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Abstract. There are infinitely many hyperbolic transforms of complex abe­
lian surfaces. The corresponding universal covers change from the complex 
plane to the unit ball, from flat to hyperbolic metrics. Looking back to Ja­
cobi’s periodic functions we were able to construct 2-dimensional abelian 
functions transformable to automorphic forms on the ball. In this article we 
prove explicit dimension formulas for all forms of this coabelian types for 
fixed weights.

1. Motivations and Main Results

The construction of hyperbolic surfaces by blowing up points of special abelian 
surfaces and contracting some elliptic curves has been published recently in [101. 
For explicitly known cases the corresponding fundamental groups on the ball are 
of arithmetic nature. They are called Picard modular groups. For Jacobi-type 
construction and transfer of abelian functions to automorphic forms we refer to [9], 
In the explicitly known cases they are called Picard modular forms. Comparing 
algebraic structures in [91 it seems to be that we found almost all Picard modular 
forms of this type. To clarify the situation it is necessary to know the dimensions 
of all these Picard modular form spaces of any given weight. This is the purpose 
of this paper.
The question of finding all of then remains to be an open problem. Moreover, the 
complete algebraic ting structure should be clarified. To be more precise, we look 
for explicit structures of rings R(T)  of modular forms for Picard modular groups 
T, especially in cases when the corresponding Picard modular sutfaces are well 
determined by explicitly known algebraic equations. The quotient surface T \B ,  
B the complex two-dimensional unit ball, can be compactified by means of finitely

In memory to C. G. Jacobi (10 December 1804).
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many cusp singularities to a (normal complex projective) algebraic surface r \ B ,  
the Baily-Borel compactification. By Baily-Borel’s theorem [1] one has

T \B  =  Proj R(T)  (projective spectrum).

Generators of R(T)  and relations between them define a projective model of F \B . 
It is not a simple problem to discover the ring structure in connection with the 
algebraic equations assumed to be known.
If, moreover, T is a neat ball lattice, then we are in a comfortable situation. Namely, 
there is a natural ring isomorphism

0G
f l( r )  =  ® t f ° W - , « 2(iog :r')) (i)

n =0

onto the ring of logarithmic pluricanonical forms of the (smooth compact) Picard 
modular sutface X p with compactification divisor

h
T'  =  Y .  T'j (2)

3=1

which is a disjoint sum of elliptic curves. For a cofinite group extension of T, 
defined by an exact sequence of groups

1 — — > Ti — > G — > 1 (3)

with finite group G, we get isomorphisms
0G

i? (r i)  =  r (t )g ^  0  H ° ( x ^ n 2( iogTf))G. (4)
n= 0

Assume, we know the ring structure in the neat case and the representation of G 
on R(T).  Then it is “only” a matter of invariant theory for finite groups to get 
the structure of R (T i). For this latter step good software as SINGULAR or GAP 
should be used. For the first step, it is necessary to determine the dimensions

h °(X f.Q 2(logT f)) := d im F ° (X f .Q 2(logT f)).

Knowing some important cases (e.g. Picard modular surfaces of Gauss and Eisen- 
stein numbers, see [81) we concentrate our attention in this paper to abelian ball 
quotient surface models X'T with neat ball lattices T, which are not cocompact.

Definition 1.1. A ball lattice is called coabelian iff the corresponding compactified 
quotient surface is abelian up to birational equivalence.

Rem ark 1.2. Neat coabelian ball lattices are not cocompact, because the quotient 
surfaces o f neat cocompact lattices are known to be of general type.
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An abelian surface is the (unique) minimal model in its birational equivalence 
class (of smooth surfaces). Therefore, for any neat coabelian ball lattice T there 
exist birational motphisms

A ^ ----  A' := X ’T -------- - X T — !—  X r  := T \B  (5)

where X r  is the (normal projective) Baily-Borel compactification of X r  with 
(minimal) singularity resolution X'T, i the natural embedding and A  is an abelian 
surface. In [8, Corollary 2.81, we proved the first part of

Proposition 1.3. The abelian surface A, which is a contracted ball quotient as 
described in (5), is isogeneous to E  x E  for a suitable elliptic cur\’e E. If moreover, 
E  has complex multiplication, e.g. in the case o f a Picard modular surface, then 
A is isomorphic to E  x E.

The second part follows from the first by a theorem of Shioda-Mitani [11], see 
also [3, X, Corollary (6.3)]. So the determination of the structure of the ring of 
Picard modular forms in the neat abelian case can be reduced to the theory of 
elliptic functions. Namely, looking back to (1) we get

0G
R ( r )  =  © f f ° ( / i ', n 2( io g r ') )  (6)

n = 0

where A' =  X'T is a blown up abelian surface A  ~  E  x E, where means 
isogeny. Using obvious notations (omitting ') the image divisor of the compactifi­
cation divisor T'

h
T  := <j(T') = Y .  Tj (7)

3 = 1
is an elliptic divisor on A. This means that T  is a reduced divisor with ellip­
tic curves as components. On the universal covering C2 of A  they are lifted to 
affine complex lines. Therefore the components Tj intersect each other (at most) 
transversally. The set of all intersection points is the singular locus

S = S(T) :U  Sj n S k (8)

of T. We consider also the subsets of S  on the components

Sj = Sj{T)  := S  HTj.  (9)

Rem ark 1.4. The morphism a = : erg in (5) is nothing else but the blowing up of 
all points o f S.

Surprisingly, abelian ball quotient surface models (A .T)  can be recognized by an 
intersection property of the elliptic divisor T.  Namely, we proved
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Theorem 1.5 ([81, Theorem 2.5). Let (A, T) be an abelian surface with an elliptic 
divisor T  and a : A' — > A the blowing up o f A at the singular locus S  =  S(T)  o f 
T  with proper transform T r o fT  on A'. The following conditions are equivalent:

i) (A’ , T ’) is a neat (coabelian) ball quotient surface with compactification 
divisor T ';

ii)
45 =  S  s.i

with cardinalities s := f fS,  Sj := f fS j  and Sj defined in (9).

Let
L =  L i +  • • • +  L s (10)

be the exceptional divisor of a : A r — > A. It is a disjoint sum of s projective lines 
on A r with selfintersection index —1.

Theorem 1.6. Let V be a neat coabelian ball lattice with smoothly compactified 
quotient surface A' =  X f  ~  E  x E, E  a suitable elliptic cun’e. With the notations 
around Theorem 1.5 the dimensions o f spaces [T, n\ of T-automorphic forms of 
weight n are

h°(A'. Oa >(L +  T')) if n =  1 
3(2)5 +  h if n > 1.

For the dimensions of spaces [T, ra]o of T-cusp forms of weight n  we get the fol­
lowing explicit formulas

Proposition 1.7. In the situation o f Theorem 1.6 it holds that

n
dim [I\n ]0 =  3[ 2 )s +  <5n,i, n e N

where 5nj\ G {0.1} is the Kronecker symbol.

Example 1.8 (Hirzebruch [51 andHolzapfel [61, [81). Neat coabelian Picard mod­
ular group ofEisenstein numbers

A  =  E  x E, E  elliptic CM-curve with K  =  Q (\/^ 3 )  =  Q(u;)— multiplication, 
uj primitive 3-rd unit root, T commensurable with the full Picard modular groups 
U((2, 1) .O a0  ofEisenstein numbers

on A f

r  = T{ + --- + Tfi h = 4. L =  L \. 5 = 1

(E  x EY

dim[r. 1] = ft0(O(irxisi,(Li + A  + . . .  +  A'))

=  dim[T, n]o +  4 +  4.dim[T, n\ n > 1.
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Example 1.9 ([8]). Neat coabelian Picard modular group o f Gauss numbers:

A  =  E  x E, E  elliptic CM-curve with K  =  Q(i)- multiplication, V commensu­
rable with the full Picard modular groups U ((2 .1), O ^ ) of Gauss numbers

T  — +  • • • +  Tg. h  — 8, L  — L i  + • • • +  L q. s  — 6

on A' = ( E x  E )f

dim [r, 1] =  h°(G(ExEy(L i  + • • • + L q + T[ + • • • + Tg)) 

dim [r, n\ =  dim [I\ ra]o +  8 =  9n 2 — 9n +  8, n > 1.

Example 1.10 (Vladov, private communication). Neat coabelian Picard modular 
group o f Gauss numbers:

A  =  E  x E, E  elliptic CM-curve with K  =  Q(i)- multiplication, T group exten­
sion of index 2 of the ball lattice in Example 1.9, hence also commensurable with 
the full Picard modular groups U ((2 ,1). O k j of Gauss numbers

T  — T) +  • • • +  Tg, h, — 6, L — L \ + • • • + Lg. s — 3

on A' = ( E x  E )'

dim [r, 1] =  h0(G(ExEy(L i  + • • • + Lg + T[ + • • • + Tg))

In [91 we have composed lifted quotients of elliptic Jacobi theta functions with 
abelian functions on hyperbolic biproducts of elliptic curves. We were able to 
transform them to explicit Picard modular forms. Basic algebraic relations of ba­
sic forms come from different multiplicative decompositions of these abelian func­
tions in simple ones of same lifted type. Especially, for Vladov’s example we can 
show that the explicitly constructed basic modular forms yield a Baily-Borel em­
bedding into P 22 together with explicit relations (homogeneous equations) for the 
Picard modular image surface.

2. Proof of the Dimension Formulas

For the sake of clearness we remember to precise definitions. By U ((2.1).C ) 
we denote the unitary group U(V) of a hermitian vector space (V, (.)) with 
d im c(F) =  3 and a hermitian form (.) of signature (2.1). The ball B appears 
as subspace

n > 1.

1  =  PF_ := F{v £ V: (v.v) < 0} C P F  =  P2(C)
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of all complex lines in V  generated by a “negative” vector v. The group U( (2,1), C) 
acts on B via the natural composition

U((2,1).C) c  Gl(V)  — > P Gl(V) = A uthol(PF) E* FGl3(C) =  A utholP2(C).
(ID

Let K  =  Q (V —d) be an imaginary quadratic number field, d a square-free posi­
tive integer, and O k  the ring of integers in K.  A Picard m odular group (of the 
field K )  is, by definition, commensurable with the full Picard m odular group 
U((2, l ) ,0 ] f ) .  All Picard modular groups are ball lattices. This means that they 
act proper discontinuously on B and the volume of a T-fundamental domain with 
respect to the G(P)-invariant hermitian (Bergmann) metric on B (uniquely deter­
mined up to a non-trivial constant factor) is finite. The quotient surface T \B  can 
be compactified by means of finitely many cusp singularities to a (normal com­
plex projective) algebraic surface T \B ,  the Baily-Borel compactification. Now 
let T c  U ((2,1),C ) be a ball lattice. It acts via AuthoiB =  PU ((2.1).C ) on 
the C-vector space f f o(B.0®) of holomorphic functions on B corresponding to 
each f ( z i ,  Z2 ) the function j * ( f ) ( z i ,  Z2 ) =  /(7(24. £2))- For each n  one gets a 
representation

Pn • T —  ̂Aut H°(M. (Pb)- T 3 7 : /  ^  7*(/) (12)

with the Jacobi determinants
d i { z i .  z2y
d ( z 1. z 2) _ '

Then [T. n\ c  H°(B. 0®) is defined to be the eigensubspace of pn (T) of the eigen­
value 1, that means

j 7 (z i, z2) = det

[r. n} = { f e  H°(B. (?b) : 7*(/) =  • /  for all 7 e T}. (13)

T-cusp forms are T-automorphic forms which vanish at infinity, this means at the 
cusps. To be more precise, let us first interpret automorphic forms as holomorphic 
sections of sheaves of higher differential form bundles & =  := $ | ln with the
sheaf of holomotphic differential forms on B. The canonical action of T on B 
is defined by

7 : u; =  f d z i  A dz2 A dz2) = 7* (/) • j ~ n ■ dz1 A d z2.

The embeddings

H°{B. 0 B) — > H°{B.Sin ). f  f  • {dz\ A dz2)®n (14)

are compatible with the corresponding T-actions (pn on the preimage space) and

[T, n\ ^  H°(B. f tn )T. (15)

The latter space has the advantage to go down to the quotient space T \B
(16)
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if we assume that T acts freely on B, that means B — > T \B  is a universal cov­
eting. The space of cusp forms [T, n \o C [T, n\ is defined by associating to 
forms <jj e  F ° ( T \ B . ^ x b ) forms, which vanish at all boundary (cusp) points

P  e f \ i \ ( r \ B ) .
Now let T be a neat ball lattice and X '  =  X rT the corresponding minimal smoothly 
compactified ball quotient surface as in (5) (forgetting the arrow on the left-hand 
side there) with compactification divisor T ', which has disjoint elliptic curve com­
ponents. The link between sections of line bundles on X ’ with T-automorphic 
forms used in (1) is

[T. n) E* H°(X,  {&X r ® T ')n). [r. n]o = H°(X .  ® T/n_1) (17)

where =  O x f(K)  is the canonical bundle of X \  K  a canonical divisor, and 
T ' =  O x r{Tr) the line bundle corresponding to T ’. We refer to [7, (33)] or, more 
originally, to Hemperly [4], The Riemann-Roch formula expresses the Euler char­
acteristics for arbitrary line bundles 03 on X ' as

y(2» := £ ( - l ) W ( X '.9 J )  =  1(93 ■ (93 ® £ x :)) + x ( X ’)
3

where

x(X') = £ ( - l )  'hHOx') = ^ ( -D M im f f^ X '.O x ')
i i

is the arithmetic genus of X' .  Using intersections of divisors we want to calculate 
the Euler characteristics of

0 n := §g T)n and := &xf ® ‘£n_1 (18)

* (»n) =  *(£>) = Q  ((«■ +  T ')2) + X(X').  (19)

Namely, by the above Riemann-Roch formula we have

*(®») =  + T') - ((n -  1) (K + T') + T'))

= U ( n  -  1)(A +  T ' f  +  U ( ( A  +  T')  ■ T')

xfSn)  =  \ { { < K  + T') -  T')  ■ (n -  1 ) (K  + T'))

= \ < n  -  1 ) (K  + T ' f  -  i ( n  -  1 )(T ' • ( K  + T')).

For each neat ball quotient surface X '  with (elliptic) compactification divisor T'  it 
holds that (T' • (T'  +  Kx> j j =  0, see the proof of (iii) in the next propostion. So 
the second summands of both identities vanishes. This proves (19).
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Now we concentrate our attention to neat coabelian ball lattices T and the corre­
sponding quotient surfaces.

Proposition 2.1. Consider a neat coabelian ball quotient surface ( X ^ T ' )  =  
{ A !. T r) with compactification divisor T f and exceptional divisor L o f a. With 
the notations around Theorem 1.5 it holds that

i)

IIII is a canonical divisor o f X ’;

ii) (A '2) =  ( I 2) = s ;
iii) ( r '  • ( r '  +  a )) =  (:T ' • ( T f +  L)) = 0;

iv) - { T ' 2) =  (L • T'J ) =  (.K  . T ')  =  45;

v) ((K  +  T ') 2) = ((£  +  T ') 2) =  (A '2) -  ( r ' 2)
vi) ((K  +  V )  • K ) = ( ( I  +  T ') -A -)  = ( ( 1 + 2

Proof: i) The canonical divisor of the abelian surface A  is trivial. The canonical 
divisor of a blown up surface is the sum of the exceptional divisor and the inverse 
image of the original surface, see [2, I, Theorem (9.1), vii)]. This means in our 
situation that Kx> =  cr*(0) +  L =  L.
ii) follows immediately from i) and (10).
iii) needs the adjunction formula (see, e.g., [2,11.11, (16)1)

— (C • (C  +  AY)) =  e(C) (Euler number)

for smooth curves C  on smooth compact surfaces Y.  For the elliptic curves T ' we 
get

0 =  —e(Tj) = (Tj ■ (T’j + K))

hence

(T1■ (T1 + A )) = Y , ( Tr(K  + E  Trn) )  = T . T  ■ (K  + Tj)) = 0.
j= 1 '  '  m— 1 '  '  j = 1

iv) The first two identities come from iii) and i). With the help of Theorem 1.5, ii), 
we get

A 2) = Y .A A  =  -  E  s i = -4 s-

v) , vi) follow immediately from the relations proved just before

((K  +  T ')2) =  (Tf • (Tf +  A')) +  (K  • (Tf +  A'))

=  0 +  (A' • T f) +  (A'2) = 4 s - s  = 3s.

□
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The Hodge diamond (k pq) =  (k p(Qq)) of the abelian surface A  is well-known to 
be

/ h°° h01 h02\  (1 q p \ ( 1 2  1\
I ^io foil ^12 I _  I q foil q j =  I 2 4 2 ] .
\ h 20 h21 h22)  \ p  q l j  \ l  2 1J

Since the geometric genus p and the irregularity q are birational invariants and the 
Euler number e =  XX- l ) p+qlipq increases by 1 after applying a cr-process at one 
point, we get the following Hodge diamond for A' =  X '

(1  q p \ ( 1 2  1\
[q  h11 q \ {.X ') = 2 4  +  5 2 .  (20)
\ p  q l j  \1  2 l )

Notice that
y (X')  =  1 — q + p = 0 (arithmetic genus)

/  (21)
e(X  ) =  2 -1  +  2 • p + h11 — 4 • q =  s (Euler number).

Recall that
h P,o =  h o ,P = hP(Q0(Y)) =  Kp{Oy )

for each compact complex algebraic manifold Y.  By Serre duality our Hodge 
diamond contains also the following dimensions of cohomology groups

h2{Ax A =  h0(OX ') = h00 = 1

h 1^ ' )  = ^ ( O x ' )  =  h10 =  q =  2 (22)

h°{Rx >) = h2{ 0 X ') =  h20 =  p =  1.

With (20) and v) of Poposition 2.1 we make the relations of (20) more explicit:

Proposition 2.2. For the line bundles $ n, 0 n defined in (18) on X '  =  X (, T a 
neat coabelian ball lattice, it holds that

*(®n) =  *(3n) =  3 Q 5

for all n  G N+.

Proof of Proposition 1.7: The case n  =  1 is easy because is the canonical 
bundle A =  &xr- With (17) and (22) one gets

[ r , l ] 0 =  fc°(3i) =  h0(Ax>) = 1

in general. For n > 1 we need the following Kodaira vanishing result:

Proposition 2.3 (see [7] Proposition 3.6; [4] Theorem 9.1). For any neat ball 
quotient surface X'T the invertible sheaves n > 1, are cohomologically trivial 
{acyclic) in the sense that the (higher) cohomology groups H J{ X . ^ n )> J > o, 
vanish.
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Together with (17) and Proposition 2.2 it follows that

d im [r, n]0 =  h°{$n) = y(Fn)

for all n  > 1. □

Proof of Theorem 1.6: The second cohomology group of 0 n vanishes because of 
Serre duality

H 2( X ' , & n) ^  = H ° ( X f. O ( - n T f - ( n - l ) K )  =  0. n > 0.

Namely, —n T ' — (n — l ) K x '  is a negative divisor on X '  because T ' > 0 and 
also K  =  L > 0 by choice, see i) of Proposition 2.1. Proposition 2.2, (17), the 
definitions of 0 n and Euler characteristics yield

d im [r. nl = h \ X ’. ©„) =  *(©„) +  h1(©„)

( \  (23)

2 ) 5‘

for all n  G N+.
We have to calculate the first cohomology group of 0 n. Consider the exact residue 
sequence (see [2, II. 1, (6)1) of sheaves

0 — > & xr — * & xr $  ^ ' — * ,jJt ! — * 0
with canonical sheaf to on a smooth curves (written as index). Since T ' =  
is a disjoint sum of s elliptic curves can we identify

,jJv  =  (J )  ^ r 7 =  @t ' =  Ot > • (24)

Tensor products with the sheaves

0 n - i  =  ^ T 1 (g) T /n_1 =  

yield the exact sequences

o — > —  0 n  — > 0„_1 (g) Ot  — > 0. (25)
We deduce long exact sequences of cohomology groups

0 —  H ° ( X ' : S n) —  H°(X ' .&„)  —  H ° (T ' , (& 1 » 0 F )n- 1)
—  H ^ X ' . S n )  —  f f 1(X ',0 „ )  —  H 1(T' .(iB1 » O v ) n- 1) (26)
—  f f 2(X ',3 „ )  —  f f 2(Jt'.© „) =  0.

Especially, for n  =  1 this sequence coincides with

0 — > H ° ( X ' . R )  — > iT ° (X ',0 i)  — > H ° ( T ' . O v )
— > H 1( X ' . ^ )  — > H 1( X ' . & i) — > H ^ T ' . O v )
— > H 2( X f.&) — > H 2( X f, ©i) =  0.
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From (24) it is clear that
h

H ° ( T f, O r )  = ©  0 T') = Ch
3 =  1 '

h h
H \ T ' .  O r )  a  © H \ T j .  Ot .) = ®  (27)

3 = 1 3 = 1
h

^  ®  H 0(Tj ,OT') =  Ch.
3 =  1 '

Together with (22) our long exact sequence looks like

0 — > C — > iT ° ( X ',0 i ) — > c ft 
— > C2 ^ ( X ' . i S i ) — > c ft 
— >c — > H 2( x ' . e i) = o.

The alternating sum of dimensions of all vector spaces in an exact sequence van­
ishes. Therefore h1( 0 1) =  h ° (0 1) and finally

[r, i] = 3(2)* + ft°(©i) = h °(x '. ©1)

by (23), which proves together with (i) of Proposition 2.1 the case n = 1 of Theo­
rem 1.6.
For n > 1 we remark that the canonical sheaf on T f is obtained by restriction

LCjv =  &x' $  09 Ot ' =  ©1 0  Ot '

(adjunction formula, see [2, II.8, Proposition 8.201). This sheaf coincides with 0 Tr 
by (24). Taking tensor powers we get identifications

(®1 f t O v ) ”- 1 = o j r 1 =  ( ®  O r,)* 1" - 1' =  ®  0®,(" _1) =  ®  O r  = O r-
3 7 3

3 = 1 3 = 1 3 = 1
Taking also into account the vanishing of H P( X # n), p = 1,2 (Proposition 2.3), 
the exact sequence (26) splits into two short exact sequences

0 — > 5„) —  H °( X ' ,  ©„) —  Ov ) a  C'* — . 0

0 — . H \ X ' ,  ©„) — > 0 T ) a  Ch — > 0.

Now use the second row and (23) or the first row to get

[r. n\ = h°(X '. ©„) = h°(X ', 5„) + ft = 3 Q  s + ft

which was to be proved. □
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