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THE POISSON-SIGMA MODEL 
A NON-LINEAR GAUGE THEORY

THOMAS SCHWARZWELLER

Fachbereich Physik, Universitat Dortmund

Abstract. I investigate the Poisson-sigma model on the classical and 
quantum level. First I show how the interaction can be obtained by a 
deformation of the classical master equation of an Abelian BF theory 
in two dimensions. On the classical level this model includes vari­
ous known two-dimensional field theories, in particular the Yang-Mills 
theory. On the quantum level the perturbation expansion of the path 
integral in the covariant gauge yields the Kontsevich deformation for­
mula. Finally I perform the calculation of the path integral in a general 
gauge, and demonstrate how the derived partition function reduces in 
the special case of a linear Poisson structure to the familiar form of 2D 
Yang-Mills theory.

1. Introduction

The class of non-linear gauge theories introduced by Ikeda in [9] is based on 
a polynomial extension of the underlying Lie algebra, for instance a finite W- 
algebra or a Poisson algebra. Due to this non-linearity these models involve in 
the language of gauge theories an open gauge algebra, i. e. the algebra closes 
only on-shell. In such cases neither the Faddeev-Popov quantization nor the 
BRST procedure leads to an appropriate application of a path integral quantiza­
tion since both needs a well-defined cohomology to construct physical variables 
but the corresponding BRST operator is only nilpotent modulo the equations of 
motion. The proper method that works in these cases is the Batalin Vilkovisky 
procedure, for a detailed description see [6]. This formalism has a beautiful 
geometric interpretation that enables one to receive the extended action used 
in the path integral from fundamental geometric ingredients, a nilpotent vector 
field and a symplectic structure on appropriate super manifolds [1]. A famous 
representative of a non-linear gauge theory is the Poisson-sigma model [13]
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396 Th. Schwarzweller

which obviously is a sigma model with Poisson structure on the target mani­
fold. The interest in the last years is essentially based on its connection to 
the Kontsevich formula for deformation quantization of Poisson manifolds [12] 
discovered by Cattaneo and Felder [4], Another important aspect is that the 
classical model associates to certain Poisson structures on a finite-dimensional 
manifold two-dimensional field theories. For a linear Poisson structure which 
leads to the two-dimensional Yang-Mills theory it was possible to show this 
connection also on the quantum level, i. e. the partition function of both theories 
corresponds to each other [7].
Also based on the Batalin-Vilkovisky procedure, strictly speaking on the clas­
sical master equation, is a method to generate a physical consistent interaction 
between the gauge fields of a free gauge theory [2]. This problem then turns 
into a deformation of the solution of the master equation which is possible since 
it contains all the information about the considered gauge structure.
This article is structured as follows. In Section 2 the classical theory of the 
Poisson-sigma model will be presented. That includes a short review of the 
general method to construct an interaction and the derivation of the model by 
means of a defonnation of a free BF theory. In Section 3 then the quantization 
will be performed, in particular the Feynman perturbation series [4] and the 
non perturbative calculation of the partition function [7].

2. The Classical Theory

2.1. Consistent Interaction via Deformation

In this section the cohomological approach to the problem of generating con­
sisting interactions is reviewed [2]. It is based on the antifield formalism in 
the sense that a defonnation of the solution of the master equation leads to an 
action functional containing a consistent interaction term.
First of all I present a very brief review of the antifield formalism. Indeed, 
here are just some properties which will be needed in the forthcoming sections. 
The starting point is an action S0[(f)\ with gauge symmetries 8,oL =  7Zlaea. By 
introducing ghosts and antifields one can construct a solution S[cf)A: 4>A] of the 
master equation

(S ,S )
ss ss

8c/)A 5(f)A
5S 5S 

5(f)a 5(f)A with 5  =  So +  <f>*KCa +  • • • , (2.1)

where (f>A — ((/>*, C Q, . . . )  denotes the sets of the original fields, the ghosts and 
so on, while (f)A stands for the corresponding antifields. In the solution of the 
master equation the whole information about the gauge structure is encoded.
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The algebra of the fields and antifields together with the BRST-differential 
generated by S through the antibracket

■*(•) =  (•, S') (2.2)

yields a complex. The corresponding BRST cohomology is denoted by H* — 
Y  H p(s). One can define a map in the cohomology induced by the antibracket, 
the antibracket map

(•,■) : H p( s ) x H “(s) -> _ff(',+<'+1)(s), (2.3)

« 4 . [ B ] ) ~ P , B ) ] .  (2.4)

The important result found by Bamich and Henneaux is the fact that the an­
tibracket map is trivial in the sense that the antibracket of 2 BRST-closed 
functionals is BRST-exact, for a proof consult [2]. Due to the triviality of the 
antibracket map one can define higher order maps in the cohomology, however 
it turns out they are trivial in a similar way.
Now consider a free gauge theory with a free symmetry given by

Free Theory

Free action:

* Gauge Symmetry: 

Noether Theorem:
V

(o) .

(°)
5e(j)1 — TVaea

(<>) . (0)<5 S  o[0'] x p j  _
<50* /v a ~

The aim is now to introduce couplings between the fields which fulfill the 
crucial physical requirement of preserving the number of gauge symmetries, 
those couplings will be called consistent. It means one has to perturb the 
action and the symmetries

(0) (0) (i) „ (2)
S o ­- S o =  So +  g S o +  g So +  • • • , (2.5)

to) (0) (i) (2)
W  -/v a =  W/v a +  gTV a +  g TV a +  • • • , (2.6)

such that S( 0 l — 7Zzaea is a symmetry of S0

(0) (1) (2)
S(So +  gSo  +  g S () +  ■■•)

Scj)1
(°) (i)

{TV a +  gVJ' a
( 2)

+ g2TV a +  ••• o, (2.7)

which expresses the consistency. It is not an easy task to deform simultaneously 
the action and the symmetry to get a consistent interaction.
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This problem can be reformulated as a deformation problem of the solution 
of the master equation. Basically this procedure is based on the fact that the 
master equation contains all the information about the gauge structure

(o) (o)
( S B V , S B V ) —  0 —>■ ( S B V , S B v )  —  0 , (2-8)

(0 ) (0 ) (1) (2)
S B V  —► S b v  =  S  B V  +  g S  B V  +  Q2 S  B V  +  • • • • (2-9)

The deformed master equation guarantees now the consistency of S0 and lZla 
and further on the original and the deformed gauge theory have the same spec­
trum of ghosts and antifields.
The advantage of this formulation is that one now can use the cohomological 
techniques of deformation theory. The deformed master equation can be ana­
lyzed order by order in the deformation parameter, the coupling constant. This 
expansion yields the following relations

(o) (o)
( S  B V  •> S  B V  ) — 0 ,

(0) (1)
2(-S' B V i  S b v ) =  0 ,

(0 ) (2) (1) (1)
2{ S b v -, S b v ) { S b v i S b v ) —0,

(+ higher orders).

The first equation (2.10) is fulfilled by assumption, it is exactly the master
( i )

equation for the free gauge theory. Equation (2.11) shows that S  BV is forced
( o )  0 )

to be a cocycle of the free BRST differential s . Assume now S  Bv  is a 
coboundary then the corresponding interaction belongs to a field redefinition 
which should not be considered and the deformation will be called trivial. 

(1) _ _ (0) 
Therefore S  BV is an element of the zeroth cohomological space H° ( s ) which
is isomorphic to the space of physical observables of the free theory. Because

(i) (i)
of the triviality of the antibracket map ( S Bv, S Bv) is BRST exact and one

( 2 )

gets no obstructions for constructing the interaction from (2.12) and S  Bv exist. 
This is also true for higher orders, so there are no obstructions for the interacting 
action at all.
Usually the original action is a local functional of a corresponding Lagrange 
function, such that the deformations also need to be local functionals. Taking 
locality into account the analysis gets much more involved because the an­
tibracket map is not trivial anymore, e. g. the antibracket of two local BRST

(2.10)

(2 .11)

(2. 12)
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cocycles need not necessarily to be the BRST variation of a local functional.
(k) (k)

Consider S  =  f  £ ,  where £  is the Lagrangian, an //-form. The correspond­
ing (local) antibracket is defined modulo an d-exact term, d being the exterior 
derivative. This yields for the deformation expansion of the Lagrangian

(0)0 (T 
2 s £  = d j  ,

(0)(2) (L (L (2) 
s £  + { £ , £ }  = d j  ,

(+ higher orders),

(2.13)

(2.14)

( k )  ( 1)

where j  is the symbol for the d-exact term. £  is BRST closed modulo d,
this means that the nontrivial deformations of the master equations belong to
fT°(('s') | d). Because the corresponding local antibracket is no longer trivial, it 
possesses a lot of structure, and one gets obstructions for the construction of 
the interaction term, some so-called consistency conditions. The construction 
of local consistent interaction is strongly constrained.

2.2. Deformation of Abelian BF Theory

As an application of the formalism consider now the nontrivial deformation of 
Abelian BF theory in two dimensions [10]. The free action is given by

( o )  rs 0 =  A, A d(j)\ (2.15)

which is invariant under the gauge transformation

8(f)1 =  0, 8Ai =  de i .

The minimal solution of the classical master equation is

(o) r .
S  =  /  [Ai A d(f£ +  A m dCt]

(2.16)

(2.17)

and the corresponding BRST-Symmetry is

(°) „  d 3 d d
s — dCi  ̂ , -T d(f> 77777 -f dA

dAi dA * d<f>*
dA* d

dC*
(2.18)
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( i )

The first order deformation C of the Lagrangian associated to the minimal
( 0 )

solution S  should obey the following condition

i0)ir  h s L, T" dO[i] 0 . (2.19)

MIt defines an element of H°( s | d), so that one gets a set of descent equations

( o )
S  <2[ 1] +  dtt[0] — 0 , (0) n s U[o] — 0 • (2.20)

( i )
It is a simple calculation to get the solution for C

( i )
C = I  A ' k A A ’‘CiCi +4 8<j)k8(j)1 3

8_m  ■
8(f)k

A 'k A A f i ,  -  f *7

8cf)k 

iCj +

s~i*k r i  
>_z 2, j

^ f i i[<t>]Ai A Aj
(2.21)

The f lj [(f)] are antisymmetric and to receive a consistent interaction they have 
to verify

E
cycl ( i jk )

f i f i j[4>]
8(f)1 f l [<t>] = 0 . (2.22)

which is the generalized Jacobi identity. Since this condition is fulfilled there 
are no obstructions in the construction and the second order deformation can be 
chosen to be zero. This yields for the deformed solution of the master equation

( o )
SBV = s  + s  =(1) r A A * k8(pk

A*k A AiCj + A*1 A dCi

-  / " { m e , +  \ r , [4>\A, A A,
(2.23)

+ s f i j[<i>]r *kr rO UiUi —
8(f>k 4 8<f>k8(f)1

A*k A A*la C i

From this extended action one can read off the classical action including an 
interaction term quadratic in the gauge fields A^

S ,=
( o )

So
( i )

+ So = Ai A d(/V +  \ r n M i A A, (2.24)
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and the deformed gauge symmetries are

W  = F W ,  ,
8eA t =  de, -  f kl}l[cf)]Ak A A t .

(2.25)

(2.26)

Note, the gauge algebra is only closed on shell, which reflects the non-linearity 
of the gauge algebra.

2.3. The Poisson-Sigma Model

The Poisson-sigma model is a two-dimensional gauge theory based on a Poisson 
algebra, i. e. the target manifold of the theory is a Poisson manifold (N, P ), 
that is a smooth manifold N  equipped with a Poisson structure P  6 A2T N.  In 
local coordinates X 1 on N  the Poisson structure is given by

where \jkl\ stands for a cyclic sum. This is exactly the consistency condition 
(2.22) for the structure functions of the deformed two dimensional BF theory. 
Thus the Poisson-sigma model is a realization of the deformed Abelian BF 
theory.
It is possible to extend the action in such a way that the symmetries are un­
changed. The Poisson structure induces a map T*N  —> T N  which is not 
surjective (like in the symplectic case). However, due to the Jacobi identity the 
image of this map forms an involutive distribution of vector fields. Further the 
associated characteristic distribution is completely integrable and the Poisson 
structure induces a symplectic structure 0,L on the leaves L. It is a fact that 
a Poisson manifold is the disjoint union of its symplectic leaves. The split­
ting theorem of Weinstein states that for regular Poisson manifolds there exist 
so-called Casimir-Darboux coordinates locally. The Poisson manifolds under 
consideration in the following sections are isomorphic to Mn. For degenerate 
P  there are non vanishing functions f  on N  whose Hamiltonian vector fields 
X j  =  f^P'-’dj vanish, the Casimir functions. Then C 1 (X) =  const =  C I (X0) 
define a level surface through X 0 whose connected components may be iden­
tified with the symplectic leaf L. This yields natural coordinates { X 1. X °  \ on 
(.N , P ), where {X7} is a whole set of Casimir functions while 1 “ stands for the 
Darboux coordinates on the leaf L with P IJ = P Ia =  0 and P a/3 =  (H-1)0,8. 
These coordinates will be quite useful in calculating the partition function of

(2.27)

and P lj(X)  has to satisfy the Schouten-Nijenhuis constraint

P ^ ( X ) P kl\ i (X)  = 0 , (2.28)
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the model. The invariant nature of the Casimir functions enables one to add it 
to the action but the topological invariance of the theory is broken due to the 
volume form /i of the world sheet £ s. The action and the symmetries are then

S[X, A] = J[A,  A dW  +  ^ P ij[X]AiA A j + f i C l X ] ] , (2.29)

S ,X ' = /■» [X\e, , M i  =  -  d£i +  P u ,, \X]Ak A A, = V t , , (2.30)

it is the action of the Poisson-sigma model introduced in [13].
An interesting aspect of this model is that it associates to certain Poisson struc­
tures on a finite-dimensional manifold two-dimensional field theories. First 
consider the case in which the Poisson structure P  gives rise to a symplectic 
2-form on N,  i. e. it has an inverse fi. Then it is possible to eliminate the gauge 
fields Ai by means of the equations of motion and the resulting action is

S top =  J  fit, d X ’ A d X * , (2.31)
A,

which evidently is the action of Witten’s topological sigma model.
Secondly choose a linear Poisson structure P lj — cj !Xk on N  — R3. The 
coefficients then define a Lie algebra on the dual space which in turn can 
be identified with N.  Now there are two different Casimir functions. The 
trivial one C — 0 leads back to the two-dimensional BF theory, although now 
in the non Abelian case. On the other hand if one chooses now the quadratic 
Casimir function C =  X lX l one ends with

S y u  =  A *F%, (2.32)

the two-dimensional Yang-Mills theory. The Poisson-sigma model also covers 
the gauged Wess-Zumino- Witten model and a theory of gravitation [13].

3. Quantization of the Poisson-sigma Model

In this section the quantum theory of the Poisson-sigma model is under con­
sideration. For the Dirac quantization I refer to [13].

3.1. The Perturbative Series

This first part is concerned with the perturbation expansion of the path integral 
of the topological Poisson-sigma model which yields the Kontsevich quantiza­
tion formula [4]. It turns out as the correlation function of two functions with
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support on the boundary of the two-dimensional disc, which is the topology of 
the world sheet

J [ a x ] [ a x ] / ( x ( i ) ) s (x (o ))ex P ^ s [ X M ] ) , (3.i)
X  (oo)=a;

where (0,1, oo) are 3 arbitrary, cyclic ordered points on the boundary of the 
disc. The boundary conditions for all fields are discussed in detail in [4].
In [5] it was shown that the Batalin-Vilkovisky action can be obtained by 
the so-called AKSZ-formalism [1], a geometrical construction for the extended 
action without a classical action as a starting point. The crucial resulting point 
is that one gets a set of generalized maps, the superfields

x* =  x* +  -  l e ^ e uc ; i , (3.2)
£

X ^ a  + e ^ A + f ^ x ; ^ ,  (3.3)

where 9 are fermionic coordinates of a corresponding supermanifold. The 
action in this extended superspace can be formulated as

Sbv — d2e A ,V X ' +
D 2

(3.4)

The integration over the fermionic coordinates is in the Berenzin sense and T> — 
O^d/du1'. Note that in this formalism the formal form of the action is similar 
to the original classical one of the Poisson-sigma model but now the ghosts 
and the antifields are included in the superfields, in fact after integrating out 
the fermionic coordinates 6 it is the extended action of the Batalin-Vilkovisky 
formalism (2.23).
Still in this approach one needs a gauge fixing procedure since the extended 
action possesses gauge invariances. In the Batalin-Vilkoviski formalism the 
main idea is to introduce a gauge fermion, a functional of the fields only and 
with ghost number —1. The integral then is taken over the Lagrangian sub­
manifold E,.(, defined by 'T'/ <9<T>4. The problem is to find a functional

making the integral well-defined. To construct a gauge fermion of ghost 
number —1 one must introduce additional fields. The simplest choice is a triv­
ial pair with Lagrange multiplier fields having ghost number 0 and
the Faddeev-Popov antighosts Ci with ghost number —1 plus the associated 
antifields. The corresponding action of these fields is — f  n fJ*1. For calcu­
lating the perturbation expansion the natural choice of a gauge is the Feynman
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gauge d *  Ai =  0 resulting from the gauge fermion T — — f  dC" * A, . Using 
this gauge fermion the gauged fixed action takes the form

S9f  = A, A d X i +  - P i j [X]Ai A Aj - * d C l A (d Ct + P kl f X ] A kQ)
D 2

-  -  * dC1 A * d C j P kl,ij[X]CkCi - P d * A t (3.5)

The perturbation expansion is calculated by

JlDd>*A][Dd>A]ex p
h of o

[Dd>*A][D<5>A]ex p (3-6)

where O denotes the considered observable. The splitting of the action into 
a kinetic Sgf and a potential Sgf part can be understood as follows. The 
expansion in powers of h around the classical solution X (it) — x, A(u)  =  0 and 
one can perturb now the fields X  by a fluctuation field £, e. g. X (it) =  :c+£(it). 
The kinetic part of the action is then

S°gf =  j  [Ai A ( d f  +  *dU ) + C, d ★  dC1] . (3.7)
D 2

The resulting propagator is expressed most easily in the superfield formalism

( f K O T M ) )  =  ^ V < l> (z ,w )  (3.8)

with cf)(z, w) =  In anĉ  w denoting two points on the disc.
The perturbation series is then obtained by expanding the potential Sgf in 
powers of the corresponding superfield of the fluctuation £ — £ +  611 A*]

1 r r °° 1
sit =2 J J d’«Eja8* " A W (3.9)

D 2 k=0

Now expanding the functions /(X ( l) )  and g ( X (0)) in powers of £ yields 
the expansion in Feynman diagrams labeled by Tn, where n is the number 
of vertices. All appearing integrals are absolutely convergent, except those 
containing tadpole diagrams, a diagram with one edge connecting a vertex to 
itself, such that one has to take care about renormalization. After an usual
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point-splitting regularization one has to add a resulting counter term which 
does not spoil the classical master equation.
After these considerations one is in a position to calculate the expansion se­
ries with the help of the Wick theorem for Gaussian integrals. The resulting 
correlation function is then

0°  /  • j-  \  n

( f * 9 )(x) = f 9 + Y l \ j 2 j  S  Wr"Vr" ( f  ® g) ’ (3-10)

where V Tn denotes the resulting bidifferential operator for the diagram Yn 
coming from the Poisson structure on the target manifold and wTn ~  
f  Aj=1 d(f)(uj,uVl(j)) A d(f>(uj,uV2(j)) are the so-called weights which are de­
scended from the propagator. For more details on the calculation, in particular 
the propagator and the boundary conditions for the fields, take a look at [4], 
Note that the resulting correlation function is exactly the expression for the 
product in the deformed algebra of functions on an Poisson manifold invented 
by Kontsevich [12].

3.2. Non-perturbative Aspects

From now on the world sheet is a closed two-dimensional manifold M  of genus 
g. Important simplifications occur when one writes the action in Casimir- 
Darboux coordinates { X 1, X a }. The Batalin-Vilkovisky action is then

Sbv —
M

Aj  A d X 1 +  A a A dX Q +  - P a/3[XJ]Aa A A p + ^ [ X 1]

+  A*1 A dCV +  A*a A dCa +  X ' P ^ l X ^ C p ]  . (3.11)

As one can read of the extended action the gauge freedom of the maps 
X 1: M  N  is reduced to the freedom of the maps X a : M  L  where 
L is a symplectic leaf of the Poisson manifold N . The gauge transformations 
reduce to <)cX <i — ( i X L )a3e^ and d. X 1 — 0. Hence, after gauge fixing we need 
to consider only the homotopy classes [Xa]. In Casimir Darboux coordinates 
the gauge fermion can be chosen to be

4/ =
M

, x I (AI) + c ax a ( X “ ) ] . (3.12)
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The gauged fixed action in Casimir-Darboux coordinates is given by

S9f  =
M

Aj  A d X 1 +  A a A d X a +  \ p aPA a A A p +  f iC(XT)

+  ° J dXl} f J  ̂ A d° i  +  ° a dx^ Xo1  ̂P iPao A j d X a

- ^ X l i A j )  ~7taXa(Xa) .

(3.13)

This action can now be used to perform the path integral quantization

z  = j  [D*‘a]{D$a] exp (  -  i s s /)  . (3.14)
XI ip

It is possible to perform all the integrations of the fields [7]. Integrating over 
the ghost and antighost fields yields the Faddeev-Popov determinants. The 
integrations over the multipliers yields 4-functions which implement the gauge 
conditions. From now on the integration extends only over the degrees of 
freedom with respect to the gauge-fixing conditions. The integration over A a 
is Gaussian. Now choose a gauge condition linear in A j, then the Faddeev- 
Popov determinant does not depend on A j anymore and one can integrate over 
them yielding a 8-function for d X 1. When this 8-function is implemented the 
fields X 1 become independent of the coordinates of M.  Hence the Casimir 
functions are constant and these constant modes X,- count the symplectic leaves. 
The gauge fixing of the fields X a reduces the integral over X a to a sum over 
the homotopy classes of the maps. The form of the path integral then becomes

Z =  / d X ' £ d e t (
vl IX"] v

dXa{Xc
dX'T

det“1/2 ( P a(3{X*]
O0(M)

X exp ^  J d X a A d X p j exp ^ i A MC ( X 07)^ ,
'  M  '

Q>{M)

(3.15)

where the subscript Hfc(M) indicates that the determinant results from an inte­
gration over k- forms and A M denotes the surface area of M.  All the functional 
integrations have been perfonned and one has arrived at an almost closed ex­
pression for the partition function.
Again consider the case in which the manifold N  — R3 and the Poisson struc­
ture is linear such that the coefficients give rise to a Lie algebra structure on 
the dual space Q — N*.  The nontrivial Casimir function is again the qua­
dratic one, such that the symplectic leaves are two dimensional spheres S2,
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characterized, in the Casimir-Darboux coordinates, by their radius X q. The 
symplectic leaves of a linear Poisson structure are the co-adjoint orbits of the 
corresponding compact, connected Lie group with Lie algebra Q. Because the 
Lie algebra has three dimensions the Lie group is SU(2). By a theorem of 
Kirillov [11] these orbits can in turn be identified with the irreducible unitary 
representations of G.
Taking into account these simplifications the path integral can be evaluated 
further. Due to the Hopf theorem the homotopy classes of the maps X a : M  —► 
s 2 are determined by their degree n. This yields

I a ,„ d X «  A d X B =  n f  J V (X ') , (3.16)
M  S2

where Ql ( Xq) is the symplectic form on the symplectic leaf L respectively 
s 2. The sum over the degree n yields a periodic (5-function, which says that 
the symplectic leaves must be integral. By the identification of the leaves with 
the co-adjoint orbits, they must also be integral which reduces the number of 
the co-adjoint orbits to a countable set (9(0). Choose now the unitary gauge 
X a ( X )  =  X a and the two determinants have the same form. Due to the Hodge 
decomposition they are characterized by harmonic forms. Now one has to count 
the linear independent forms, which are characterized by the dimension of the 
corresponding homology group, the Betti numbers. These yields for the power 
of the combined determinant the Euler characteristic %(M). Indeed, this is a 
similar argument used in [3]. The determinant corresponds to the symplectic 
volume of the symplectic leaf Lx i ■ Now one can perform the integration over 
the constant modes X q. The partition function of the linear Poisson-sigma 
model then takes the form

Z = Y ^  vol(0)x(M) exp
0 ( 0 )

(3.17)

As has already pointed out it is possible to identify a linear Poisson manifold 
with its dual space, the Lie algebra. This duality leads to the similarity of the 
partition function of the linear Poisson-sigma model (3.17) and the one of the 
Yang-Mills theory. The main tool is the so-called symmetrization map [11] 
which maps in this case the quadratic Casimir C(Q) which characterizes the 
co-adjoint orbits into the Casimir C(A) of the corresponding representation of 
the Lie group. This leads to the identification of the integral orbits with the 
irreducible unitary representations of the Lie group. The symplectic volume of 
the co-adjoint orbit equals by a special case of the character formula of Kirillov 
[11] the dimension of the corresponding representation. So the partition can be
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written as

Z  = Y .  d(A)x|M) exp t - j U MC(A)) , (3.18)

where A denotes the representation while d(A) stands for its dimension. This 
is exactly the partition function for the Yang Mills theory on closed two- 
dimensional manifolds [3],

4. Concluding Remarks

In this review I presented some interesting aspects of the Poisson-sigma model 
discovered in the last years. From the mathematical point of view the most 
interesting fact is the connection with the deformation quantization of Poisson 
manifolds [4], On the other hand for physicist the important aspect is of 
course the unified framework for different topological and semi-topological 
field theories [13] based on the Poisson structure on the target manifold. In 
the special case of a linear Poisson structure this property could be established 
also on the quantum level by performing the path integral quantization, i. e. it 
was shown that the partition function of the linear Poisson-sigma model is in 
some sense the dual of the one of the Yang-Mills theory [7].
An interesting step further of the full quantization of the Poisson-sigma model 
would be to calculate the partition function on a base manifold with boundaries, 
in particular on the disc at least for a linear Poisson structure [8]. The required 
boundary conditions for the fields must lead to a kind of character formula 
like the one in [11] and in turn to identify the result with the one for the 
Yang-Mills theory where the boundary condition leads to the character of the 
representation. The hope of this consideration is that it would shed some light 
on the non-perturbative nature of the deformation quantization.
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