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Abstract. In this paper we describe semi-discrete isothermic constant mean
curvature surfaces of revolution with smooth profile curves in Minkowski
three-space. Unlike the case of semi-discrete constant mean curvature sur-
faces in Euclidean three-space, they might have certain types of singularities
in a sense defined by the second author in a previous work. We analyze the
singularities of such surfaces.
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1. Introduction

Constant mean curvature (CMC) surfaces of revolution have been well-studied ever
since Delaunay found that any profile curve of a CMC surface of revolution (except
for sphere) in Euclidean three-space R3 can be obtained as the trace of one focal
point of a quadric (see [4] for example), and these surfaces are now called Delau-
nay surface. As a generalization, Kenmotsu [11] described surfaces of revolution
with prescribed mean curvature in R3. Similarly, Hano and Nomizu [7] showed
that the profile curves of spacelike CMC surfaces of revolution with timelike or
spacelike axes in Minkowski three-space R2,1 can be also obtained as traces of one
focal point of quadrics, and Ishihara and Hara [9] derived explicit parametrizations
of spacelike (or timelike) surfaces of revolution with prescribed mean curvature
(see also [8], [12] and [19]). On the other hand, unlike the case of CMC surfaces
of revolution in R3, spacelike CMC surfaces of revolution may have singularities
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(see [8] for singularities of spacelike Delaunay surfaces and their associate fami-
lies, and see also [13], [5] in the case of spacelike maximal surfaces).
In [15], Wallner and the first author described semi-discrete isothermic surfaces
in R3 using integrable systems techniques. Starting from [15], there have been
various works in this direction (see [2], [18], [21] for example). In particular, the
first author [14] investigated semi-discrete CMC surfaces in R3.
Our ultimate goal is to establish a more complete theory for semi-discrete sur-
face theory with singularities. As a first step, the second author [21] investigated
semi-discrete surfaces with vanishing mean curvature in R2,1, which are called
semi-discrete maximal surfaces, and analyzed their singularities. From a differ-
ent viewpoint, singularities of several semi-discrete surfaces were analyzed in [22]
(see also [17]). Except for these examples, there were no known semi-discrete sur-
faces with singularities. In order to achieve our goal, making new examples with
singularities is an important step.
In this paper we briefly introduce semi-discrete surface theory and construct semi-
discrete CMC surafces of revolution with smooth spacelike profile curve in R2,1

(semi-discrete spacelike Delaunay surfaces, for short). When the profile curve
is discrete, it is difficult to derive explicit parametrizations, because of freedom
of choices for the discrete profile curve. On the other hand, when the profile
curve is smooth, we can derive explicit parametrizations. When the mean cur-
vature of a semi-discrete surface in R2,1 is identically zero, as shown in [21], such
a semi-discrete surface generally has certain singularities, and the types of their
singularities are completely classified. On the other hand, like in the smooth case,
semi-discrete spacelike Delaunay surfaces may have singularities. We classify all
possible semi-discrete spacelike Delaunay surfaces in R2,1. When the surface has
singularities, we analyze these singularities.
This paper is organized as follows: In Section 2, we briefly introduce semi-discrete
surface theory. In Section 3, we introduce several results on semi-discrete maximal
surfaces in R2,1. In Section 4, we derive explicit parametrizations of all possible
semi-discrete spacelike Delaunay surfaces. Finally in Section 5, we analyze their
singularities and suggest several related problems.

2. Preliminaries

Let R2,1 := (R3, 〈·, ·〉) be 3-dimensional Minkowski space with the Lorentz metric

〈(x1, x2, x0)t, (y1, y2, y0)t〉 = x1y1 + x2y2 − x0y0
for (x1, x2, x0)

t, (y1, y2, y0)
t ∈ R2,1. For fixed c1 ∈ R and vector ν ∈ R2,1\{0}, a

plane P = {X ∈ R2,1; 〈X, ν〉 = c1} is spacelike (respectively timelike, lightlike)
when n is timelike (respectively spacelike, lightlike).
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In Definition 1, in order to define semi-discrete isothermic surfaces in R2,1, any ele-

ment (x1, x2, x0)
t ∈ R2,1 is identified with the matrix form

(
ix0 x1 − ix2

x1 + ix2 −ix0

)
(see also [2], [3]).

Definition 1. Let x : Z × R → R2,1 be a semi-discrete surface parametrized
by (k, t) ∈ Z × R. Then x is a semi-discrete isothermic surface if each plane
containing ∂x, ∂x1, ∂∆x is spacelike and cr(x, x1) = − τ

σ
I , where

x = x(k, t), x1 := x(k + 1, t), ∂x :=
dx

dt
, ∆x := x1 − x

cr(x, x1) := (∂x) · (∆x)−1 · (∂x1) · (∆x)−1

I is the 2 × 2 unit matrix, and τ (respectively σ) is a positive scalar function
depending on only t (respectively k). We call cr(x, x1) the tangent cross ratio of x.

Remark 2. Henceforth, if the tangent cross ratio is cI for c ∈ R, cI is identified
with the scalar value c. So, the tangent cross ratio of a semi-discrete isothermic
surface is simply written as − τ

σ
·

In order to describe semi-discrete spacelike Delaunay surfaces in R2,1, here we
define Gaussian and mean curvatures of semi-discrete surfaces in R2,1, which were
originally introduced in [10] (see also [21]). In the following definition, H2 denotes
the hyperbolic two-plane, that is,

H2 := {X ∈ R2,1; 〈X,X〉 = −1}.

Definition 3. Let x : Z × R → R2,1 be a semi-discrete circular surface (for the
definition of semi-discrete circular surfaces, see [15], [21]), and let n : Z × R →
H2 be a semi-discrete circular surface satisfying ∂x ‖ ∂n and ∆x ‖ ∆n (we call
n the Gauss map of x). Then

• K and H defined by

K =
det(∂n+ ∂n1,∆n, ν̃)

det(∂x+ ∂x1,∆x, ν̃)

H = −det(∂x+ ∂x1,∆n, ν̃) + det(∂n+ ∂n1,∆x, ν̃)

2 det(∂x+ ∂x1,∆x, ν̃)

(1)

are called the Gaussian and mean curvatures of x (with respect to n), where
ν̃ is a unit vector perpendicular to the plane containing ∂x,∆x and ∂∆x.
• Let x be a semi-discrete circular surface and let n be its Gauss map. Then

the scalar functions κk(t), κk,k+1(t) given by

∂n(k, t) = −κk(t)∂x, ∆n(k, t) = −κk,k+1(t)∆x(k, t)
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are called the principal curvatures of x. Here we abbreviate κ = κk(t), κ1 =
κk+1(t), κ01 = κk,k+1(t).

As already shown in [21], there are non-trivial relations between Gaussian or mean
curvatures and principal curvatures as follows:

Proposition 4. Let x be a semi-discrete surface in R2,1, let κ, κ01 be the principal
curvatures of x, and let K and H be the Gaussian and mean curvatures of x. Then
K and H are expressed as

K =
κ01

κ1 + κ− 2κ01
(2κκ1 − κκ01 − κ1κ01), H =

κκ1 − κ201
κ1 + κ− 2κ01

· (2)

Proof: In [22], it is shown that the Gaussian curvature of a semi-discrete circular
surface is of the form in Proposition 4, and the proof is almost the same. Here we
derive the form of the mean cuvature. By definition, we have

H = −det(∂x+ ∂x1,∆n, ν̃) + det(∂n+ ∂n1,∆x, ν̃)

2 det(∂x+ ∂x1,∆x, ν̃)
(3)

=
det(κ01(∂x+ ∂x1) + κ∂x+ κ1∂x1,∆x, ν̃)

2 det(∂x+ ∂x1,∆x, ν̃)
·

Now, differentiation gives

∆n = −κ01∆x⇒ (∂κ01)∆x = (κ1 − κ01)∂x1 − (κ− κ01)∂x.
Here we assume that ∂κ01 6= 0. Substituting ∆x in the above form into equation
(3), H is written as

H =
det
(
κ01(∂x+ ∂x1) + κ∂x+ κ1∂x1,

κ1−κ01
∂κ01

∂x1 − κ−κ01
∂κ01

∂x, ν̃
)

2 det
(
∂x+ ∂x1,

κ1−κ01
∂κ01

∂x1 − κ−κ01
∂κ01

∂x, ν̃
)

=
κ01

(
κ1−κ01
∂κ01

+ κ−κ01
∂κ01

)
+ κ(κ1−κ01)

∂κ01
+ κ1(κ−κ01)

∂κ01

2
(
κ1−κ01
∂κ01

+ κ−κ01
∂κ01

) =
κκ1 − κ201

κ1 + κ− 2κ01
·

Thus H is of the form in Proposition 4. Similarly, when ∂κ01 = 0, we have the
same H of the form in Proposition 4. For K, see [22]. �

At first glance, relations between the princpal curvatures and the Gaussian or mean
curvature are not elegant. However, we can interpret these relations as follows:
Assume that κ, κ1 converge to k1 and κ01 converges to k2 by taking a “formal”
limit (note that we do not actually use such a limit in this work). Then, the Gaussian
and mean curvatures K,H of a semi-discrete circular surface converge to

K → k1k2, H → k1 + k2
2
·
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In this sense, the forms of K and H are natural.

3. Semi-Discrete Maximal Surfaces with Singularities in R2,1

In this section we briefly introduce three results on semi-discrete maximal surfaces
in R2,1. A semi-discrete isothermic surface x is called a semi-discrete maximal
surface if the mean curvature H of x identically vanishes. The following fact is
shown in [21].

Theorem 5. Any semi-discrete maximal surface x can be locally constructed using
a semi-discrete holomorphic function g by solving

∂x = −Re

 τ

2∂g

 1 + g2

i(1− g2)
−2g

 , ∆x = Re

 σ

2∆g

 1 + gg1
i(1− gg1)
−(g + g1)

 (4)

with τ and σ determined from g, where a semi-discrete isothermic surface
g : Z× R→ R2 ∼= C is called a semi-discrete holomorphic function.

The interesting point is that the Weierstrass-type representation (4) for semi-discrete
maximal surfaces in R2,1 is almost the same as the one for semi-discrete minimal
surfaces in R3 (see [18]), but the global behavior is quite different. In fact, unlike
the case of semi-discrete minimal surfaces in R3, semi-discrete surfaces described
by equation (4) are locally semi-discrete maximal but not globally, leading us to
the necessity to consider “singularities” of semi-discrete maximal surfaces. Here
we define singularities of semi-discrete maximal surfaces as follows.

Definition 6. Let x be a semi-discrete surface in R2,1. Then an edge [x, x1] with
endpoints x, x1 is a singular edge if the plane containing ∂x, ∂x1, ∂∆x is not
spacelike. In particular, when at least one of the directions of ∂x, ∂x1,∆x is
lightlike, a singular edge is called non-generic, and otherwise called generic.

We introduce criteria for singular edges of semi-discrete maximal surfaces in R2,1.
Details can be found in [21] (and see Fig. 1).

Theorem 7. Let g : Z × R → C be a semi-discrete holomorphic function and
let x be a semi-discrete surface described by equation (4) using a semi-discrete
holomorphic function g. Then the edge [x, x1] is a singular edge if and only if a
tangent circle C of [g, g1] corresponding to [x, x1] intersects the unit circle S1 ⊂ C.

Admitting singular edges, by Theorem 5, we can construct semi-discrete maximal
surfaces of revolution with timelike, spacelike, or lightlike axis. Explicit choices
of the corresponding semi-discrete holomorphic functions can be found in [21], so
here we only state the following result:
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Figure 1. The tangent circle C of [g, g1] intersects S1 (the case where
a singular edge appears).

Proposition 8. Semi-discrete maximal surfaces of revolution with smooth profile
curves have the same profile curves as smooth maximal surfaces.

Remark 9. In addition to Proposition 8, we have shown that semi-discrete maxi-
mal surfaces of revolution with discrete profile curves have the same profile curves
as discrete maximal surfaces of revolution in the sense of [20]. In this paper, be-
cause of the simplicity of deriving the explicit parametrizations, we only focus on
semi-discrete surfaces of revolution with smooth profile curves.

4. Semi-Discrete Spacelike Delaunay Surfaces in R2,1

In this section we derive explicit parametrizations of the semi-discrete spacelike
Delaunay surfaces with smooth profile curve and timelike (respectively space-
like, lightlike) axes, which we call the semi-discrete t-Delaunay (respectively s-
Delaunay, l-Delaunay) surfaces. First we state that surfaces of revolution in R2,1

might be semi-discrete isothermic.

Lemma 10. Let x be a surface of revolution with smooth profile curve and timelike
axis (respectively spacelike, lightlike) in R2,1 parametrized as

x(k, t) = (f(t) cosαk, f(t) sinαk, g(t))t

respectively

x(k, t) = (f(t) sinhαk, g(t), f(t) sinαk, f(t) coshαk)
t

x(k, t) = (f(t)− (1− α2
k)g(t), 2αkg(t), f(t) + (1 + α2

k)g(t))t
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where f(t), g(t) are scalar functions depending only on t, and αk is a scalar func-
tion depending only on k. Then

cr(x, x1) = − (f ′)2 − (g′)2

4f2 sin2
(
α1−α

2

)
respectively

cr(x, x1) = − −(f ′)2 + (g′)2

4f2 sin2
(
α1−α

2

) , cr(x, x1) =
f ′g′

g2(α1 − α)2

where f ′ :=
df

dt
, g′ :=

dg

dt
· If the corresponding profile curve is spacelike,

cr(x, x1) are negative, implying that x could be semi-discrete isothermic.

Remark 11. Even if the tangent cross ratio of a semi-discrete surface of revolution
in R2,1 is negative in Lemma 10, x is not necessarily semi-discrete isothermic.

Take a parametrization of a semi-discrete t-Delaunay surface as follows

x(k, t) = (f(t) cosαk, f(t) sinαk, g(t))t

where f, g : R → R are functions satisfying (f ′)2 − (g′)2 = 1, that is, the profile
curve is arc-length parametrized. Without loss of generality, we can choose the
Gauss map n of x as

n(k, t) = (−g′(t) cosαk,−g′(t) sinαk,−f ′(t))t.

Then the arc-length parametrization condition gives that f ′′ =
g′g′′

f ′
, implying

∂n = −g
′′

f ′
∂x. Thus we have κ =

g′′

f ′
. And we have ∆n = −g

′

f
∆x, implying

κ01 =
g′

f
· Substituting κ0, κ1, κ01 into equation (1), we have H =

1

2

(g′
f

+
g′′

f ′

)
.

Again by the arc-length parametrization condition, we have

H =
1

2

(g′
f

+
g′′ + (g′)2g′′ − g′ · g′g′′

f ′

)
=

1

2

(g′
f

+
(f ′)2g′′ − f ′f ′′g′

f ′

)
=

1

2

(g′
f

+ f ′g′′ − f ′′g′
)
.

Therefore, we have

2H(t)f(t)− g′(t)− f(t)(f ′(t)g′′(t)− f ′′(t)g′(t)) = 0.

This equation is the same as equation (3.1) in [9]. This implies that the profile
curve of a semi-discrete t-Delaunay surface is the same as the one of a smooth t-
Delaunay surface with the same constant mean curvature (more precisely, the same
prescribed mean curvature).
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In the same vein, we derive explicit parametrizations of semi-discrete s-Delaunay
surfaces. Take the parametrization of a semi-discrete s-Delaunay surface as follows

x(k, t) = (f(t) sinhαk, g(t), f(t) coshαk)
t

with −(f ′)2 + (g′)2 = 1. We can choose the Gauss map n of x as

n(k, t) = (g′(t) sinhαk, f
′(t), g′(t) coshαk)

t.

By a similar computation as in the case of semi-discrete t-Delaunay surfaces, κ =

−g
′′

f ′
and κ01 = −g

′

f
· Substituting κ0, κ1, κ01 into equation (1), we have

H = −1

2

(g′
f

+
g′′

f ′

)
, and by the arc-length parametrization condition, we have

H = −1

2

(g′
f

+
g′′ − (g′)2g′′ + g′ · g′g′′

f ′

)
= −1

2

(g′
f
− f ′g′′ + f ′′g′

)
.

In summary, we have

2H(t)f(t) + g′(t) + f(t)(f ′′(t)g′(t)− f ′(t)g′′(t)) = 0.

This equation is the same as equation (3.2) in [9]. This implies that the profile curve
of a semi-discrete s-Delaunay surface is the same as that of a smooth s-Delaunay
surface with the same constant mean curvature.
Finally, we derive parametrizations of semi-discrete l-Delaunay surfaces. Take the
parametrization of a semi-discrete l-Delaunay surface as follows

x(k, t) = (f(t)− (1− α2
k)g(t), 2αkg(t), f(t) + (1 + α2

k)g(t))t

with −4f ′g′ = 1. And we can choose the Gauss map n of x as

n(k, t) = (−f ′(t) + (1− α2
k)g
′(t),−2αkg

′(t),−f ′(t) + (1 + α2
k)g
′(t))t.

By a similar computation as in the cases of semi-discrete t- and s-Delaunay sur-

faces, κ = −g
′′

g′
and κ01 = −g

′

g
· Substituting κ0, κ1, κ01 into equation (1) and

deforming the equation, we have

2H(t)g(t) + g′(t)− 2g(t)(f ′(t)g′′(t)− f ′′(t)g′(t)) = 0.

This equation is the same as equation (3.3) in [9], implying that the profile curve
of a semi-discrete l-Delaunay surface is the same as that of a smooth l-Delaunay
surface with the same constant mean curvature.
Thus we have the following theorem.

Theorem 12. Semi-discrete surfaces of revolution with prescribed mean curvature
having smooth profile curves have the same prescribed mean curvature as their
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smooth counterpart surfaces with the same profile curves. In particular, semi-
discrete CMC surfaces of revolution with smooth profile curves have the same
collection of profile curves as the smooth CMC surfaces of revolution.

Profile curves of all possible semi-discrete Delaunay surfaces are listed in Table 1,
and an example of a semi-discrete spacelike Delaunay surface is shown in Fig. 2.

Figure 2. A semi-discrete s-Delaunay surface. This has singular edges
around cone points.

5. Singularities of Semi-Discrete Spacelike Delaunay Surfaces in R2,1

Here we analyze singular edges of semi-discrete spacelike Delaunay surfaces with
smooth profile curve in R2,1. Like the case of semi-discrete maximal surfaces of
revolution, semi-discrete spacelike Delaunay surfaces may have singular edges.
By a similar argument in [21], we have the following criteria for singular edges of
semi-discrete CMC surfaces in R2,1 to appear.

Theorem 13. Let x be a semi-discrete isothermic CMC surfaces in R2,1 and let n
be its Gauss map. Then an edge [x, x1] is a singular edge if and only if the tangent
circle of [φ ◦ n, φ ◦ n1] corresponding to [x, x1] intersects S1, where φ : H2 →
R2 ∼= C is a stereographic projection with south pole (0, 0,−1)t ∈ R2,1.

Applying Theorem 13, we can analyze singular edges of semi-discrete spacelike
Delaunay surfaces. In fact, edges around cone points in Fig. 2 satisfy Theorem 13.
For other cases, if a semi-discrete spacelike Delaunay surface has a cone point, one
can confirm that edges around this point are singular.
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Table 1. The list of abbreviation of symbols and profile curves of pos-
sible semi-discrete spacelike Delaunay surfaces in R2,1. All possible
smooth spacelike Delaunay surfaces were classified in [9] (see also [8]),
and the explicit parametrizations here are cited from [8].

Abbreviation of symbols profile curve

Ut(t) =
√

e2Ht + ke−2Ht − k − 1

(
Ut(t)

2H
, 0,±

∫
e2Ht + ke−2Ht − 2

2Ut(t)
dt

)
Usc(t) =

√
e2Ht + ke−2Ht + k + 1

(
0,

∫
e2Ht + ke−2Ht − 2

2Usc(t)
dt,±Usc

2H

)
Usi(t) =

√
e2Ht + ke−2Ht − k − 1

(
0,

∫
e2Ht + ke−2Ht − 2

2Usi(t)
dt,±Usi

2H

)
−

(
0,

t

2H
,± 1

2H

)
ξlt(t) =

√
e2Ht − 1

ηlt(t) =
±1

8H2

(
±ξlt(t)
e2Ht

− arctan ξ(t)

)
(ηlt(t) + ξlt(t), 0, ηlt(t)− ξlt(t))

ξlsc(t) =
√

e2Ht + 1

ηlsc(t) =
±1

8H2

(
±ξlsc(t)

e2Ht
− arccoth ξ(t)

)
(ηlsc(t) + ξlsc(t), 0, ηlsc(t)− ξlsc(t))

ξlsi(t) =
√
−e2Ht + 1

ηlsi(t) =
±1

8H2

(
±ξlsi(t)

e2Ht
+ arctanh ξ(t)

)
(ηlsi(t) + ξlsi(t), 0, ηlsi(t)− ξlsi(t))

−
(
±e−Ht

4H2
± eHt, 0,

±e−Ht

4H2
∓ eHt

)

On the other hand, unlike the case of semi-discrete maximal surfaces of revo-
lution, the profile curves of semi-discrete spacelike spacelike Delaunay surfaces
may come close to lightlike lines asymptotically. So singular edges might appear
around infinity. However, there is no twisted singular edge, where a singular edge
of x is called twisted if ∂x and ∂x1 lie to the opposite sides in a plane (spanned by
∂x, ∂x1,∆∂x) of the straight line containing ∆x.
This observation leads us to the following conjecture:
Conjecture. Semi-discrete CMC surface in R2,1 might come asymptotically close
to a lighlike plane around infinity. On the other hand, there is no twisted singular
edge around infinity.
Finally we conclude this paper with two interesting related problems.



Semi-Discrete Constant Mean Curvature Surfaces of Revolution in Minkowski . . . 201

Problems.

• Like in the smooth case, can we consider associated families of semi-discrete
maximal surfaces? This problem is highly related to the work in [3]. In ad-
dition, is there any Lax representation for semi-discrete CMC surfaces? If
yes, we can also consider their associated families.
• If we can set up the associated families, how do edges of the associated

families corresponding to singular edges of the original semi-discrete max-
imal or CMC surface behave? In particular, in the smooth case, there are
dualities between singularities of a maximal surface and its conjugate sur-
face (see [6] for example). So it is interesting to see whether there are also
dualities between singularities of a semi-discrete maximal surface and its
conjugate surface.
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