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Abstract. Prolongation algebras which are determined by applying a version
of the Wahlquist-Estabrook method to three different nonlinear partial differ-
ential equations can be employed to obtain not only Lax pairs but Bäcklund
transformations as well. By solving Maurer-Cartan equations for the related
group specified by the prolongation algebra, a set of differential forms is ob-
tained which can lead directly to these kinds of results. Although specific
equations are studied, the approach should be applicable to large classes of
partial differential equations.
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1. Introduction

Surfaces which have constant Gaussian curvature are of great interest for a vari-
ety of reasons. There is a correspondence between solutions of certain nonlinear
partial differential equations and manifolds of constant Gaussian curvature. The
types of equations which pertain to constant Gaussian curvature are in fact sinh
and sine-Gordon type equations. These are nonlinear partial differential equations
and possess solutions which will have a solitonic character in general [1, 9, 11].
If a particular solution for one of these equations can be obtained, it can then be
used to obtain a surface in, for example, three space by means of the structure equa-
tions for a two-dimensional manifold [10]. Moreover, by formulating the equations
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with the Gaussian curvature kept as an explicit parameter, it can be thought that a
deformation parameter has been introduced into the picture. Therefore, the pro-
longation algebras will contain a deformation parameter which is directly related
to the Gaussian curvature.

These equations can be analyzed by using a version of the method proposed first
by Wahlquist and Estabrook, and it will simply be summarized at the start [13,14].
The method has been discussed at length already [3,5], so an overview will suffice.
To study the integrability and Bäcklund properties of nonlinear equations, a closed
differential ideal of two-forms is proposed [4, 6]. It has to be shown that the ideal
is closed and it must produce the equation of interest on transversal integral mani-
folds. These forms are then used to obtain Wahlquist-Estabrook prolongations and
the associated prolongation algebra. Based on this differential system, a nontrivial
prolongation structure for the equation is obtained, and it is immediately possible
to write down a Lax pair for the equation as well. What is done here is very similar
to that done in [4], however, the procedure here is modified to a more systematic
form, and new results are obtained as well. Both approaches could be regarded as
applications of Cartan-cocycles [5].

Once the algebra has been formulated, the next step is to give an explicit ma-
trix representation for the elements of the algebra. In terms of these matrices, a
Maurer-Cartan form for the group is defined by means of a set of one-forms to
be determined. This matrix of one-forms is required to satisfy the Maurer-Cartan
equation for the associated group. This yields a differential system for the com-
ponent forms, and it is required to obtain a solution for these component forms
in the subsequent step of the procedure. Any representation which satisfies the
prolongation algebra should suffice. Different representations should lead to other
Bäcklund transformations in the end. However, it is advisable to obtain matrices
as concise as possible so that the resulting differential system is not difficult to
solve. For the cases considered here, solutions to the Maurer-Cartan system can be
constructed explicitly.

The final step is to use these one-forms to create a Bäcklund transformation for
the equation. Based on this Bäcklund transformation, the theorem of permutabil-
ity [7] can be formulated for the equation. This is a kind of algebraic, nonlinear
superposition principle which is used to determine a new solution to the equation
from given solutions. The permutability theorem serves to provide a framework
for generating new multi-soliton solutions for the equation. These can in turn be
used to generate multisoliton surfaces by integrating the corresponding structure
equations [8, Chapter 6]. Although this procedure is illustrated by applying it to
the sine-Gordon equation, it is quite general provided the requisite one-forms can
be produced. It will be shown that it gives a systematic method of obtaining Lax
pairs and Bäcklund transformations for nonlinear equations [2].
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2. Generating Prolongation Algebras

The analysis done here will be relevant to equations which can be written in the
form

uxt = Q(u). (1)

Let M be the differentiable manifold M = R5(x, t, u, p, q) and, in terms of the
coordinates of M , define the following differential system {αi} on this manifold

α1 = du ∧ dx+ q dx ∧ dt, α2 = du ∧ dt− p dx ∧ dt

α3 = dp ∧ dx+ dq ∧ dt, α4 = dp ∧ dx+Q(u) dx ∧ dt.
(2)

For the cases investigated here, the function Q(u) will be continuously differen-
tiable with respect to u. The exterior derivatives of the forms αi in (2) can be
calculated and expressed as

dα1 = −dx ∧ dq ∧ dt = −α3 ∧ dx, dα2 = −dp ∧ dx ∧ dt = −α3 ∧ dt

dα3 = 0, dα4 = Q′(u) du ∧ dx ∧ dt = Q′(u)α1 ∧ dt.
(3)

Therefore, the ideal is closed and by the Frobenius theorem, {αi} is integrable. Let
S be a section of the projection π : M → R2 so that π(x, t, u, p, q) = (x, t). The
transversal integral manifolds are given by

S(x, t) = (x, t, u(x, t), p(x, t), q(x, t)). (4)

By working out S∗αi, the expression S∗αi = 0 implies that the relations ut = q,
ux = p and pt = Q(u) hold on transverse integral manifolds specifying solutions
to (1). To introduce prolongation variables y, define the fiber bundle M̃ =M×Rk,
where Rk carries coordinates y = (y1, · · · , yk). A vertical valued one-form is then
defined as

ηi = F i(x, t, u, p, q,y) dx+Gi(x, t, u, p, q,y) dt. (5)

The prolongation condition requires that the expression (dη+ 1
2 [η, η])

i be express-
ible as a linear combination of the forms in (2) so that

(dF ∧ dx+ dG ∧ dt+ [F,G] dx ∧ dt) =

4∑
j=1

τjα
j . (6)

Substituting (2) and then comparing the coefficients of the two-forms on both sides
of (6), the following system of differential constraints is obtained

Fu = τ1, Fp = τ3 + τ4, Fq = 0, Gu = τ2, Gp = 0, Gq = τ3
(7)

−Ft +Gx + [F,G] = τ1q − τ2p+ τ4Q(u).
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The subscripts indicate partial differentiation with respect to the indicated vari-
ables. Eliminating the set of τi from equations (7), they are found to reduce to

Fq = 0, Gp = 0, [F,G] = Fuq −Gup+ (Fp −Gq)Q(u). (8)

The first two equations imply that F = F (u, p,y) and G = G(u, q,y). The
dependence on the yi variables can be pushed into the noncommuting variables.
Let G = G(u), so that the left-hand side of the last equation in (8) is independent
of q. This forces Fu = 0 and it suffices to take

F = X1 + pX2, G = G(u) (9)

where theXi will be found to satisfy some set of brackets that constitute an algebra.
The remaining equation of (8) then becomes

[X1 + pX2, G] = −Gu p+Q(u)X2. (10)

Equating coefficients of the variable p on both sides of (10), it is found that the
following pair of brackets must hold

[X1, G] = Q(u)X2, [X2, G] = −Gu. (11)

To make further progress in completing the definition of an algebra, it is necessary
to specify a form for the function Q(u) in (11).

3. Exponential Equation

First, an equation which is specified by taking Q(u) = feu in (11) will be dis-
cussed. Here, f is a nonzero real constant. It suffices to take G = euX3, and (11)
consists of an algebra which is made up of two brackets

[X1, X3] = fX2, [X2, X3] = −X3. (12)

Substituting G into (9), the following result holds [5].

Theorem 1. A Lax pair for the equation

uxt = feu (13)

can be expressed in terms of the elements Xi of algebra (12) as

yx = −(X1 + uxX2)y, yt = −euX3y. (14)

The system in (14) holds irrespective of the particular representation taken for the
Xi provided they satisfy the algebra (12).

Proof: The compatibility condition for (14) is given by

−uxtX2 + eu[X1, X3] + uxe
u[X2, X3] + uxe

uX3 = 0.

Substituting (12), this expression holds provided that u is a solution of equation
(13). �
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Following the outline in the introduction, let us write down a specific representation
of (12) in terms of 2 × 2 matrices. This need not be unique and the following set
will suffice

X1 =

(
1 0
f

2
1

)
, X2 =

1

2

(
−1 0
0 1

)
, X3 =

(
0 1
0 0

)
. (15)

A Maurer-Cartan form corresponding to (14) can now be written down. Substitut-
ing representation (15) we obtain

ω = ωiXi =

ω1 −
1

2
ω2 ω3

f

2
ω1 ω1 +

1

2
ω2

 . (16)

The forms ωi can be determined, by requiring that the forms ω satisfy the Maurer-
Cartan equation

dω + ω ∧ ω = 0. (17)

This equation is equivalent to the following differential system

dω1 −
1

2
dω2 +

f

2
ω3 ∧ ω1 = 0, dω3 + ω3 ∧ ω2 = 0

dω1 +
1

2
dω2 +

f

2
ω1 ∧ ω3 = 0, dω1 − ω1 ∧ ω2 = 0.

(18)

Only one solution to (18) is required to produce a Bäcklund tranformation. It can
be shown by substituting that the following set of one-forms constitutes a solution
to (18)

ω1 = dx, ω2 = ux dx, ω3 = dx+ eu dt. (19)

It will be shown that a Bäcklund transformation for the equation can be constructed
based on a form with a Riccatti structure, namely

dψ = ω3 + ω2ψ − 1

2
fω1ψ

2. (20)

Theorem 2. There exists a Bäcklund transformation for the equation uxt = feu

which has the following form

ψx = 1 + uxψ − λ

2
fψ2, ψt =

1

λ
eu. (21)

In (21), λ is a spectral parameter.

Proof: Substituting the forms (19) into (20) and writing dψ = ψx dx + ψt dt,
system (21) appears immediately without the spectral parameter. The spectral pa-
rameter can be included by placing it near the constant f , which is not a spectral
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parameter. To verify the compatibility condition, the required derivatives are given
by

ψxt = uxtψ +
1

λ
uxe

u − λfψ
1

λ
eu, ψtx =

1

λ
euux. (22)

Thus the compatibility condition reduces to uxtψ+ 1
λuxe

u−feuψ = 1
λe

uux. This
is independent of the spectral parameter and is proportional to the desired equation,
so the compatibility condition holds provided u satisfies equation (13). �

4. The Sine-Gordon Equation

The next equation to be considered is obtained by taking Q(u) = f sinu in (1),
where f > 0 is a real constant. This gives the sine-Gordon equation

uxt − f sinu = 0. (23)

In an application of (23) to surfaces, f can be related to the absolute value of the
Gaussian curvature of the surface [4]. This equation has already been considered
[4], and a Lax pair was presented, however here the results will be obtained by
means of a different approach. A closed algebra for the Xi can be obtained by
taking G = X1 cosu + f X3 sinu in (11). Substituting Q(u) and G(u) into (11)
and identifying the coefficients of sinu and cosu on both sides, the following
algebra is obtained

[X1, X3] = X2, [X1, X2] = fX3, f [X2, X3] = X1. (24)

The Xi in (24) can be said to make up a deformed sl(2,R) algebra. A representa-
tion in terms of the following 2× 2 matrices exists of the form

X1 =

√
f

2

(
0 −1

−1 0

)
, X2 =

1

2

(
0 1

−1 0

)
, X3 =

1

2
√
f

(
1 0
0 −1

)
. (25)

At this point, three one-forms ωi are introduced in order to define a Maurer-Cartan
form for the group of (24). It is described by the following matrix of one-forms

ω =
1

2


1√
f
ω1 −

√
fω2 + ω3

−
√
fω2 − ω3 − 1√

f
ω1

 . (26)

It is now required that matrix (26) be required to satisfy (17). The matrix obtained
from (17) is composed of the following collection of equations

1√
f
dω1 +

1

2
(
√
fω2 − ω3) ∧ (

√
fω2 + ω3) = 0

−
√
fdω2 + dω3 +

1

2
√
f
ω1 ∧ (−

√
fω2 + ω3) +

1

2
√
f
(
√
fω2 − ω3) = 0 (27)
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−
√
fdω2 − dω3 −

1

2
√
f
(
√
fω2 + ω3) ∧ ω1 +

1

2
√
f
ω1 ∧ (

√
fω2 + ω3) = 0.

Simplifying and taking linear combinations of the second and third equations in
(27), system (27) simplifies to the following differential system

dω1+ fω2 ∧ω3 = 0, −fdω2+ω1 ∧ω3 = 0, dω3−ω1 ∧ω2 = 0. (28)

It suffices to obtain one nontrivial solution to these equations. One solution which
is not complicated is given by

ω1 =
√
f sinudt, ω2 =

√
f dx+

1√
f
cosudt, ω3 = ux dx. (29)

This solution can be verified by calculating the derivatives and substituting into
system (28).
A Bäcklund transformation for (23) can be obtained using solution (29) by defining
a one-form dψ as a linear combination of the ωi in (29)

dψ = aω3 − b sinψ ω1 − c cosψω2. (30)

The real constants a, b, c appearing in (30) can be determined by working out the
compatibility condition ψxt − ψtx = 0. The presence of the parameter f in the
solution makes it very clear how to include a Bäcklund parameter into the results.

Theorem 3. A Bäcklund transformation for (23) exists of the form

ψx = ux − λf cosψ, ψt = − 1

λ
sinu sinψ − 1

λ
cosu cosψ (31)

where λ is a spectral parameter.

Proof: Differentiating both expressions in (31) there results the second derivatives

ψxt = uxt + λf sinψψt

ψtx = − 1

λ
ux cosu sinψ− 1

λ
sinu cosψψx +

1

λ
ux sinu cosψ+

1

λ
cosu sinψψx.

The compatibility condition then reduces to

uxt −f sinu sin2 ψ − f cosu cosψ sinψ +
1

λ
ux cosu sinψ +

1

λ
sinu cosψux

−f sinu cos2 ψ − 1

λ
ux sinu cosψ − 1

λ
ux cosu sinψ + f cosu sinψ cosψ

= uxt − f sinu.

The spectral parameter is not present at the end and what remains is exactly the
equation (23) which vanishes on solutions. �
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5. The Sinh-Gordon Equation

The last equation to be considered is the one in which Q(u) = g sinhu. In (1) this
gives

uxt − g sinhu = 0. (32)

Here, g is a positive real constant which can be related to the Gaussian curvature of
a surface in a geometric application. It was also determined in [4] that (42) admits
the following prolongation algebra given as

[X1, X3] = X2, [X1, X2] = gX3, g[X2, X3] = −X1. (33)

An explicit representaion for the algebra in (33) in terms of 2× 2 matrices is given
as

X1 =

√
g

2

(
0 −1

−1 0

)
, X2 =

i

2

(
0 1

−1 0

)
, X3 =

i

2
√
g

(
1 0
0 −1

)
. (34)

Introducing again a set of one-forms ωi, the following Maurer-Cartan form ω can
be constructed

ω =
1

2


i

√
g
ω1 −√

gω2 + iω3

−√
gω2 − iω3 − i

√
g
ω1

 . (35)

The Maurer-Cartan equation (17) can be written down by substituting the matrix
(35). By taking suitable linear combinations of the matrix elements, the following
differential system results

dω1 + gω2 ∧ ω3 = 0, gdω2 + ω1 ∧ ω3 = 0, dω3 − ω1 ∧ ω2 = 0. (36)

To illustrate a procedure for obtaining a solution to (36) which need not be unique,
it will be shown that there exists classes of solutions of the following form

ω1 = b1 sinhudt, ω2 = (b2 + b3ux)dx+ b4 coshudt
(37)

ω3 = (b5 + b6ux) dx+ b7 coshu dt.

To obtain the unknown coefficients bi in (37), substitute the forms (37) into the
differential system (36). The equations in (36) hold provided the bi satisfy the
following equations

b1 + gb3b7 − gb4b6 = 0, b2b7 − b4b5 = 0, b1b5 − g2b3 = 0

gb4 − b1b6 = 0, b1b2 − gb6 = 0, b7 + b1b3 = 0.
(38)

There are several different general solutions to (38), however, only one is given
b1, b2 = ± g

b1

√
1− gb23, b3, b4 = b1

g

√
1− gb23, b5 = − b3

b1
g2, b6 = ±

√
1− gb23,
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b7 = −b1b3. Setting b1 = 1 and b3 = 0 in this solution leads to the following
system of one-forms of the form (37)

ω1 = sinhudt, ω2 = g dx+
1

g
coshudt, ω3 = ux dx. (39)

Finally, a Bäcklund transformation for (32) will be obtained by means of solution
(39) by means of the following linear combination of ωi

dψ = aω3 + b sinhψω1 + c coshψ ω2 (40)

where again a, b and c are real constants to be determined by the compatibility
relation.

Theorem 4. Equation (32) admits a Bäcklund transformation of the form

ψx = ux − λg3/2 coshψ, ψt = − 1

λ
√
g
sinhψ sinhu+

1

λ
√
g
coshψ coshu

(41)
where λ is a spectral parameter.

Proof: The compatibility condition for system (41) takes the form

uxt + g sinh2 ψ sinhu− g cosh2 ψ sinhu− g sinhψ coshψ coshu

+
1

λ
√
g
ux coshu sinhu+

1

λ
√
g
ux sinhψ coshu− 1

λ
√
g
ux sinhψ coshu

+ g sinhψ coshψ coshu− 1

λ
√
g
ux coshψ sinhu = 0.

The left-hand side simplifies to exactly (32) and clearly holds on its solutions. �

6. Formulation of the Theorem of Permutability

The theorem of permutability will be formulated for each of the equations pre-
sented, and for clarity the details will be shown for the first two.
1) Using Bäcklund transformation (21), from Theorem 3.2, two solutions (u0, u1)
of equation (13) can be related by using a Bäcklund parameter λ1 by means of the
first equation in (21). Next solution u1 can be related to another solution u12 by
means of Bäcklund parameter λ2. This produces the following set of equations

u1,x = 1 + u0,xu1 −
1

2
λ1fu

2
1, u12,x = 1 + u1,xu12 −

1

2
λ2fu

2
12. (42)

This procedure is repeated with the same Bäcklund parameters but in reverse order
beginning with u0 and arriving at a solution u21 giving

u2,x = 1 + u0,xu2 −
1

2
λ2fu

2
2, u21,x = 1 + u2,xu21 −

1

2
λ1fu

2
21. (43)
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The theorem of permutability requires that the functions satisfy u12 = u21 = U .
Solving (42) and (43) for Ux and equating, we obtain

(1 + u0,xu1 −
1

2
λ1fu

2
1)U − 1

2
λ2fU

2 = (1 + u0,xu2 −
1

2
λ2fu

2
2)U − 1

2
λ1fU

2.

The derivatives u1,x and u2,x have been substituted as well. Finally, solving this
for the function U , the following transform is obtained

U =
1

λ1 − λ2

( 2
f
(u2 − u1)u0,x − (λ2u

2
2 − λ1u

2
1)
)
. (44)

2) From Bäcklund transformation (31) in Theorem 4.1, two solutions of equation
(23) (u0, u1) can be linked by means of a Bäcklund parameter λ1 using the first
equation in (31). Next, solution u1 can be linked to a solution u12 using the Bäck-
lund parameter λ2. The following sequence u0 → u1 → u12 results, as well as the
equations

(u1 − u0)x = −λ1f cosu1, (u12 − u1)x = −λ2f cosu12. (45)

Repeating this procedure with these same parameters but in reverse order starting
from u0, the solution u21 is obtained corresponding to the sequence u0 → u2 →
u21. This gives the differential relations

(u2 − u0)x = −λ2f cosu2, (u21 − u2)x = −λ1f cosu21. (46)

The theorem of permutability demands again that u12 = u21 = U hold. Adding
(45) and (46) pairwise yields the following system with µi = fλi,

(U − u0)x = −µ1 cosu1 − µ2 cosU, (U − u0)x = −µ1 cosU − µ2 cosu2.
(47)

Since the left-hand sides of (47) are identical, the two expressions on the right can
be equated producing an equation for cosU . Solving the result for cosU , it is
found that

cosU =
λ2 cosu2 − λ1 cosu1

λ2 − λ1
· (48)

3) The transformations for the remaining equation (32) can be calculated following
the same steps as in 2) using (41) in Theorem 5.1. The result is summarized as
follows

coshU =
λ2 coshu2 − λ1 coshu1

λ2 − λ1
· (49)

Results (44), (48) and (49) relate corresponding solutions of their respective non-
linear equations.
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7. Summary

A brief review of a method for producing prolongation algebras has been presented.
The procedure starts by picking an exterior differential system such that it is closed
and the specific equation is produced on transverse integral manifolds. It is shown
in detail how this prolongation algebra can be used to construct a Maurer-Cartan
form for the associated group. By selecting a specific representation for the alge-
bra, a differential system can be obtained which is then solved for a set of basic
one-forms. It is this part that may present most difficulties since the resulting dif-
ferential system must be concise enough to admit a reasonable solution for the set
of one-forms. Finally, a procedure which makes use of these forms to determine a
Bäcklund transformation for the equation has been given.
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