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Abstract. This research is motivated by a study of special types of surfaces
of revolution, using methods from differential geometry, elasticity theory and
variational calculus. In particular, we present an elastic membrane model for
the beta barrels in protein biology, via a certain Generalized Willmore type
energy functional. We study the corresponding Euler–Lagrange equation, as
well as a specific boundary value problem whose solutions are Generalized
Willmore surfaces of revolution. We study the corresponding solutions both
theoretically and numerically.
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1. The Generalized Willmore Energy, Elastic Surface Membranes
and Applications to Biology

This paper is based on a previous work [10] published by the present authors. We
provided a model for the energy of secondary structures in proteins, which is a
Willmore-type energy that is similar to the Helfrich energy from the model of lipid
bilayers. We proposed a new model for beta barrels, as solutions of what we call
the Generalized Willmore Equation (GWE). We thereby rejected older models of
beta barrels (like a best-fit by one-sheeted hyperboloids, or twisted hyperboloids)
and we accepted, as a particular and singular case, the catenoidal (minimal) model
for beta barrels. We provided theoretical and experimental arguments in favor of
new models for beta barrels, based on the Willmore-Helfrich type energy.

1.1. Beta Barrels are Rotationally Symmetric Surfaces, But What is the True
Shape of Beta Barrels?

In biochemistry, biophysics and mathematical biology, secondary structures rep-
resent the main types of three-dimensional geometric shapes of local segments of
biopolymers (e.g., proteins and nucleic acids (DNA/RNA). On a finer level - the
atomic positions in three-dimensional space are said to form the tertiary structure.
The secondary structure can be formally defined by the hydrogen bonds of the
biopolymer, as observed in an atomic-resolution structure. In proteins, the sec-
ondary structure is defined by the patterns of hydrogen bonds between backbone
amino and carboxyl groups. In nucleic acids, the secondary structure is defined
by the hydrogen bonding between the nitrogenous bases. The most common sec-
ondary structures are the alpha helices. The second most-common are the beta
sheets and beta barrels. A beta barrel is a collection of beta-sheets that twist and
coil in a shape that can be described as a smooth surface of revolution which re-
sembles a barrel. In this structure, the first strand is hydrogen bonded to the last.
Beta-strands in beta-barrels are typically arranged in an antiparallel fashion. Bar-
rel structures are commonly found in proteins that span cell membranes and in
proteins that bind hydrophobic ligands in the barrel center.
Several models were proposed for beta sheets and beta barrels. Among them, we
recall, in this chronological order: the twisted one-sheeted hyperboloid (see [7],
1984), followed by the usual one-sheeted hyperboloid (see [6], 1988), and much
later, the catenoid as a best-fit (see [5], 2006). Over time, all the above-mentioned
surfaces have been tried as “best models” for beta barrels. We became aware of
the fact that none of these models is satisfactory, for various reasons: for a large
diversity of aminoacids, the mean curvature was experimentally measured and it
turned out to be close to a specific constant, which is small in absolute value, but
not negligible (in particular, far enough from zero). For example, for the following
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Table 1. Mean curvature values of beta barrels for several types of
proteins (from [4]).

Protein Average of mean curvature Standard deviation of mean curvature
Triose phosphate isomerase 0.040 0.021
Taka-amylase 0.035 0.007
Glycolate-oxidase 0.035 0.007
Trimethanolamine dehydrogenase 0.037 0.013
Cytochrome b2 0.033 0.005
Aldolase 0.035 0.112

enzymes: glycolate-oxidase, taka-amylase, and aldolase, the mean curvature H ,
measured experimentally for beta-sheets, is approximately H = 0.039 (for each
of them). Therefore, we have rejected the historical models one-by-one, and we
tried to find answers among constant mean curvature (CMC) surfaces, and further,
among Willmore surfaces. In [4], the authors presented the mean curvature values
for different types of proteins, and are depicted in Table 1.

1.2. The Wilmore Bending Energy versus the Helfrich Energy

Classical differential geometry extensively studied minimal surfaces, which repre-
sent critical points of the Dirichlet energy. Soon after the minimal surface theory
came into place, physicists and mathematicians devoted many studies to constant
mean curvature surfaces, which realize a minimization of the surface area, with
certain volume constraints. These studies did not answer all the questions regard-
ing bending energy.
At the beginning of the 19th century, both Poisson and Sophie Germain proposed
a model based on an energy of type

F = 2kc

∫
M
H2dS

for a solid elastic membrane of generic type, where H and dS represent respec-
tively the mean curvature and the area element of the surface. The constant kc is
called bending modulus by some physicists and engineers. The generic Willmore
energy, by definition, is given as

F =

∫
M
(H2 −K)dS.

Here K represents the Gaussian curvature. Note that the Poisson free energy and
the Willmore energy are very closely related: for a closed surface M , the Gauss-
Bonnet theorem states ∫

M
KdS = 2πχ(M)
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where χ(M) represents the Euler characteristic of the surface, that is a topological
invariant. Further, the Willmore flow was introduced, as the flow corresponding to
the Willmore energy (an L2-gradient flow). Cell membranes tend to position them-
selves as to minimize the Helfrich energy (an extension of the classical Willmore
energy). Actually, cell membranes are not at all a singular case: all the biological
elastic membranes follow the rules of Willmore-type energy minimization, with
or without additional constraints. Therefore, we can affirm that there exist many
Willmore-type energies, leading us to the concept of generalized Willmore energy.
In 1973, Helfrich [3] proposed a model for the lipid bilayers based on a Willmore-
like energy which represented a revolution in the study of cell membranes. Namely,
he deduced the expression for the elastic energy of curvature per unit area of the
membrane, as

gc = (k/2)(2H − Ih)2 + k̄K

where Ih is the so called spontaneous curvature of the membrane surface.
The total bending energy of the membrane is given by the integral∫

M
gc dS.

The spontaneous curvature Ih is due to the “spontaneous splay” of the liquid crys-
tals.
The constant k is the bending rigidity and k̄ is the elastic modulus of the Gauss
curvature K, and it is called by many “the second bending rigidity”. Both these
constants depend on the elastic constants and the thickness of the elastic mem-
brane. This integral is called the Helfrich free energy of lipid bilayers or lipid
membranes. He gave a rigorous proof for these equations, in terms of differential
geometry (two-dimensional differential geometric invariants).
Helfrich and collaborators proposed that the equilibrium shape of a vesicle or red
blood cell membrane be given by the critical point (minimum) of the following
functional

(k/2)

∫
(2H − Ih)2dS +∆P

∫
dV + γ

∫
dS

where k is the bending rigidity of the vesicle membrane, dS is the surface area
element and dV is the volume element. The value ∆P represents the pressure dif-
ference between the inside and outside of the cell membrane, respectively (osmotic
pressure). The value γ represents the tensile stress acting on the surface as surface
tension.
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The variation of the free Helfrich energy is straightforward to compute, and gives
the following equation (its formula and some numerical applications were commu-
nicated by Ou-Yang and Helfrich [8] in 1989)

k∇2
g(2H)− 2γH + k(2H + Ih)(2H2 − IhH − 2K) + ∆P = 0.

Here, the operator ∇2
g is the Laplace operator (which depends on the metric g

adopted on the surface).
Note that this Laplace-type equation is not easy to integrate, due to its high order,
but many numerical solutions have already been computed for different boundary
value problems. Its simplest solutions are the sphere and the circular cylinder,
which in particular are CMC. Helfrich and Deuling provided a classification of
numerically computed shapes, found by minimizing Helfrich’s energy functional.
Along the solutions, we note two exact solutions of great importance: the Clifford
torus and the circular biconcave discoid, explaining the existing shapes of the red
blood cells and other cells.
It is important to remark that boundary value problems for this equation are tractable
as they involve all of the above: normal curvature, geodesic curvature and geodesic
torsion of the boundary curve, summing up to four different equations, called the
shape equation and the boundary conditions of lipid bilayers.

1.3. What is the Equivalent of the Helfrich Energy for Rotationally
Symmetric Beta Barrels?

For micromolecular sheets (secondary structures such as alpha, beta or alpha-beta
sheets), we proposed (see [10]) a model similar to that proposed by Helfrich for
the cell biology. In our model, the term ∆P disappears, and the constant Ih highly
depends on the solvent that is used for the protein molecule. On the other hand, the
backbone (consisting of molecular chains of atoms) imposes an additional “back-
bone strain tensor” which can be represented by a 2×2 diagonal matrix A. Hence,
the strain tensor changes the Helfrich-type equation into an equation of the fol-
lowing type (which we will call Willmore-Helfrich (W-H) equation for secondary
structures in proteins)

k∆g(2H)− 2λH + k(2H +Ih)(2H2− IhH − 2K)+ l(a11k1+a22k2) = 0. (1)

Here, ∆g = ∇2
g represents the Laplace-Beltrami operator with respect to the Rie-

mannian metric g, and k1 and k2 represent the principal curvatures of the surface
M in isothermic coordinates. The coefficients a11 and a22 are the main diagonal
entries of the strain tensor matrix.
An isothermic parameterization is a local surface immersion that is isothermal
(i.e., the induced Riemannian metric has the property g11 = g22 and g12 = 0),
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and at the same time, in curvature-lines (that is, the metric and second fundamen-
tal forms are both diagonal). The categories of surfaces which admit isothermic
parameterizations include but are not limited to: all rotational surfaces and all con-
stant mean curvature surfaces.

In this context, k and l represent bending rigidities, just as in the cell-membrane
models, while λ represents the new notion of tensile stress.

Observe that our recently proposed model is very far from the one-sheeted hyper-
boloid and twisted hyperboloid models, and it is also a lot more general than the
minimal, catenoidal model. We had accepted the experimentally-observed fact that
barrels have rotational symmetry, and we kept the beta sheet model as a surface of
revolution, just as in the previous theories.

So, what are the rotationally-symmetric beta barrels that satisfy our W-H equation
for secondary structures in proteins?

We have studied some of the solutions, both analytically and numerically, and they
include parts (patches) of catenoids and unduloids.

For some types beta barrels, the catenoidal model is a very good model for practical
purposes. But for others, like the CFP model represented in Fig. 1, the Delaunay
unduloids certainly present a more appropriate model. To us, this was naturally
expected for a long time, especially since the mean curvature of beta-barrels is far
enough from zero for the case of many of the enzymes that were studied (e.g., see
our Table 1).

Clearly, catenoids represent the only minimal surfaces of revolution, and in par-
ticular, they are Willmore surfaces. However, the true shape of the beta barrels
consists of generalized Willmore surfaces of revolution. The catenoid is just a par-
ticular solution among all these shapes. One of our open problems under current
investigation is to provide the necessary and sufficient conditions for the boundary
value problem corresponding to a generalized Willmore equation which produces
a perfect catenoid, versus a catenoidal-like H ̸= 0 generalized Willmore surface of
revolution. We would also like to mention a few important studies of the Willmore
energy and related energies, and their multiple applications to physics and biology,
which belong to Mladenov and his collaborators. We are hereby mentioning only a
few of the most recent related articles [9, 11, 12]. As a relevant real-world applica-
tion of high relevance and actuality, observe the model of the beta barrel of green
fluorescent protein in Fig. 1 and remark its unduloidal shape (Delaunay unduloid).
Martin Chalfie, Osamu Shimomura and Roger Y. Tsien were awarded the 2008
Nobel Prize in Chemistry on 10 October 2008 for their discovery and development
of the GFP.
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Figure 1. Beta Barrel of the GFP (green fluorescent protein isolated
from jelly fish) by scientists Martin Chalfie, Osamu Shimomura and
Roger Tsien - Nobel prize recipients (courtesy of the American Asso-
ciation of Clinical Chemistry).

2. The Generalized Willmore Equation

In this section, we introduce the notion of GWE, presented in our own acceptance
and our own terminology. Actually, several recent papers use the term of Willmore-
type energy to designate the Helfrich energy for lipid bilayers, and similar cases,
in which bending rigidities are introduced as multiplicative constants of the mean
curvature H and the Gaussian curvature K, while usually neglecting the superficial
tension of the membranes. In our case, the generalized Willmore energy is a com-
bination between the classical bending energy (Willmore energy) and the energy
due to the superficial tension. The following is a proof of the GWE, in the spirit of
the classical proof given by Willmore for the classical Willmore equation [13].

Theorem 1. Assume M is a compact oriented surface, immersed in R3. Let Ew

be the Generalized Willmore energy functional

Ew =

∫
M

(kH2 + µ) dS (2)

where k = 2kc represents the double of the usual bending rigidity, while µ is the
superficial tension coefficient. Then, the Euler-Lagrange equation of (2) is

∆H + 2(H2 −K − ϵ)H = 0. (3)

In (3), ϵ = µ
k , and ∆H represents the Laplace-Beltrami operator (acting on H) cor-

responding to the naturally induced metric corresponding to the surface immersion
map.
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Proof: The following proof mimics that of Willmore’s equation given in [13]. Let
M has the parametrization r(u1, u2). Then, the unit outward normal N is

N =
ru1 × ru2

|ru1 × ru2 |
=

r1 × r2
|r1 × r2|

where ri =
∂r
∂ui

for i = 1, 2.

Let the components of the Riemannian metric be gij = ⟨ri, rj⟩. Thus the First
Fundamental Form on M is

I =

2∑
i,j

gij du
iduj

and the Second Fundamental Form on M is

II = −⟨dN, dr⟩ =
2∑
i,j

hij du
iduj

where hij = −⟨Ni, rj⟩ = hji and Ni =
∂N
∂ui ·

We denote the inverse of the matrix of (gij) by (gij). Then, the mean curvature
vector H is given by

H =
( 1

2

2∑
i,j

gijhij

)
N.

Further, the surface area element on M is

dS =
√
det(gij) du

1 ∧ du2.

Recall that the equations of Gauss are

rij =
∑

Γk
ijrk + hijN. (4)

In (4), rij = ∂2r
∂ui∂uj and Γk

ij are the classical Christoffel symbols.
The Weingarten equations are

Ni = −
∑

hjirj

where hji = gjkhki.
Let us consider a normal variation of the immersion given by

r̄(u1, u2, t) = r(u1, u2) + tϕ(u1, u2)N

where ϕ is a smooth real-valued function, and t ∈
(
−1

2 ,
1
2

)
. We denote by δ the

operator ∂
∂t

∣∣
t=0

.
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We introduce the following terminology: we say that M is a generalized Willmore
surface if it satisfies the equation

δ

∫
(kH2 + µ) dS = 0. (5)

The normal variation can be written as

δr̄ = ϕN, δri = ϕiN+ ϕNi.

Further

ḡij = ⟨ri + tϕiN+ tϕNi, rj + tϕjN+ tϕNj⟩
= gij + tϕ⟨ri,Nj⟩+ t2ϕiϕj + tϕ⟨Ni, rj⟩+ t2⟨Ni,Nj⟩

that yields the relation

δgij = −ϕ
∑

gikh
k
j − ϕgjkh

k
i = −2ϕhij .

Hence
δgij = 2ϕgjkhik.

Let the area element be W =
√

det(gij). Then

2W
∂W

∂t
=
∑ ∂gij

∂t
W 2gij .

Hence

δW =
∑ 1

2
δgijWgij =

∑ 1

2
(−2ϕWhijg

ij) = −2ϕHW.

Next, we compute δN. Since, ⟨N, ri⟩ = 0, we have

⟨δN, ri⟩+ ⟨N, δri⟩ = 0.

Moreover

⟨δN, ri⟩ = −⟨N, ϕiN+ ϕNi⟩ = −ϕi.

Since ⟨N,N⟩ = 1, we have that ⟨δN,N⟩ = 0. We write δN =
∑

bjrj . Then,

bi = −gijϕj

and hence,

δN = −gijϕjri.

From the Gauss equation, we have

⟨δN, rij⟩ = −⟨gpqϕqrp,Γ
k
ijrk⟩ = −ϕkΓ

k
ij .

We now wish to obtain the formula

⟨N, δrij⟩ = ϕij − ϕhki hjk.



Geometric Models for Secondary Structures in Proteins 291

Observe that

x̄ = x+ tϕN, x̄i = xi + t(ϕNi + ϕiN)

x̄ij = xij + t(ϕijN+ ϕiNj + ϕjNi + ϕNij).

Hence

δrij = ϕijN+ ϕiNj + ϕjNi + ϕNij

which gives

⟨N, δrij⟩ = ϕij + ϕ⟨N,Nij⟩ = ϕij − ϕ⟨Ni,Nj⟩
= ϕij − ϕ⟨hpi rp, h

q
jrq⟩ = ϕij − ϕhikh

k
j c

as required. We recall that ⟨N, rij⟩ = hij . Hence

δhij = ⟨δN, rij⟩+ ⟨N, δrij⟩ = −ϕkΓ
k
ij + ϕij − ϕhki hjk

= ∇i∇jϕ− ϕhki hjk.

Now, at last, apply δ to our integral. We have

δH = δ
( 1

2
gijhij

)
=

1

2

(
δgij

)
hij +

1

2
gij (δhij)

=
1

2
2ϕgjkhikhij +

1

2
gij
(
∇i∇jϕ− ϕhki hkj

)
=

1

2

(
∆ϕ+ ϕhikh

k
i

)
.

The matrix (hik) has as eigenvalues the principal curvatures κ1 and κ2.
Hence

hikh
k
i = trace(h2) = κ21 + κ22 = 4H2 − 2K.

Therefore, we get

2δH = ∆ϕ+ ϕ(4H2 − 2K).

Let us now consider the following first variation

δ

∫
(kH2 + µ) dS =

∫
(2kHδH) dS +

∫
(kH2 + µ)δ(dS).

We further need to take into consideration the formula

δW = −2ϕHW

in which we replace W by dS. Replacing into the first variation on the integral
above, we further obtain∫

(kH2 + µ) δ(dS) =

∫
(kH2 + µ)(−2ϕH) dS.
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Since M is a closed surface, it follows from the Green’s theorem that∫
H∆ϕ dS =

∫
ϕ∆H dS.

Thus, we get

δ

∫
(kH2 + µ) dS =

∫
ϕ
(
k∆H + kH(4H2 − 2K)− 2H(kH2 + µ)

)
dS.

This further gives the following Euler-Lagrange equation (after dividing by the
factor k)

∆H + 2(H2 −K − ϵ)H = 0 (6)

where ϵ = µ
k = µ

2kc
is a positive constant.

�

In a similar way, one can consider the case of a surface (membrane) with pre-
scribed boundary, then consider the generalized Willmore type energy, and obtain
the Euler-Lagrange equation together with the boundary conditions. We obtain that
the condition H = 0 is the natural condition along the boundary

∆H + 2(H2 −K)H − µ

kc
H = 0 on the surface (7)

H|C = 0 on C

which, as before, can be written as

∆H + 2(H2 −K − ϵ)H = 0

where ϵ = µ
2kc

is a positive constant. As before H and K are the mean curvature
and the Gauss curvature of the surface, respectively.

2.1. The Generalized Willmore Equation for a Rotational Surface of
Revolution of Profile u(x)

Consider the GWE

∆H + 2(H2 − k − ϵ)H = 0 (8)

for a surface of revolution that has the parametrization

r(x, φ) = (x, u(x) cosφ, u(x) sinφ)

where u(x) is the profile curve of the surface, and φ is the angle measured from
the xy−plane in the counter clockwise direction. Then the corresponding Laplace-
Beltrami operator is

∆H = ∆gH =
1

u
√
1 + u′2

d

dx

(
u√

1 + u′2
dH

dx

)
. (9)
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Moreover

H =
−u′′

2(1 + u′2)3/2
+

1

2u
√
1 + u′2

(10)

and

K =
−u′′

u(1 + u′2)2
·

Hence, one may express K in terms of the functions H and u, in the following
form

K =
2

u
√
1 + u′2

(
H − 1

2u
√
1 + u′2

)
. (11)

By using (9) and (11), we rewrite (8) to get

d

dx

(
u√

1 + u′2
dH

dx

)
+ 2H(H2 −K − ϵ)u

√
1 + u′2 = 0

d

dx

(
u√

1 + u′2
dH

dx

)
(12)

+2Hu
√
1 + u′2

(
H2 − 2

u
√
1 + u′2

(
H − 1

2u
√
1 + u′2

)
− ϵ

)
= 0

and finally

d

dx

(
u√

1 + u′2
dH

dx

)
+ 2H

(
(H2 − ϵ)u

√
1 + u′2 − 2H +

1

u
√
1 + u′2

)
= 0.

Observe that (10) can be expressed in divergence form as

d

dx

(
−u′√
1 + u′2

)
= 2H − 1

u
√
1 + u′2

· (13)

2.2. Numerical Results and Discussion

In order to obtain numerical solutions to GWE, we apply the commercial software
COMSOL Multiphysics R⃝. This is a finite element analysis, solver and simulation
software (FEA Software package for various physics and engineering applications,
especially coupled phenomena, or multiphysics). COMSOL Multiphysics also of-
fers an extensive interface to MATLAB and its toolboxes for a large variety of
programming, preprocessing and postprocessing possibilities.
There are physics-based modules with augment the core physics interfaces of COM-
SOL Multiphysics and provide additional interfaces for electrical, mechanical,
fluid flow, and chemical applications. COMSOL Multiphysics represents a very
powerful, and highly performant tool for PDEs like the boundary value problems
associated to our GWE.
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In order to use this tool, the GWE equation has to be put in divergence form, or
as close as possible to divergence form. This is what we are performing in the
following.

Recasting the equations (12) and (13), one can obtain

d

dx

(
−u√
1 + u′2

dH

dx

)
− 2H

1

u
√
1 + u′2

= 2H

(
(H2 − ϵ)u

√
1 + u′2 − 2H

)
d

dx

(
−1√
1 + u′2

du

dx

)
= 2H − 1

u
√
1 + u′2

which can be rewritten in the matrix form

∇ ·

(( −u√
1+u′2 0

0 −1√
1+u′2

)
∇u

)
+

( −2
u
√
1+u′2 0

0 0

)
u

=

2H

(
(H2 − ϵ)u

√
1 + u′2 − 2H

)
2H − 1

u
√
1+u′2

 .

Note that, u =

(
H
u

)
.

With our GWE rewritten in this divergence-type matrix form, we are now ready to
use COMSOL Multiphysics as a solver.

By considering the interval [−1, 1], we numerically solve the system of equations
(12) and (13) for the profile curve u(x) with the following boundary conditions

u(±1) = α and H(±1) = 0. (14)

We refer to this boundary value problem as BGWE.

Considering fixed α and fixed ϵ values, profile curves are computed using COM-
SOL Multiphysics software and the corresponding profiles are shown in Figures 4,
5 and 6. Such a boundary value problem was considered for the classical Willmore
surface of revolution by [1]. Remark that these boundary value conditions (of type
Dirichlet and Navier, respectively) were proved to be the most natural conditions
when it came to Willmore surfaces of revolution, by the authors of [1]. These
authors studied some specific surfaces of revolution, using linearization around
the Clifford torus. For the GWE, such a linearization procedure is not applicable
in general. However, COMSOL Multiphysics is a general and powerful tool in
solving any type of boundary value problem that is well-posed, for our GWE or
equations of the same type (highly non-linear) - and not just for the rotationally
invariant solutions of the classical Willmore equation.
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While studying the Dirichlet-Navier boundary value problem for the classical Will-
more equation (case ϵ = 0), COMSOL provides the following one-parameter fam-
ily of solutions (parameterized upon the value of the real parameter α, the “height”
from the Dirichlet boundary condition).
When analyzing the graphs in Fig. 2, one can conclude that this value is close to
1.5 for the case when ϵ = 0. After noting that the first minimal solution appears
around the value α = 1.5, we would like to establish for sure if such a threshold
value exists, and if so, what its exact value would represent from a geometric and
analytic viewpoint.

Figure 2. Solutions H(x) to the BGWE for different α values
of ϵ = 0 (classical Willmore case).

We analytically searched for the smallest value of α = α∗ for which the general-
ized Willmore equation (GWE) admits a minimal solution (that is, with H(x) = 0
identically on the interval [−1, 1]).

Theorem 2. Consider a Cartesian system of axes of coordinates x, y, z in R3 and
the circles C1, C2 of the same radius α, centered at (−1, 0, 0) and (1, 0, 0), situated
in planes orthogonal to the x-axis.
Consider all regular surfaces of revolution of annular-type with boundary C1∪C2.
Assume that among all these surfaces, there exists at least a surface M minimizing
the generalized Willmore energy. This surface in assumed embedded in R3 and
admitting the representation

M := {(x, u(x) cosφ, u(x) sinφ) ; x ∈ [−1, 1], φ ∈ R}
with some function u ∈ C4([−1, 1], (0,∞)).
Then, the surface M is a solution of the following boundary value problem

∆H + 2H(H2 −K − ϵ) = 0 on M where ϵ =
µ

k
(15)

∂M = C1 ∪ C2, H = 0 on ∂M, u(±1) = α. (16)
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Moreover: there exists a positive value α∗ (α∗ ≈ 1.5089) that is independent from
the value of ϵ, such that

a) If 0 < α < α∗, then GWE admits NO minimal solution, that is, any solution
satisfies: H = 0 on ∂M and H ̸= 0 on M \∂M .

b) If α = α∗, then GWE admits exactly one minimal solution (a unique catenoid
that exclusively depends on α∗).

c) If α > α∗, then GWE admits exactly two minimal solutions (two catenoids
whose equations exclusively depend on α).

Proof: The first part of the theorem directly follows from the proof of Theorem 1.
The last part of the theorem, that is, the existence of α∗, follows by analyzing
eventual minimal solutions. Containing: If a minimal solution to this problem
exists, it will have to be a catenoid of the standard type: y(t, x) = cosh t

t , where
t > 0. Due to the endpoint values x = ±1, any such solution must verify the
equation

α =
cosh(t)

t
· (17)

We therefore study the intersections between the graphs of f(t) = cosh t and
g(t) = α t, for every fixed value of the real positive parameter α. Remark that
g(t) = α t represents a pencil of lines, which contains a unique line that is tangent
to f(t) (for α = α∗ ≈ 1.5089) and for values α > α∗ each line in the pencils
intersects f(t) exactly twice.
Therefore, we conclude that we have the following three cases

i) If 0 < α < α∗ = 1.5089, the graphs y(t) = cosh t and y(t) = α t,
respectively have no intersections. Hence, there are no catenoidal solutions
for GWE.

ii) If α = α∗ = 1.5089, the graphs y(t) = cosh t and y(t) = α t exactly one
intersection, at some value t0. Therefore, GWE admits exactly one catenoid
as solution.

iii) If α > α∗ = 1.5089, the graphs y(t) = cosh t and y(t) = α t have exactly
two intersections (at t1 and t2). Therefore, GWE admits two catenoidal
solutions.

�

Further, we would like to analyze the α-family of solutions that corresponds to
various fixed values of ϵ. We were able to construct corresponding families of so-
lutions using COMSOL. It is very important to realize that, due to the nature of
the numerical computations, only one minimal solution will appear in the numer-
ically represented family of solutions (α-flow) (see H = 0 and its corresponding
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(b) Exactly one solution:
α = α∗ ≈ 1.5089
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(c) Two distinct solutions:
α > α∗

Figure 3. Graphs of f(t) = cosh t (Blue) and g(t) = α t (Red)
(in online version).

profile curve u). In the previous theorem, we just proved that at the threshold value
(α = α∗) we always have a minimal solution, while for values larger than the
threshold value α > α∗ we will always have two minimal solutions, correspond-
ing to two different catenoidal profiles. Due to the nature of the numerical flow
of solutions parameterized in time upon the parameter α, only a single catenoidal
profile will be graphed in the flow of numerical solutions (see figures below for
a better understanding on this issue). On the other hand, of course, each solution

(a) H(x)with ϵ = 0.1 (b) u(x)with ϵ = 0.1

(c) H(x)with ϵ = 0.5 (d) u(x)with ϵ = 0.5

Figure 4. Solutions to BGWE as H(x), and corresponding profile
curves u(x) for different α values and for fixed ϵ value.
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(a) H(x)with ϵ = 0.8 (b) u(x)with ϵ = 0.8

(c) H(x)with ϵ = 1 (d) u(x)with ϵ = 1

Figure 5. Solutions to BGWE as H(x), and corresponding profile
curves u(x) for different α values and for fixed ϵ value.

to the BGWE (and in particular each catenoidal solution) can actually be repre-
sented in COMSOL, if we chose the unique value α appropriately, and deal with
the solution branching (in order to graph all corresponding solutions u if that is the
case).

Remark the shapes obtained for the profile u(x) as solutions to BWGE in all the
figures presented in this paper: they resemble either a catenary, or an undulary -
thus generating catenoidal and unduloidal Generalized Willmore surfaces of revo-
lution. Due to the physical nature of our Dirichlet-Navier boundary value problem
for GWE, the nodoidal solutions are absent, but nodoidal solutions would certainly
be present for other types of boundary value conditions of the GWE.

Following our analysis, for each and every value of α that is above α∗, there exist
three distinct solutions, namely two catenoidal profiles and a non-minimal solution
- which could be unstable (that is, not a local minimizer of the energy). Remark that
catenoids represent global minimizers, as Deckelnick and coauthors [2] showed in
a recent paper. For the classical Willmore case ϵ = 0, authors proved that the non-
minimal solution is contained between the two catenoids, and it is unstable. Our
numerical analysis on the stability of the solutions to the GWE is in progress.
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(a) H(x)with ϵ = 0.0 (b) H(x)with ϵ = 0.4

(c) H(x)with ϵ = 0.8

Figure 6. Mean curvature graphs with for ϵ = 0, 0.4, 0.8.
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