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Abstract. We introduce the notion of twisted Fock representations of non-
commutative Kähler manifolds and give their explicit expressions. The so-
called twisted Fock representation is a representation of the Heisenberg like
algebra whose states are constructed by acting creation operators on a vac-
uum state. “Twisted" means that creation operators are not Hermitian conju-
gate of annihilation operators. In deformation quantization of Kähler man-
ifolds with separation of variables formulated by Karabegov, local complex
coordinates and partial derivatives of the Kähler potential with respect to
coordinates satisfy the commutation relations between the creation and anni-
hilation operators. Based on these relations, the twisted Fock representation
of noncommutative Kähler manifolds is constructed.
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1. Introduction

Deformation quantization can be considered as a way to construct noncommu-
tative manifolds. In this article, the deformation quantization with separation of
variables is used to construct noncommutative Kähler manifolds, which was pro-
posed by Karabegov [1–3]. The deformation quantization is an associative algebra
on a set of formal power series of C∞ functions with a star product between for-
mal power series. In deformation quantization, the analytical techniques are avail-
able on noncommutative manifolds because star products are usually represented
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by using bidifferential operators. On the other hand, in analyses of field theories
on noncommutative manifolds constructed by deformation quantization, physical
quantities are given as formal power series of a noncommutative parameter, and
thus it is difficult to give them physical interpretations. In order to solve the diffi-
culties, we here make representations of the noncommutative algebra.
In this article, we construct the Fock representation of noncommutative Kähler
manifolds which are given by deformation quantization with separation of vari-
ables. It is immediately realized that the noncommutative algebras constructed by
the method contain Heisenberg like algebras. Namely, local complex coordinates
and partial derivatives of a Kähler potential satisfy the commutation relations be-
tween creation and annihilation operators. A Fock space is spanned by a vacuum
and states obtained by applying creation operators on this vacuum. We represent
the algebras on noncommutative Kähler manifolds as linear operators acting on the
Fock space. We call this representation the Fock representation. In representations
investigated in this article, creation operators and annihilation operators are not
Hermitian conjugate with each other, in general. Thus, the bases of the Fock space
are not given as the Hermitian conjugates of those of the dual vector space. In
this case, we call the representation the twisted Fock representation. We define the
twisted Fock representation on a local coordinate chart, and then glue between the
representations on charts with nonempty intersections. Therefore, we construct
transition functions between the twisted Fock algebras on two charts having an
overlapping region. We observe several examples, CN, CPN and CHN.

2. Deformation Quantization of Kähler Manifolds

A general definition of deformation quantization is the following.

Definition 1 (Deformation quantization (weak sense)). Let M be a Poisson mani-
fold. F is defined as a set of formal power series

F :=

{
f ; f =

∑
k

fk~k, fk ∈ C∞(M)

}
. (1)

Deformation quantization is defined as a structure of associative algebra of F
whose product is defined by a star product. The star product is defined as

f ∗ g =
∑
k

Ck(f, g)~k (2)

such that the product satisfies the following conditions

1. ∗ is associative product.
2. Ck is a bidifferential operator.
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3. C0 and C1 are defined as

C0(f, g) = fg (3)

C1(f, g)− C1(g, f) = i{f, g} (4)

where {f, g} is the Poisson bracket.
4. f ∗ 1 = 1 ∗ f = f .

In particular, Karabegov [1–3] proposed the notion of deformation quantization
with separation of variables for Kähler manifolds quantization.

Definition 2 (A star product with separation of variables). The operation ∗ is called
a star product with separation of variables when

a ∗ f = af (5)

for a holomorphic function a and

f ∗ b = fb (6)

for an anti-holomorphic function b.

We here consider only this type of deformation quantization for Kähler manifolds.
Let M be an N -dimensional complex Kähler manifold, Φ be its Kähler potential
and ω be its Kähler two-form

ω := igkl̄dz
k ∧ dz̄l, gkl̄ :=

∂2Φ

∂zk∂z̄l
· (7)

Here g is the Kähler metric and zi, z̄j (i, j = 1, · · · , N) are local coordinates on
an open set U ⊂ M which is diffeomorphic to a connected open subset of CN . In
this article, the Einstein summation convention over repeated indices is used. The
gk̄l is the inverse of the metric gkl̄

gk̄lglm̄ = δk̄m̄. (8)

In the following, we use the following notations for notational simplicity

∂k =
∂

∂zk
, ∂k̄ =

∂

∂z̄k
· (9)

We here briefly explain the method to construct a star product with separation of
variables for Kähler manifolds [1, 2], For the left star multiplication by f ∈ F ,
there exists a differential operator Lf such that

Lfg = f ∗ g. (10)

Lf is given as a formal power series in ~

Lf =

∞∑
n=0

~nA(n) (11)
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where A(n) is a differential operator which contains only partial derivatives by
the holomorphic coordinates zi (i = 1, · · · , N) and can be represented as the
following form

A(n) =
∑
k≥0

a
(n;k)

ī1···̄ik
Dī1 · · ·Dīk (12)

where
Dī = gīj∂j (13)

and each a(n;k)

ī1···̄ik
is aC∞ function onM . In particular, a(n;0) acts as a multiplication

operator. The following relations which the differential operators Dī satisfy are
useful

[Dī, Dj̄ ] = 0, [Dī, ∂j̄Φ] = δij . (14)

The following theorem give the method to construct Lf concretely.

Theorem 2.1 (Karabegov[1, 2]). Lf is uniquely determined by requiring the fol-
lowing conditions

Lf1 = f ∗ 1 = f, [Lf , ∂īΦ + ~∂ī] = 0. (15)

The star product ∗ made by the method is associative

h ∗ (g ∗ f) = (h ∗ g) ∗ f. (16)

Similarly, a differential operator Rf corresponding to the right star multiplication
is also defined.
In particular, the left star product by ∂iΦ and the right star product by ∂īΦ are
written as

L∂iΦ = ~∂i + ∂iΦ = ~e−Φ/~∂ie
Φ/~

(17)
R∂īΦ = ~∂ī + ∂īΦ = ~e−Φ/~∂īe

Φ/~.

By a straightforward calculation, the following relations are derived

[
1

~
∂iΦ, z

j ]∗ = δij , [zi, zj ]∗ = 0, [∂iΦ, ∂jΦ]∗ = 0

(18)

[z̄i,
1

~
∂j̄Φ]∗ = δij , [z̄i, z̄j ]∗ = 0, [∂īΦ, ∂j̄Φ]∗ = 0

where [A, B]∗ = A ∗ B − B ∗ A. Hence, {zi, ∂jΦ ; i, j = 1, 2, · · · , N} and
{z̄i, ∂j̄Φ ; i, j = 1, 2, · · · , N} constitute 2N sets of the creation and annihilation
operators under the star product. However, it should be noted that operators in the
set {zi, ∂jΦ} do not commute with ones in {z̄i, ∂j̄Φ}, generally, e.g., zi ∗ z̄j− z̄j ∗
zi 6= 0.
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3. Local Twisted Fock Representations

In this section we introduce the Fock space on an open set U ⊂ M which is
diffeomorphic to a connected open subset of CN and an algebra as a set of linear
operators acting on the Fock space.
As mentioned in Section 2, {zi, ∂jΦ ; i, j = 1, 2, · · · , N} and {z̄i, ∂j̄Φ ; i, j =
1, 2, · · · , N} satisfy the algebra between the creation and annihilation operators
under the star product ∗, respectively. We introduce a†i , ai, a

†
i and ai by

a†i = zi, ai =
1

~
∂iΦ, ai = z̄i, a†i =

1

~
∂īΦ. (19)

Then they satisfy the following commutation relations which are similar to the
usual commutation relations for the creation and annihilation operators

[ai, a
†
j ]∗ = δij , [a†i , a

†
j ]∗ = 0, [ai, aj ]∗ = 0

(20)
[ai, a

†
j ]∗ = δij , [a†i , a

†
j ]∗ = 0, [ai, aj ]∗ = 0.

Here, it should be noted that [ai, a
†
i ]∗ and [ai, a

†
j ]∗ do not vanish in general, and ai

and a†i (ai and a†i ) are not Hermitian conjugate with each other.
We introduce the Fock space as a vector space spanned by the bases which are
generated by applying a†i on the vacuum |~0〉

|~n〉 = |n1, · · · , nN 〉 =
1√
~n!

(a†1)n1
∗ ∗ · · · ∗ (a†N )nN

∗ ∗ |~0〉 (21)

where the vacuum |~0〉 = |0, · · · , 0〉 is defined by

ai ∗ |~0〉 = 0 (i = 1, · · · , N) (22)

(A)n∗ stands for

n︷ ︸︸ ︷
A ∗ · · · ∗A and ~n! = n1!n2! · · ·nN !. Then, we define the basis of

a dual vector space by applying ai on 〈~0|

〈~m| = 〈m1, · · · ,mN | = 〈~0| ∗ (a1)m1
∗ ∗ · · · ∗ (aN )mN

∗
1√
~m!

(23)

and

〈~0| ∗ a†i = 0 i = 1, · · · , N (24)

The underline which is attached to the bra vectors means that 〈~m| is not Hermitian
conjugate to |~m〉.
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Definition 3. The local twisted Fock algebra (representation) FU is defined as a
algebra given by a set of linear operators acting on the Fock space defined on U

FU := {
∑
~n,~m

A~n~m|~n〉〈~m| ; A~n~m ∈ C} (25)

and products between its elements are given by the star product ∗.

In the rest of this section, we give concrete expressions of functions which are
elements of the local twisted Fock algebra.

Lemma 3.1 (Berezin). For arbitrary Kähler manifolds (M,ω), there exists a Käh-
ler potential Φ(z1, . . . , zN , z̄1, . . . , z̄N ) such that

Φ(0, . . . , 0, z̄1, . . . , z̄N ) = 0, Φ(z1, . . . , zN , 0, . . . , 0) = 0. (26)

This is easily shown from the fact that Kähler potentials have ambiguities of adding
holomorphic and anti-holomorphic functions.
It is shown that a vacuum projection operator |~0〉〈~0| for a Kähler manifold corre-
sponds to the function e−Φ/~.

Proposition 3.2. Let (M,ω) be a Kähler manifold, Φ be its Kähler potential with
the property (26), and ∗ be a star product with separation of variables given in the
previous section. Then the following function

|~0〉〈~0| := e−Φ/~ (27)

satisfies

ai ∗ |~0〉〈~0| = 0, |~0〉〈~0| ∗ a†i = 0
(28)(

|~0〉〈~0|
)
∗
(
|~0〉〈~0|

)
= e−Φ/~ ∗ e−Φ/~ = e−Φ/~ = |~0〉〈~0|.

Outline of proof (A more detailed proof is given in [8].) It is easy to show that the
following normal ordered quantity

: e−
∑

i a
†
iai : :=

N∏
i=1∗

∞∑
n=0

(−1)n

n!
(a†i )

n
∗ ∗ (ai)

n
∗ (29)

is equal to the vacuum projection, : e−
∑

i a
†
iai := |~0〉〈~0|, similarly to the case of the

ordinary harmonic oscillator, Therefore, we next show that this quantity coincides
with e−Φ/~

: e−
∑

i a
†
iai := e−Φ/~. (30)
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This can be done as follows

: e−
∑

i a
†
iai : =

∑
~n

(−1)|n|

~n!
(a†)~n∗ ∗ (a)~n∗ =

∑
~n

(−1)|n|

~n!~|n|
(z)~n∗ ∗ (∂Φ)~n∗ . (31)

In this article, we use the following notation: for an N -tuple Ai, i = 1, 2, · · · , N
and an N -vector ~n = (n1, n2, · · · , nN )

(A)~n∗ = (A1)n1
∗ ∗ (A2)n2

∗ ∗ · · · ∗ (AN )nN
∗ , ~n! = n1!n2! · · ·nN !, |n| =

N∑
i=1

ni.

By using (z)~n∗ = (z)~n = (z1)n1 · · · (zN )nN , the right hand side of (31) is recast as
∞∑

n1,n2,...,nN=0

1

n1!n2! · · ·nN !
(−z1)n1 · · · (−zN )nN e−

Φ(z,z̄)
~ ∂n1

1 · · · ∂
nN
N e

Φ(z,z̄)
~

(32)
= e−

Φ(z,z̄)
~ e

Φ(0,z̄)
~ = e−

Φ(z,z̄)
~ .

Here, the final equality follows from the condition (26). �

Similarly, the following relations hold with respect to ai and a†i

|~0〉〈~0| = e−Φ/~ =: e−
∑

i a
†
iai :=

N∏
i=1∗

∞∑
n=0

(−1)n

n!
(a†i )

n
∗ ∗ (ai)

n
∗

(33)
ai ∗ |~0〉〈~0| = 0, |~0〉〈~0| ∗ a†i = 0.

We then expand a function exp Φ(z, z̄)/~ as a power series of zi and z̄j

eΦ(z,z̄)/~ =
∑
~m,~n

H~m,~n(z)~m(z̄)~n (34)

where (z)~n = (z1)n1 · · · (zN )nN and (z̄)~n = (z̄1)n1 · · · (z̄N )nN . Since exp Φ/~ is
real and satisfies (26), the expansion coefficients H~m,~n satisfy the followings

H̄~m,~n = H~n,~m, H~0,~n = H~n,~0 = δ~n,~0.

Using this expansion, the following relations are obtained.

Proposition 3.3. The right ∗-multiplication of (a)~n∗ = (∂Φ/~)~n∗ on |~0〉〈~0| is related
to the right ∗-multiplication of (a)~n∗ = (z̄)~n∗ on |~0〉〈~0| as follows

|~0〉〈~0| ∗ (a)~n∗ = |~0〉〈~0| ∗
(

1

~
∂Φ

)~n
∗

= ~n!
∑
~m

H~n,~m|~0〉〈~0| ∗ (z̄)~m∗ = ~n!
∑
~m

H~n,~m|~0〉〈~0| ∗ (a)~m∗ . (35)
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Similarly, the following relation holds

(a†)~n∗ ∗ |~0〉〈~0| =
(

1

~
∂̄Φ

)~n
∗
∗ |~0〉〈~0|

= ~n!
∑
~m

H~m,~n(z)~m ∗ |~0〉〈~0| = ~n!
∑
~m

H~m,~n(a†)~m∗ ∗ |~0〉〈~0|. (36)

If there exists the inverse matrix H−1
~m,~n, then the following relations also holds

Corollary 3.4.

|~0〉〈~0| ∗ (a)~n∗ =
∑
~m

1

~m!
H−1
~n,~m|~0〉〈~0| ∗ (a)~m∗

(37)

(a†)~n∗ ∗ |~0〉〈~0| =
∑
~m

1

~m!
H−1
~m,~n(a†)~m ∗ |~0〉〈~0|

where H−1
~n,~m is the inverse matrix of the matrix H~n,~m,

∑
~k
H
~m,~k
H−1
~k,~n

= δ~m,~n.

Now, we introduce bases of the Fock representation as follows

|~m〉〈~n| := 1√
~m!~n!

(a†)~m∗ ∗|~0〉〈~0|∗(a)~n∗ =
1√
~m!~n!

(z)~m∗ ∗e−Φ/~∗
(

1

~
∂Φ

)~n
∗
. (38)

By using (35), the bases are also written as

|~m〉〈~n| =
√
~n!

~m!

∑
~k

H
~n,~k

(z)~m∗ ∗ e−Φ/~ ∗ (z̄)
~k
∗ =

√
~n!

~m!

∑
~k

H
~n,~k

(z)~m(z̄)
~ke−Φ/~.

(39)

The completeness of the bases are formally shown as∑
~n

|~n〉〈~n| =
∑
~m,~n

H~n,~m(z)~n(z̄)~me−Φ/~ = eΦ/~e−Φ/~ = 1. (40)

The bases satisfy the following orthogonality relation under the ∗-products

|~m〉〈~n| ∗ |~k〉〈~l| = 1√
~m!~n!~k!~l!

(a†)~m∗ ∗ |~0〉〈~0| ∗ (a)~n∗ ∗ (a†)
~k
∗ ∗ |~0〉〈~0| ∗ (a)

~l
∗
(41)

= δ
~n,~k
|~m〉〈~l|.

It should be noted that in the twisted Fock representation, the behavior of the bases
under the complex conjugation is different from usual

|~m〉〈~n| =
√
~n!

~m!

∑
~k

H~k,~n(z)
~k(z̄)~me−Φ/~ =

√
~n!

~m!

∑
~k,~l

√
~k!

~l!
H~k,~nH

−1

~m,~l
|~k〉〈~l|.
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The action of the creation and annihilation operators a†i , ai on the bases is calcu-
lated as

a†i ∗ |~m〉〈~n| =
√
mi + 1|~m+ ~ei〉〈~n|, |~m〉〈~n| ∗ a†i =

√
ni|~m〉〈~n− ~ei|

ai ∗ |~m〉〈~n| =
√
mi|~m− ~ei〉〈~n|, ~m〉〈~n| ∗ ai =

√
ni + 1|~m〉〈~n+ ~ei|

where ~ei is a unit vector, (~ei)j = δij . The action of ai and a†i is derived by the
Hermitian conjugation of the above equations. From these relations, the represen-
tations of the creation and annihilation operators in the twisted Fock representation
are derived

a†i =
∑
~n

√
ni + 1|~n+ ~ei〉〈~n|, ai =

∑
~m,~n,~k

√
~m!

~n!
H
~m,~k
H−1
~k+~ei,~n

|~m〉〈~n|

(42)

ai =
∑
~n

√
ni + 1|~n〉〈~n+ ~ei|, a†i =

√
~m!

~n!
(ki + 1)H

~m,~k+~ei
H−1
~k,~n
|~m〉〈~n|.

Summarizing this section, we obtained the following dictionary Table 1 which con-
tains the correspondence between functions on a noncommutative Kähler manifold
and elements of the twisted Fock representations.

Table 1. Functions - Fock operators Dictionary.

Functions Fock operators
e−Φ/~ |~0〉〈~0|
zi a†i

1

~
∂iΦ ai

z̄i ai =
∑√

~m!

~n!
H
~m,~k
H−1
~k+~ei,~n

|~m〉〈~n|

1

~
∂īΦ a†i =

∑√
~m!

~n!
(ki + 1)H

~m,~k+~ei
H−1
~k,~n
|~m〉〈~n|

4. Transition Maps

Let {Ua} with M = ∪aUa be a locally finite open covering and {(Ua, φa)} be
an atlas, where φa : Ua → CN . Consider the case Ua ∩ Ub 6= ∅. Denote by
φa,b the transition map from φa(Ua) to φb(Ub). The local coordinates (z, z̄) =

(z1, · · · , zN , z̄1, · · · , z̄N ) on Ua are transformed into the coordinates (w, w̄) =
(w1, · · · , wN , w̄1, · · · , w̄N ) on Ub by (w, w̄) = (w(z), w̄(z̄)), where w(z) =
(w1(z), · · · , wN (z)) is a holomorphic function and w̄(z̄) = (w̄1(z̄), · · · , w̄N (z̄))
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is an anti-holomorphic function. Denote by f ∗a g and f ∗b g the star products
defined in Section 2 on Ua and Ub, respectively. In general, there is a nontrivial
transition maps T between two star products i.e. f ∗b g = T (f)∗a T (g). But it can
be shown that the transition maps are trivial in our case.

Proposition 4.1. For a non-empty overlap Ua ∩ Ub 6= ∅

f ∗b g(w, w̄) = φ∗a,b f ∗a g(w, w̄) = φ∗a,b f(w(z), w̄(z̄)) ∗a g(w(z), w̄(z̄)). (43)

Here φ∗a,b is the pull back of φa,b.

In other words, abn,α(f) transforms as a tensor

ab
n,~̄j

(f)

(
∂w̄

∂z̄

)~̄j
~̄i

= aa
n,~̄i

(f). (44)

We consider the transition function between twisted Fock representations. From
Lemma 3.1, we can choose Kähler potentials Φa(z, z̄) on Ua and Φb(w, w̄) on Ub
such that

Φa(0, z̄) = Φa(z, 0) = 0, Φb(0, w̄) = Φb(w, 0) = 0. (45)

Using these Kähler potentials, the vacuum projection |~0〉pp〈~0| is defined as

|~0〉pp〈~0| = e−Φp/~, (p = a, b)

and the bases of twisted Fock representations |~m〉pp〈~n| are defined by

|~m〉aa〈~n| =
1√
~m!~n!

(z)~m∗ ∗ e−Φa/~ ∗
(

1

~
∂Φa

)~n
∗

|~m〉bb〈~n| =
1√
~m!~n!

(w)~m∗ ∗ e−Φb/~ ∗
(

1

~
∂Φb

)~n
∗
.

Let us consider the case when on the non-empty overlap Ua ∩ Ub the coordinate
transition function w(z), w̄(z̄), and the functions exp(φ(w)/~) and exp(φ̄(w̄)/~)
are given by analytic functions. Then the products (w(z))~α exp(−(φ(w)/~)) and
(w̄(z̄))~α exp(−(φ̄(w̄)/~)) are also analytic functions

(w(z))~αe−φ(w)/~ =
∑
~β

C~α
~β
z
~β, (w̄(z̄))~αe−φ̄(w̄)/~ =

∑
~β

C̄~α
~β
z̄
~β. (46)
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By using (35), the bases are rewritten as

|~m〉aa〈~n| =
√
~n!

~m!

∑
~k

Ha
~n,~k

(z)~m(z̄)
~ke−Φa/~

(47)

|~m〉bb〈~n| =
√
~n!

~m!

∑
~k

Hb
~n,~k

(w)~m(w̄)
~ke−Φb/~.

From the (46), |~m〉bb〈~n| can be written as the following function of zi and z̄i

|~m〉bb〈~n| =
√
~n!

~m!

∑
~k

Hb
~n,~k

(
∑
~α

C ~m
~α z

~α)(
∑
~β

C̄
~k
~β
z̄
~β)e−Φa/~. (48)

Representing the right hand side of the equation by using the bases |~m〉aa〈~n| on
Ua, we obtain the transformation between the bases

T ab : FUa → FUb
(49)

as

|~m〉bb〈~n| =
∑
~i,~j

T ba,
~i~j

~m~n |~i〉aa〈~j| (50)

where

T ba,
~i~j

~m~n =

√
~n!

~m!

√
~i!

~j!

∑
~k

Hb
~n,~k

(C ~m
~i

)(
∑
~β

C̄
~k
~β
Ha−1
~β~j

). (51)

Using this transformation, the twisted Fock representation can be extended to M .
We call it the twisted Fock representation of M .

5. Examples

In this section, some examples of the Fock representations are given.
Example 1. Fock representation of CN.
The first example is CN. The Kähler potential is given by

ΦCN =
N∑
i=1

|zi|2. (52)

Following the procedure given in Section 2, the star product is easily calculated as

f ∗ g =
∞∑
n=0

~n

n!
δk1l1 · · · δknln(∂k̄1

· · · ∂k̄nf)(∂l1 · · · ∂lng).
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This star product was given in [2]. We define

a†i = zi, ai =
1

~
z̄i, ai = z̄i, a†i =

1

~
zi. (53)

Then they satisfy the following commutation relations

[ai, a
†
j ]∗ = δij , [ai, a

†
j ]∗ = ~δij (54)

and the others vanish. Since in this case the operators with the underline are essen-
tially equal to those without the underline, we omit the underline of the bra vectors.
The basis of the twisted Fock algebra is given by

|~m〉〈~n| = 1

~|~n|
√
~m!~n!

(z)~me−Φ/~(z̄)~n. (55)

As a result, the twisted Fock representation coincides with the ordinary Fock rep-
resentation for noncommutative Euclidean spaces.
Example 2. Fock representation of noncommutative CPN.
We give an explicit expression of the twisted Fock representation of noncommu-
tative of CPN . In this case, the twisted Fock representation on an open set is
essentially the same as the representation given in [4–7].
Let denote ζa (a = 0, 1, . . . , N) homogeneous coordinates and

⋃
Ua (Ua = {[ζ0 :

ζ1 : · · · : ζN ]}|ζa 6= 0) an open covering of CPN . Inhomogeneous coordinates
on Ua are defined as

z0
a =

ζ0

ζa
, · · · , za−1

a =
ζa−1

ζa
, za+1

a =
ζa+1

ζa
, · · · , zNa =

ζN

ζa
· (56)

We choose a Kähler potential on Ua which satisfies the condition (26)

Φa = ln(1 + |za|2) (57)

where |za|2 =
∑

i |zia|2. A star product on Ua is given in [5, 6]

f ∗ g =
∞∑
n=0

cn(~)gj1k̄1
· · · gjnk̄n

(
Dj1 · · ·Djnf

)
Dk̄1 · · ·Dk̄ng (58)

where

cn(~) =
Γ(1− n+ 1/~)

n!Γ(1 + 1/~)
, Dī = gīj∂j , Di = gij̄∂j̄ . (59)

On Ua, the creation and the annihilation operators are introduced as

a†a,i = zia, aa,i =
1

~
∂iΦa =

z̄ia
~(1 + |za|2)

aa,i = z̄ia, aa,i
† =

1

~
∂īΦa =

zia
~(1 + |za|2)
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and then the vacuum becomes

|~0〉aa〈~0| = e−Φa/~ = (1 + |za|2)−1/~. (60)

Bases of the twisted Fock representation on Ua are constructed as

|~m〉aa〈~n| =
1√
~m!~n!

(a†a)
~m
∗ ∗ |~0〉aa〈~0| ∗ (aa)

~n
∗

(61)

=
1√

~m!~n!~|n|
(za)

~m
∗ ∗ e−Φa/~ ∗ (∂Φa)

~n
∗ .

The following relation is shown in [5],

(∂Φa)
~n
∗ =

~|n|Γ(1/~ + 1)

Γ(1/~− |n|+ 1)
(∂Φa)

~n

(62)

=
~|n|Γ(1/~ + 1)

Γ(1/~− |n|+ 1)

(
z̄a

1 + |za|2

)~n
.

Then, the bases can be explicitly written as

|~m〉aa〈~n| =
Γ(1/~ + 1)√

~m!~n!Γ(1/~− |n|+ 1)
(za)

~m(z̄a)
~ne−Φ/~. (63)

By comparing this equation and (39), H~m,~n is obtained as

H~m,~n = δ~m,~n
Γ(1/~ + 1)

~m!Γ(1/~− |m|+ 1)
(64)

and the relation eΦa/~ =
∑
H~m,~n(za)

~m(z̄)~n is shown formally.
Let us consider a transition map between the Fock representations on Ua and Ub
(a < b). The transformations for the coordinates and the Kähler potentials on
Ua
⋂
Ub are

zia =
zib
zab
, zba =

1

zab
, i = 0, 1, . . . , a− 1, a+ 1, . . . , b− 1, b+ 1, . . . , N

(65)
Φa = Φb − ln zab − ln z̄ab .

Thus, |~m〉aa〈~n| is written on Ua
⋂
Ub as

|~m〉aa〈~n| =
Γ(1/~ + 1)√

~m!~n!Γ(1/~− |n|+ 1)
e−Φb/~

(66)
×(z0

b )m0. . .(za−1
b )ma−1(zab )1/~−|m|(za+1

b )ma+1. . .(zb−1
b )mb−1(zb+1

b )mb+1. . .(zNb )mN

×(z̄0
b )n0 . . . (z̄a−1

b )na−1(z̄ab )1/~−|n|(z̄a+1
b )na+1 . . . (z̄b−1

b )nb−1(z̄b+1
b )nb+1 . . . (z̄Nb )nN
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where

~m = (m0, . . . ,ma−1,ma+1, . . . ,mN ), ~n = (n0, . . . , na−1, na+1, . . . , nN ).

We should treat (zab )1/~−|m| and (z̄ab )1/~−|n| carefully, if they are not monomials.
Here, to avoid such kind of complications concerning (zab )1/~−|m| and (z̄ab )1/~−|n|,
we introduce a slightly different representation from the above twisted Fock repre-
sentation of CPN. Let us consider the case that the noncommutative parameter is
the following value

1/~ = L ∈ Z, L ≥ 0. (67)

Then, we define FLa on Ua as a subspace of a local twisted Fock algebra FUa

FLa = {
∑
~m,~n

A~m~n|~m〉aa〈~n| ; A~m~n ∈ C, |m| ≤ L, |n| ≤ L}. (68)

From (66), it is shown that the bases on Ua are related to those on Ub as√
(L− |n|)!
(L− |m|)!

|~m〉aa〈~n| =

√
(L− |n′|)!
(L− |m′|)!

| ~m′〉bb〈~n′| (69)

where

~m′ = (m0, . . . ,ma−1, L− |m|,ma+1, . . . ,mb−1,mb+1, . . . ,mN )

~n′ = (n0, . . . , na−1, L− |n|, na+1, . . . , nb−1, nb+1, . . . , nN ).

Using the expression of (69), |~m〉aa〈~n| can be defined on the whole of Ub. There-
fore, the operators in FLa can be extended to the whole of CPN by using the rela-
tions similar to (69).

Similarly to (42), we define a creation operator aLa,i
† and an annihilation operator

aLa,i restricted on FLa by

aLa,i
†

=
∑

0≤|n|≤L−1

√
ni + 1|~n+ ~ei〉aa〈~n| = zia

[
1−

(
|za|2

1 + |za|2

)L]
(70)

aLa,i =
∑

0≤|n|≤L−1

√
ni + 1|~n〉aa〈~n+ ~ei| = L

z̄ia
1 + |za|2

·
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By the restriction on FLa , aLa,i
† is shifted from zia. These operators satisfy the

following commutation relation which is modified from the ordinary ones

[aLa,i, a
L
a,j
†
] = δij

 ∑
0≤|n|≤L

|~n〉aa〈~n| −
∑
|n|=L

(ni + 1)|~n〉aa〈~n|


(71)

= δij − δij
(
|za|2

1 + |za|2

)L(
1 + L

|zia|2

|za|2

)
.

Example 3. Fock representation of noncommutative CHN.

Here, we give an explicit expression of the Fock representation of noncommutative
of CHN [5, 6].
We choose a Kähler potential which satisfies the condition (26)

Φ = − ln(1− |z|2) (72)

where |z|2 =
∑N

i |zi|2. A star product is given in [5, 6]

f ∗ g =

∞∑
n=0

cn(~)gj1k̄1
. . . gjnk̄n

(
Dj1 . . . Djnf

)
Dk̄1 . . . Dk̄ng (73)

where

cn(~) =
Γ(1/~)

n!Γ(n+ 1/~)
, Dī = gīj∂j , Di = gij̄∂j̄ . (74)

The creation and annihilation operators are introduced as

a†i = zi, ai =
1

~
∂iΦ =

z̄i

~(1− |z|2)
(75)

ai = z̄i, ai
† =

1

~
∂īΦ =

zi

~(1− |z|2)
·

and the vacuum becomes

|~0〉〈~0| = e−Φ/~ = (1− |z|2)1/~. (76)

Bases of the Fock representation on CHN are constructed as

|~m〉〈~n| = 1√
~m!~n!

(a†)~m∗ ∗ |~0〉〈~0| ∗ (a)~n∗ =
1√

~m!~n!~|n|
(z)~m∗ ∗ e−Φ/~ ∗ (∂Φ)~n∗ .

(77)

By using the following relation which is shown in [5]

(∂Φ)~n∗ =
(−~)|n|Γ(1/~ + |n|)

Γ(1/~)

(
z̄

1− |z|2

)~n
(78)
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the bases can be explicitly written as

|~m〉〈~n| = (−1)|n|Γ(1/~ + |n|)√
~m!~n!Γ(1/~)

(z)~m(z̄)~n(1− |z|2)1/~. (79)

These are defined globally.
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