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Abstract. The plate-ball problem concerns the shortest trajectories traced
by a rolling sphere on a horizontal plane between the prescribed initial and
final states meaning the positions and orientations of the sphere. Here we
present an explicit parametric representation of these trajectories in terms of
the Jacobian elliptic functions and elliptic integrals.
MSC : 70E18, 70Q05, 81E15
Keywords: curvatures, trajectories, Euler elasticas, plate-ball problem

1. Statement of the Problem

The problem of finding the shortest paths (optimal curves) traced by a spherical
ball while rolling without slipping about a horizontal axis on an infinite horizontal
plate was stated by Hammersley [8] in 1983. Since then this problem, as well as
its variants and generalizations, have become widely known as the plate-ball prob-
lem. In the version we are going to consider we have looked for a curved path with
a minimum length that delivers a sphere on a horizontal plane between two pre-
scribed initial and final states meaning the positions and orientations of the sphere.
Following Hammersley’s original formulation in quaternions and calculus of vari-
ations settings, Arthurs and Walsh [2] showed, by making use of the Pontryagin
maximum principle, that the problem has a solution which is readily expressed via
elliptic functions. Their approach leads to an intrinsic equation for the curvature
of the shortest paths. Here we give an explicit solution of this equation in terms
of the Jacobian elliptic functions and elliptic integrals thereby parameterizing the
optimal curves of the considered plate-ball problem.
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In what follows we are going to state the problem in an optimal control formulation
of the article [2] adopting most of the notation used therein. We assume that the
sphere has a unit radius and that it is rolling with an unit speed along a curved
path Γ in a horizontal XOZ-plane about a horizontal axis in a way that there is no
slipping between the sphere and the plane. We assume also that the path Γ starts at
the originO(0, 0) and ends at a prescribed final pointE(xe, 0) on theOX-axis. We
write t for the arc length along Γ measured from t = 0 at the origin and T for the
whole length of Γ between O and E. Following Hammersley [8] we introduce the
quaternion function q = q(t) such that the pair of quaternions ±q(t) represent the
resultant orientation of the sphere at t. We take the initial and the final orientations
of the sphere to be given by q(0) = 1 and q(T ) = qe. We say that the state of the
sphere at t is specified by its position (x(t), z(t)) in the plane and orientation q(t)
in the space.
Before going any further we recall some basic facts about the quaternions and the
fundamental relationship between quaternions and rotations of R3 (for a compre-
hensive reading on the subject, see e.g., [4], [11] and [6]). Remember that the
space of quaternions H is a four-dimensional real algebra that obeys, except for
commutativity, the same algebraic properties as that of real and complex numbers.
Every quaternion can be uniquely written in the form

q = ρ0 + ρ1i + ρ2j + ρ3k

where ρ0, ρ1, ρ2 and ρ3 are real numbers, and, i, j and k are the quaternion imagi-
nary units satisfying the fundamental equations of the quaternion multiplication

i2 = j2 = k2 = ijk = −1.

The conjugate of q is defined in analogous way to the conjugate of complex number

q̄ = ρ0 − ρ1i− ρ2j− ρ3k

and the norm of q is the same as the Euclidean norm on H considered as a vector
space R4 i.e.,

|q| =
√
qq̄ =

√
ρ2

0 + ρ2
1 + ρ2

2 + ρ2
3.

A quaternion having norm one, i.e., |q| = 1, is said to be a unit quaternion. A
quaternion that have a zero real part, ρ0 = 0, is called a pure quaternion. When
working with H it is usual to identify the set of pure quaternions with a three-
dimensional Euclidean space R3 with elements of the form

v = ρ1i + ρ2j + ρ3k

where the imaginary units i, j and k are regarded as unit vectors along the three
mutually orthogonal axes of a given Cartesian coordinate system in R3. All vectors
in R3 are interpreted and manipulated as pure quaternions, thus allowing every
rotation of R3 to be obtained by two consecutive quaternion multiplications.
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Rotations of R3 are orthogonal transformations with determinant one. All such
transformations form the group SO(3) under the composition of transformations,
which is called the group of special orthogonal transformations or the group of
rotations of R3. It can be shown that any element of SO(3) can be obtained for
some unit quaternion q by the rotation map

Rq : v 7→ qvq−1, v ∈ R3, |q| = 1

and every such map is a rotation of R3. On the other hand the set of unit quaternions
forms a (noncommutative) group under multiplication that coincides with the three
dimensional unit sphere in R4

S3 = {q ∈ H ; |q| = 1}.

Based on the properties of the rotation map

Rq1q2 = Rq1Rq2 , R−q = Rq

it follows that the mapping q 7→ Rq is a surjective homomorphism from the group
S3 onto the group SO(3), such that any two opposite unit quaternions ±q corre-
spond to the same rotation. Just as for the complex numbers each unit quaternion
q ∈ H can be written in the form

q = eϕu = cosϕ+ sinϕu, u2 = 1, ϕ ∈ [0, 2π]

where the condition u2 = 1 means that u belongs to the unit sphere S2 in the space
of pure quaternions R3. Any rotation from SO(3) can be represented by specifying
an axis u (a unit vector in R3) and the angle ϕ of rotation. A rotation through ϕ
about u is obtained by applying the rotation map for one (no matter which) of the
two unit quaternions

±q = ±e
ϕ
2
u = ±(cos

ϕ

2
+ sin

ϕ

2
u).

This is a clockwise rotation when looking in the forward direction of u.
On returning back to the plate-ball problem we fix a right-handed orthonormal
coordinate basis (i, j,k) in R3 with the vectors i and j taken along the axes OX
and OZ respectively, and the vector k directed vertically upwards (see Fig. 1). To
handle rotations of the sphere we use quaternion multiplication treating the vectors
in R3 as pure quaternions. Let r(t) is the position vector of the center of the
sphere at t

r(t) = x(t)i + z(t)j + k

and let h(t) denotes the unit vector along the axis of rotation through that center

h(t) = h1(t)i + h2(t)j.
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The rolling of the sphere at each t will be regarded as a combination of two in-
finitesimal motions – a translation along the instantaneous velocity vector of the
center of the sphere

v(t) = h(t)k (1)

and a rotation about the instantaneous axis of rotation h(t). The kinematics of
these two motions are expressed separately by the equations [2, 8]

dr(t)

dt
= h(t)k,

dq(t)

dt
=

1

2
h(t)q(t)

where q(t) is a unit quaternion that “records” the orientation of the sphere at t.

Figure 1. The initial and final positions and orientations of the sphere
in the XOZ-plane.

It is clear from the above two equations that the function h(t) controls the mo-
tion of the sphere and will accordingly be called the control function. On passing
to coordinate representation the kinematics equations take the form of six scalar
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equations

dx

dt
= h2,

dz

dt
= −h1

dρ0

dt
= −1

2
(h1ρ1 + h2ρ2),

dρ1

dt
=

1

2
(h1ρ0 + h2ρ3) (2)

dρ2

dt
=

1

2
(−h1ρ3 + h2ρ0),

dρ3

dt
=

1

2
(h1ρ2 − h2ρ1)

which are the required state equations that under the controls

(h1(t), h2(t))

determine the state of the sphere at each moment t

(x(t), z(t), ρ0(t), ρ1(t), ρ2(t), ρ3(t)).

Now we can state the problem as a “minimum-time” optimal control problem: Find
in the XOZ-plane an optimal unit-speed curve

Γ : (x(t), z(t))

defined by the state equations (2) for some optimal control functions (h1(t), h2(t))
related by the constraint

h2
1(t) + h2

2(t) = 1

that transfers a given initial state

x(0) = z(0) = 0, q(0) = 1 (3)

to a given final state

x(T ) = xe, z(T ) = 0, q(T ) = qe (4)

and minimizes the integral

T =

T∫
0

1 dt.

2. Trajectories of the Plate-Ball Problem

Let Γ be an optimal solution (an optimal curve) of the optimal control problem
stated in Section 1. Arthurs and Walsh [2] showed by applying the Pontryagin
maximum principle (see e.g., [7]) that for any point (x(t), z(t)) lying on the curve
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Γ , there exists a connection between the coordinate z(t) and the curvature κ(t) of
Γ at this point, given by

κ(t) = −λz(t)− µ (5)
where the constants λ > 0 and µ ∈ R are to be determined in terms of xe and qe.
If the points of Γ are considered to be defined by (x, z(x)), i.e., if the coordinate
x is regarded as a parameter of the curve, then the above relation is equivalent to
the equation

d2z

dx2
= −(λz + µ)

[
1 +

(
dz

dx

)2
]3/2

. (6)

Now let us suppose that in the course of its motion in the plane the sphere reaches
a maximum deflection from the OX-axis at the point (̊x, z(̊x)) at which the slope
of the tangent line to Γ vanishes, namely

dz

dx

∣∣
x=x̊

= 0, z(̊x) = η, x̊ ∈ (0, xe) (7)

where η ∈ R is the “maximum deflection parameter” of Γ . Under the condition
(7) the equation (6) can be integrated once by multiplying both sides with dz/dx,
giving the first order differential equation(

dz

dx

)2

=
4−

[
2 + λ(z2 − η2) + 2µ(z − η)

]2
[2 + λ(z2 − η2) + 2µ(z − η)]2

· (8)

Recalling the arc length parameter t, it follows from (5) and (8) that Γ has an
intrinsic equation of the form(

dκ

dt

)2

=
1

4
(σ2 − κ2)(κ2 + 4λ− σ2) (9)

where
σ = µ+ λη. (10)

By substituting in (5) and (9) with

ζ = z +
µ

λ
, ν = 1− σ2

2λ
(11)

where ζ is the translated coordinate z and ν < 1, it can be readily shown that the
functions x(t) and ζ(t) satisfy a system of differential equations having the same
form as the equations of the Eulerian elasticas [5, 12]

dx

dt
=
λζ2

2
+ ν

(12)(
dζ

dt

)2

= −λ
2ζ4

4
− λνζ2 − ν2 + 1.
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In obtaining the above equations it was taken into account the assumption of unit-
speed parameterization (

dx

dt

)2

+

(
dz

dt

)2

= 1.

Thus finally we are led to the conclusion: The trajectories of the plate-ball prob-
lem, in the version considered in this paper, coincide with that of the Euler elasti-
cas.
Henceforth we can present the trajectories of the plate-ball problem, obtained as
solutions of the system (12), and express them as follows (cf. [5])

for ν ∈ (−1, 1)

x(t) = − 2√
λ
E(am(

√
λt+ α, k), k) + t+ β

(13)

z(t) = a cn(
√
λt+ α, k)− µ

λ

for ν = −1

x(t) = −2 tanh (
√
λt+ α)√
λ

+ t+ β

(14)

z(t) =
2 sech(

√
λt+ α)√
λ

− µ

λ

and for ν < −1

x(t) = −aE(am(
aλ

2
t+ α, k̂), k̂)− νt+ β

(15)

z(t) = a dn(
aλ

2
t+ α, k̂)− µ

λ

where α and β are the constants of integrations. The rest of the three real constants,
i.e., the elliptic moduli k and k̂ of the Jacobian elliptic functions and a are specified
by the formulas

k =

√
1− ν

2
, k̂ =

√
2

1− ν
, a =

√
2(1− ν)

λ
·
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The functions used above are the hyperbolic functions sech(·) and tanh(·), the
incomplete elliptic integral of second order E(· , k) and the Jacobian elliptic func-
tions – amplitude am(· , k), cosine cn(· , k) and delta dn(· , k). More about the
Jacobian elliptic functions and the elliptic integrals, can be found e.g., in [1, 3].
By applying in succession the three boundary conditions z(0) = 0, x(0) = 0 and
z(T ) = 0, we obtain the constants of integration α and β, and the length T of Γ ,
expressed through the parameters λ, µ and η, namely

for ν ∈ (−1, 1)

α = −cn−1(
µ

λa
, k), β = − 2√

λ
E(arccos

µ

λa
, k)

(16)

T =
2√
λ

cn−1(
µ

λa
, k)

for ν = −1

α = −arccosh
2
√
λ

µ
, β = −

√
4λ− µ2

λ
, T =

2√
λ

arccosh
2
√
λ

µ
(17)

and for ν < −1

α = −dn−1(
µ

λa
, k̂), β = −aE(arcsin

√
1− ( µλa)2

k̂
, k̂)

(18)

T =
4

λa
dn−1(

µ

λa
, k̂).

The optimal control functions are then found on the base of the relation (1) by
differentiating the trajectory equations (13) – (15)

for ν ∈ (−1, 1)

h1(t) = a
√
λ sn(

√
λt+ α, k) dn(

√
λt+ α, k)

(19)

h2(t) = 1− 2 dn2(
√
λt+ α, k)

for ν = −1

h1(t) = 2 sech(
√
λt+ α) tanh (

√
λt+ α)

(20)

h2(t) = 1− 2 sech2(
√
λt+ α)
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and for ν < −1

h1(t) = 2 sn(
aλ

2
t+ α, k̂) cn(

aλ

2
t+ α, k̂)

(21)

h2(t) = (ν − 1) dn2(
aλ

2
t+ α, k̂)− ν.

Thus far we have classified the solutions of the plate-ball problem in three uni-
fied cases. The case to which a given optimal control and the relative optimal
trajectory belong to, depends on the value of the parameter ν, which in turn is a
function of the parameters λ, µ and η (see the defining equations (11) and (10))
being themselves determined by the boundary conditions (3) – (4). Consequently
ν is a function of the initially prescribed quantities xe and qe (for more details
concerning the boundary conditions see the next Section).
In obtaining the graphs of the plate-ball trajectories we follow a somewhat specific
approach regarding the parameters involved. Let us recall, that as it follows from
(11) and (10) the parameters λ, µ, η and ν are connected by the equation

ν = 1− (µ+ λη)2

2λ
· (22)

Another relation between these four parameters is provided by the boundary con-
dition x(T ) = xe, which is represented for each one of the three cases by one of
the following transcendental equations

for ν ∈ (−1, 1)

2√
λ

cn−1(
µ

λa
, k)− 4√

λ
E(arccos

µ

λa
, k)− xe = 0 (23)

for ν = −1

2√
λ

arccosh
2
√
λ

µ
− 2

√
4λ− µ2

λ
− xe = 0 (24)

and for ν < −1

2aE(arcsin

√
1− ( µλa)2

k̂
, k̂) +

4ν

λa
dn−1(

µ

λa
, k̂) + xe = 0. (25)

Taking into account equation (22) in equations (23), (24) or (25), the number of the
parameters for the respective trajectory is reduced effectively by two. By giving
specific values to xe, η and ν, and making use of the computer program Math-
ematicar, we succeeded in solving numerically for λ and µ some of the result-
ing transcendental systems of equations. Consequently we have obtained various
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graphics of the optimal trajectories of the rolling sphere, produced by Mathemat-
icar, having identical starting and ending points, but being with different max-
imum deflections from the OX-axis, the trajectories have different lengths (see
Fig. 2 – Fig. 8 in which are given the graphics of three representative trajectories
(left) and the type of the respective elastica curve (right)). Clearly such differences
between the trajectories of the plate-ball problem are due to the different initial and
final orientations of the sphere in the space.

Figure 2. Parameters: ν = 0.5, xe = −0.58, and η = 0.15, 0.2, 0.25.

Figure 3. Parameters: ν = 0, xe = −0. 8 and η = 0.4, 0.45, 0.5.

Figure 4. Parameters: ν = −0. 4, xe = −0.6 and η = 0.4, 0.5, 0.6.
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Figure 5. Parameters: ν=−0.65223, xe =0.12 and η=0.3, 0.35, 0.4.

Figure 6. Parameters: ν = −0.9, xe = 0.3 and η = 0.3, 0. 4, 0. 5.

Figure 7. Parameters: ν = −1, xe = 0.12 and η = 0.25, 0. 3, 0. 35.
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By taking the final position and the maximum deflection of the sphere from the
OX-axis to be xe = 0.12 and η = 0.3, we solved numerically, with respect to λ
and µ, the resulting system of equations for the two cases: the equations (22) and
(23) for ν = −0.65223, and the equations (22) and (24) for ν = −1. We have
used the so obtained values of λ and µ for producing via the parametrization for-
mulas (13) and (14) (and Mathematicar ) the graphs of the corresponding optimal
trajectories of the sphere (the respective values of α and β have been calculated by
(16) and (17)) (see Fig. 9).
Now, let us remark that in obtaining the formulas (16) – (18) and (23) – (25) we
employed the boundary conditions related with the initial and final positions of the
sphere. To this end, we have not taken into account the boundary conditions re-
lated with the orientation of the sphere. Despite that for drawing the graphs of the
trajectories we freely choose the values of η and ν, these two parameters are by no
means arbitrary – their values are connected via the boundary conditions with the
prescribed initial and final orientation of the sphere in space. The conditions for
the initial q(0) = 1 and the final q(T ) = qe orientation of the sphere requires the
quaternion function q(t), which we have not found yet.

Figure 8. Parameters: ν=−1.2, xe =−0.32 and η=0.72, 0.75, 0.78.

Figure 9. Parameters: xe= 0.12, η = 0.3, ν = −1 and ν = −0.65223.
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3. Concluding Remarks

We have considered the plate-ball problem, which is an optimal control problem of
finding the shortest paths (optimal curves), traced by a sphere of unit radius while
rolling on a horizontal plane about a horizontal axis without slipping or twisting be-
tween the two prescribed states – the initial and the final positions and orientations
of the sphere in the space. Based on the result of Arthurs and Walsh [2], namely
the equation for the curvature of the shortest paths (5), we derived an explicit pa-
rameterization for the trajectories of the plate-ball problem. By making use of the
Jacobian elliptic functions and elliptic integrals, we obtained expressions for the
optimal curves that coincide with the parameterization of the Euler elastics given
in [5]. We presented the solution in three possible cases (13), (14) and (15) de-
pending, via the parameter ν, on the prescribed values for the final position xe and
the final orientation qe = (ρ0e, ρ1e, ρ2e, ρ3e) of the sphere. The plate-ball problem
was solved by Jurdjevic in 1993 in a completely different context in connection
with an optimal control problem suggested by R. Brockett and L. Dai [10].
Finally we will make some concluding remarks concerning the boundary condi-
tions (3) – (4). Since q(t) is a unit quaternion it obeys the constraint (for every
t ∈ [0, T ])

ρ2
0(t) + ρ2

1(t) + ρ2
2(t) + ρ2

3(t) = 1 (26)

from which it follows that only three of the quaternion coordinates ρ0e, ρ1e, ρ2e

and ρ3e are independent – let us denote them by c1, c2 and c3. Consequently the
final state of the sphere is predetermined by four independent real quantities

(b, c1, c2, c3)

where b stands for the final position xe and (c1, c2, c3) stand for the final orientation
qe of the sphere. It is worthwhile mentioning here that the parameters (c1, c2, c3)
are directly related with the coordinates of the so called vector-parameter, which
in some other setting can also be effectively applied for manipulating with the three
dimensional rotations.
As it can be inferred from (26), the total number of constants of integration in
the solution of the system (2) is one less than the order of this system. For the
determination of the rotational motion of the sphere one has to substitute with
the obtained control functions (h1(t), h2(t)) in the equations for the quaternion
coordinates in (2). For each one of the three cases of optimal controls (19), (20)
and (21), the solution for the quaternion takes the form

ρi(t) = ρi(t, γ1, γ2, γ3), i = 0, 1, 2, 3

where γ1, γ2 and γ3 are the constants of integration. All integration constants
involved in the solution of (2) are five: (α, β, γ1, γ2, γ3), where α and β are the
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constants of integration occurring in the solution for the translational motion of the
sphere (x(t, α, β), z(t, α, β)) (see the solutions found in Section 2).
Now it is clear that we have nine unknown parameters

(λ, µ, η, α, β, γ1, γ2, γ3, T ) (27)

that are to be determined as functions of the four prescribed quantities (b, c1, c2, c3),
which is to be fulfilled by the help of the boundary conditions (3) – (4). Since the
relation (26), the boundary conditions (3) – (4) reduce from twelve to ten equa-
tions. Nine of these equations, no matter which of them, suffices for determining
all the parameters (27) in terms of (b, c1, c2, c3). Then the remainder tenth equation
may be used to distinguish between the different possible cases of the solutions, in
a way it has been done above via the parameter ν. The parameter ν, as it is clear
now through (11) and (10), depends together with the parameters λ, µ and η on the
predefined initial and final position and orientation of the sphere.
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