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Introduction

Clifford algebra was invented by W. Clifford [11]. In his research, he combined
Hamilton’s quaternions [23] and Grassmann’s exterior algebra [27]. Further devel-
opment of the theory of Clifford algebras is associated with a number of famous
mathematicians and physicists — R. Lipschitz, T. Vahlen, E. Cartan [9], E. Witt,
C. Chevalley, M. Riesz [42] and others. Dirac equation [15], [16] had a great
influence on the development of Clifford algebra. Also note the article [5].

Nowadays Clifford algebra is used in different branches of modern mathematics
and physics. There are different applications of Clifford algebra in physics, analy-
sis, geometry, computer science, mechanics, robotics, signal and image processing,
etc.

In this text, we discuss some well-known facts about Clifford algebras: matrix
representations, Cartan’s periodicity of 8, double coverings of orthogonal groups
by spin groups, Dirac equation in different formalisms, spinors in n dimensions,
etc. We also present our point of view on some problems. Namely, we discuss the
generalization of the Pauli theorem, the basic ideas of the method of averaging in
Clifford algebras, the notion of quaternion type of Clifford algebra elements, the
classification of Lie subalgebras of specific type in Clifford algebra, etc.

We recommend a number of classical books on Clifford algebras and applications
[311, [25], [26], [101, [401, [7], [29]1, [8], [20], [13], [20], [24], [67], [68], [18], etc.
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We can recommend also the book [35] and a course of lectures [55] for Russian
readers.

1. Definition of Clifford Algebra

1.1. Clifford Algebra as a Quotient Algebra

In [31], one can find five different (equivalent) definitions of Clifford algebra. We
will discuss two definitions of Clifford algebra in this work. Let us start with the
definition of Clifford algebra as a quotient algebra [10].

Definition 1. Let we have a vector space V' of arbitrary finite dimension n over
the field R and a quadratic form Q) : V. — R. Consider the tensor algebra

oo k
T(V)=EPRV
k=0

and the two-sided ideal 1(V, Q) generated by all elements of the form x@x—Q(x)e
for x € V, where e is the identity element. Then the following quotient algebra

Vv, Q) =T(V)/1(V,Q)
is called a real Clifford algebra.

1.2. Clifford Algebra with Fixed Basis

Now let us discuss definition of the real Clifford algebra with fixed basis which is
more useful for calculations and different applications.

Definition 2. Ler n be a natural number and E be a linear space of dimension 2"
over the field of real numbers R with the basis enumerated by the ordered multi-
indices with a length between 0 and n

€,€a15€a1az5-++5€1..n

where 1 < aj) < ag < --- < an < n. Let us introduce the operation of multiplica-
tionon £

o with the properties of distributivity and associativity
U@V + W) =aUV + BUW, UV,WeFE, a,feR
(aU + V)W = oUW + VW, UV, WekFE, a,feR
UVw)=UV)W, UV,WeFE

e c is the identity element

Ue=ceU =1, UeFk
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® ¢, a=1,...,n are generators
€a1€as """ €Cap = Cay...ans I1<ai<as<---<a,<n
e generators satisfy
eqeh + epeq = 2ngpe

where

n=||nw|l = diag(1,...,1,-1,...,-1,0,...,0), p+qg+r=n (1)
N N— e e —
P q T
is a diagonal matrix with p times 1, q times —1, and r times 0 on the diago-

nal.

The linear space E with such operation of multiplication is called real Clifford
algebra Cl), 4 .

Example 1. In the case r = 0, we obtain nondegenerate Clifford algebra Cl,, ; :=
Clp 4,0- The quadratic form () in Definition 1 is nondegenerate in this case.

Example 2. In the case r = 0, ¢ = 0, we obtain Clifford algebra Cl,, := Cl, o0
of Euclidian space. The quadratic form () in Definition 1 is positive definite in this
case.

Example 3. In the case p = ¢ = 0, r = n, we obtain Grassmann algebra A,, :=
C¥o,0,n- In this case Clifford multiplication is called exterior multiplication and it
is denoted by A. The generators of Grassmann algebra satisfy conditions e, A e, =
—ep Neg,a,b=1,... n.

Any element of the real Clifford algebra C¥,, , , has the form

n
U=ue+ Y Uata+ Y Uap€qs+ -+ UL n€l n 2
a=1 a<b
where u, ug, Ugp, - - -, U1..n, € R are real numbers.

Also we consider complexified Clifford algebras C @ Cl,, , ». Any element of the
complexified Clifford algebra C ® C¥), 4 - has the form (2), where u, uq, Ugp, - - -,
u1..n € C are complex numbers.

Also we consider complex Clifford algebras. In Definition 1, we must take vector
space V over the field of complex numbers C in this case. In Definition 2, we
must take vector space F over the field of complex numbers C and it is sufficient
to consider matrix n = diag(1,...,1,0,...,0), p+ r = n, with p times 1 and r
times 0 on the diagonal instead of the matrix (1) in this case. The most popular
case is C¢(C™), when the quadratic form () is nondegenerate and 7) is the identity
matrix.
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1.3. Examples in Small Dimensions

Example 4. In the case of CVy, arbitrary Clifford algebra element has the form
U = ue, where ¢? = e. We obtain the isomorphism C/y = R.

Example 5. In the case of CVq, arbitrary Clifford algebra element has the form
U = wue + uje;, where e is the identity element and e% = e. We obtain the
isomorphism with double numbers: C/; = R @ R.

Example 6. In the case of (¥ 1, arbitrary Clifford algebra element has the form
U = ue + uje;, where e is the identity element and e% = —e. We obtain the
isomorphism with complex numbers: Cly 1 = C.

Example 7. In the case of (¥ o, arbitrary Clifford algebra element has the form
U = ue + uje; + uges + uiserz. We can easily verify the following relations
(e1)? = (e2)? = —e, (e12)? = e1eserey = —ejeregen = —e
e1eg = —eze1 = €12, €2€12 = —€12e2 = €1, e12€1 = —e1e12 = €.
Using the following substitution
e — 1, es — J, e;a —~+ k
where i, j, and k are imaginary units of quaternions, we obtain the isomorphism

CEO,Q ~ H.

Recall that H is an associative division algebra. An arbitrary quaternion has the
form
g=al+bi+cj+dkeH, a,b,c,d € R
where 1 is the identity element, iZ = j2 = k? = —1,ij = —ji = k, jk = —kj =i,
ki=—ik =]j.
1

If g # 0, then g™ ! = wq‘, where

Gi=a—bi—ci—dk, ||| = +vqq= a2+ b+ c2+d
Note that Cla g = C¥y 1 2 Clp 2 (see Section 3.1).

Example 8. Let us consider the Pauli matrices

10 01 0 —i 10
=) n=(io) m=(l0) w=(o)

W. Pauli [39] have introduced these matrices to describe the spin of the electron.

It can be easily verified that
01092 210'3, 09203 210'1, 0301 :idz
(0q)" =04, tr(og) =0, (0q)? =00, a=1,2,3
0q0p = — Op0q, a #b, a,b=1,2,3.
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Using the substitution
e — o0y, €q = 0g,0=1,2,3, €ab —> Ta0p, G < b, €123 — 010203
we obtain the isomorphism
Cls = Mat(2,C).
The matrices
{00, o1, 09, o3, iy, Iiog, 1io3, 1iop}
constitute a basis of Mat(2, C).

Example 9. Let us consider the Dirac gamma-matrices [15], [16]

10 0 0 0 001
_lo1 0 o0 o o010
=1o0-1 0of> "= 0-100
00 0 —1 ~1.000
000 —i 001 0
| oo0i 0 | 0oo00-1
=1 0i0 0] B=1-100 0
00 0 010 0

These matrices satisfy conditions

YaVo + WVa =2nwl,  a,b=0,1,2,3, 1 =gl =diag(l,-1,-1,-1)
trvy, =0, 'yl =YY270, a=0,1,2,3.

Using the substitution e, 11 — 74, a =0,1,2,3, we obtain the isomorphism

C® Cgl,g = Mat(4, (C)

2. Gradings and Conjugations

2.1. Gradings

Any Clifford algebra element U € CV,, 4, has the form
U=ue+ Z Ug€q + Zuabeab + UL p€ln = Z UAEA, ug €R
a a<b A

where we denote arbitrary ordered multi-index by A = a1 . .. ai. Denote its length
by |A| = k.
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Definition 3. The subspace
|A|=k

is called a subspace of grade k.

We have

n!

— 0k _ .
=Cn = kl(n — k)!

Clypgr =EPCtE,,,  dimCe}
k=0

p’q7r

Let us consider projection operations onto subspaces of grade k
U€Clyyr — (U, €ClF

p,q,r*

Note that for arbitrary element U € C¥,, ,,, we have

U=> (U
k=0

The Clifford algebra C¥), ;. is a Z2-graded algebra. It can be represented in the
form of the direct sum of even and odd subspaces

Clypgr = 0O & oY)

p7q7’r p7q7r
where
0 _ k 1) _ k
Cg;g:gﬂn - @ Cgp}q’r’ CZZ(L‘;:T - @ Cgpzqﬂ“

k=0mod2 k=1mod2
We have

i j i+7)mod2 o

ClS Ol © O™, = 0,1

and

dim c/®)  — dim cr(t) = 91,

p?q?r p7q7r

Note that Cé;?g,r is a subalgebra of C¥,, , ;.

2.2. Center of Clifford Algebra

We have the following well-known theorem about the center of Clifford algebra
Cen(Clpq) :={U € Clpq; UV =VUforallV € Cl, 4}.

Theorem 1. The center of the Clifford algebra Cl), 4 is

= {ue; u € R} if n is even
_ ,q 7 )
Cen(Clyq) = { Cﬁgq © Oy, = {ue+ur ne1. n; u,u1.n €RY,  ifnisodd.
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Proof: Let us represent element U in the form
v=v9+u®,  vDeal), i=o0,1L

We have conditions UV = VU forall V € (¥, ;. We obtain
UDep =e,UY,  k=1,...,n, i=0,1.

We represent U(©) in the form U = A©®) 4 ¢; BM where A ¢ CE,(D% and
1)

B ¢ Céz(),q do not contain e;. For kK = 1 we obtain
(A(O) + elB(l))el = 61(14(0) =+ €1B(l)).

Using AOe; = e, A0 and e BWe; = —e1e1BM), we obtain BY) = 0. Acting
similarly for es, . . ., e,, we obtain U© = ye.

We represent U(1) in the form U® = A®) + ¢, BO), where AV € C¢l!) and
BO) ¢ C’Kz(,?g do not contain e;. For £ = 1 we obtain

(A(l) + elB(O))el = 61(14(1) + €1B(0)).

Using AMe; = —e; AW and e; B¢y = e1e1BO), we obtain A = 0. Acting
similarly for eq, ..., er, we obtain vl = U1..n€l..n 1n the case of odd n and
UM = 0 in the case of even n. [

2.3. Operations of Conjugations

Definition 4. The following operation (involution) in the Clifford algebra C¥y, 4,
U= Ulea——eas Uellyg,

is called grade involution or main involution.

It can be verified that

We have
U=U, OV=0V, \O+pV=AT+uV, UVeC,,\npcR.

Definition 5. The following operation (anti-involution) in the Clifford algebra
C£p7q7r
U:= U’ealmak%eak.‘.ealy Ue Cgp,q,r

is called reversion.
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We have . .
U=3 00 =3(-)"% (UK

0 k=0
and

U=U, UV=VU, A +upV=A0+uV, UVEC,\ucR.

Definition 6. A superposition of reversion and grade involution is called Clifford
conjugation.

We do not use individual notation for Clifford conjugation and use notation U.
The operation of Clifford conjugation corresponds to the operation of complex
conjugation of complex numbers in the case Clp 1 = C and quaternion conjugation
in the case Clp o = H.

We have

~ n

0= =31 ..

k=0 k=0

~

Definition 7. The following operation in the complexified Clifford algebra C ®
Clpg

U = U|Ua14.4ak‘>ﬂa1mak? U € (C ® C€p7q77‘
where we take complex conjugation of complex numbers uq, ..q,, is called complex

conjugation in Clifford algebra.

We have
U=U UV=UV, NU+uV=XN+7aV, UVeC®CCl,pucC.

An important operation of Hermitian conjugation in C ® C¥,, , will be considered
in Section 3.4.

2.4. Quaternion Types of Clifford Algebra Elements

The operation of grade involution uniquely determines two (even and odd) sub-
spaces of the Clifford algebra:

ay), = P k., ={U€Clygu; U=(-1YU}, j=0,1.
k=jmod2

In a similar way, operations of grade involution and reversion uniquely determine
the following four subspaces. This is symbolically shown in Table 1 and Table 2.
Instead of () and depending on the case, the “plus” or “minus” signs should be
understood.
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Definition 8. The following four subspaces of Clp, 4 »

iG=1
2

j= P ,, ={Uel, U= (-1YUU=(-1)"2 U}
k=jmod4
are called subspaces of quaternion types j = 0,1,2, 3.
Table 1. Subspaces of quaternion types in Clj 4 .
Cloon 0[1]2]3
U=U |+ |- |[+]-
U=)U |+ |+|- |-
We have
Clpgr=0010203, a0 =02, ) =1a3.

Grade involution, reversion, and complex conjugation uniquely determine eight
subspaces of the complexified Clifford algebra.

We have
CRClper=00102030i0dil®i2®i3.

Table 2. Subspaces of quaternion types in C @ C¥,, , .

C®Clpgr [0]1[2[3i0]il]i2|i3
U=U [+ |- |+|-|+ |- |+ |-
U=&U |+ |[+|- |- |+ |+ |- |-
U=U [+ |+ |+ |+|- |- |- |-

The subspaces of quaternion types have the following dimensions
Y 4k -2 n=2
dlmﬂzgcn =" 4+ 272 COST

n—2

dimT =" O+ =272 4 2" sin %

- 3)
dim?2 = Z CAt+2 —gn=2 _ 2%2 cos m
k " 4

L7 4k+3 —2 _gnz2 . TN
d1m3:;0n+ =27 -2z sin =~

We denote the commutator of two Clifford algebra elements U,V by [U, V] :=
UV — VU and the anticommutator by {U,V'} := UV + VU.
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Theorem 2 ([48], [56]). We have the following properties

[.’ .:I Cz) [j7 ] Cj? ] :O? 172’3
0,1 3, 0,3 1, [1,3]c0
{3.it co,  {j,0} Cj. j=0,1,2,3

{1,2} c3, {2,3}c1, {3, 1}cC2.
By Theorem 2, the Clifford algebra C¥,, , , is a Za X Zs-graded algebra w.r.t. the
operation of commutator and w.r.t. the operation of anticommutator.

The notion of quaternion type was introduced by the author in the brief report [48]
and the paper [56]. Further development of this concept is given in [52], [57], [61],
[66], see also books [35], [55].
Subspaces of quaternion types are useful in different calculations (see [52], [57],
[61]). Here and below we omit the sign of the direct sum to simplify notation:
001=01L,0010233=0123 = (¥, 4, etc.
For example, if U € k for some k = 0, 1,2, 3, then (see [57])

k, if m is odd

U™ e {0 £ m is even sinU €k, cosU € 0.

For arbitrary element U € C¥,, , we have (see [52])
UU,UU €01, UU,UU € 03.

Using the classification of Clifford algebra elements based on the notion of quater-
nion type, we present a number of Lie algebras in C ® C¥,, , (see Section 5.4 and
[66]).

3. Matrix Representations of Clifford Algebras

3.1. Cartan’s Periodicity of 8. Central and Simple Algebras

Lemma 3 ([31]). We have the following isomorphisms of associative algebras:
1) Clp 1,941 = Mat(2, Cgp,q)a 2) Clpi1,g+1 = Clp g ® Cliy
3)Clpq=Clyrip, p>1, 4)Clpq = Clp_ygya, p>4.
Proof: Lete, ..., e, be the generators of (¥, , and (e4)? = e, (e—)? = —e such
that all generators ey, . . ., e,, e4, e_ anticommute with each other.

1. We obtain generators of Mat(2, C¥), ;) in the following way

(e 0 1 N Oe . 0 —e
€; 0 —e; ) i=1,...,n, et R e S
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2. ejeqe_, i = 1,...,n are generators of C¥p, , and e, e_ are generators of
(1 1. Each generator of C¥), , commutes with each generator of Cl; ;.

3. e1, ee1, 1= 2,...,n are generators of Clyq1,—1.
4. ejerezezes, i =1,2,3,4and ej, j = 5,...,n are generators of Cl,_4 g4 4.
[ |

We have the following well-known theorems about isomorphisms between Clifford
algebras and matrix algebras.

Theorem 4 (Cartan 1908). We have the following isomorphism of algebras

Mat(ﬁ R) ifp—q=0:2 mod 8
Mat(2 T R) @ Mat(2°Z R), ifp—q¢=1 mod 8
Clp,q = § Mat(2 ’C)a ifp—q=3;7 mod8
Mat( 2 z ,H), ifp—q=4;6 mod 8
Mat( )@Mat( IHI), ifp—q=5 mod 8.

Proof: Using Lemma 3, we obtain isomorphisms for all C¥,, ; (see Table 3). We
use notations 2R := R @ R, R(2) := Mat(2,R),...
We have the isomorphisms (see Section 1.3)

Cﬁo’o =~ R, Cf(),l =~ C, Cfl’o =ZRPR, Cfo,g =H
Using the substitution

- (17 1)7 er — (iv _i)a €2 — (J7 _j)) €3 — (kv _k)
we obtain also the isomorphism

Cfo’g =~ Heo H.

Using (lp 11,411 = Mat(2,Clp, ), we get Clp 1 = Mat(2,R). Using Clp i1 411
Clp.q @ Cly,1, we conclude that if we make a step down Table 3 (n — n + 2), then
the size of corresponding matrix algebra is doubled (Mat(k, . ..) — Mat(2k,...)).
Using (¥, ¢ = Clg41,p—1, We conclude that Table 3 is symmetric w.r.t. the column

“p—q =1". Using C¥), y = C¥pp_4 4+4, We obtain the symmetry p—q <+ p—q—38
for each n. u

Similarly, we can obtain the following isomorphisms for complex Clifford algebras
and for even subalgebras of the Clifford algebra.

Theorem 5 ([31]). We have the following isomorphism of algebras

Mat(22,C), ifn is even
Mat(2"2,C) ® Mat(2"z ,C), ifn is odd.

CUC™) 2 C® Clyy = {
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Table 3. Isomorphisms between C¥), ; and matrix algebras.

n\p—q|-5 -4 -3 -2 -1 0 1 2 3 4 5
0 - - - - - R - - - - -
1 - - - - CcC - R - - - -
2 - - - H - R2- R2- - -
3 - M - C(2) - °2R2)- C(2)- -
4 - H2) - H(2) - R4 - R4 - HE?2) -
5 C(4) — 2H(2- C@H4) - °2RA)- C4) - Z2H(2)

Theorem 6 ([31]). We have the following isomorphism of algebras
ne =, 1, q>1; 20 =cr,, ., p>1; 3l =)

Dq 2] 2] a.p
Proof: Letey,...,e, be the generators of Cl,, ,.
1. Then e;en, @ = 1,...,n — 1 are generators of C’Ej(o?).
eptitp, 1=1,...,q (0)
2. Then{ PP " Drees are generators of Cly ;.
{ejqep,j:qul,...,nl & pa

3. Using 1) and 2), we get 3).
|

Definition 9. An algebra is simple if it contains no non-trivial two-sided ideals
and the multiplication operation is not zero.

Definition 10. A central simple algebra over a field F is a finite-dimensional as-
sociative algebra, which is simple, and for which the center is exactly F.

The following classification of Clifford algebras can be found in [10].

e If nis even, then C/(V, Q) is a central simple algebra.

e If nisodd and F = C, then C/(V, Q) is the direct sum of two isomorphic
complex central simple algebras.

e Ifnisodd, F = R, and (e1..,)? = e, then C/(V, Q) is the direct sum of
two isomorphic simple algebras.

e Ifnisodd, F =R, and (e;. ,,)? = —e, then C/(V, Q) is simple with center
~C.
Note that
2 ygrr=t e, ifp—g¢=0,1 mod4
(e1.n)" = (=1) ’ 6_{—6, ifp—¢g=2,3 mod 4

and these results agree with Theorem 4.
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3.2. Clifford Trigonometry Circle and Exterior Signature of Clifford Algebra

In the literature, the Cartan’s periodicity of 8 is depicted in the form of a eight-
hour clock (see Table 4). The clockwise movement by one step corresponds to an
increase of p — ¢ by 1. The clock shows that two Clifford algebra with the same
p —q mod 8 are Morita equivalent (see Theorem 4).

Table 4. Clifford clock or Clifford trigonometry circle.

0
7 R 1
2R C
6 R H 2
C 2H
5 H 3
4

In our opinion, it is more correct to call it not Clifford clock, but Clifford trigonom-
etry circle. The algebras on the clock are in one-to-one correspondence with the
values of the function sin @

(see also [35]).

Let P be the number of basis elements e4 of the Clifford algebra C¥,, , such that
(e4)? = e and Q be the number of basis elements e4 of C¥), , such that (e4)? =
—e. We call (P, Q) exterior signature of Clifford algebra Cl,, 4, P + Q = 2".

. To show this, we do the following calculations

Theorem 7. We have

n— n— - 1 n— n— - ]-
P =2 (2 +smﬂ<f?4q+>>, Q = 277 (27 _smﬂ@fw.

Note that

n — 1
Sen = P Q= MO
A

Finally, we obtain the following theorem.

Theorem 8. Two Clifford algebras C¥), 4, and Cl,, 4, are isomorphic if and only
if their exterior signatures coincide (Py,Q1) = (P2, Q2) (or, equivalently, P, —

Q1 =P — Qo).
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3.3. Trace, Determinant and Inverse of Clifford Algebra Elements

Definition 11. The following projection operation onto subspace C ® Cﬁg’q
Tr(U) := (U)le—s1

is called a trace of Clifford algebra element.

We have
TI"(U) =Uu, U=ue+ Z Uq€q + ++* + ULl . n€l. . n-
a

Theorem 9 ([54], [35]). The operation of trace of Clifford algebra elements has
the following properties
Tr(U+V)=Tr(U)+Te(V), Tr(AU)=ATr(U), Tr(UV)=Tr(VU)
Te(UVW) =Te(VWU) =Te(WUV), UV,WeCxClp, cC
Te(U'VU) = Te(V), Te(U) = Te(U) = Te(U) = Tx U.
We have the following relation with the trace of matrices.
Theorem 10 ([54], [35]). We have
Tr(U) = —z; tr(7(U))
where

Mat (22, C), if n is even

CeCl,, — " n_
7O g {Mat(221,(C)69Mat(221,(C), if nis odd

is faithful matrix representation of C @ Cl,, 4 (of minimal dimension).

Definition 12. The determinant of any faithful matrix representation (of minimal
dimension) of element U is called the determinant of Clifford algebra element U €
Ce .,

Theorem 11 ([54], [35]). Definition 12 is correct: The determinant does not de-
pend on the choice of matrix representation.

Theorem 12 ([54], [35]). The determinant of Clifford algebra elements has the
following properties

e Det(UV) = Det(U)Det(V),  Det(AU) = A2°F 'Det(17)

Det(U) = Det(U) = Det(U) = Det(U), U,V € C® Clyq, A € C.
o Ul € Cw (¥, , exists if and only if DetU # 0.
o [fU —1 exists, then

Det(U™!) = (DetU)™!, Det(U1VU) =Det(V), V €C® Clp,.
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Theorem 13 ([54], [35]). We have the following explicit formulas for the deter-
minant and the inverse of Clifford algebra element U € C & Cl,, 4 in the cases
n=1...,5

U\/e\ﬁl, n=
Ug\e—u, n=1
Uﬁ‘ejla R n=
DAY=\ 0Ty = UOTT ), =3
UU(UU)Y|es1 = UU(UU)Y |es1, n=4
UU(OU)Y (UT(TU)Y)2 o1, n=>5
( e n=>0
U, n=
1 5, n=2
)= Det U ﬁﬁﬁ (or ), n=
(0 (or (@O0, n=
OO0V UTONY)e, =
where UV = Uty —s—(U)4,(U)5——(U); and Us = Ulys——)s-

Note that we can introduce the notions of trace and determinant of elements of
the real Clifford algebra C¥,, ;. These operations have similar properties (see [54],
[35D).

3.4. Unitary Space on Clifford Algebra

Theorem 14 ([33], [35]). The operation U,V € C & Cl,, — (U,V) := Tr((:]V)
is a Hermitian (or Euclidian) scalar product on C @ Cl,, (or Cl,, respectively).
Proof: We must verify
(U, V)=MW.U), (UAV)=XU,V), (UV+W)=UYV)+(UW)
(U,U) >0, (U,U)=0=U=0 4)

forall U,V,W € C® (¥, 4, A € C. To prove (4) it is sufficient to prove that the
basis of C ® (¥, 4 is orthonormal

le,"'aik‘):(jlv"'ajl)
f@l)a“ﬁ?)?é (jl?"‘ajl)'

UAUA = Z|UA|2 > 0.
A

(€iy.igs €jy..jy) = Tr(eqy, ey ejy - ej) =

We have
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The theorem is proved. |

Definition 13. Let us consider the following operation of Hermitian conjugation
in Clifford algebra

Ul :=U| UeC®Cly,.

€ay.ap—€ay-.aps Yay...a —Uay...ay,’

This operation has the following properties
uvtt=u, wwt=vtut, U+ ) =20t + avt
UV eCaU,,, A peC.

Theorem 15 ([33], [35]). The operation U,V € C @ Cf,, — (U, V) := Tr(UTV)
is a Hermitian (or Euclidian) scalar product on C @ Ct,, , (or Cl,, , respectively).

Proof: The proof is similar to the proof of the previous theorem. Now we have
(€ - €ips€iy -+ €)= Tlr(ei_k1 i ..ei_llei1 e, ) =Tr(e) = 1. [ |
Note that the Hermitian conjugation in the case of the real Clifford algebra C¥), ; is
called transposition anti-involution. It is considered in [2], [3], [4] in more details.

We have the following relation between the Hermitian conjugation of Clifford al-
gebra elements and the Hermitian conjugation of matrices.

Theorem 16 ([33], [35]). We have ~(UT) = (y(U))!, where

i C&Cl,, - Mat(Qi,iC), . zfn l:S even
Mat(27 2 ,C)eMat(2 2 ,C), ifnisodd

is faithful matrix representation of C @ Cl,, , such that (y(eq)) ™t = (y(ea))T.

Let us consider the following Lie group in Clifford algebra

U(22) if n is even
UCl, = {UecCoCl,; UU=¢} = i "
pa =1 @ Spa f {U(Q )@ U@R™), ifnisodd.

We call it unitary group in Clifford algebra [33], [35]. All basis elements of Clif-
ford algebra lie in this group by definition e, . 4, € UCY, . The corresponding
Lie algebra is

uCly, ={U e C®Cl,,; U =-U}.

Theorem 17 ([33], [35]). We have the following formulas which can be considered
as another (equivalent to Definition 13) definition of Hermitian conjugation

gt Jern) ey ifpisodd o J(eprrn) T Uepsrn, i qis even

(e1.p) tUer. , ifpis even (ept1..m) Uept1. n, if q is odd.
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As an example, we obtain well-known relations 'y); = Y0Ya"0 for the Dirac gamma-

matrices.

Proof: Because of the linearity of the operation T it is sufficient to prove the fol-
lowing formulas

_ Tk 1 _ ko=l o
Cir.iy = (1) PRl e et et = (1) %e ) e aepitn
Let s be the number of common indices in {i1,...,4;} and {1,...,p}. Then

Dk _—-1 - —~— 1k
(PRl e e = ()P e, ey - eien -y

— (_1)(p+1)k(_1)kp—seik ey = (1) ey =)

i1ein
(_1)qke;—&l...nﬁ6p+l...n = (_1)qk(_1>q€n T Cp1Ciy € Cptl B
k k—(k— k— -1

= (—D)EH() O (1)l ey = (1) ey e =€

The theorem is proved. |

3.5. Primitive Idempotents and Minimal Left Ideals

Definition 14. The elementt € C ® Cl), 4, t2 =t t' = t is called a Hermitian
idempotent. The subset 1(t) = {U € C® C¥p 4; U = Ut} is called the left ideal
generated by t.

Definition 15. A left ideal that does not contain other left ideals except itself and
the trivial ideal (generated by t = 0) is called a minimal left ideal. The corre-
sponding idempotent is called primitive.

Note thatif V € I(t) and U € C ® C¥,, 4, then UV € I(t).

The left ideal 1(¢) is a complex vector space with the orthonormal basis 71, . . ., 74,
d := dimI(t). We have the Hermitian scalar product (I, V) = Tr(UTV) on
1(t), 7o = 7, (7,7)) = 6%, k,l = 1,...,n. We may define the linear map
~v:C® 4 — Mat(d, C)

Urg =4(U)gm,  7(U) = ()|l € Mat(d, C). )
We have v(U)F = (7%, Un).

Lemma 18. The linear map ~y is a representation of Clifford algebra of the dimen-
siond: v(UV) =~(U)~(V).

Proof: v(UV)'1, = (UV)1, = U(Vr) = Uny(V)L = v(U)y(V)i7. W
Lemma 19. We have y(UT) = (y(U))T.
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Proof: Using (A,UB) = (AUT, B) and (A, B) = (B, A) for (A, B) = Tr(A'B),
we obtain y(U)F = (UTr*, 7)), 'y(U)f = (7, UTr*). Transposing, we get (v(U)¥)T

= (7%, U'7), which coincides with v(UT)} = (7%, U'r). n
Theorem 20 ([33], [35]). The following elements are primitive idempotents in
C® Clpy,
1 /21
t= 5(6 + iael) ]H 5(6 + ibk€2k€2k+1) cC® Cgp,q, t2 _ tT —¢
a0 P #0 b 0,2k =p
S\ Lifp=0 FT 1, 2k #£p.

Further, we choose a basis of the corresponding minimal left ideal I(¢) (for mote
details, see [33], [35]) and obtain the representation of the complexified Clifford
algebra (5).

For the real Clifford algebras C¥), , the construction is similar, see [1]. Using the

idempotent and the basis of the left ideal, we can construct representations of the
real Clifford algebra.

4. Method of Averaging in Clifford Algebras

4.1. Averaging in Clifford Algebras

The method of averaging in Clifford algebras is related to the method of averaging
in the representation theory of finite groups [47], [17], [6]. We present a number
of theorems which one can find in [65], [61], [35], [33], [37].

Let us consider the Reynolds operator [12] of the Salingaros group [44], [45], [46]
Gp,q = {tea}

F(U) =

1
Z g 'Ug= on Z(GA)_IUEA, Uedlly,.

Gral o :

Theorem 21 ([65]). The operator ¥(U) is the projection onto the center of Clifford
algebra Cl,, 4

_1 -1 _ J U)o, if nis even 2
FU) =5 ZA:GA Uea= { Do+ (U, ifnisodd T+ 1

Let us consider other operators acting on U € (¥, , that are also related to projec-
tion operators.
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Theorem 22 ([61]). We have

FEven(U) = Z e;lerA = <U>0 + <U>n7 F%)ven = FEven
A:|A|=0 mod 2

Foaa(U) = Y e;'Uea= U+ (-1)""(U)n, Foaq =Foda-
A:|A|=1 mod 2

We have F = %(FEVen + Foaqq) in the case of even n and F = Fgyen, = Fogq in
the case of odd n.

Theorem 23 ([61]). For m = 0,1,...,n we have

Fu(U):= > ex'Uea=> (=D (-1)'CLCl (U
A:|Al=m k=0 =0

Particulary

Fi(U) =Y e, Uea= > (=1)F(n - 2k)(U).

k=0

Theorem 24 ([37]). Let us consider the operator ¥1 from the previous theorem
which acts several times: F'(U) = F1(F1(---F1(U))---), where F(U) = U.
—_———

l
Then

If n=p+q iseven then (U), = Zblell(U), where
=0
Bo1 = bl = Ay, A =llawll, aw =N A = (1) (n — 2k).
n—1
2
If n=p+qis odd then (U)p+ (U)p—r = nglFll(U), where
1=0

Gupr = [lgul| = Dy, Dngr = [[dul],  d = AL
2
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Theorem 25 ([61]). Fork =1,...,n — 1 we have

_ n-2 wk
> ex Uhnea = 277 cos(G- = ) (U
A:|A|=0 mod 4
n—2 7k m™n

> e Ukea = (-2 sin(TE — T (U
A:]A|=1 mod 4

_ n—2 wk T
> ex Uhkea = =23 cos(T = TH(U
A:|A|=2 mod 4
_ n—2 . 7wk @n
Z ex (U)rea = (—1)F272 Sm(j‘j)(@h

A:|A]=3 mod 4
Form = 0,1, 2,3 we have
Z 6216,4 =dpn(n)e, Z ezlelmneA = (—l)m(”H)dm(n)elmn
A:|A|=m mod 4 A:|A|l=m mod 4
where d,,(n) = dimm (see (3)).
Theorem 26 ([65]). Let M,, be the matrix of the size 2™ with the elements map =

eAeBezleEﬂe_)l (it is the commutator of ex and ep in the Salingaros group).
Then we have

Fo (U) = 'Uea=> map(U)es, UECly,
B

where (U)., is the projection of the element U onto the subspace spanned over e p.

Using previous theorems, we can solve several classes of commutator equations
(see [65], [61])
eaX +eXey =Qa, e € R\ {0}, AeG

for some known elements Q4 € Cl, ; and unknown element X € C¥, ,, where
G is some subset of the set of all ordered multi-indices with a length between 0
and n.

One can find other properties of considered operators in [65], [61], [35].

4.2. Pauli’s Fundamental Theorem, Faithful and Irreducible
Representations

Let the set of Clifford algebra elements satisfies the conditions

{Ba? a=1,..., n} € C’gp,qy BabBb + BvBa = 2nape. 6)
Then the set

Yo =T8T O
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for any invertible 7' € C¥,, , satisfies the conditions
YaVo + WV = 2Mape- @®)
Really

Yot + WYa = T BT BT + T BTT BT
= T Y(BabBb + BoBa)T = T ' 20apeT = 2ngpe.

But we are interested in another question. Does the element 7" in (7) exist for every
two sets (8) and (6)? Pauli proved the following theorem in 1936.

Theorem 27 (Pauli [38]). Consider two sets of square complex matrices
Ya> Ba; a=1,2,3,4
of size 4. Let these 2 sets satisfy the following conditions

YaVb + VW Ya = 2Napl, n= diag(la_la_L_l)
BaBy + BbBa = 2Map1.

Then there exists a unique (up to multiplication by a complex constant) complex
matrix T such that

Yo =T7 '8, T, a=1,234.

This theorem states that the complexified Clifford algebra C ® C¥; 3 has unique
(up to equivalence) faithful and irreducible representation of dimension 4 .

Using the modern representation theory, we can obtain the following facts:

e In the case of even n = p + ¢, C ® (¥, 4 has one faithful and irreducible
representation of dimension 25 (C® Clp g = Mat(Q% ,C), n is even).
e In the case of odd n = p + ¢, C ® (¥, 4 has two irreducible representations

n—1

of dimension 272 .
e In the case of odd n = p + ¢, C® C¥,, 4 has two faithful reducible represen-

n+1

tation of dimension 2"2" + 2”7 = 2" Cedp,, = Mat(2anl,C) @
Mat(2"2 ", C), n is odd).
Similarly we can formulate statements for the real Clifford algebra C¥,,. The
results depend onn mod 2 and p — ¢ mod 8.
We also want to obtain an algorithm to compute the element 7' that connects two
sets of Clifford algebra elements. We can do this using the method of averaging
in Clifford algebra and the operators ) 4. SaU 721, where G is some subset of
the set of all ordered multi-indices with a length between 0 and n. One can find
different properties of these operators in [64].
We have the following theorems.
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Theorem 28 (The case of even n [50]). Consider the real Cl,, , (or the complex-
ified C @ Cl, 4) Clifford algebra with even n = p + q. Let two sets of Clifford
algebra elements 7,4, Bq, a = 1,2, ..., n satisfy conditions

YaVo + W Va = 2Nape, BabB + BoBa = 2nape.

Then both sets generate bases of Clifford algebra and there exists an unique (up to
multiplication by a real (respectively complex) number) Clifford algebra element
T such that

'Ya:T_IBaT, a=1,...,n.

Additionally, we can obtain this element T' in the following way
1 _
T = H(F) = 5 3 faF(7a)”
A

where I is an element in the set

1) {’YA; ’A‘ =0 mod 2} lfﬂln 7é —M..n
2){va; [Al =1 mod 2} iff1.n # Y1.m
such that H(F') # 0.

Let us consider the case of odd n. We start with two examples.

Example 10. Let us consider the Clifford algebra Cl5 ; ~ Mat(2, R) ®Mat(2,R)
with the generators ey, e2, e3. We can take

71 = €e1, Y2 = €2, Y3 = e1éa.

Then 747, +7Ya = 214p1. The elements 71, y2, 3 generate not C¥a 1, but Cly g ~
Mat(2,R).

Example 11. Let us consider the Clifford algebra Cl3y ~ Mat(2,C) with the
generators eq, ez, e3. We can take

51=U1=<(1)(1]>, 522022(?_(;), 53203=<(1)_01>

Yo = —0Oa, a = 17273'

Then 7123 = —fi123. Suppose that we have ' € GL(2,C) such that v, =
T~ '8,T. Then

Yiog = T B TT ' BT T ' 83T = T 3182851 = P23
and we obtain a contradiction (we use that 5193 = 0123 = 1 <(1) ?) =il).

But we have T = 1 such that v, = —T13,T.
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Theorem 29 (The case of odd n [50]). Consider the real Cl,, 4 (or the complexified
C ® C¥, ) Clifford algebra with odd n = p + q. Suppose that two sets of Clifford
algebra elements ,, B, a = 1,2, ..., n satisfy conditions

YaVo + W Va = 2Nape, BaBy + BoBa = 2nape-

Then, in the case of the Clifford algebra of signature p — ¢ = 1 mod 4, elements
Y1..n and P1.. ., either take the values +eq ., and the corresponding sets generate
bases of Clifford algebra (and we have cases 1-2 below) or take the values te and
then the sets do not generate bases (and we have cases 3-4 below).

In the case of the Clifford algebra of signature p — q = 3 mod 4, elements 1.,
and 1., either take the values teq ., and the corresponding sets generate bases
of Clifford algebra (and we have cases 1-2 below) or take the values tie (this is
possible only in the case of the complexified Clifford algebra) and then the sets do
not generate bases (and we have cases 5-6 below).

There exists an unique (up to multiplication by an invertible element of the center
of the Clifford algebra) element T’ such that
) %=T"6T. a=1....n & Pr.n="n
) Ya=-T 8T, a=1,....n & Bin=-N.n
) Ya=e1.aT " BT, a=1,...,n & [Bian=e€ V.0
) Ya=—er.n T ' BaT, a=1,...,n & frn=—€.a7.n
)
)

Ot = W N

. 1 .
Yo = 1121 BaT, a=1,....n & Bi.n,=1€1_ 2V1..m
. -1 .
Yo = —te1.nT BT, a=1,....,n & Bi.,=—t€1. 2V..n

(=)

Note that all six cases have the unified notation v, = B1.. n(y1..m) T B4T.

Additionally, in the case of the real Clifford algebra Cl,, , of signature p — q = 1
mod 4 and the complexified Clifford algebra C @ Cl,, 4 of arbitrary signature, the
element T', whose existence is stated in cases 1-6 of the theorem, equals

1 _
T=Hpven(F) =gy Y, BaFy!
A:]A|=0 mod 2
where F' is an element of the set {y4 + vp; |A| = 0mod 2, |B| = 0mod 2}.

In the case of the real Clifford algebra Cl), , of signature p — q = 3 mod 4,
the element T, whose existence is stated in cases 1 and 2 of the theorem, equals
T = Hpyen(F), where F is an element of the set {y4; |A| = 0mod 2} such that
HEven(F) 7& 0.

Using the algorithm to compute the element 7" in Theorems 28 and 29, we present
an algorithm to compute elements of spin groups in [62].
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In [34], we present a local variant of Pauli theorem, when two sets of Clifford
algebra elements smoothly depend on the point of pseudo-Euclidian space.

5. Lie Groups and Lie Algebras in Clifford Algebras

5.1. Orthogonal Groups

Let us consider pseudo-orthogonal group O(p,q),p+q¢=n

O(p,q) := {A € Mat(n,R); ATnA =}, n = diag(1,...,1,-1,...,—1).
—— —
P q

It can be proved that (for more details, see [30] and [35])

Ap+1...n
_ l..p p+l...n l..p _ “"pt+l..n
A€O0(p,q) = det A =1, |A1..~p| 2 1, |AP+1‘..n | =1, A= det A
where Ahz and Agﬁ:::f are the minors of the matrix A. The group O(p, ¢) has

the following subgroups

SO(p,q) :={A€O(p,q); det A =1}

SO4(p.q) == {A €50(p.q); A} > 1} = {4 €50(p,q); AYT1 7 > 1}
= {A€0(,q: Ay 21477 > 1)

O+(p,q) = {A € O(p.q); A7) > 1}

O_(p,q) :={A€O(p,q); ALT " > 1}.
The group O(p, ¢) has four components in the case p # 0, # 0

O(p,q) = SO+ (p,q) U O+ (p,q)' U O_(p,q)" USO(p, q)’

O+(p,q) = SO+ (p,q) UO4(p,q), O—(p,q) =SO+(p,q) LO_(p,q)
SO(p,q) = SO+ (p,q) USO(p,q)".

Example 12. In the cases p = 0 or ¢ = 0, we have orthogonal groups O(n) :=
O(n,0) = 0O(0,n), special orthogonal groups SO(n) := SO(n,0) = SO(0,n).
The group O(n) has two connected components O(n) = SO(n) LU SO(n)’.

Example 13. In the case (p,q) = (1, 3), we have Lorentz group O(1, 3), special
(or proper) Lorentz group SO(1,3), orthochronous Lorentz group O, (1, 3), or-
thochorous (or parity preserving) Lorentz group O_ (1, 3), proper orthochronous
Lorentz group SO4.(1,3).

Definition 16. A subgroup H C G of a group G is called a normal subgroup
(H<QG)ifgHg™" C H forall g € G.

Definition 17. A quotient group (or factor group) % = {gH; g € G} is the set
of all left cosets (= right cosets, because H is normal).
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All considered subgroups are normal (for example, SO (p, ¢) <O(p, q)) and
O(p,q) O(n)

SO+(p: ) SO(n) ©
O.g) _ O.g) _ OW,q _ SOpq9) _ O-(rg) _ O+(pq) _
SO(,9)  O-(p,a) O+(p,g) SO+(p.g) SO+(p,q) SO+(p,q)

Example 14. The group O(1, 1) has four connected components O/, (1, 1), O”_(1,1),
SO’(1,1), SO4(1,1) of matrices of the following type respectively (note that
cosh? ¢ = 1 + sinh?4) and cosh ¢ > 1)

cosh®  sinh —cosh ) —sinh )
—sinhy —coshv )’ sinhvy  coshv

<— cosh i —sinh ) (cosh 1 sinh ) bR

= Lo X L, = Za,

—sinhvy — coshy sinhy cosh

5.2. Lipschitz and Clifford Groups

Let us consider the group of all invertible elements
Cly =AU € Clypyg; V € Clygexists : UV = VU = e}
of dimension dim C/;; , = 2". The corresponding Lie algebra is C¥;, , with the Lie
bracket (U, V] =UV — VU.
Let us consider the adjoint representation
Ad:Clf, — AutClyg, T — Adp, AdpU =TUT ™', U € Clyy,.
The kernel of Ad is (see Theorem 1)

ker(Ad) = {T € Ol ,; Adp(U) =U forall U € Cly 4}

_ Cﬁgg, if n is even
L@, ecn ), ifnisodd.
Let us consider the twisted adjoint representation

Ad:Cl, = EndCl,,, T —Adr, AdeU=TUT™, U € Clyy

The kernel of Ad is
ker(Ad) = {T' € CX: Adr(U) = U forall U € Gl 4} = CIO%.
In the Clifford algebra C¥), ;, we have a vector subspace V' = 05;7 ¢ With a quadratic

form @Q(x) or a symmetric bilinear form g(x, z)

ow:9) = 5(Q +1) — Q) = Q) = 5oy + g, vy € T,
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Lemma 30. Ad : CE}JQ — O(p,q) on V.

Proof: Forv € szl,f} and z € C’E}w we have
Q(A\avm) = (dzv ™ H? = dav Yozt = 2 = Q(x)

because 22 € C’Eg’q. [ |

Hiv acts on V' as a reflection along v (in the hyperplane orthogonal to v)

Adyr = dav ! =2 — (zv+vz)o !t =2 — 2g(x,v)v7 ve Crtx,
g9(v,v) P

Theorem 31 (Cartan-Diedonné). Every orthogonal transformation on a nongener-
ate space (V, g) is a product of reflections (the number < dim V') in hyperplanes.

1
T E C€p7q.

Let us consider the group F12u,q = {vvg - vk VI, .U € CE}JE}_
Lemma 32. m(f‘% ¢) = O(p, q) (surjectivity).
Proof: If f € O(p, q), then

flx) = Avdvlon'oﬂivk(a:):7?1-~~1f;€m),;1~--vfl

5

= vy opx(vg - vk)*l = Avdvl...vk (x)

forvy,...,vp € V*andz € V. [ |

Let us consider the group '}, := {T € Cl¥; TxT—' € ct, forallz € O, )

and the norm mapping (norm function) N : Cly, 4 — Cly 4, N(U) := UU.
Lemma33. N : T} — CO)% =R

. 1 1
Proof: If T € I‘p,q and x € C’fp’q, then

S ~ S

TaT™ ' = TaT-1' =T-12T = (T) 'aT.

—

Since TTx = 21T, it follows that 7T € ker Ad = C19. m
Lemma 34. N : F}%q — R* is a group homomorphism
N(UV)=NU)N(V), NUYH=(NU)), UVerT,,
Proof: We have
NUV) = OVUV = VOUV = VNV = N(U)N(V)

and
e=N(e)=NUU Y =NU)NU™Y.
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Ad-T1
Lemma 35. Ad: T, , — O(p,q).

Proof: We have

—

N(T) :%f:%T:W:N(T)

and
N(Adp(z)) = N(T2T") = N(T)N(2)N(T)
= N(T)N(2)(N(T))~" = N().
Since N(z) = 7z = —22 = —Q(x), it follows that Q(Ady(z)) = Q(x). ]

1 _ 12
Lemma 36. Fp’q = FM.

X 2 1 1 2 1
Proof: We know that ijq - I‘M. Let us prove that Fm - Fp,q' IfT e PM,

then Ady € O(p, q) by Lemma 35. Using Lemma 32, we conclude that S € F;q

exists: Adg = Ady. We obtain Adpg-1 = id and TS™! = Xe, A € R. Finally,
T=MXSel}, u

Definition 18. The following group is called Lipschitz group
+ _
IE =0, =T ={T e uc); TaT~ € Ct  forallz € CL;, }
= {vivg- - vg; v1,. ..,V € CK;E .

Definition 19. The following group is called Clifford group
Tpg={T €Cl,; TaT " €Cl} forallz € Cl) ,} DT5,.
So, we have Avd(f‘;%q) = O(p,q), i.e.,
forany P = |[p}|| € O(p, q) there exists T' € F;'fq :TeaT™ =ple,.  (10)
Let us consider the following subgroup of Clifford group
I = A{T e ) TaT~" € CL} forallz € Ol } C T,
We have Avd(FZq) = Ad(T'},) =SO(p, q), i.e., for all
P = ||pf]] € SO(p, q) there exists T € T} : Te T~' =Te, T~ = pley,. (11)

We can prove the statements in (10) and (11) without the Cartan-Diedonné theorem
(see Theorem 31 and Lemmas 32 - 36) but with the use of the Pauli theorem (see
Theorems 28 and 29). One can find this approach in [58] and [35].
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5.3. Spin Groups
Let us define spin groups as normalized Lipschitz subgroups.

Definition 20. The following groups are called spin groups

Pin(p,q) :={T €} ; TT = e} = {T €T} ; TT = +e¢}

p,q° p,q°
Piny(p,q) :={T € Fiq; TT = +¢}
Pin_(p,q) :={T € [L,; TT = +e} (12)

Spin(p, q) :={T € T} ,; TT = +¢} = {Ter),: TT = +e}

Spin, (p,q) :={T €T} ; TT =+e} ={T € L TT = +e}.
In the case p # 0 and ¢ # 0, we have
Pin(p, ¢) = Spin, (p, ¢) U Piny (p, q)" U Pin_(p, q)" U Spin(p, q)’

/

Pin (p,q) = Spin (p, ) UPini(p, q)’, Pin_(p, q) = Spin, (p, ¢) UPin_(p, q)
Spin(p, ¢) = Spin, (p, ¢) L Spin(p, q)".
In Euclidian cases, we have two groups:
Pin(n) := Pin(n,0) = Pin_(0,n), Spin(n,0) = Piny (n,0) = Spin, (n,0)
Pin(0,n) := Pin(0,n) = Piny (0,7n), Spin(0,n) = Pin_(0,n) = Spin_ (0, n).

All considered subgroups are normal (for example, Spin (p, q) < Spin(p, q)).

All quotient groups are the same as for the group O(p, ¢) and its subgroups respec-
tively (see (9)).

Theorem 37. The following homomorphisms are surjective with the kernel {+1}
Ad : Pin(p,q) = O(p, q)
Ad : Spin(p, ) = SO(p, q)
Ad : Spin (p,q) = SO+ (p, q)
Ad : Pinyg(p,q) = O4(p,q)

Ad : Pin_(p,q) — O—(p,q).

It means that for all
P = ||p}|| € O(p, q) there exists £ T € Pin(p,q) : Te,T " =pley,  (13)

and for the other groups similarly.
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Proof: Statement for the group Pin(p, ¢) follows from the statements of the previ-
ous section (see Lemmas 32 and 33). For the other groups statement follows from
the theorem on the norm of elements of spin groups which we give below (see [51]
and [53]). [ |

Theorem 38 ([51], [53]). The square of the norm of the element T € Pin(p, q) in
(13) equals

Pyt =prin, T € Spin, (p,q)
l..p _ p+1..n . /

1. +1... .
_Pl...;f =P§+1...r’fa T € Pin_(p,q)’
—P P = prilen T € Spin(p, q)’

where Plll'.'.'; and Pg:llg are the minors of the matrix P € O(p, q) that corre-

sponds to the element T by (13).
Theorem 39. We have the isomorphism Spin(p, q¢) = Spin(q, p).

Proof: This follows from the isomorphism CBI(?% = C’Eg?z)) (see Theorem 6). u

Example 15. We have Spin(1,0) = Spin(0, 1) = {+e} = Zo.

Example 16. Note that Pin(p,q) % Pin(g,p) in general case. For example,
Pin(1,0) = {£e, +e1} = Zy x Zz and Pin(0,1) = Z4.

Theorem 40. The condition TaT~' € C’ﬁ}mq forallx € C¢

1
p7
in the cases n < 5 for all spin groups (12), i.e.,

Pin(p,q) = {T € Q) U Cl): TT = +e}, n=p+q<5.

q holds automatically

Proof: If T € CUY)UCK), then T2T " € CLL . @CHS ®CL . Using TT = e,

we get TaT—! = +T2T = +T2T and TzT ! € Ct,, , ® Cl5 . The statement is
proved for n < 4.

Suppose that . = 5 and T~ = v+ Xey. 5, v € Clp ., A € R*. Then

A= (TxT_lef.lﬁ - ’Uef.l.s)‘e—ﬂ = Tr(TxT_lef.lﬁ) = Tr(me;_lﬁ) =0

and we obtain a contradiction. [ |

Example 17. If the case n = 6 the previous theorem is not valid. The element
T = %(612 + 63456) € Cfé?()) satisfies 7T = e, but T€1T_1 = —€93456 ¢ Cf(lijo.

Theorem 41. Spin_ (p, q) is isomorphic to the following groups in Table 5 in the
casesn =p—+q < 6.
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Table 5. Isomorphisms between Spin_ (p, ¢) and matrix Lie groups.

p\q| 0 1 2 3 4 5 6
0 |0O(1) |O(1) U(1) SU(2) |2SU(2) |Sp(2) |SU(4)
1 [0O(1) |GL(1,R)[ SU(1,1) [ Sp(1,C)| Sp(1,1) | SL(2, H)
2 [U(@) [SU(1,1) | 2SU(1,1)] Sp(2,R)| SU(2,2)
3 [SU(2) [ Sp(1,C) | Sp(2,R) | SL(4,R)
4 [2SU(2) Sp(1,1) | SU(2,2)
5 [ Sp(2) | SL(2,H)
6 | SU4)
Note that

U(1) ~ SO(2), SU(2) ~ Sp(1), SL(2,C) ~ Sp(1,C)
SU(1,1) ~ SL(2,R) ~ Sp(1,R).
The Lie groups I’;tq, F;; ¢ has the Lie algebra C’qu @ Cﬁiq. All spin groups
Pin(p, ¢), Spin(p,q), Piny(p,q), Pin_(p,q), Spin, (p,q) has the Lie algebra
CEIQW.
Since Theorem 37 and some facts from differential geometry, it follows that the
spin groups are two-sheeted coverings of the orthogonal groups.
The groups Spin,, (p, q) are pathwise connected for p > 2 or ¢ > 2. They are
nontrivial covering groups of the corresponding orthogonal groups.

2

Example 18. The group Spin_ (1,1) = {ue+ve1z; u® —v* = 1} is not pathwise

connected (it is two branches of the hyperbole).

The groups Spin (n), n > 3 and Spin, (1,n — 1) = Spin, (n — 1,1), n > 4
are simply connected. They are the universal covering groups of the corresponding
orthogonal groups.

5.4. Other Lie Groups and Lie Algebras in Clifford Algebra

Let us consider the following Lie groups and the corresponding Lie algebras (see
Table 6).

Isomorphisms for the group Gg?qim are proved in [67] (see also [66])
U(2%) ifpisevenand ¢ = 0
U(2 )@U( ) ifpisoddand ¢ =0
ngqlm ~ L U@RT ,2n22) if nisevenand g # 0

U(2 ,2 3 )@U(2"T_3,2T), if pis odd and ¢ # 0 is even
GL(2

- ,C), if p is even and ¢ is odd.
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Table 6. Lie groups and Lie algebras in C @ C¥,, 4.

Lie group Lie algebra dimension

1 (C®Cp)*={UecC® Czp,q ; U1 exists} 0123 & 10123 antl
2 ce;,q ={U € Clp,q; UL exists} 0123 2n
3 K(O ={U e C’Kg,ol)z, Ut exists} 02 on—1
4 (C® cz(‘”)X ={UeC®Uy,; exists} 02 & i02 on
5 [ eiceltyx = (U e ) e 106;121, U~lexists}| 02 il3 on
6 GEH = {U € C® Tty g3 UU = ¢} 23 @ i01 on
7 GAP ={UecCrly; OU = e} 12403 2n
8 Q20 = (U e af); UU = e} 2@i0 gn—1
9 G23123 {U €C®Clp,q; UU = e} Bei23 | 27 —2"% sin 2t
10 G212 — (U € C® Clyq; UU = €} Roiz | -2" ¢ ’*<”+1>
11 G2 ={UeCe); UU =e} 2o 2%11212 cos Tt
12 G211 = {U € Gty @ity ; UU = e} I@il | 271 —2"7 cos Tntl)

. X — — n—1
13 G2 — (U e arf) @ ictll); UU = e} Zei3  |o2nl-o2 z; sin (L)
14 G2 ={U € Clp,q; UU = ¢} 23 2"t - 22 ”(”“’
15 Gl2 = {U € Clpq; UU = e} 12 on—1_9"z" ’TWH)
16 Gz, ={Uce CE;,??I; UU = e} 2 2n—2 — 2% cos %

We call (}23‘01 the pseudo-unitary group in Clifford algebra and use it in some
problems of the field theory [35], [49], [36].

Some of these Lie groups are considered in [40] and [31]. Some of them are related
to automorphism groups of the scalar products on the spinor spaces ([40], [31], [7],
[4]). Note that spin group Spin , (p, ¢) is a subgroup of all groups in Table 6. The
group G; 4 coincides with Spin_ (p, ¢) in the cases n < 5. The Lie algebra of the
spin group Cé?,’q € 2 is a Lie subalgebra of all Lie algebras in Table 6. We have
Cﬁg’q = 2 in the cases n < 5.

The isomorphisms for the group GZQ,’ ¢ are represented in Tables 7 and 8. There is n
mod 8 in the lines and p — ¢ mod 8 in the columns.

One can find isomorphisms for all remaining Lie groups and corresponding Lie
algebras from Table 6 in a series of papers [60], [63], and [66].

6. Dirac Equation and Spinors in n Dimensions
6.1. Dirac Equation in Matrix Formalism

In Section 6, we use the notation with upper indices for the Dirac gamma-matrices
and the generators of the Clifford algebra because of the useful covariant form of
the Dirac equation.
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Table 7. Isomorphisms for the group Gg_’ o in the cases of even n.

n\p—¢q|0 2,6 4
20(2"7,2°7)
0 itp,q7 0 0(2"z",C) 20(2", H)
20(272)
ifp=0orqg=20
U@, 2" )
2,6 | QL2 ,R) itp,q 70 GL(2"7", H)
U("3?)

ifp=0o0orqg=20

n—=6 n—=0

*Sp(277,277)

n4 n4 if p,g #0
4 28p(2"7, R Sp(2"7",C np,a7

p( ) p( ) 25 p(27)
ifp=0o0orqg=20

Table 8. Isomorphisms for the group G;%,q in the cases of odd n.

n\p—q|1,7 . . 3,9
027 ,27)

1,7 | ipaz0 0(2"%", H)
O(2T)

ifp=00orqg=20

Sp(2"7,2"7)

3,5 | Sp(2"2",R) ifp.q70
Sp(2°2 )
ifp=0orq=0.

Let R'3 be Minkowski space with Cartesian coordinates z*, 1 = 0,1,2,3. The
metric tensor of Minkowski space is given by a diagonal matrix
n = diag(1,—1,—-1,—-1).
0
oz
The Dirac equation for the electron [15], [16] can be written in the following way
I (Ot — ) — map = 0

where a,, : R13 — R is the electromagnetic 4-vector potential, m > 0 € R is the
electron mass, ¢ : R13 — C* is the wave function (the Dirac spinor) and ~* are

We denote partial derivatives by 0,, :=
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the Dirac gamma-matrices which satisfy conditions
AV 4 APyt = 2nM 1, ~* € Mat(4,C).
The Dirac equation is gauge invariant. If we take the expressions
ay — G, = ay + ANx), P — 1/) = d)ei)‘(z), Az) e R
then they satisfy the same equation
Wﬂ(azﬂ/; - idzﬂﬁ/) - mz/} = i’Y”(au(ei)\lﬁ) - i(au + auA)(eiAl/J)) - m(ei)‘w)
= (18,0 + D) — daueN — 1(9,0)eN) — mey
= M iy (Db — ia, ) — myp) = 0.
One says that the Dirac equation is gauge invariant with respect to the gauge group
U(1) = {e*; A € R}.
The corresponding Lie algebra is
u(l) = {ix; A € R}.
The Dirac equation is relativistic invariant. Let us consider orthogonal transforma-
tion of coordinates
at — i = pha, P =||pt]| € O(1,3).
Then
Op = 0u=q'0y,  ap—du=qla, Q=|lgl|=P"

There are two points of view on transformations of the Dirac gamma-matrices and
the wave function (see [69]).

In the first (tensor) approach, we have
==, b= =4
In this approach, all expressions are tensors and the Dirac equation is relativistic
invariant. The tensor approach is considered in details in [32].
In the second (spinor) approach, we have

P A=At =8¢, ST =ply”

A (O) — ida)) — mid = in* (g0, (S¥) — igja, S1) — mSy)

= SIS gy S (0,0 — iau)) — mip) = S(i" (Bt — iauyh) — myp) = 0.
In this approach, the Dirac gamma-matrices do not change and the wave function
1) changes as spinor with the aid of the element .S of the spin group. The formula

S~1y"S = phy¥ describes the double cover of the orthogonal group by the spin
group. This approach is generally accepted.
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6.2. Dirac Equation in Formalism of Clifford Algebra

Let us consider the complexified Clifford algebra C ® C¥; 3 with the generators
eV, el, e?, e3. In Section 6, we use notation with upper indices for the generators

of the Clifford algebra.
We have a primitive idempotent

1000
1 0y L . 12 0000 2,
t—§(€—|—€)§(€+1€ ) +— 0000 | t“=t=t
0000
The Dirac spinor is
1 000
P2 000 _
Y4 000

The corresponding left ideal I(¢) is called spinor space.
The Dirac equation can be written in the following form

ie" (O —iauy) —map =0
where v is an element of the left ideal of the Clifford algebra.
All properties of the Dirac equation from the previous section are valid.

6.3. Dirac-Hestenes Equation

Let us consider the Minkowski space R'3 and the complexified Clifford algebra
1,2

C ® Cly 3 with the generators €, ¢!, €2, e3. We have a primitive idemptonent ¢ =
1(e+ E)(e —iI) and the corresponding left ideal I(t), where E := €%, I := —e'?,
t?=t=1tl,it =1It,t = Et.

Lemma 42. For arbitrary U € 1(t) the equation Xt = U has a unique solution
X € Cﬁg??)) (and a unique solution X € Cﬁfg).

Proof: We can choose the orthonormal basis of the left ideal I(¢) of the following
form

mo=Fit, k=1,2,3,4, F =2 Fp=2e" F =2 F =2 e ).
We have U = (¥ 4 i8%)7;, for some o, 8% € R.

Using it = It, we conclude that X = Fy(a* + IBF) ¢ Cﬁg is a solution of
Xt=U.
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(0)

Now let us prove the following statement. If the element Y € C¥; 3 is a solution
of equation Yt = 0, then Y = 0. For element Yt € I(¢) we have

1 . ‘ ‘ ‘
Yt= 5((3/ —iy12)T1 + (—y13 — iy23) T2 + (Yo3 — iyo123) 73 + (Yo1 + 1yo2)74) = 0.

Using t = Et, we conclude that X = FE(a* + I8*) € C’K% is also a solution
of equation Xt = U. The proof of uniqueness in this case is similar. |

One can find this lemma and similar statements, for example, in [32].

Let us rewrite the Dirac equation ie* (0,1 — ia,1) — mi = 0 in the following
form

(O —iayyp) 4+ imap =0, P e 1(t). (14)
The Dirac-Hestenes equation [25] is
¢(0,¥ — a, UNE+m¥I =0,  Ue ). (15)

Theorem 43. The Dirac equation and the Dirac-Hestenes equation are equivalent.

Proof: Let us multiply both sides of the Dirac-Hestenes equation (15) by ¢ on the
right. Using E't = ¢, It = it, and Ut = ¢/, we obtain the Dirac equation (14).

We have ¢ € 1(¢). Using Lemma 42, we conclude that there exists ¥ € 06(1?3)) such

that Ut = 4. Using E't = t and It = it, we obtain
(e"(0,V —a,YI)E+mWUI)t =0.

ect’)
Using Lemma 42 for the second time, we obtain the Dirac-Hestenes equation (15).
|

Note that the dimensions of the spinor spaces are the same in two approaches
dimI(t) =dimC!' =8,  dimC¥{) =8.

The Dirac-Hestenes equation is widely used in applications (see, for example, [43],

[18]).

6.4. Weyl, Majorana and Majorana-Weyl Spinors

Detailed information on n-dimensional spinors (using the methods of Clifford al-
gebra) can be found in [59]. See also [7].

We study the connection between matrix operations (transpose, matrix complex
conjugation) and operations in Clifford algebra (reverse, complex conjugation,
grade involution), we introduce the notion of additional signature of the Clifford
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algebra (for more details, see [59], also [60], [63], [66], where we develop and use
these results).

Let us consider chirality operator (pseudoscalar) in C ® C¥,, 4
_fem p—g=0,1 mod4
w= iel"" p—q¢=2,3 mod 4.
We have

Let us consider orthogonal idempotents

1 1
P = §(e—w), Pg = §(e+w)

P} =Py, P2 = Pp, P;Pr = PrP;, = 0.

In the case of odd n, the complexified Clifford algebra C & CV,, 4 is the direct sum
of two ideals

C®Clyy = PL(C®Cly) ® Pr(C®Clyy), C®Cl, = Mat(2"7 ,C).

Let us consider the case of even n. For the set of Dirac spinors Ep = {¢ € 1(¢)}
we have

Ep = Erw ® Egw
where
Erw :={v € Ep; PLp =v} ={¢ € Ep; wy = -4}
is the set of left Weyl spinors and
Epw :={¢ € Ep; Ppp = ¢} ={¢ € Ep; wp =}
is the set of right Weyl spinors.

Using the Pauli theorem (Theorems 28 and 29), we obtain existence of the elements
A such that

(e =+A7 AL (16)

If n is even, then both elements A exist. If p is odd and ¢ is even, then only A
exists. If p is even and ¢ is odd, then only A_ exists.

We can rewrite (16) in the following way

Ul=A7'UA,, Ul=A"'UA, UecCad,,

The explicit formulas for A are given in Theorem 17.
Let us consider two Dirac conjugations

PP = i(Ap) 7"
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Example 19. In the case (p,q) = (1,3) with the gamma-matrices 7°, ~*, 72,
+3, we obtain the standard Dirac conjugation )”+ = 1770 and one else P~ =

¢T7123'
The Dirac conjugation is used to define bilinear covariants
A Dy A
JE=v"Fe .
The Dirac current 1P+ et is a particular case of the bilinear covariants. Using

the Dirac equation, it is not difficult to obtain the law of conservation of the Dirac
current

Ou (PP ery) = 0.

We denote the matrix complex conjugation by <. It should not be confused with
the operation of complex conjugation in the complexified Clifford algebra C ®
Cly .

Let us consider the following two operations in C ® C¥,, 4
<—
UTi= T ENW), U= B00), UeCey,
where

Mat(2% ,C), if n is even

:Coll,q — n— ns
B: Cally, {Mat(QQI’C)@Mat(Qzl,(C), if n is odd

is the faithful representation of C ® (¥, , of the minimal dimension. These two
operations depend on the representation 3.

Using the Pauli theorem (Theorems 28 and 29), we obtain existence of the elements
C+ such that

(et = £C1'eCy. (17)

If n is even, then both elements Cy exist. [f n = 1 mod 4, then only C. exists.
If n =3 mod 4, then only C'_ exists.

We can rewrite (17) in the following way
vt =citvcy, U'=cCI'UC.,  UeCod,,

The explicit formulas for Cy are given in [59] using the notion of additional sig-
nature of the Clifford algebra. Also these elements have the following properties

(C)T = AiCy, EL0L = Ase

,2 mod 8 = +1,n=0,6,7 mod 8
T 1-1,n=2,3,4 mod 8.
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Using the Pauli theorem (Theorems 28 and 29), we obtain existence of the elements
B such that

(_
¢ = +B1'e"By. (18)

If n is even, then both elements By exist. If p — ¢ = 1 mod 4, then only B
exists. If p — ¢ = 3 mod 4, then only B_ exists.

We can rewrite (18) in the following way
U=B7UB.,, U=B"UB., UeCad,,

The explicit formulas for By are given in [59] using the notion of additional sig-
nature of the Clifford algebra. Also these elements have the following properties

Bi = e+ B4, EBi =eye

o — +1,p—q¢=0,1,2 mod 8 . — +1,p—q
+ -1, p—q=4,5,6 mod 8 - -1, p—q

We introduce the Majorana conjugation in the following way
PME =T (Cy)
Example 20. In the case (p,q) = (1,3), we have ¢+ = T(4!3)~! and M-
= wi(70)7.
We introduce the charge conjugation in the following way

e = B

0,6,7 mod 8
2,3,4 mod 8.

%
Examgle 21. In the case (p,q) = (1,3), we have ¢+ = 4134 and 3°h-
2
=Y.

We have the following relation between A, By, and C'1 (when they exist)

p— —

B, =A7'C., B,=A'C_, B_=A"'C,, B_=A7'C_
Pt = CLP) T =C0o@P)T, et =0 @) =GP )T
Let us denote the set of Majorana spinors by
En = {¢ € Ep; v~ = £}
and the set of pseudo-Majorana spinors by
Epsyr = {¢ € Ep; ¢+ = +4}.

Using definition of the charge conjugation and the properties of B, it can be
proved that Majorana spinors are realized only in the cases p —q = 0,6,7 mod 8
and pseudo-Majorana spinors are realized only in the cases p—q = 0,1,2 mod 8
(see, for example, [59]).
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Let us denote a set of left Majorana-Weyl spinors by

Ermw = {¢ € Epw; ¢™ = £} = { € Epw; o™+ = +¢}
and a set of right Majorana-Weyl spinors by

Egpmw = {¢ € Egw; v~ = £¢} = {¢ € Egw; ¢+ = £y}

It can be proved that Majorana-Weyl spinors are realized only in the cases p—¢q = 0
mod 8 (see, for example, [59]).

The question of existence of the spinors in the cases of different dimensions and
signatures is related to the supersymmetry theory (see classic works on supersym-
metry and supergravity [28], [21] and other papers and reviews [14], [70], [19],
[73], [72], [41], [74], [71]).
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