if gr =  0 and gi =  0. Let us consider system (3) with zero values of 
c, gi and gr ,d r =  1/2 and an arbitrary (nonzero) value of di

2M M " -  M '2 -  AM 2ip2 +  2Af3 =  0

Mip' +  M'lp +  dtM 2 = 0.
(33)

The straightforward substitution gives that the functions

and

iPiiO =

1p2(0  =

3 +  ^ 9  +  32 d2 

3 — y/9~+~32df

Mi(C) =

M2(C) =

3(3 +  yj 9 +  32 d2)
(34)

(35)

are exact solutions of the system (33). This system has no other single-valued 
solutions, so we have proved the non-existence of neither elliptic standing wave 
nor elliptic travelling wave solutions in the case dr /  0 as well. In our calculations 
we assume that Sj /  0. At the same time our results prove the non-existence of 
elliptic solutions in the case Sj =  0 too. Indeed, if c =  0 then cases with Sj =  0 
and Si /  0 coincide, to transform the case {s* =  0, c /  0} into the considered 
case {sj /  0, c =  0} we have to add a constant to ip{£).

5. Conclusions

The Laurent-series solutions are useful not only to find elliptic solutions, but also 
to prove their non-existence. Using the Hone’s method, based on residue theorem, 
we have amplified the Hone’s result [18], that the CGLE with generic (non-zero) 
values of parameters has no elliptic travelling wave solution and have proved the 
non-existence of both standing and travelling wave elliptic solutions of the CGLE 
in the case when pfq  is not a real number. The existence of similar elliptic so
lutions to Nonlinear Schrodinger Equation [9] and degenerate elliptic solutions to 
the CGLE one could interpret as indications that the CGLE has elliptic solutions, 
so the obtained result is unexpected.
We have shown that the Hone’s method can be applied to a system of polynomial 
differential equations more effectively than to an equivalent differential equation. 
In general when one makes use of the Conte-Musette and Hone’s methods he can
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choose a function, which analytic form should be found. It could be any polyno
mial of unknown functions and their derivatives. The Hone’s method is so effective 
in the case of the CGLE, because coefficients of the Laurent series solutions depend 
only on parameters of equations, i.e., they does not include additional arbitrary pa
rameters (have no resonances). It is an important problem to generalize Hone’s 
method on the Laurent series solutions for the cases with resonances.
Another field for future investigations is the improvement and generalization of 
the Conte-Musette method, future development of computer algebra realization of 
them [33,35], On the one hand it should be generalized on the case of multivalued 
solutions (the first result in this direction has been obtained in [34]), on the other 
hand in the case of the search for elliptic solutions only it is important to use 
particular properties of elliptic functions, for example, those which follow from 
the residue theorem.
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