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Introduction

Clifford algebra was invented by W. Clifford [11]. In his research, he combined
Hamilton’s quaternions [23] and Grassmann’s exterior algebra [27]. Further devel-
opment of the theory of Clifford algebras is associated with a number of famous
mathematicians and physicists – R. Lipschitz, T. Vahlen, E. Cartan [9], E. Witt,
C. Chevalley, M. Riesz [42] and others. Dirac equation [15], [16] had a great
influence on the development of Clifford algebra. Also note the article [5].
Nowadays Clifford algebra is used in different branches of modern mathematics
and physics. There are different applications of Clifford algebra in physics, analy-
sis, geometry, computer science, mechanics, robotics, signal and image processing,
etc.
In this text, we discuss some well-known facts about Clifford algebras: matrix
representations, Cartan’s periodicity of 8, double coverings of orthogonal groups
by spin groups, Dirac equation in different formalisms, spinors in n dimensions,
etc. We also present our point of view on some problems. Namely, we discuss the
generalization of the Pauli theorem, the basic ideas of the method of averaging in
Clifford algebras, the notion of quaternion type of Clifford algebra elements, the
classification of Lie subalgebras of specific type in Clifford algebra, etc.
We recommend a number of classical books on Clifford algebras and applications
[31], [25], [26], [10], [40], [7], [29], [8], [20], [13], [20], [24], [67], [68], [18], etc.
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We can recommend also the book [35] and a course of lectures [55] for Russian
readers.

1. Definition of Clifford Algebra

1.1. Clifford Algebra as a Quotient Algebra

In [31], one can find five different (equivalent) definitions of Clifford algebra. We
will discuss two definitions of Clifford algebra in this work. Let us start with the
definition of Clifford algebra as a quotient algebra [10].

Definition 1. Let we have a vector space V of arbitrary finite dimension n over
the field R and a quadratic form Q : V → R. Consider the tensor algebra

T (V ) =

∞⊕
k=0

k⊗
V

and the two-sided ideal I(V,Q) generated by all elements of the form x⊗x−Q(x)e
for x ∈ V , where e is the identity element. Then the following quotient algebra

C`(V,Q) = T (V )/I(V,Q)

is called a real Clifford algebra.

1.2. Clifford Algebra with Fixed Basis

Now let us discuss definition of the real Clifford algebra with fixed basis which is
more useful for calculations and different applications.

Definition 2. Let n be a natural number and E be a linear space of dimension 2n

over the field of real numbers R with the basis enumerated by the ordered multi-
indices with a length between 0 and n

e, ea1 , ea1a2 , . . . , e1...n

where 1 ≤ a1 < a2 < · · · < an ≤ n. Let us introduce the operation of multiplica-
tion on E

• with the properties of distributivity and associativity

U(αV + βW ) = αUV + βUW, U, V,W ∈ E, α, β ∈ R
(αU + βV )W = αUW + βVW, U, V,W ∈ E, α, β ∈ R
U(VW ) = (UV )W, U, V,W ∈ E

• e is the identity element

Ue = eU = U, U ∈ E
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• ea, a = 1, . . . , n are generators

ea1ea2 · · · ean = ea1...an , 1 ≤ a1 < a2 < · · · < an ≤ n

• generators satisfy
eaeb + ebea = 2ηabe

where

η = ||ηab|| = diag(1, . . . , 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
q

, 0, . . . , 0︸ ︷︷ ︸
r

), p+ q + r = n (1)

is a diagonal matrix with p times 1, q times −1, and r times 0 on the diago-
nal.

The linear space E with such operation of multiplication is called real Clifford
algebra C`p,q,r.

Example 1. In the case r = 0, we obtain nondegenerate Clifford algebra C`p,q :=
C`p,q,0. The quadratic form Q in Definition 1 is nondegenerate in this case.

Example 2. In the case r = 0, q = 0, we obtain Clifford algebra C`n := C`n,0,0
of Euclidian space. The quadratic form Q in Definition 1 is positive definite in this
case.

Example 3. In the case p = q = 0, r = n, we obtain Grassmann algebra Λn :=
C`0,0,n. In this case Clifford multiplication is called exterior multiplication and it
is denoted by ∧. The generators of Grassmann algebra satisfy conditions ea∧eb =
−eb ∧ ea, a, b = 1, . . . , n.

Any element of the real Clifford algebra C`p,q,r has the form

U = ue+
n∑
a=1

uaea +
∑
a<b

uabeab + · · ·+ u1...ne1...n (2)

where u, ua, uab, . . . , u1...n ∈ R are real numbers.
Also we consider complexified Clifford algebras C ⊗ C`p,q,r. Any element of the
complexified Clifford algebra C ⊗ C`p,q,r has the form (2), where u, ua, uab, . . . ,
u1...n ∈ C are complex numbers.
Also we consider complex Clifford algebras. In Definition 1, we must take vector
space V over the field of complex numbers C in this case. In Definition 2, we
must take vector space E over the field of complex numbers C and it is sufficient
to consider matrix η = diag(1, . . . , 1, 0, . . . , 0), p + r = n, with p times 1 and r
times 0 on the diagonal instead of the matrix (1) in this case. The most popular
case is C`(Cn), when the quadratic form Q is nondegenerate and η is the identity
matrix.
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1.3. Examples in Small Dimensions

Example 4. In the case of C`0, arbitrary Clifford algebra element has the form
U = ue, where e2 = e. We obtain the isomorphism C`0 ∼= R.

Example 5. In the case of C`1, arbitrary Clifford algebra element has the form
U = ue + u1e1, where e is the identity element and e2

1 = e. We obtain the
isomorphism with double numbers: C`1 ∼= R⊕ R.

Example 6. In the case of C`0,1, arbitrary Clifford algebra element has the form
U = ue + u1e1, where e is the identity element and e2

1 = −e. We obtain the
isomorphism with complex numbers: C`0,1 ∼= C.

Example 7. In the case of C`0,2, arbitrary Clifford algebra element has the form
U = ue+ u1e1 + u2e2 + u12e12. We can easily verify the following relations

(e1)2 = (e2)2 = −e, (e12)2 = e1e2e1e2 = −e1e1e2e2 = −e
e1e2 = −e2e1 = e12, e2e12 = −e12e2 = e1, e12e1 = −e1e12 = e2.

Using the following substitution

e1 → i, e2 → j, e12 → k

where i, j, and k are imaginary units of quaternions, we obtain the isomorphism
C`0,2 ' H.

Recall that H is an associative division algebra. An arbitrary quaternion has the
form

q = a1 + bi + cj + dk ∈ H, a, b, c, d ∈ R
where 1 is the identity element, i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i,
ki = −ik = j.

If q 6= 0, then q−1 =
1

||q||2
q̄, where

q̄ := a− bi− cj− dk, ||q|| :=
√
qq̄ =

√
a2 + b2 + c2 + d2.

Note that C`2,0 ∼= C`1,1 � C`0,2 (see Section 3.1).

Example 8. Let us consider the Pauli matrices

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

W. Pauli [39] have introduced these matrices to describe the spin of the electron.
It can be easily verified that
σ1σ2 = iσ3, σ2σ3 = iσ1, σ3σ1 = iσ2

(σa)
† =σa, tr(σa) = 0, (σa)

2 =σ0, a = 1, 2, 3

σaσb =− σbσa, a 6= b, a, b = 1, 2, 3.
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Using the substitution

e→ σ0, ea → σa, a = 1, 2, 3, eab → σaσb, a < b, e123 → σ1σ2σ3

we obtain the isomorphism

C`3 ∼= Mat(2,C).

The matrices

{σ0, σ1, σ2, σ3, iσ1, iσ2, iσ3, iσ0}

constitute a basis of Mat(2,C).

Example 9. Let us consider the Dirac gamma-matrices [15], [16]

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0



γ2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 , γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0

0 1 0 0

 .

These matrices satisfy conditions

γaγb + γbγa = 2ηab1, a, b = 0, 1, 2, 3, η = ‖ηab‖ = diag(1,−1,−1,−1)

tr γa = 0, γ†a = γ0γaγ0, a = 0, 1, 2, 3.

Using the substitution ea+1 → γa, a = 0, 1, 2, 3, we obtain the isomorphism

C⊗ C`1,3 ∼= Mat(4,C).

2. Gradings and Conjugations

2.1. Gradings

Any Clifford algebra element U ∈ C`p,q,r has the form

U = ue+
∑
a

uaea +
∑
a<b

uabeab + · · ·+ u1...ne1...n =
∑
A

uAeA, uA ∈ R

where we denote arbitrary ordered multi-index byA = a1 . . . ak. Denote its length
by |A| = k.
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Definition 3. The subspace

C`kp,q,r = {
∑
|A|=k

uAeA}

is called a subspace of grade k.

We have

C`p,q,r =
n⊕
k=0

C`kp,q,r, dimC`kp,q,r = Ckn =
n!

k!(n− k)!
·

Let us consider projection operations onto subspaces of grade k

U ∈ C`p,q,r → 〈U〉k ∈ C`kp,q,r.

Note that for arbitrary element U ∈ C`p,q,r we have

U =
n∑
k=0

〈U〉k.

The Clifford algebra C`p,q,r is a Z2-graded algebra. It can be represented in the
form of the direct sum of even and odd subspaces

C`p,q,r = C`(0)
p,q,r ⊕ C`(1)

p,q,r

where
C`(0)

p,q,r =
⊕

k=0mod2

C`kp,q,r, C`(1)
p,q,r =

⊕
k=1mod2

C`kp,q,r.

We have
C`(i)p,q,rC`

(j)
p,q,r ⊂ C`(i+j)mod2

p,q,r , i = 0, 1

and
dimC`(0)

p,q,r = dimC`(1)
p,q,r = 2n−1.

Note that C`(0)
p,q,r is a subalgebra of C`p,q,r.

2.2. Center of Clifford Algebra

We have the following well-known theorem about the center of Clifford algebra
Cen(C`p,q) := {U ∈ C`p,q ; UV = V U for allV ∈ C`p,q}.

Theorem 1. The center of the Clifford algebra C`p,q is

Cen(C`p,q) =

{
C`0p,q = {ue ; u ∈ R}, if n is even
C`0p,q ⊕ C`np,q = {ue+ u1...ne1...n ; u, u1...n ∈ R}, if n is odd.
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Proof: Let us represent element U in the form

U = U (0) + U (1), U (i) ∈ C`(i)p,q, i = 0, 1.

We have conditions UV = V U for all V ∈ C`p,q. We obtain

U (i)ek = ekU
(i), k = 1, . . . , n, i = 0, 1.

We represent U (0) in the form U (0) = A(0) + e1B
(1), where A(0) ∈ C`

(0)
p,q and

B(1) ∈ C`(1)
p,q do not contain e1. For k = 1 we obtain

(A(0) + e1B
(1))e1 = e1(A(0) + e1B

(1)).

Using A(0)e1 = e1A
(0) and e1B

(1)e1 = −e1e1B
(1), we obtain B(1) = 0. Acting

similarly for e2, . . . , en, we obtain U (0) = ue.

We represent U (1) in the form U (1) = A(1) + e1B
(0), where A(1) ∈ C`

(1)
p,q and

B(0) ∈ C`(0)
p,q do not contain e1. For k = 1 we obtain

(A(1) + e1B
(0))e1 = e1(A(1) + e1B

(0)).

Using A(1)e1 = −e1A
(1) and e1B

(0)e1 = e1e1B
(0), we obtain A(1) = 0. Acting

similarly for e2, . . . , ek, we obtain U (1) = u1...ne1...n in the case of odd n and
U (1) = 0 in the case of even n. �

2.3. Operations of Conjugations

Definition 4. The following operation (involution) in the Clifford algebra C`p,q,r

Û := U |ea→−ea , U ∈ C`p,q,r
is called grade involution or main involution.

It can be verified that

Û =

n∑
k=0

〈Û〉k =

n∑
k=0

(−1)k〈U〉k.

We havê̂
U = U, ÛV = Û V̂ , ̂λU + µV = λÛ + µV̂ , U, V ∈ C`p,q, λ, µ ∈ R.

Definition 5. The following operation (anti-involution) in the Clifford algebra
C`p,q,r

Ũ := U |ea1...ak→eak ...ea1 , U ∈ C`p,q,r
is called reversion.
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We have

Ũ =

n∑
k=0

〈Ũ〉k =

n∑
k=0

(−1)
k(k−1)

2 〈U〉k

and˜̃
U = U, ŨV = Ṽ Ũ , ˜λU + µV = λŨ + µṼ , U, V ∈ C`p,q, λ, µ ∈ R.

Definition 6. A superposition of reversion and grade involution is called Clifford
conjugation.

We do not use individual notation for Clifford conjugation and use notation ̂̃U .
The operation of Clifford conjugation corresponds to the operation of complex
conjugation of complex numbers in the caseC`0,1 ∼= C and quaternion conjugation
in the case C`0,2 ∼= H.
We have ̂̃

U =
n∑
k=0

〈 ̂̃U〉k =
n∑
k=0

(−1)
k(k+1)

2 〈U〉k.

Definition 7. The following operation in the complexified Clifford algebra C ⊗
C`p,q

U := U |ua1...ak→ūa1...ak , U ∈ C⊗ C`p,q,r
where we take complex conjugation of complex numbers ua1...ak , is called complex
conjugation in Clifford algebra.

We have

U = U, UV = UV , λU + µV = λ̄U + µV , U, V ∈ C⊗ C`p,q, λ, µ ∈ C.

An important operation of Hermitian conjugation in C ⊗ C`p,q will be considered
in Section 3.4.

2.4. Quaternion Types of Clifford Algebra Elements

The operation of grade involution uniquely determines two (even and odd) sub-
spaces of the Clifford algebra:

C`(j)p,q,r :=
⊕

k=jmod2

C`kp,q,r = {U ∈ C`p,q,r ; Û = (−1)jU}, j = 0, 1.

In a similar way, operations of grade involution and reversion uniquely determine
the following four subspaces. This is symbolically shown in Table 1 and Table 2.
Instead of (∗) and depending on the case, the “plus” or “minus” signs should be
understood.
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Definition 8. The following four subspaces of C`p,q,r

j :=
⊕

k=jmod4

C`kp,q,r = {U ∈ C`p,q,r ; Û = (−1)jU, Ũ = (−1)
j(j−1)

2 U}

are called subspaces of quaternion types j = 0, 1, 2, 3.

Table 1. Subspaces of quaternion types in C`p,q,r.

C`p,q,r 0 1 2 3
Û = (∗)U + - + -
Ũ = (∗)U + + - -

We have

C`p,q,r = 0⊕ 1⊕ 2⊕ 3, C`(0)
p,q,r = 0⊕ 2, C`(1)

p,q,r = 1⊕ 3.

Grade involution, reversion, and complex conjugation uniquely determine eight
subspaces of the complexified Clifford algebra.
We have

C⊗ C`p,q,r = 0⊕ 1⊕ 2⊕ 3⊕ i0⊕ i1⊕ i2⊕ i3.

Table 2. Subspaces of quaternion types in C⊗ C`p,q,r.

C⊗ C`p,q,r 0 1 2 3 i0 i1 i2 i3
Û = (∗)U + - + - + - + -
Ũ = (∗)U + + - - + + - -
Ū = (∗)U + + + + - - - -

The subspaces of quaternion types have the following dimensions

dim 0 =
∑
k

C4k
n = 2n−2 + 2

n−2
2 cos

πn

4

dim 1 =
∑
k

C4k+1
n = 2n−2 + 2

n−2
2 sin

πn

4
(3)

dim 2 =
∑
k

C4k+2
n = 2n−2 − 2

n−2
2 cos

πn

4

dim 3 =
∑
k

C4k+3
n = 2n−2 − 2

n−2
2 sin

πn

4
·

We denote the commutator of two Clifford algebra elements U, V by [U, V ] :=
UV − V U and the anticommutator by {U, V } := UV + V U .



Clifford Algebras and Their Applications to Lie Groups and Spinors 21

Theorem 2 ([48], [56]). We have the following properties

[j, j] ⊂ 2, [j, 2] ⊂ j, j = 0, 1, 2, 3

[0, 1] ⊂ 3, [0, 3] ⊂ 1, [1, 3] ⊂ 0

{j, j} ⊂ 0, {j, 0} ⊂ j, j = 0, 1, 2, 3

{1, 2} ⊂ 3, {2, 3} ⊂ 1, {3, 1} ⊂ 2.

By Theorem 2, the Clifford algebra C`p,q,r is a Z2 × Z2-graded algebra w.r.t. the
operation of commutator and w.r.t. the operation of anticommutator.
The notion of quaternion type was introduced by the author in the brief report [48]
and the paper [56]. Further development of this concept is given in [52], [57], [61],
[66], see also books [35], [55].
Subspaces of quaternion types are useful in different calculations (see [52], [57],
[61]). Here and below we omit the sign of the direct sum to simplify notation:
0⊕ 1 = 01, 0⊕ 1⊕ 2⊕ 3 = 0123 = C`p,q, etc.
For example, if U ∈ k for some k = 0, 1, 2, 3, then (see [57])

Um ∈
{

k, if m is odd
0, if m is even,

sinU ∈ k, cosU ∈ 0.

For arbitrary element U ∈ C`p,q we have (see [52])

UŨ, ŨU ∈ 01, U
̂̃
U,
̂̃
UU ∈ 03.

Using the classification of Clifford algebra elements based on the notion of quater-
nion type, we present a number of Lie algebras in C ⊗ C`p,q (see Section 5.4 and
[66]).

3. Matrix Representations of Clifford Algebras

3.1. Cartan’s Periodicity of 8. Central and Simple Algebras

Lemma 3 ([31]). We have the following isomorphisms of associative algebras:

1)C`p+1,q+1
∼= Mat(2, C`p,q), 2)C`p+1,q+1

∼= C`p,q ⊗ C`1,1
3)C`p,q ∼= C`q+1,p−1, p ≥ 1, 4)C`p,q ∼= C`p−4,q+4, p ≥ 4.

Proof: Let e1, . . . , en be the generators of C`p,q and (e+)2 = e, (e−)2 = −e such
that all generators e1, . . . , en, e+, e− anticommute with each other.

1. We obtain generators of Mat(2, C`p,q) in the following way

ei →
(
ei 0
0 −ei

)
, i = 1, . . . , n, e+ →

(
0 e
e 0

)
, e− →

(
0 −e
e 0

)
.
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2. eie+e−, i = 1, . . . , n are generators of C`p,q and e+, e− are generators of
C`1,1. Each generator of C`p,q commutes with each generator of C`1,1.

3. e1, eie1, i = 2, . . . , n are generators of C`q+1,p−1.
4. eie1e2e3e4, i = 1, 2, 3, 4 and ej , j = 5, . . . , n are generators of C`p−4,q+4.

�

We have the following well-known theorems about isomorphisms between Clifford
algebras and matrix algebras.

Theorem 4 (Cartan 1908). We have the following isomorphism of algebras

C`p,q ∼=



Mat(2
n
2 ,R), if p− q ≡ 0; 2 mod 8

Mat(2
n−1
2 ,R)⊕Mat(2

n−1
2 ,R), if p− q ≡ 1 mod 8

Mat(2
n−1
2 ,C), if p− q ≡ 3; 7 mod 8

Mat(2
n−2
2 ,H), if p− q ≡ 4; 6 mod 8

Mat(2
n−3
2 ,H)⊕Mat(2

n−3
2 ,H), if p− q ≡ 5 mod 8.

Proof: Using Lemma 3, we obtain isomorphisms for all C`p,q (see Table 3). We
use notations 2R := R⊕ R, R(2) := Mat(2,R), . . .

We have the isomorphisms (see Section 1.3)

C`0,0 ∼= R, C`0,1 ∼= C, C`1,0 ∼= R⊕ R, C`0,2 ∼= H.

Using the substitution

e→ (1, 1), e1 → (i,−i), e2 → (j,−j), e3 → (k,−k)

we obtain also the isomorphism

C`0,3 ∼= H⊕H.

Using C`p+1,q+1
∼= Mat(2, C`p,q), we get C`1,1 ∼= Mat(2,R). Using C`p+1,q+1

∼=
C`p,q ⊗C`1,1, we conclude that if we make a step down Table 3 (n→ n+ 2), then
the size of corresponding matrix algebra is doubled (Mat(k, . . .)→ Mat(2k, . . .)).
Using C`p,q ∼= C`q+1,p−1, we conclude that Table 3 is symmetric w.r.t. the column
“p− q = 1”. Using C`p,q ∼= C`p−4,q+4, we obtain the symmetry p− q ↔ p− q−8
for each n. �

Similarly, we can obtain the following isomorphisms for complex Clifford algebras
and for even subalgebras of the Clifford algebra.

Theorem 5 ([31]). We have the following isomorphism of algebras

C`(Cn) ∼= C⊗ C`p,q ∼=

{
Mat(2

n
2 ,C), if n is even

Mat(2
n−1
2 ,C)⊕Mat(2

n−1
2 ,C), if n is odd.
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Table 3. Isomorphisms between C`p,q and matrix algebras.

n\p−q −5 −4 −3 −2 −1 0 1 2 3 4 5
0 − − − − − R − − − − −
1 − − − − C − 2R − − − −
2 − − − H − R(2) − R(2) − − −
3 − − 2H − C(2) − 2R(2)− C(2) − −
4 − H(2) − H(2) − R(4) − R(4) − H(2) −
5 C(4) − 2H(2)− C(4) − 2R(4)− C(4) − 2H(2)

Theorem 6 ([31]). We have the following isomorphism of algebras

1)C`(0)
p,q
∼= C`p,q−1, q ≥ 1; 2)C`(0)

p,q
∼= C`q,p−1, p ≥ 1; 3)C`(0)

p,q
∼= C`(0)

q,p.

Proof: Let e1, . . . , en be the generators of C`p,q.

1. Then eien, i = 1, . . . , n− 1 are generators of C`(0)
p,q .

2. Then
{
ep+iep, i = 1, . . . , q
ej−qep, j = q + 1, . . . , n− 1

are generators of C`(0)
p,q .

3. Using 1) and 2), we get 3).

�

Definition 9. An algebra is simple if it contains no non-trivial two-sided ideals
and the multiplication operation is not zero.

Definition 10. A central simple algebra over a field F is a finite-dimensional as-
sociative algebra, which is simple, and for which the center is exactly F.

The following classification of Clifford algebras can be found in [10].

• If n is even, then C`(V,Q) is a central simple algebra.
• If n is odd and F = C, then C`(V,Q) is the direct sum of two isomorphic

complex central simple algebras.
• If n is odd, F = R, and (e1...n)2 = e, then C`(V,Q) is the direct sum of

two isomorphic simple algebras.
• If n is odd, F = R, and (e1...n)2 = −e, then C`(V,Q) is simple with center
∼= C.

Note that

(e1...n)2 = (−1)q+
n(n−1)

2 e =

{
e, if p− q = 0, 1 mod 4
−e, if p− q = 2, 3 mod 4

and these results agree with Theorem 4.
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3.2. Clifford Trigonometry Circle and Exterior Signature of Clifford Algebra

In the literature, the Cartan’s periodicity of 8 is depicted in the form of a eight-
hour clock (see Table 4). The clockwise movement by one step corresponds to an
increase of p − q by 1. The clock shows that two Clifford algebra with the same
p− q mod 8 are Morita equivalent (see Theorem 4).

Table 4. Clifford clock or Clifford trigonometry circle.

0
7 R 1

2R C

6 R H 2

C 2H
5 H 3

4

In our opinion, it is more correct to call it not Clifford clock, but Clifford trigonom-
etry circle. The algebras on the clock are in one-to-one correspondence with the
values of the function sin π(p−q+1)

4 . To show this, we do the following calculations
(see also [35]).

Let P be the number of basis elements eA of the Clifford algebra C`p,q such that
(eA)2 = e and Q be the number of basis elements eA of C`p,q such that (eA)2 =
−e. We call (P,Q) exterior signature of Clifford algebra C`p,q, P +Q = 2n.

Theorem 7. We have

P = 2
n−1
2 (2

n−1
2 + sin

π(p− q + 1)

4
), Q = 2

n−1
2 (2

n−1
2 − sin

π(p− q + 1)

4
).

Note that ∑
A

(eA)2 = P −Q = 2
n+1
2 sin

π(p− q + 1)

4
·

Finally, we obtain the following theorem.

Theorem 8. Two Clifford algebras C`p1,q1 and C`p2,q2 are isomorphic if and only
if their exterior signatures coincide (P1, Q1) = (P2, Q2) (or, equivalently, P1 −
Q1 = P2 −Q2).
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3.3. Trace, Determinant and Inverse of Clifford Algebra Elements

Definition 11. The following projection operation onto subspace C⊗ C`0p,q
Tr(U) := 〈U〉|e→1

is called a trace of Clifford algebra element.

We have

Tr(U) = u, U = ue+
∑
a

uaea + · · ·+ u1...ne1...n.

Theorem 9 ([54], [35]). The operation of trace of Clifford algebra elements has
the following properties

Tr(U + V ) = Tr(U) + Tr(V ), Tr(λU) = λTr(U), Tr(UV ) = Tr(V U)

Tr(UVW ) = Tr(VWU) = Tr(WUV ), U, V,W ∈ C⊗ C`p,q, λ ∈ C
Tr(U−1V U) = Tr(V ), Tr(U) = Tr(Û) = Tr(Ũ) = Tr Ū .

We have the following relation with the trace of matrices.

Theorem 10 ([54], [35]). We have

Tr(U) =
1

2[n+1
2

]
tr(γ(U))

where

γ : C⊗ C`p,q →

{
Mat(2

n
2 ,C), if n is even

Mat(2
n−1
2 ,C)⊕Mat(2

n−1
2 ,C), if n is odd

is faithful matrix representation of C⊗ C`p,q (of minimal dimension).

Definition 12. The determinant of any faithful matrix representation (of minimal
dimension) of element U is called the determinant of Clifford algebra element U ∈
C⊗ C`p,q.

Theorem 11 ([54], [35]). Definition 12 is correct: The determinant does not de-
pend on the choice of matrix representation.

Theorem 12 ([54], [35]). The determinant of Clifford algebra elements has the
following properties

• Det(UV ) = Det(U)Det(V ), Det(λU) = λ2[
n+1
2 ]

Det(U)

Det(U) = Det(Û) = Det(Ũ) = Det(U), U, V ∈ C⊗ C`p,q, λ ∈ C.
• U−1 ∈ C⊗ C`p,q exists if and only if DetU 6= 0.
• If U−1 exists, then

Det(U−1) = (DetU)−1, Det(U−1V U) = Det(V ), V ∈ C⊗ C`p,q.
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Theorem 13 ([54], [35]). We have the following explicit formulas for the deter-
minant and the inverse of Clifford algebra element U ∈ C ⊗ C`p,q in the cases
n = 1, . . . , 5

DetU =



U |e→1, n = 0

UÛ |e→1, n = 1

U
̂̃
U |e→1, n = 2

UŨÛ
̂̃
U |e→1 = U

̂̃
UÛŨ |e→1, n = 3

UŨ(Û
̂̃
U)5|e→1 = U

̂̃
U(Û Ũ)5|e→1, n = 4

UŨ(Û
̂̃
U)5(UŨ(Û

̂̃
U)5)4|e→1, n = 5

(U)−1 =
1

DetU



e, n = 0

Û , n = 1̂̃
U, n = 2

Ũ Û
̂̃
U (or ̂̃

UÛŨ), n = 3

Ũ(Û
̂̃
U)5 (or ̂̃

U(Û Ũ)5), n = 4

Ũ(Û
̂̃
U)5(UŨ(Û

̂̃
U)5)4, n = 5

where U5 = U |〈U〉4→−〈U〉4,〈U〉5→−〈U〉5 and U4 = U |〈U〉5→−〈U〉5 .

Note that we can introduce the notions of trace and determinant of elements of
the real Clifford algebra C`p,q. These operations have similar properties (see [54],
[35]).

3.4. Unitary Space on Clifford Algebra

Theorem 14 ([33], [35]). The operation U, V ∈ C ⊗ C`n → (U, V ) := Tr(
¯̃
UV )

is a Hermitian (or Euclidian) scalar product on C⊗ C`n (or C`n respectively).

Proof: We must verify

(U, V ) = (V,U), (U, λV ) = λ(U, V ), (U, V +W ) = (U, V ) + (U,W )

(U,U) ≥ 0, (U,U) = 0⇔ U = 0 (4)

for all U, V,W ∈ C ⊗ C`p,q, λ ∈ C. To prove (4) it is sufficient to prove that the
basis of C⊗ C`p,q is orthonormal

(ei1...ik , ej1...jl) = Tr(eik · · · ei1ej1 · · · ejl) =

{
1, if (i1, . . . , ik) = (j1, . . . , jl)
0, if (i1, . . . , ik) 6= (j1, . . . , jl).

We have
(U,U) =

∑
A

uAuA =
∑
A

|uA|2 ≥ 0.
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The theorem is proved. �

Definition 13. Let us consider the following operation of Hermitian conjugation
in Clifford algebra

U † := U |ea1...ak→e−1
a1...ak

, ua1...ak→ūa1...ak
, U ∈ C⊗ C`p,q.

This operation has the following properties

U †† = U, (UV )† = V †U †, (λU + µV )† = λ̄U † + µ̄V †

U, V ∈ C⊗ C`p,q, λ, µ ∈ C.

Theorem 15 ([33], [35]). The operation U, V ∈ C⊗ C`n → (U, V ) := Tr(U †V )
is a Hermitian (or Euclidian) scalar product on C⊗ C`p,q (or C`p,q respectively).

Proof: The proof is similar to the proof of the previous theorem. Now we have
(ei1 · · · eik , ei1 · · · eik) = Tr(e−1

ik
. . . e−1

i1
ei1 · · · eik) = Tr(e) = 1. �

Note that the Hermitian conjugation in the case of the real Clifford algebra C`p,q is
called transposition anti-involution. It is considered in [2], [3], [4] in more details.
We have the following relation between the Hermitian conjugation of Clifford al-
gebra elements and the Hermitian conjugation of matrices.

Theorem 16 ([33], [35]). We have γ(U †) = (γ(U))†, where

γ : C⊗ C`p,q →

{
Mat(2

n
2 ,C), if n is even

Mat(2
n−1
2 ,C)⊕Mat(2

n−1
2 ,C), if n is odd

is faithful matrix representation of C⊗ C`p,q such that (γ(ea))
−1 = (γ(ea))

†.

Let us consider the following Lie group in Clifford algebra

UC`p,q := {U ∈ C⊗ C`p,q ; U †U = e} ∼=

{
U(2

n
2 ), if n is even

U(2
n−1
2 )⊕U(2

n−1
2 ), if n is odd.

We call it unitary group in Clifford algebra [33], [35]. All basis elements of Clif-
ford algebra lie in this group by definition ea1...ak ∈ UC`p,q. The corresponding
Lie algebra is

uC`p,q := {U ∈ C⊗ C`p,q ; U † = −U}.

Theorem 17 ([33], [35]). We have the following formulas which can be considered
as another (equivalent to Definition 13) definition of Hermitian conjugation

U † =

(e1...p)
−1Ũe1...p, if p is odd

(e1...p)
−1 ̂̃Ue1...p, if p is even

U † =

(ep+1...n)−1Ũep+1...n, if q is even

(ep+1...n)−1 ̂̃Uep+1...n, if q is odd.
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As an example, we obtain well-known relations γ†a = γ0γaγ0 for the Dirac gamma-
matrices.

Proof: Because of the linearity of the operation † it is sufficient to prove the fol-
lowing formulas

ei1...ik
† = (−1)(p+1)ke−1

1...pẽi1...ike1...p, ei1...ik
† = (−1)qke−1

p+1...nẽi1...ikep+1...n.

Let s be the number of common indices in {i1, . . . , ik} and {1, . . . , p}. Then

(−1)(p+1)ke−1
1...pẽi1...ike1...p = (−1)(p+1)kep · · · e1eik · · · ei1e1 · · · ep

= (−1)(p+1)k(−1)kp−seik · · · ei1 = (−1)k−seik · · · ei1 = e−1
i1...ik

(−1)qke−1
p+1...nẽi1...ikep+1...n = (−1)qk(−1)qen · · · ep+1eik · · · ei1ep+1 · · · en
= (−1)qk+q(−1)qk−(k−s)(−1)qeik · · · ei1 = (−1)k−seik · · · ei1 = e−1

i1...ik
.

The theorem is proved. �

3.5. Primitive Idempotents and Minimal Left Ideals

Definition 14. The element t ∈ C ⊗ C`p,q, t2 = t, t† = t is called a Hermitian
idempotent. The subset I(t) = {U ∈ C ⊗ C`p,q ; U = Ut} is called the left ideal
generated by t.

Definition 15. A left ideal that does not contain other left ideals except itself and
the trivial ideal (generated by t = 0) is called a minimal left ideal. The corre-
sponding idempotent is called primitive.

Note that if V ∈ I(t) and U ∈ C⊗ C`p,q, then UV ∈ I(t).
The left ideal I(t) is a complex vector space with the orthonormal basis τ1, . . . , τd,
d := dim I(t). We have the Hermitian scalar product (U, V ) = Tr(U †V ) on
I(t), τk = τk, (τk, τ

l) = δlk, k, l = 1, . . . , n. We may define the linear map
γ : C⊗ C`p,q → Mat(d,C)

Uτk = γ(U)lkτl, γ(U) = ||γ(U)lk|| ∈ Mat(d,C). (5)

We have γ(U)kl = (τk, Uτl).

Lemma 18. The linear map γ is a representation of Clifford algebra of the dimen-
sion d: γ(UV ) = γ(U)γ(V ).

Proof: γ(UV )mk τm = (UV )τk = U(V τk) = Uτlγ(V )lk = γ(U)ml γ(V )lkτm. �

Lemma 19. We have γ(U †) = (γ(U))†.
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Proof: Using (A,UB) = (AU †, B) and (A,B) = (B,A) for (A,B) = Tr(A†B),

we obtain γ(U)kl = (U †τk, τl), γ(U)
k

l = (τl, U
†τk). Transposing, we get (γ(U)kl )

†

= (τk, U †τl), which coincides with γ(U †)kl = (τk, U †τl). �

Theorem 20 ([33], [35]). The following elements are primitive idempotents in
C⊗ C`p,q

t =
1

2
(e+ iae1)

[n/2]−1∏
k=1

1

2
(e+ ibke2ke2k+1) ∈ C⊗ C`p,q, t2 = t† = t

a =

{
0, if p 6= 0
1, if p = 0

bk =

{
0, 2k = p
1, 2k 6= p.

Further, we choose a basis of the corresponding minimal left ideal I(t) (for mote
details, see [33], [35]) and obtain the representation of the complexified Clifford
algebra (5).
For the real Clifford algebras C`p,q the construction is similar, see [1]. Using the
idempotent and the basis of the left ideal, we can construct representations of the
real Clifford algebra.

4. Method of Averaging in Clifford Algebras

4.1. Averaging in Clifford Algebras

The method of averaging in Clifford algebras is related to the method of averaging
in the representation theory of finite groups [47], [17], [6]. We present a number
of theorems which one can find in [65], [61], [35], [33], [37].
Let us consider the Reynolds operator [12] of the Salingaros group [44], [45], [46]
Gp,q := {±eA}

F(U) =
1

|Gp,q|
∑

g∈Gp,q

g−1Ug =
1

2n

∑
A

(eA)−1UeA, U ∈ C`p,q.

Theorem 21 ([65]). The operator F(U) is the projection onto the center of Clifford
algebra C`p,q

F(U) =
1

2n

∑
A

e−1
A UeA =

{
〈U〉0, if n is even
〈U〉0 + 〈U〉n, if n is odd F2 = F.

Let us consider other operators acting on U ∈ C`p,q that are also related to projec-
tion operators.
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Theorem 22 ([61]). We have

FEven(U) :=
∑

A:|A|=0 mod 2

e−1
A UeA = 〈U〉0 + 〈U〉n, F2

Even = FEven

FOdd(U) :=
∑

A:|A|=1 mod 2

e−1
A UeA = 〈U〉0 + (−1)n+1〈U〉n, F2

Odd = FOdd.

We have F = 1
2(FEven + FOdd) in the case of even n and F = FEven = FOdd in

the case of odd n.

Theorem 23 ([61]). For m = 0, 1, . . . , n we have

Fm(U) :=
∑

A:|A|=m

e−1
A UeA =

n∑
k=0

(−1)km(
m∑
i=0

(−1)iCikC
m−i
n−k )〈U〉k.

Particulary

F1(U) :=
∑

e−1
a Uea =

n∑
k=0

(−1)k(n− 2k)〈U〉k.

Theorem 24 ([37]). Let us consider the operator F1 from the previous theorem
which acts several times: Fl1(U) = F1(F1(· · ·F1(︸ ︷︷ ︸

l

U)) · · · ), where F0
1(U) = U .

Then

If n = p+ q is even, then 〈U〉k =

n∑
l=0

bklF
l
1(U), where

Bn+1 = ||bkl|| = A−1
n+1, An+1 = ||akl||, akl = λk−1

l−1 , λk = (−1)k(n− 2k).

If n = p+ qis odd, then 〈U〉k + 〈U〉n−k =

n−1
2∑
l=0

gklF
l
1(U), where

Gn+1
2

= ||gkl|| = D−1
n+1
2

, Dn+1
2

= ||dkl||, dkl = λk−1
l−1 .
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Theorem 25 ([61]). For k = 1, . . . , n− 1 we have∑
A:|A|=0 mod 4

e−1
A 〈U〉keA = 2

n−2
2 cos(

πk

2
− πn

4
)〈U〉k

∑
A:|A|=1 mod 4

e−1
A 〈U〉keA = (−1)k+12

n−2
2 sin(

πk

2
− πn

4
)〈U〉k

∑
A:|A|=2 mod 4

e−1
A 〈U〉keA = −2

n−2
2 cos(

πk

2
− πn

4
)〈U〉k

∑
A:|A|=3 mod 4

e−1
A 〈U〉keA = (−1)k2

n−2
2 sin(

πk

2
− πn

4
)〈U〉k.

For m = 0, 1, 2, 3 we have∑
A:|A|=m mod 4

e−1
A eA = dm(n)e,

∑
A:|A|=m mod 4

e−1
A e1...neA = (−1)m(n+1)dm(n)e1...n

where dm(n) = dim m (see (3)).

Theorem 26 ([65]). Let Mn be the matrix of the size 2n with the elements mAB =
eAeBe

−1
A e−1

B |e→1 (it is the commutator of eA and eB in the Salingaros group).
Then we have

FeA(U) := e−1
A UeA =

∑
B

mAB〈U〉eB , U ∈ C`p,q

where 〈U〉eB is the projection of the element U onto the subspace spanned over eB .

Using previous theorems, we can solve several classes of commutator equations
(see [65], [61])

eAX + εXeA = QA, ε ∈ R \ {0}, A ∈ G

for some known elements QA ∈ C`p,q and unknown element X ∈ C`p,q, where
G is some subset of the set of all ordered multi-indices with a length between 0
and n.
One can find other properties of considered operators in [65], [61], [35].

4.2. Pauli’s Fundamental Theorem, Faithful and Irreducible
Representations

Let the set of Clifford algebra elements satisfies the conditions

{βa ; a = 1, . . . , n} ∈ C`p,q, βaβb + βbβa = 2ηabe. (6)

Then the set

γa = T−1βaT (7)
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for any invertible T ∈ C`p,q satisfies the conditions

γaγb + γbγa = 2ηabe. (8)

Really

γaγb + γbγa = T−1βaTT
−1βbT + T−1βbTT

−1βaT

= T−1(βaβb + βbβa)T = T−12ηabeT = 2ηabe.

But we are interested in another question. Does the element T in (7) exist for every
two sets (8) and (6)? Pauli proved the following theorem in 1936.

Theorem 27 (Pauli [38]). Consider two sets of square complex matrices

γa, βa, a = 1, 2, 3, 4

of size 4. Let these 2 sets satisfy the following conditions

γaγb + γbγa = 2ηab1, η = diag(1,−1,−1,−1)

βaβb + βbβa = 2ηab1.

Then there exists a unique (up to multiplication by a complex constant) complex
matrix T such that

γa = T−1βaT, a = 1, 2, 3, 4.

This theorem states that the complexified Clifford algebra C ⊗ C`1,3 has unique
(up to equivalence) faithful and irreducible representation of dimension 4 .
Using the modern representation theory, we can obtain the following facts:

• In the case of even n = p + q, C ⊗ C`p,q has one faithful and irreducible
representation of dimension 2

n
2 (C⊗ C`p,q ∼= Mat(2

n
2 ,C), n is even).

• In the case of odd n = p+ q, C⊗C`p,q has two irreducible representations
of dimension 2

n−1
2 .

• In the case of odd n = p+ q, C⊗C`p,q has two faithful reducible represen-
tation of dimension 2

n−1
2 + 2

n−1
2 = 2

n+1
2 (C ⊗ C`p,q ∼= Mat(2

n−1
2 ,C) ⊕

Mat(2
n−1
2 ,C), n is odd).

Similarly we can formulate statements for the real Clifford algebra C`p,q. The
results depend on n mod 2 and p− q mod 8.
We also want to obtain an algorithm to compute the element T that connects two
sets of Clifford algebra elements. We can do this using the method of averaging
in Clifford algebra and the operators

∑
A∈G βAUγ

−1
A , where G is some subset of

the set of all ordered multi-indices with a length between 0 and n. One can find
different properties of these operators in [64].
We have the following theorems.
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Theorem 28 (The case of even n [50]). Consider the real C`p,q (or the complex-
ified C ⊗ C`p,q) Clifford algebra with even n = p + q. Let two sets of Clifford
algebra elements γa, βa, a = 1, 2, . . . , n satisfy conditions

γaγb + γbγa = 2ηabe, βaβb + βbβa = 2ηabe.

Then both sets generate bases of Clifford algebra and there exists an unique (up to
multiplication by a real (respectively complex) number) Clifford algebra element
T such that

γa = T−1βaT, a = 1, . . . , n.

Additionally, we can obtain this element T in the following way

T = H(F ) :=
1

2n

∑
A

βAF (γA)−1

where F is an element in the set

1) {γA ; |A| = 0 mod 2} ifβ1...n 6= −γ1...n

2) {γA ; |A| = 1 mod 2} ifβ1...n 6= γ1...n

such that H(F ) 6= 0.

Let us consider the case of odd n. We start with two examples.

Example 10. Let us consider the Clifford algebra C`2,1 ' Mat(2,R)⊕Mat(2,R)
with the generators e1, e2, e3. We can take

γ1 = e1, γ2 = e2, γ3 = e1e2.

Then γaγb+γbγa = 2ηab1. The elements γ1, γ2, γ3 generate notC`2,1, butC`2,0 '
Mat(2,R).

Example 11. Let us consider the Clifford algebra C`3,0 ' Mat(2,C) with the
generators e1, e2, e3. We can take

β1 = σ1 =

(
0 1
1 0

)
, β2 = σ2 =

(
0 −i
i 0

)
, β3 = σ3 =

(
1 0
0 −1

)
γa = −σa, a = 1, 2, 3.

Then γ123 = −β123. Suppose that we have T ∈ GL(2,C) such that γa =
T−1βaT . Then

γ123 = T−1β1TT
−1β2TT

−1β3T = T−1β1β2β3T = β123

and we obtain a contradiction (we use that β123 = σ123 = i

(
1 0
0 1

)
= i1).

But we have T = 1 such that γa = −T−1βaT .
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Theorem 29 (The case of odd n [50]). Consider the realC`p,q (or the complexified
C⊗ C`p,q) Clifford algebra with odd n = p+ q. Suppose that two sets of Clifford
algebra elements γa, βa, a = 1, 2, . . . , n satisfy conditions

γaγb + γbγa = 2ηabe, βaβb + βbβa = 2ηabe.

Then, in the case of the Clifford algebra of signature p − q ≡ 1 mod 4, elements
γ1...n and β1...n either take the values ±e1...n and the corresponding sets generate
bases of Clifford algebra (and we have cases 1-2 below) or take the values ±e and
then the sets do not generate bases (and we have cases 3-4 below).
In the case of the Clifford algebra of signature p − q ≡ 3 mod 4, elements γ1...n

and β1...n either take the values ±e1...n and the corresponding sets generate bases
of Clifford algebra (and we have cases 1-2 below) or take the values ±ie (this is
possible only in the case of the complexified Clifford algebra) and then the sets do
not generate bases (and we have cases 5-6 below).
There exists an unique (up to multiplication by an invertible element of the center
of the Clifford algebra) element T such that

1) γa = T−1βaT, a = 1, . . . , n ⇔ β1...n = γ1...n

2) γa = −T−1βaT, a = 1, . . . , n ⇔ β1...n = −γ1...n

3) γa = e1...nT
−1βaT, a = 1, . . . , n ⇔ β1...n = e1...nγ1...n

4) γa = −e1...nT
−1βaT, a = 1, . . . , n ⇔ β1...n = −e1...nγ1...n

5) γa = ie1...nT
−1βaT, a = 1, . . . , n ⇔ β1...n = ie1...nγ1...n

6) γa = −ie1...nT
−1βaT, a = 1, . . . , n ⇔ β1...n = −ie1...nγ1...n.

Note that all six cases have the unified notation γa = β1...n(γ1...n)−1T−1βaT.

Additionally, in the case of the real Clifford algebra C`p,q of signature p − q ≡ 1
mod 4 and the complexified Clifford algebra C⊗ C`p,q of arbitrary signature, the
element T , whose existence is stated in cases 1-6 of the theorem, equals

T = HEven(F ) :=
1

2n−1

∑
A:|A|=0 mod 2

βAFγ
−1
A

where F is an element of the set {γA + γB ; |A| = 0 mod 2, |B| = 0 mod 2}.
In the case of the real Clifford algebra C`p,q of signature p − q ≡ 3 mod 4,
the element T , whose existence is stated in cases 1 and 2 of the theorem, equals
T = HEven(F ), where F is an element of the set {γA ; |A| = 0 mod 2} such that
HEven(F ) 6= 0.

Using the algorithm to compute the element T in Theorems 28 and 29, we present
an algorithm to compute elements of spin groups in [62].
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In [34], we present a local variant of Pauli theorem, when two sets of Clifford
algebra elements smoothly depend on the point of pseudo-Euclidian space.

5. Lie Groups and Lie Algebras in Clifford Algebras

5.1. Orthogonal Groups

Let us consider pseudo-orthogonal group O(p, q), p+ q = n

O(p, q) := {A ∈ Mat(n,R) ; ATηA = η}, η = diag(1, . . . , 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
q

).

It can be proved that (for more details, see [30] and [35])

A ∈ O(p, q)⇒ detA = ±1, |A1...p
1...p| ≥ 1, |Ap+1...,n

p+1...n | ≥ 1, A1...p
1...p =

Ap+1...n
p+1...n

detA

where A1...p
1...p and Ap+1...,n

p+1...n are the minors of the matrix A. The group O(p, q) has
the following subgroups

SO(p, q) := {A ∈ O(p, q) ; detA = 1}
SO+(p, q) := {A ∈ SO(p, q) ; A1...p

1...p ≥ 1} = {A ∈ SO(p, q) ; Ap+1...n
p+1...n ≥ 1}

= {A ∈ O(p, q) ; A1...p
1...p ≥ 1, Ap+1...n

p+1...n ≥ 1}

O+(p, q) := {A ∈ O(p, q) ; A1...p
1...p ≥ 1}

O−(p, q) := {A ∈ O(p, q) ; Ap+1...n
p+1...n ≥ 1}.

The group O(p, q) has four components in the case p 6= 0, 6= 0

O(p, q) = SO+(p, q) tO+(p, q)′ tO−(p, q)′ t SO(p, q)′

O+(p, q) = SO+(p, q) tO+(p, q)′, O−(p, q) = SO+(p, q) tO−(p, q)′

SO(p, q) = SO+(p, q) t SO(p, q)′.

Example 12. In the cases p = 0 or q = 0, we have orthogonal groups O(n) :=
O(n, 0) ∼= O(0, n), special orthogonal groups SO(n) := SO(n, 0) ∼= SO(0, n).
The group O(n) has two connected components O(n) = SO(n) t SO(n)′.

Example 13. In the case (p, q) = (1, 3), we have Lorentz group O(1, 3), special
(or proper) Lorentz group SO(1, 3), orthochronous Lorentz group O+(1, 3), or-
thochorous (or parity preserving) Lorentz group O−(1, 3), proper orthochronous
Lorentz group SO+(1,3).

Definition 16. A subgroup H ⊂ G of a group G is called a normal subgroup
(H / G) if gHg−1 ⊆ H for all g ∈ G.

Definition 17. A quotient group (or factor group) G
H := {gH ; g ∈ G} is the set

of all left cosets (≡ right cosets, because H is normal).
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All considered subgroups are normal (for example, SO+(p, q) /O(p, q)) and

O(p, q)

SO+(p, q)
= Z2 × Z2,

O(n)

SO(n)
= Z2,

(9)
O(p, q)

SO(p, q)
=

O(p, q)

O−(p, q)
=

O(p, q)

O+(p, q)
=

SO(p, q)

SO+(p, q)
=

O−(p, q)

SO+(p, q)
=

O+(p, q)

SO+(p, q)
=Z2.

Example 14. The group O(1, 1) has four connected components O′+(1, 1), O′−(1, 1),
SO′(1, 1), SO+(1, 1) of matrices of the following type respectively (note that
cosh2 ψ = 1 + sinh2 ψ and coshψ ≥ 1)(

coshψ sinhψ
− sinhψ − coshψ

)
,

(
− coshψ − sinhψ

sinhψ coshψ

)
(
− coshψ − sinhψ
− sinhψ − coshψ

)
,

(
coshψ sinhψ
sinhψ coshψ

)
, ψ ∈ R.

5.2. Lipschitz and Clifford Groups

Let us consider the group of all invertible elements

C`×p,q := {U ∈ C`p,q ; V ∈ C`p,q exists : UV = V U = e}

of dimension dimC`×p,q = 2n. The corresponding Lie algebra is C`p,q with the Lie
bracket [U, V ] = UV − V U .
Let us consider the adjoint representation

Ad : C`×p,q → AutC`p,q, T → AdT , AdTU = TUT−1, U ∈ C`p,q.

The kernel of Ad is (see Theorem 1)

ker(Ad) = {T ∈ C`×p,q ; AdT (U) = U for all U ∈ C`p,q}

=

{
C`0×p,q , if n is even
(C`0p,q ⊕ C`np,q)×, if n is odd.

Let us consider the twisted adjoint representation

Ãd : C`×p,q → EndC`p,q, T → ÃdT , ÃdTU = T̂UT−1, U ∈ C`p,q.

The kernel of Ãd is

ker(Ãd) = {T ∈ C`×p,q ; ÃdT (U) = U for all U ∈ C`p,q} = C`0×p,q .

In the Clifford algebraC`p,q, we have a vector subspace V = C`1p,q with a quadratic
form Q(x) or a symmetric bilinear form g(x, x)

g(x, y) =
1

2
(Q(x+ y)−Q(x)−Q(y)) =

1

2
(xy + yx)|e→1, x, y ∈ C`1p,q.
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Lemma 30. Ãd : C`1×p,q → O(p, q) on V .

Proof: For v ∈ C`1×p,q and x ∈ C`1p,q we have

Q(Ãdvx) = (v̂xv−1)2 = v̂xv−1v̂xv−1 = x2 = Q(x)

because x2 ∈ C`0p,q. �

Ãdv acts on V as a reflection along v (in the hyperplane orthogonal to v)

Ãdvx = v̂xv−1 = x− (xv+ vx)v−1 = x− 2
g(x, v)

g(v, v)
v, v ∈ C`1×p,q , x ∈ C`1p,q.

Theorem 31 (Cartan-Diedonné). Every orthogonal transformation on a nongener-
ate space (V, g) is a product of reflections (the number ≤ dimV ) in hyperplanes.

Let us consider the group Γ2
p,q := {v1v2 · · · vk ; v1, . . . , vk ∈ C`1×p,q}.

Lemma 32. Ãd(Γ2
p,q) = O(p, q) (surjectivity).

Proof: If f ∈ O(p, q), then

f(x) = Ãdv1 ◦ · · · ◦ Ãdvk(x) = v̂1 · · · v̂kxv−1
k · · · v

−1
1

= ̂v1 · · · vkx(v1 · · · vk)−1 = Ãdv1···vk(x)

for v1, . . . , vk ∈ V × and x ∈ V . �

Let us consider the group Γ1
p,q := {T ∈ C`×p,q ; T̂ xT−1 ∈ C`1p,q for allx ∈ C`1p,q}

and the norm mapping (norm function) N : C`p,q → C`p,q, N(U) :=
̂̃
UU .

Lemma 33. N : Γ1
p,q → C`0×p,q

∼= R×.

Proof: If T ∈ Γ1
p,q and x ∈ C`1p,q, then

T̂ xT−1 =
˜̂
TxT−1 = T̃−1x

˜̂
T = (T̃ )−1x

˜̂
T .

Since
̂̃̂
TTx = x

̂̃
TT , it follows that ̂̃TT ∈ ker Ãd = C`0×p,q . �

Lemma 34. N : Γ1
p,q → R× is a group homomorphism

N(UV ) = N(U)N(V ), N(U−1) = (N(U))−1, U, V ∈ Γ1
p,q.

Proof: We have

N(UV ) =
̂̃
UV UV =

̂̃
V
̂̃
UUV =

̂̃
V N(U)V = N(U)N(V )

and
e = N(e) = N(UU−1) = N(U)N(U−1).

�
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Lemma 35. Ãd : Γ1
p,q → O(p, q).

Proof: We have

N(T̂ ) =
̂̃̂
T T̂ =

̂̃̂
TT = N̂(T ) = N(T )

and

N(ÃdT (x)) = N(T̂ xT−1) = N(T̂ )N(x)N(T−1)

= N(T )N(x)(N(T ))−1 = N(x).

Since N(x) = ̂̃xx = −x2 = −Q(x), it follows that Q(ÃdT (x)) = Q(x). �

Lemma 36. Γ1
p,q = Γ2

p,q.

Proof: We know that Γ2
p,q ⊆ Γ1

p,q. Let us prove that Γ1
p,q ⊆ Γ2

p,q. If T ∈ Γ1
p,q,

then ÃdT ∈ O(p, q) by Lemma 35. Using Lemma 32, we conclude that S ∈ Γ2
p,q

exists: ÃdS = ÃdT . We obtain ÃdTS−1 = id and TS−1 = λe, λ ∈ R. Finally,
T = λS ∈ Γ2

p,q. �

Definition 18. The following group is called Lipschitz group

Γ±p,q := Γ1
p,q = Γ2

p,q = {T ∈ C`(0)×
p,q ∪ C`(1)×

p,q ; TxT−1 ∈ C`1p,q for allx ∈ C`1p,q}
= {v1v2 · · · vk ; v1, . . . , vk ∈ C`1×p,q}.

Definition 19. The following group is called Clifford group

Γp,q := {T ∈ C`×p,q ; TxT−1 ∈ C`1p,q for allx ∈ C`1p,q} ⊇ Γ±p,q.

So, we have Ãd(Γ±p,q) = O(p, q), i.e.,

for anyP = ||pab || ∈ O(p, q) there exists T ∈ Γ±p,q : T̂ eaT
−1 = pbaeb. (10)

Let us consider the following subgroup of Clifford group

Γ+
p,q := {T ∈ C`(0)×

p,q ; TxT−1 ∈ C`1p,q for allx ∈ C`1p,q} ⊂ Γ±p,q.

We have Ãd(Γ+
p,q) = Ad(Γ+

p,q) = SO(p, q), i.e., for all

P = ||pab || ∈ SO(p, q) there exists T ∈ Γ+
p,q : T̂ eaT

−1 = TeaT
−1 = pbaeb. (11)

We can prove the statements in (10) and (11) without the Cartan-Diedonné theorem
(see Theorem 31 and Lemmas 32 - 36) but with the use of the Pauli theorem (see
Theorems 28 and 29). One can find this approach in [58] and [35].
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5.3. Spin Groups

Let us define spin groups as normalized Lipschitz subgroups.

Definition 20. The following groups are called spin groups

Pin(p, q) := {T ∈ Γ±p,q ; T̃ T = ±e} = {T ∈ Γ±p,q ;
̂̃
TT = ±e}

Pin+(p, q) := {T ∈ Γ±p,q ;
̂̃
TT = +e}

Pin−(p, q) := {T ∈ Γ±p,q ; T̃ T = +e} (12)

Spin(p, q) := {T ∈ Γ+
p,q ; T̃ T = ±e} = {T ∈ Γ+

p,q ;
̂̃
TT = ±e}

Spin+(p, q) := {T ∈ Γ+
p,q ; T̃ T = +e} = {T ∈ Γ+

p,q ;
̂̃
TT = +e}.

In the case p 6= 0 and q 6= 0, we have

Pin(p, q) = Spin+(p, q) t Pin+(p, q)′ t Pin−(p, q)′ t Spin(p, q)′

Pin+(p, q) = Spin+(p, q)tPin+(p, q)′, Pin−(p, q) = Spin+(p, q)tPin−(p, q)′

Spin(p, q) = Spin+(p, q) t Spin(p, q)′.

In Euclidian cases, we have two groups:

Pin(n) := Pin(n, 0) = Pin−(0, n), Spin(n, 0) = Pin+(n, 0) = Spin+(n, 0)

Pin(0, n) := Pin(0, n) = Pin+(0, n), Spin(0, n) = Pin−(0, n) = Spin+(0, n).

All considered subgroups are normal (for example, Spin+(p, q) / Spin(p, q)).
All quotient groups are the same as for the group O(p, q) and its subgroups respec-
tively (see (9)).

Theorem 37. The following homomorphisms are surjective with the kernel {±1}

Ãd : Pin(p, q)→ O(p, q)

Ãd : Spin(p, q)→ SO(p, q)

Ãd : Spin+(p, q)→ SO+(p, q)

Ãd : Pin+(p, q)→ O+(p, q)

Ãd : Pin−(p, q)→ O−(p, q).

It means that for all

P = ||pab || ∈ O(p, q) there exists ± T ∈ Pin(p, q) : T̂ eaT
−1 = pbaeb (13)

and for the other groups similarly.
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Proof: Statement for the group Pin(p, q) follows from the statements of the previ-
ous section (see Lemmas 32 and 33). For the other groups statement follows from
the theorem on the norm of elements of spin groups which we give below (see [51]
and [53]). �

Theorem 38 ([51], [53]). The square of the norm of the element T ∈ Pin(p, q) in
(13) equals

||T ||2 = Tr(T †T ) =



P 1...p
1...p =P p+1...n

p+1...n , T ∈ Spin+(p, q)

P 1...p
1...p =− P p+1...n

p+1...n , T ∈ Pin+(p, q)′

−P 1...p
1...p =P p+1...n

p+1...n , T ∈ Pin−(p, q)′

−P 1...p
1...p =− P p+1...n

p+1...n , T ∈ Spin(p, q)′

where P 1...p
1...p and P p+1...n

p+1...n are the minors of the matrix P ∈ O(p, q) that corre-
sponds to the element T by (13).

Theorem 39. We have the isomorphism Spin(p, q) ∼= Spin(q, p).

Proof: This follows from the isomorphism C`
(0)
p,q
∼= C`

(0)
q,p (see Theorem 6). �

Example 15. We have Spin(1, 0) = Spin(0, 1) = {±e} = Z2.

Example 16. Note that Pin(p, q) � Pin(q, p) in general case. For example,
Pin(1, 0) = {±e,±e1} ∼= Z2 × Z2 and Pin(0, 1) ∼= Z4.

Theorem 40. The condition TxT−1 ∈ C`1p,q for all x ∈ C`1p,q holds automatically
in the cases n ≤ 5 for all spin groups (12), i.e.,

Pin(p, q) = {T ∈ C`(0)
p,q ∪ C`(1)

p,q ; T̃ T = ±e}, n = p+ q ≤ 5.

Proof: If T ∈ C`(0)
p,q∪C`(1)

p,q , then TxT−1 ∈ C`1p,q⊕C`3p,q⊕C`5p,q. Using T̃ T = ±e,

we get T̃ xT−1 = ±̃TxT̃ = ±TxT̃ and TxT−1 ∈ C`1p,q ⊕C`5p,q. The statement is
proved for n ≤ 4.
Suppose that n = 5 and TxT−1 = v + λe1...5, v ∈ C`1p,q, λ ∈ R×. Then

λ = (TxT−1e−1
1...5 − ve

−1
1...5)|e→1 = Tr(TxT−1e−1

1...5) = Tr(xe−1
1...5) = 0

and we obtain a contradiction. �

Example 17. If the case n = 6 the previous theorem is not valid. The element
T = 1√

2
(e12 + e3456) ∈ C`(0)

6,0 satisfies T̃ T = e, but Te1T
−1 = −e23456 /∈ C`16,0.

Theorem 41. Spin+(p, q) is isomorphic to the following groups in Table 5 in the
cases n = p+ q ≤ 6.
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Table 5. Isomorphisms between Spin+(p, q) and matrix Lie groups.

p\q 0 1 2 3 4 5 6
0 O(1) O(1) U(1) SU(2) 2SU(2) Sp(2) SU(4)
1 O(1) GL(1,R) SU(1, 1) Sp(1,C) Sp(1, 1) SL(2,H)
2 U(1) SU(1, 1) 2SU(1, 1) Sp(2,R) SU(2, 2)
3 SU(2) Sp(1,C) Sp(2,R) SL(4,R)
4 2SU(2) Sp(1, 1) SU(2, 2)
5 Sp(2) SL(2,H)
6 SU(4)

Note that

U(1) ' SO(2), SU(2) ' Sp(1), SL(2,C) ' Sp(1,C)

SU(1, 1) ' SL(2,R) ' Sp(1,R).

The Lie groups Γ±p,q, Γ+
p,q has the Lie algebra C`0p,q ⊕ C`2p,q. All spin groups

Pin(p, q), Spin(p, q), Pin+(p, q), Pin−(p, q), Spin+(p, q) has the Lie algebra
C`2p,q.
Since Theorem 37 and some facts from differential geometry, it follows that the
spin groups are two-sheeted coverings of the orthogonal groups.
The groups Spin+(p, q) are pathwise connected for p ≥ 2 or q ≥ 2. They are
nontrivial covering groups of the corresponding orthogonal groups.

Example 18. The group Spin+(1, 1) = {ue+ve12 ; u2−v2 = 1} is not pathwise
connected (it is two branches of the hyperbole).

The groups Spin+(n), n ≥ 3 and Spin+(1, n − 1) ∼= Spin+(n − 1, 1), n ≥ 4
are simply connected. They are the universal covering groups of the corresponding
orthogonal groups.

5.4. Other Lie Groups and Lie Algebras in Clifford Algebra

Let us consider the following Lie groups and the corresponding Lie algebras (see
Table 6).
Isomorphisms for the group G23i01

p,q are proved in [67] (see also [66])

G23i01
p,q

∼=



U(2
n
2 ), if p is even and q = 0

U(2
n−1
2 )⊕U(2

n−1
2 ), if p is odd and q = 0

U(2
n−2
2 , 2

n−2
2 ), if n is even and q 6= 0

U(2
n−3
2 , 2

n−3
2 )⊕U(2

n−3
2 , 2

n−3
2 ), if p is odd and q 6= 0 is even

GL(2
n−1
2 ,C), if p is even and q is odd.
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Table 6. Lie groups and Lie algebras in C⊗ C`p,q .

Lie group Lie algebra dimension
1 (C⊗ C`p,q)× = {U ∈ C⊗ C`p,q ; U−1 exists} 0123⊕ i0123 2n+1

2 C`×p,q = {U ∈ C`p,q ; U−1 exists} 0123 2n

3 C`
(0)×
p,q = {U ∈ C`(0)p,q ; U−1 exists} 02 2n−1

4 (C⊗ C`(0)p,q)× = {U ∈ C⊗ C`p,q ; U−1 exists} 02⊕ i02 2n

5 (C`
(0)
p,q ⊕ iC`

(1)
p,q)

× = {U ∈ C`(0)p,q ⊕ iC`
(1)
p,q ; U−1 exists} 02⊕ i13 2n

6 G23i01
p,q = {U ∈ C⊗ C`p,q ; ŨU = e} 23⊕ i01 2n

7 G12i03
p,q = {U ∈ C⊗ C`p,q ;

˜̂
UU = e} 12⊕ i03 2n

8 G2i0
p,q = {U ∈ C`(0)p,q ; ŨU = e} 2⊕ i0 2n−1

9 G23i23
p,q = {U ∈ C⊗ C`p,q ; ŨU = e} 23⊕ i23 2n − 2

n+1
2 sin

π(n+1)
4

10 G12i12
p,q = {U ∈ C⊗ C`p,q ; ˆ̃UU = e} 12⊕ i12 2n − 2

n+1
2 cos

π(n+1)
4

11 G2i2
p,q = {U ∈ C⊗ C`(0)p,q ; ŨU = e} 2⊕ i2 2n−1 − 2

n
2 cos πn

4

12 G2i1
p,q = {U ∈ C`(0)p,q ⊕ iC`

(1)
p,q ; ŨU = e} 2⊕ i1 2n−1 − 2

n−1
2 cos

π(n+1)
4

13 G2i3
p,q = {U ∈ C`(0)p,q ⊕ iC`

(1)
p,q ;

˜̂
UU = e} 2⊕ i3 2n−1 − 2

n−1
2 sin

π(n+1)
4

14 G23
p,q = {U ∈ C`p,q ; ŨU = e} 23 2n−1 − 2

n−1
2 sin

π(n+1)
4

15 G12
p,q = {U ∈ C`p,q ; ˆ̃UU = e} 12 2n−1 − 2

n−1
2 cos

π(n+1)
4

16 G2
p,q = {U ∈ C`(0)p,q ; ŨU = e} 2 2n−2 − 2

n−2
2 cos πn

4

We call G23i01
p,q the pseudo-unitary group in Clifford algebra and use it in some

problems of the field theory [35], [49], [36].
Some of these Lie groups are considered in [40] and [31]. Some of them are related
to automorphism groups of the scalar products on the spinor spaces ([40], [31], [7],
[4]). Note that spin group Spin+(p, q) is a subgroup of all groups in Table 6. The
group G2

p,q coincides with Spin+(p, q) in the cases n ≤ 5. The Lie algebra of the
spin group C`2p,q ∈ 2 is a Lie subalgebra of all Lie algebras in Table 6. We have
C`2p,q = 2 in the cases n ≤ 5.

The isomorphisms for the group G2
p,q are represented in Tables 7 and 8. There is n

mod 8 in the lines and p− q mod 8 in the columns.
One can find isomorphisms for all remaining Lie groups and corresponding Lie
algebras from Table 6 in a series of papers [60], [63], and [66].

6. Dirac Equation and Spinors in n Dimensions

6.1. Dirac Equation in Matrix Formalism

In Section 6, we use the notation with upper indices for the Dirac gamma-matrices
and the generators of the Clifford algebra because of the useful covariant form of
the Dirac equation.
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Table 7. Isomorphisms for the group G2
p,q in the cases of even n.

n�p− q 0 2, 6 4

0

2O(2
n−4
2 , 2

n−4
2 )

if p, q 6= 0
2O(2

n−2
2 )

if p = 0 or q = 0

O(2
n−2
2 ,C) 2O(2

n−4
2 ,H)

2, 6 GL(2
n−2
2 ,R)

U(2
n−4
2 , 2

n−4
2 )

if p, q 6= 0
U(n−2

2 )
if p = 0 or q = 0

GL(2
n−4
2 ,H)

4 2Sp(2
n−4
2 ,R) Sp(2

n−4
2 ,C)

2Sp(2
n−6
2 , 2

n−6
2 )

if p, q 6= 0
2Sp(2

n−4
2 )

if p = 0 or q = 0

Table 8. Isomorphisms for the group G2
p,q in the cases of odd n.

n�p− q 1, 7 3, 5

1, 7

O(2
n−3
2 , 2

n−3
2 )

if p, q 6= 0

O(2
n−1
2 )

if p = 0 or q = 0

O(2
n−3
2 ,H)

3, 5 Sp(2
n−3
2 ,R)

Sp(2
n−5
2 , 2

n−5
2 )

if p, q 6= 0

Sp(2
n−3
2 )

if p = 0 or q = 0.

Let R1,3 be Minkowski space with Cartesian coordinates xµ, µ = 0, 1, 2, 3. The
metric tensor of Minkowski space is given by a diagonal matrix

η = diag(1,−1,−1,−1).

We denote partial derivatives by ∂µ :=
∂

∂xµ
·

The Dirac equation for the electron [15], [16] can be written in the following way

iγµ(∂µψ − iaµψ)−mψ = 0

where aµ : R1,3 → R is the electromagnetic 4-vector potential, m ≥ 0 ∈ R is the
electron mass, ψ : R1,3 → C4 is the wave function (the Dirac spinor) and γµ are
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the Dirac gamma-matrices which satisfy conditions

γµγν + γνγµ = 2ηµν1, γµ ∈ Mat(4,C).

The Dirac equation is gauge invariant. If we take the expressions

aµ → áµ = aµ + λ(x), ψ → ψ́ = ψeiλ(x), λ(x) ∈ R
then they satisfy the same equation

iγµ(∂µψ́ − iáµψ́)−mψ́ = iγµ(∂µ(eiλψ)− i(aµ + ∂µλ)(eiλψ))−m(eiλψ)

= iγµ(i(∂µλ)eiλψ + eiλ(∂µψ)− iaµeiλψ − i(∂µλ)eiλψ)−meiλψ

= eiλ(iγµ(∂µψ − iaµψ)−mψ) = 0.

One says that the Dirac equation is gauge invariant with respect to the gauge group

U(1) = {eiλ ; λ ∈ R}.
The corresponding Lie algebra is

u(1) = {iλ ; λ ∈ R}.

The Dirac equation is relativistic invariant. Let us consider orthogonal transforma-
tion of coordinates

xµ → x́µ = pµνx
ν , P = ||pµν || ∈ O(1, 3).

Then

∂µ → ∂́µ = qνµ∂ν , aµ → áµ = qνµaν , Q = ||qµν || = P−1.

There are two points of view on transformations of the Dirac gamma-matrices and
the wave function (see [69]).
In the first (tensor) approach, we have

γµ → γ́µ = pµνγ
ν , ψ → ψ́ = ψ.

In this approach, all expressions are tensors and the Dirac equation is relativistic
invariant. The tensor approach is considered in details in [32].
In the second (spinor) approach, we have

γµ → γ́µ = γµ, ψ → ψ́ = Sψ, S−1γµS = pµνγ
ν

iγ́µ(∂́µψ́ − iáµψ́)−mψ́ = iγµ(qνµ∂ν(Sψ)− iqνµaνSψ)−mSψ)

= S(iS−1qνµγ
µS(∂νψ − iaµψ)−mψ) = S(iγν(∂νψ − iaµψ)−mψ) = 0.

In this approach, the Dirac gamma-matrices do not change and the wave function
ψ changes as spinor with the aid of the element S of the spin group. The formula
S−1γµS = pµνγν describes the double cover of the orthogonal group by the spin
group. This approach is generally accepted.
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6.2. Dirac Equation in Formalism of Clifford Algebra

Let us consider the complexified Clifford algebra C ⊗ C`1,3 with the generators
e0, e1, e2, e3. In Section 6, we use notation with upper indices for the generators
of the Clifford algebra.
We have a primitive idempotent

t =
1

2
(e+ e0)

1

2
(e+ ie12)←→


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , t2 = t = t†.

The Dirac spinor is

ψ ←→


ψ1 0 0 0
ψ2 0 0 0
ψ3 0 0 0
ψ4 0 0 0

 ∈ I(t) = (C⊗ C`1,3)t.

The corresponding left ideal I(t) is called spinor space.
The Dirac equation can be written in the following form

ieµ(∂µψ − iaµψ)−mψ = 0

where ψ is an element of the left ideal of the Clifford algebra.
All properties of the Dirac equation from the previous section are valid.

6.3. Dirac-Hestenes Equation

Let us consider the Minkowski space R1,3 and the complexified Clifford algebra
C ⊗ C`1,3 with the generators e0, e1, e2, e3. We have a primitive idemptonent t =
1
4(e+E)(e− iI) and the corresponding left ideal I(t), where E := e0, I := −e12,
t2 = t = t†, it = It, t = Et.

Lemma 42. For arbitrary U ∈ I(t) the equation Xt = U has a unique solution
X ∈ C`(0)

1,3 (and a unique solution X ∈ C`(1)
1,3).

Proof: We can choose the orthonormal basis of the left ideal I(t) of the following
form

τk = Fkt, k = 1, 2, 3, 4, F1 = 2e, F2 = 2e13, F3 = 2e03, F4 = 2e01 ∈ C`0)
1,3.

We have U = (αk + iβk)τk for some αk, βk ∈ R.

Using it = It, we conclude that X = Fk(α
k + Iβk) ∈ C`

(0)
1,3 is a solution of

Xt = U .
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Now let us prove the following statement. If the element Y ∈ C`(0)
1,3 is a solution

of equation Y t = 0, then Y = 0. For element Y t ∈ I(t) we have

Y t =
1

2
((y− iy12)τ1 + (−y13− iy23)τ2 + (y03− iy0123)τ3 + (y01 + iy02)τ4) = 0.

Using t = Et, we conclude that X = FkE(αk + Iβk) ∈ C`(1)
1,3 is also a solution

of equation Xt = U . The proof of uniqueness in this case is similar. �

One can find this lemma and similar statements, for example, in [32].
Let us rewrite the Dirac equation ieµ(∂µψ − iaµψ) − mψ = 0 in the following
form

eµ(∂µψ − iaµψ) + imψ = 0, ψ ∈ I(t). (14)

The Dirac-Hestenes equation [25] is

eµ(∂µΨ− aµΨI)E +mΨI = 0, Ψ ∈ C`(0)
1,3. (15)

Theorem 43. The Dirac equation and the Dirac-Hestenes equation are equivalent.

Proof: Let us multiply both sides of the Dirac-Hestenes equation (15) by t on the
right. Using Et = t, It = it, and Ψt = ψ, we obtain the Dirac equation (14).

We have ψ ∈ I(t). Using Lemma 42, we conclude that there exists Ψ ∈ C`(0)
1,3 such

that Ψt = ψ. Using Et = t and It = it, we obtain

(eµ(∂µΨ− aµΨI)E +mΨI)︸ ︷︷ ︸
∈C`(0)1,3

t = 0.

Using Lemma 42 for the second time, we obtain the Dirac-Hestenes equation (15).
�

Note that the dimensions of the spinor spaces are the same in two approaches

dim I(t) = dimC4 = 8, dimC`
(0)
1,3 = 8.

The Dirac-Hestenes equation is widely used in applications (see, for example, [43],
[18]).

6.4. Weyl, Majorana and Majorana-Weyl Spinors

Detailed information on n-dimensional spinors (using the methods of Clifford al-
gebra) can be found in [59]. See also [7].
We study the connection between matrix operations (transpose, matrix complex
conjugation) and operations in Clifford algebra (reverse, complex conjugation,
grade involution), we introduce the notion of additional signature of the Clifford
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algebra (for more details, see [59], also [60], [63], [66], where we develop and use
these results).
Let us consider chirality operator (pseudoscalar) in C⊗ C`p,q

ω =

{
e1...n, p− q = 0, 1 mod 4
ie1...n, p− q = 2, 3 mod 4.

We have
ω = ω−1 = ω†.

Let us consider orthogonal idempotents

PL :=
1

2
(e− ω), PR :=

1

2
(e+ ω)

P 2
L = PL, P 2

R = PR, PLPR = PRPL = 0.

In the case of odd n, the complexified Clifford algebra C⊗ C`p,q is the direct sum
of two ideals

C⊗C`p,q = PL(C⊗C`p,q)⊕ PR(C⊗C`p,q), C⊗C`p,q ∼= 2Mat(2
n−1
2 ,C).

Let us consider the case of even n. For the set of Dirac spinors ED = {ψ ∈ I(t)}
we have

ED = ELW ⊕ ERW
where

ELW := {ψ ∈ ED ; PLψ = ψ} = {ψ ∈ ED ; ωψ = −ψ}
is the set of left Weyl spinors and

ERW := {ψ ∈ ED ; PRψ = ψ} = {ψ ∈ ED ; ωψ = ψ}

is the set of right Weyl spinors.
Using the Pauli theorem (Theorems 28 and 29), we obtain existence of the elements
A± such that

(ea)† = ±A−1
± eaA±. (16)

If n is even, then both elements A± exist. If p is odd and q is even, then only A+

exists. If p is even and q is odd, then only A− exists.
We can rewrite (16) in the following way

U † = A−1
+ ŨA+, U † = A−1

−
̂̃
UA−, U ∈ C⊗ C`p,q.

The explicit formulas for A± are given in Theorem 17.
Let us consider two Dirac conjugations

ψD± := ψ†(A±)−1.
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Example 19. In the case (p, q) = (1, 3) with the gamma-matrices γ0, γ1, γ2,
γ3, we obtain the standard Dirac conjugation ψD+ = ψ†γ0 and one else ψD− =
ψ†γ123.

The Dirac conjugation is used to define bilinear covariants

jA± = ψD±eAψ.

The Dirac current ψD+eµψ is a particular case of the bilinear covariants. Using
the Dirac equation, it is not difficult to obtain the law of conservation of the Dirac
current

∂µ(ψD+eµψ) = 0.

We denote the matrix complex conjugation by←−. It should not be confused with
the operation of complex conjugation in the complexified Clifford algebra C ⊗
C`p,q.
Let us consider the following two operations in C⊗ C`p,q

UT := β−1(βT(U)),
←−
U := β−1(

←−−−
β(U)), U ∈ C⊗ C`p,q

where

β : C⊗C`p,q →

{
Mat(2

n
2 ,C), if n is even

Mat(2
n−1
2 ,C)⊕Mat(2

n−1
2 ,C), if n is odd

is the faithful representation of C ⊗ C`p,q of the minimal dimension. These two
operations depend on the representation β.
Using the Pauli theorem (Theorems 28 and 29), we obtain existence of the elements
C± such that

(ea)T = ±C−1
± eaC±. (17)

If n is even, then both elements C± exist. If n = 1 mod 4, then only C+ exists.
If n = 3 mod 4, then only C− exists.
We can rewrite (17) in the following way

UT = C−1
+ ŨC+, UT = C−1

−
̂̃UC−, U ∈ C⊗ C`p,q.

The explicit formulas for C± are given in [59] using the notion of additional sig-
nature of the Clifford algebra. Also these elements have the following properties

(C±)T = λ±C±,
←−
C±C± = λ±e

λ+ =

{
+1, n ≡ 0, 1, 2 mod 8
−1, n ≡ 4, 5, 6 mod 8

λ− =

{
+1, n ≡ 0, 6, 7 mod 8
−1, n ≡ 2, 3, 4 mod 8.
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Using the Pauli theorem (Theorems 28 and 29), we obtain existence of the elements
B± such that

←−
ea = ±B−1

± eaB±. (18)

If n is even, then both elements B± exist. If p − q = 1 mod 4, then only B+

exists. If p− q = 3 mod 4, then only B− exists.
We can rewrite (18) in the following way

←−
U = B−1

+ UB+,
←−
U = B−1

− ÛB−, U ∈ C⊗ C`p,q.

The explicit formulas for B± are given in [59] using the notion of additional sig-
nature of the Clifford algebra. Also these elements have the following properties

BT
± = ε±B±,

←−
B±B± = ε±e

ε+ =

{
+1, p− q ≡ 0, 1, 2 mod 8
−1, p− q ≡ 4, 5, 6 mod 8

ε− =

{
+1, p− q ≡ 0, 6, 7 mod 8
−1, p− q ≡ 2, 3, 4 mod 8.

We introduce the Majorana conjugation in the following way

ψM± := ψT(C±)−1.

Example 20. In the case (p, q) = (1, 3), we have ψM+ = ψ†(γ13)−1 and ψM−

= ψ†(γ02)−1.

We introduce the charge conjugation in the following way

ψch± := B±
←−
ψ .

Example 21. In the case (p, q) = (1, 3), we have ψch+ = γ013←−ψ and ψch−

= γ2←−ψ .

We have the following relation between A±, B±, and C± (when they exist)

B+ = Ã−1
+ C+, B+ =

̂̃
A−1
− C−, B− = Ã−1

− C+, B− =
̂̃
A−1

+ C−

ψch+ = C+(ψD+)T = C−(ψD−)T, ψch− = C−(ψD+)T = C+(ψD−)T.

Let us denote the set of Majorana spinors by

EM := {ψ ∈ ED ; ψch− = ±ψ}
and the set of pseudo-Majorana spinors by

EpsM := {ψ ∈ ED ; ψch+ = ±ψ}.

Using definition of the charge conjugation and the properties of B±, it can be
proved that Majorana spinors are realized only in the cases p− q = 0, 6, 7 mod 8
and pseudo-Majorana spinors are realized only in the cases p− q = 0, 1, 2 mod 8
(see, for example, [59]).
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Let us denote a set of left Majorana-Weyl spinors by

ELMW := {ψ ∈ ELW ; ψch− = ±ψ} = {ψ ∈ ELW ; ψch+ = ±ψ}

and a set of right Majorana-Weyl spinors by

ERMW := {ψ ∈ ERW ; ψch− = ±ψ} = {ψ ∈ ERW ; ψch+ = ±ψ}.

It can be proved that Majorana-Weyl spinors are realized only in the cases p−q = 0
mod 8 (see, for example, [59]).
The question of existence of the spinors in the cases of different dimensions and
signatures is related to the supersymmetry theory (see classic works on supersym-
metry and supergravity [28], [21] and other papers and reviews [14], [70], [19],
[73], [72], [41], [74], [71]).
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