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Abstract. Starting from the Moyal product on eight-dimensional canonical
Euclidean phase space T ∗R4 with an S1-symplectic action, we construct a
non-formal star product, i.e., the deformation parameter is a real number, on
the cotangent bundle of three-dimensional Euclidean space except the origin
T ∗(R3\{0}) which is the reduced symplectic manifold by the S1-action.

1. Introduction

In this paper we construct a non-formal star product on the phase space of the
MIC-Kepler problem T ∗(R3\{0}). The phase space is equipped with a symplectic
structure given as a sum of the canonical symplectic structure and the closed two
form of the configuration space which represents the Dirac’s magnetic monopole.
The product is given by an S1 reduction from the Moyal product on the cotangent
bundle T ∗R4.
Fedosov [2] gives a general formula for the reduction of star products for the case
of formal deformation quantization. However, the situation is quite different when
we treat the deformation parameter non formal. Most of techniques used in the
formal star product case are not useful to the non-formal star product problems.
MIC-Kepler problem was proposed by McIntosh and Cisneros [9], which is a dy-
namical system describing a motion of an electron in the hydrogen atom under the
influence of Kepler potential and the Dirac’s magnetic monopole field.
The MIC-Kepler problem is formulated in terms with S1 reduction by Iwai-Uwano
[3, 4]. On the cotangent bundle T ∗(R4\{0}) the conformal Kepler problem is
given and then the MIC-Kepler problem is obtained by the S1-reduction. The
classical system was investigated in [3] and the quantum version was studied in
[9–11] where the eigenvalues and the multiplicities were calculated.
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The quantized MIC-Kepler problem is considered in terms of the Moyal product
on the cotangent bundle T ∗(R4\{0}) in Kanazawa-Yoshioka [5], Kanazawa [6,7].
In [5], the star eigen values and the multiplicities are calculated by means of the
conformal Kepler problem and are found to be the same as the values given in
[4]. Although these quantities are calculated by means of the Moyal product on
the original phase space T ∗(R4\{0}), the relationship is still unclear between the
Moyal star eigen functions on the original space and the S1-reduced star product
obtained in this paper. We will study the star eigenvalue problem with respect to
the S1-reduced star product in future.

2. MIC-Kepler Problem

McIntosh and Cisneros [9] studied the dynamical system describing the motion
of a charged particle under the influence of Dirac’s monopole field besides the
Coulomb’s potential. Iwai-Uwano [3] give the Hamiltonian description for the
MIC-Kepler problem as follows.
We consider a closed two form Ω on Ṙ3 = R3\{0}

Ω = (x1 dx2 ∧ dx3 + x2 dx3 ∧ dx1 + x3 dx1 ∧ dx2)/r
3

where r =
√
x21 + x22 + x23 . We consider the cotangent bundle T ∗Ṙ3 and a sym-

plectic form

σµ = dξ1 ∧ dx1 + dξ2 ∧ dx2 + dξ3 ∧ dx3 +Ωµ

where (x, ξ) = (x1, x2, x3, ξ1, ξ2, ξ3) ∈ T ∗Ṙ3 and the two-form Ωµ ≡ −µΩ
stands for Dirac’s monopole field of strength−µ ∈ R. Then the MIC-Kepler prob-
lem is given as the triple (T ∗Ṙ3, σµ , Hµ ) where Hµ is the Hamiltonian function
such that

Hµ (x, ξ) =
1

2

(
ξ21 + ξ22 + ξ23

)
+
µ2

2r2
− k

r
and k is a positive constant.

3. Reduction

In this section, we recall the method of the S1-reduction which reduces the con-
formal Kepler problem on T ∗Ṙ4 to the MIC-Kepler problem on T ∗Ṙ3 given in
Iwai-Uwano [3].

3.1. S1 Action

The space R4 is naturally identified with C2 which yields the diffeomorphism Φ of
T ∗R4 to T ∗C2 = C4 such that

Φ : T ∗R4 ∋ (y1, y2, y3, y4, η1, η2, η3, η4) 7→ (z1, z2, ζ1, ζ2) ∈ C4
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where

z1 = y1 + iy2, z2 = y3 + iy4, ζ1 = η1 + iη2, ζ2 = η3 + iη4. (1)

With this identification the Euclidean inner product of R4 is written in C2 as

⟨z, z′⟩ = ℜ z · z̄′ = (z1z̄
′
1 + z2z̄

′
2 + z̄1z

′
1 + z̄2z

′
2)/2.

Also the canonical one-form θ on T ∗R4 in these coordinates is

θ(z, ζ) = ⟨ζ, dz⟩.

Now we define an S1 action on Ṙ4 = R4\{0} = Ċ2 by z 7→ eitz which induces
the action on the cotangent bundle T ∗Ṙ4

φt : (z, ζ) 7→ (eitz, eitζ).

We remark here t (0 ≤ t < 2π) replaces t/2 (0 ≤ t/2 < 2π) used in [3] as a
parameter. The induced action φt preserves the canonical one form θ and then is
an exact symplectic action. The induced vector field v(z, ζ) on T ∗Ṙ4 of the action
is

v(z, ζ) = (iz, iζ)

and
ψ(z, ζ) = ιvθ(z, ζ) = ⟨ζ, iz⟩ = ℑ ζ · z̄ = (ζ · z̄ − ζ̄ · z)/2i

is a moment map ψ of the action.

3.2. S1 Reduction

Now we consider a level set of the moment map ψ−1(µ) for µ ∈ R. We apply
the Marsden-Weinstein reduction procedure to the S1-bundle πµ : ψ−1(µ) →
ψ−1(µ)/S1. Then we obtain the reduced symplectic manifold (ψ−1(µ)/S1, σµ)

such that ι∗µdθ = π∗µσµ, where ιµ : ψ−1(µ)→ T ∗Ṙ4 is the inclusion map.

We will show that the reduced symplectic manifold (ψ−1(µ)/S1, σµ) is realized
as the phase space of the MIC-Kepler problem (cf. [3]).
The S1 action induces the projection

π : Ṙ4 → Ṙ3, π(z1, z2) = (x1, x2, x3)

where
x1 = ℜ 2z1z̄2, x2 = ℑ 2z1z̄2, x3 = |z1|2 − |z2|2.

We introduce a riemannian metric g(z) on Ṙ4 such that

g(z)(Z1, Z2) = 4|z|2⟨Z1, Z2⟩, Z1, Z2 ∈ TzṘ4
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and a riemannian metric g0 on Ṙ3 as the canonical Euclidean inner product. By
means of the riemannian metric g, we identify the cotangent bundle with the tan-
gent bundle

# : T ∗Ṙ4 → T Ṙ4, (z, ζ) 7→ (z, Z) = (z, ζ/4|z|2) (2)

and by g0, we identify T ∗Ṙ3 with T Ṙ3, i.e.,

#0 : T
∗Ṙ3 → T Ṙ3.

Using the identification maps #,#0 and the projection dπ : T Ṙ4 → T Ṙ3 we
define a map

π̃ = (#0)
−1 ◦ dπ ◦# : T ∗Ṙ4 → T ∗Ṙ3. (3)

0 Now we write the map π̃(z, ζ) = (x, ξ) explicitly. Let us introduce an orthonor-
mal frame of Tz Ṙ4 at every z ∈ Ṙ4 with respect to the riemannian metric g such
that

Ξ1(z) = (z2, z1)/2|z|2, Ξ2(z) = (iz2,−iz1)/2|z|2

Ξ3(z) = (z1,−z2)/2|z|2, Ξ4(z) = (iz1, iz2)/2|z|2.

The frame is equivariant under the S1 action

Ξj(e
itz) = eitΞj(z), j = 1, · · · , 4

and satisfies
∂/∂x1 = π∗zΞ1(z), ∂/∂x2 = π∗zΞ2(z)

∂/∂x3 = π∗zΞ3(z), 0 = π∗zΞ4(z).

Using the frame we write an element (z, Z) ∈ T Ṙ4 as a linear combination of Ξj

Z = α1Ξ1(z) + α2Ξ2(z) + α3Ξ3(z) + α4Ξ4(z) (4)

where
αj = g(Z,Ξj(z)) = 4|z|2⟨Z,Ξj(z)⟩, j = 1, · · · , 4. (5)

Then substituting (2) into (5) shows

Proposition 1. The components of the map defined by (3) π̃(z, ζ) = (x, ξ) are
written explicitly as

x1(z) = ℜ 2z1z̄2, x2(z) = ℑ 2z1z̄2, x3(z) = |z1|2 − |z2|2

and

ξ1(z, ζ) = ⟨ζ,Ξ1(z)⟩, ξ2(z, ζ) = ⟨ζ,Ξ2(z)⟩, ξ3(z, ζ) = ⟨ζ,Ξ3(z)⟩.

Moreover the moment map ψ is written as

ψ(z, ζ) = α4(#(z, ζ)) = ⟨ζ,Ξ4(z)⟩.
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Now we will write the reduced phase space (ψ−1(µ)/S1, σµ) using these notations.
We set

M0 = ψ−1(µ).

By means of the decomposition (4), the identifications # : T ∗Ṙ4 → T Ṙ4 and
#0 : T

∗Ṙ3 → T Ṙ3 give a diffeomorphism τ (cf. Fedosov [2]) such as

Lemma 1.
τ : T ∗Ṙ4 →M0 × R, τ(z, ζ) = ((z, ζ0), s)

where (z, ζ0) ∈M0 such that

ζ0 = 4|z|2 {⟨ζ,Ξ1(z)⟩Ξ1(z) + ⟨ζ,Ξ2(z)⟩Ξ2(z) + ⟨ζ,Ξ3(z)⟩Ξ3(z)}+ 2µΞ4(z)

and
s = ψ(z, ζ)− µ.

Through this isomorphism the S1 action on T ∗Ṙ4 is transformed on M0 × R as

φt : ((z, ζ0), s) 7→ ((eitz, eitζ0), s)

and the projection π̃ in Porposition 1 yields a projection map

π̃ :M0 → T ∗Ṙ3, π̃(z, ζ0) = (x, ξ)

such that

ξ1 = ⟨ζ0,Ξ1(z)⟩, ξ2 = ⟨ζ0,Ξ2(z)⟩, ξ3 = ⟨ζ0,Ξ3(z)⟩.

The canonical one form is written on M0 × R as

(τ−1)∗θ = π̃∗θ̃ + (µ+ s)γ(z)

where θ̃ is the canonical one form on T ∗Ṙ3 and

γ(z) = ⟨dz, iz⟩/|z|2 = ℑ z̄ · dz/|z|2.

By a direct calculation we have

Lemma 2. dγ(z) = π∗Ω, where

Ω = (x1 dx2 ∧ dx3 + x2 dx3 ∧ dx1 + x3 dx1 ∧ dx2)/2r
3

is the closed two-form on Ṙ3 given in the introduction.

Thus we have

Theorem 1. ([3]) The reduced phase space (ψ−1(µ)/S1, σµ) is isomorphic to the
symplectic manifold (T ∗Ṙ3, σµ ) such that ι∗µdθ = π∗µσµ, where

σµ = dθ̃ +Ωµ = dξ1 ∧ dx1 + dξ2 ∧ dx2 + dξ3 ∧ dx3 + Ωµ.



An S1-Reduction of Non-Formal Star Product 167

4. Star Product on (T ∗Ṙ3, σµ )

We will construct a star product (cf. [1]) for (T ∗Ṙ3, σµ ), namely, an associative
product ∗µ for polynomials f̃(x, ξ), g̃(x, ξ) such that

f̃(x, ξ) ∗µ g̃(x, ξ) = f̃(x, ξ)g̃(x, ξ) + i~
2

{
f̃(x, ξ), g̃(x, ξ)

}
µ

+ · · ·+ ~nCn(f̃(x, ξ), g̃(x, ξ)) + · · ·

where ~ is a positive constant, {·, ·}µ is the Poisson bracket given by the symplectic
form σµ and Cn, n = 2, 3, . . . are bidifferential operators.
We will obtain ∗µ by means of the S1 reduction of T ∗Ṙ4.

4.1. The Moyal Product on T ∗Ṙ4

On T ∗Ṙ4, the canonical coordinate (y, η) defines the Moyal product ∗0 which is
expressed in terms with (z, ζ) of the identification (1) such that

f ∗0 g(z, ζ) = f(z, ζ) exp(~D)g(z, ζ)

= f(z, ζ)

∑
n≥0

1
n!(i~)

nDn

 g(z, ζ)

(6)
= f(z, ζ)g(z, ζ) + i~ {f(z, ζ), g(z, ζ)}

+ · · ·+ 1
n!(i~)

nf(z, ζ)(Dn)g(z, ζ) + · · ·
where {f(z, ζ), g(z, ζ)} is the Poisson bracket of the canonical symplectic form θ

on T ∗Ṙ4 and Dn is the nth power of the Poisson biderivation

D =
←−
∂ z ∧

−→
∂ ζ̄ +

←−
∂ z̄ ∧

−→
∂ ζ , f(z, ζ)Dg(z, ζ) = {f(z, ζ), g(z, ζ)} .

The generators zj , z̄j , ζk, ζ̄k (j, k = 1, 2) satify the commutation relations of the
Moyal product

[zj , ζ̄k] = [z̄j , ζk] = 2i~δjk
and other commutators are equal to zero.

4.2. Algebra

We consider the components of the projection given in Proposition 1

x1 = x1(z), x2 = x2(z), x3 = x3(z)

ξ1 = ξ1(z, ζ), ξ2 = ξ2(z, ζ), ξ3 = ξ3(z, ζ).

These are functions defined on T ∗Ṙ4. We see easily by direct calculation
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Proposition 2. The Moyal product ∗0 for the functions xj(z), ξj(z, ζ), j = 1, 2, 3
are as follows

1. xj(z) ∗0 xk(z) = xj(z)xk(z)

2. ξj(z, ζ) ∗0 xk(z) = ξj(z, ζ)xk(z)− i~
2 δjk

xk(z) ∗0 ξj(z, ζ) = ξj(z, ζ)xk(z) +
i~
2 δjk

3. ξj(z, ζ) ∗0 ξk(z, ζ) = ξj(z, ζ)ξk(z, ζ)− ϵjkl i~4
xl(z)
|z|6 ψ(z, ζ) +

~2
4

xj(z)xk(z)
|z|8 ·

Also for the moment map ψ(z, ζ) we have ψ(z, ζ) ∗0 xj(z) = ψ(z, ζ)xj(z),
ψ(z, ζ) ∗0 ξj(z, ζ) = ψ(z, ζ)ξj(z, ζ).

Proposition 2 gives

Proposition 3. The commutation relations of the functions xj(z), ξj(z, ζ), j =
1, 2, 3 are

[xj(z), xk(z)]∗0 = 0, [ξj(z, ζ), xk(z)]∗0 = −i~δjk
[ξj(z, ζ), ξk(z, ζ)]∗0 = −ϵjkl i~2

xl(z)
|z|6 ψ(z, ζ)

and ψ commutes with xj(z), ξj(z, ζ), (j = 1, 2, 3) where [f, g]∗0 = f ∗0 g−g∗0 f
is the commutator with respect to the multiplication ∗0 .

In what follows, we will give an algebra of functions on T ∗Ṙ4 under the Moyal
product ∗0 . For a smooth function a(x) = a(x1, x2, x3) on T ∗Ṙ3, we substitute
functions xj = xj(z), (j = 1, 2, 3) to obtain a smooth function a(x(z)) on T ∗Ṙ4.
We consider an element of the form

f =
∑

j,k,l,m≥0

ajklm(x(z)) ∗0 ψ(z, ζ)j∗ ∗0 ξ1k∗ ∗0 ξ2l∗ ∗0 ξ3m∗ (7)

where the summation is a finite sum

ξ1
k
∗ = ξ1(z, ζ) ∗0 · · · ∗0 ξ1(z, ζ)︸ ︷︷ ︸

k

, etc., and ajklm(x) ∈ C∞(T ∗Ṙ3).

Let us consider a subset A ⊂ C∞(T ∗Ṙ4) such that

A = {f ∈ C∞(T ∗Ṙ4) ; f is of the form (7)}.
Then using the commutation relation we can show that for any f, g ∈ A, the
multipilcation f ∗0 g also belongs to A, namely and we have

Proposition 4. The set A becomes an associative algebra under the multiplication ∗0 .

Remark 2. By calculating the Moyal product ∗0 and relations in Proposition 2,
we see easily that an element of A can be written in the form

fc =
∑

j,k,l,m≥0

ajklm(x(z))ψ(z, ζ)j ξk1 (z, ζ) ξ
l
2(z, ζ) ξ

m
3 (z, ζ) (8)
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where the multiplication is the usual multiplication of functions. Hence it is obvi-
ous that A is just the set

P = {fc ∈ C∞(T ∗Ṙ4) ; fc is of the form (8)}.

4.3. Expression by Complete Symmetrization

In order to obtain the reduced algebra by the S1-reduction, we consider the ex-
pression of elements of A by means of the complete symmetrization. For an el-
ement of A such as Q = a(x(z)) ∗0 ψ(z, ζ)j∗ ∗0 ξ1k∗ ∗0 ξ2

l
∗ ∗0 ξ3

m
∗ , we take

the complete symmetrization in the following way. We regard this element as a
monomial of the generators a(x(z)), ψ(z, ζ), ξp(z, ζ), p = 1, 2, 3, of total degree
N = j+ k+ l+m+1, namely, regard as an element of the form A1 ∗0 · · · ∗0 AN

where Aq, (q = 1, · · · , N) is one of a(x(z)), ψ(z, ζ), ξp(z, ζ), (p = 1, 2, 3). The
complete symmetrization of Q is an element given by

1
N !

∑
σ∈SN

Aσ(1) ∗0 · · · ∗0 Aσ(N)

where SN is the N permutation group.
Now we have the following.

Proposition 5. Any element f of the algebra (A, ∗0) is expressed uniquely by
means of the symmetrization as

f =
∑

j,k,l,m≥0

ajklm(x(z)) · ψ(z, ζ)j · ξk1 (z, ζ) · ξl2(z, ζ) · ξm3 (z, ζ) (9)

where each term ajklm(x(z)) ·ψ(z, ζ)j ·ξk1 · ξl2 · ξm3 is the complete symmetrization
of the term ajklm(x(z)) ∗0 ψ(z, ζ)

j
∗ ∗0 ξ1k∗ ∗0 ξ2l∗ ∗0 ξ3m∗ .

4.4. Ideal and Quotient Algebra

We consider an ideal of A and the quotient algebra to obtain certain star product
algebra on T ∗Ṙ3 which is regarded as the reduced algebra by the S1-action. We
put Jµ the two-sided ideal of (A, ∗0) generated by ψ(z, ζ)− µ where µ is a fixed
real constant. Now we define an associative algebra (Ã, ∗′

0
) = (A, ∗0)/Jµ where

∗′
0

is the induced product. We naturally have an algebra homomorphism

ϕ : (A, ∗0)→ (Ã, ∗′
0
).

For an element of A such as Q = a(x(z)) ∗0 ψ(z, ζ)
j
∗ ∗0 ξ1k∗ ∗0 ξ2l∗ ∗0 ξ3m∗ , and

using the associativity of ∗0 we have that ϕ(Q) = a(x(z))µj ∗′
0
ξ1

k
∗ ∗′0 ξ2

l
∗ ∗′0 ξ3

m
∗ .
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Also f ∈ A expressed in the symmetrized form (9) can be written

ϕ(f) =
∑

j,k,l,m≥0

ajklm(x(z)) µj · ξk1 (z, ζ) · ξl2(z, ζ) · ξm3 (z, ζ)

where ajklm(x(z)) µj · ξk1 (z, ζ) · ξl2(z, ζ) · ξm3 (z, ζ) is the complete symmetriza-
tion taken in (Ã, ∗′

0
).

4.5. Star Product on T ∗Ṙ3

Now we define a star product on T ∗Ṙ3. In the previous section, we define a prod-
uct algebra (A, ∗0) on T ∗Ṙ4. We will show this product naturally induces a star
product on the symplectic manifold (T ∗Ṙ3, σµ).

Polynomials. We consider a smooth function on T ∗Ṙ3 of polynomial form of
ξ1, ξ2, ξ3 such that

f̃ =
∑

k,l,m≥0

aklm(x1, x2, x3) ξ
k
1 ξ

l
2 ξ

m
3 , aklm(x1, x2, x3) ∈ C∞(T ∗Ṙ3). (10)

We denote by P̃ the set of such polynomials f̃ of the form (10).

4.6. Star Product

Now we give a star product on P̃ . To an element f̃ ∈ P̃ we assign an element
Ψ(f̃) ∈ Ã such that

Ψ(f̃) =
∑

k,l,m≥0

aklm(x(z)) · ξ1(z, ζ)k · ξ2(z, ζ)l · ξ3(z, ζ)m

where each term aklm(x(z)) · ξ1(z, ζ)k · ξ2(z, ζ)l · ξ3(z, ζ)m is the complete sym-
metrization of the term aklm(x(z)) ∗′

0
ξk1 (z, ζ) ∗′0 ξ

l
2(z, ζ) ∗′0 ξ

m
3 (z, ζ) ∈ Ã.

For example we see

Ψ(ξ1ξ2) = ξ1(z, ζ) · ξ2(z, ζ) = (ξ1(z, ζ) ∗′0 ξ2(z, ζ) + ξ2(z, ζ) ∗′0 ξ1(z, ζ))/2.

As to other generators we see similarly.
We remark here that the map Ψ induces a map of P̃ to Ã = A/Jµ. It is easy to
see the induced map Ψ : P̃ → Ã is a linear isomorphism.
Now, we introduce an associative product ∗µ on P̃ by

Definition 1.
f̃ ∗µ g̃ = Ψ−1(Ψf̃ ∗′

0
Ψg̃), f̃ , g̃ ∈ P̃.
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Here we remark the following. Since ϕ : A → Ã = A/Jµ is a surjective algebra
homomorphism, for Ψf̃ ,Ψg̃ ∈ Ã = A/Jµ there exist f, g ∈ A such that Ψf̃ =

ϕ(f), Ψg̃ = ϕ(g), and hence we have Ψf̃ ∗′
0
Ψg̃ = ϕ(f ∗0 g). Thus, we can

calculate the star product ∗µ by the formula

f̃ ∗µ g̃ = Ψ−1ϕ(f ∗0 g). (11)

Then we have

Theorem 3. The product ∗µ is a star product, namely

f̃ ∗µ g̃ = f̃ g̃ + i~
2 {f̃ , g̃}µ + · · ·+ ~nCn(f̃ , g̃) + · · ·

where {f̃ , g̃}µ is the Poisson bracket of the symplectic structure σµ and Cn is a
bidifferential operator on T ∗Ṙ3 for every n = 2, 3, . . ..

Proof: For elements of P̃

f̃ =
∑

k,l,m≥0

aklm(x) ξk1 ξ
l
2 ξ

m
3 , g̃ =

∑
α,β,γ≥0

bαβγ(x) ξ
α
1 ξ

β
2 ξ

γ
3

we can take f, g ∈ A satisfying Ψ(f̃) = ϕ(f), Ψ(g̃) = ϕ(g) such as

f =
∑

k,l,m≥0

aklm(x(z)) · ξk1 (z, ζ) · ξl2(z, ζ) · ξm3 (z, ζ)

g =
∑

α,β,γ≥0

bαβγ(x(z)) · ξα1 (z, ζ) · ξ
β
2 (z, ζ) · ξ

γ
3 (z, ζ).

We calculate ϕ(f ∗0 g) of (11) in the following way. As we see in Remark 2 we
can rewrite the elements f, g in the form (8). Then we calculate the Moyal product
f ∗0 g by means of the formula (6) which is given in the polynimal form (8). By
a direct calculation, we rewrite this into the form (7) (see for example, [8]) and
further changing the orders of elements by means of the formulae in Proposition 3
we rewrite into the complete symmetrized form (9). Then we can take the quotient
by the ideal Jµ to obtain ϕ(f ∗0 g). Remark that these calculations are given by
differential operators or bidifferential operators. Thus the obtained product f̃ ∗µ
g̃ = Ψ−1ϕ(f ∗0 g) has the expansion

f̃ ∗µ g̃ = fg + i~C1(f, g) + (i~)2C2(f, g) + · · ·+ (i~)nCn(f, g) + · · ·

whereCn, n = 1, 2, · · · are bidifferential operators. We use the formulae in Propo-
sition 3 for the calculation of [f, g]∗µ = f ∗µ g− g ∗µ f and then we easily see that
C1 is equal to the Poisson bracket of the symplectic structure σµ. Then we obtain
the proof. �
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